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Abstract

The past decade has seen a rapid transformation of electric power systems in many
countries worldwide through integrating renewable energy sources. However, the
associated increase in irregular power generation and consumption forces system
operators to compensate for resulting power fluctuations. Battery energy storage
systems are predestined for integrating renewable energy sources smoothly but
demand proper energy management. Research in this area has clearly established
that coordinated control is an essential contributor to the reliable operation of en-
ergy storage systems and thus the power grid. The development of battery energy
storage systems requires operating strategies to efficiently manage the power flow
under rapidly and continuously changing power requirements. Therefore, this work
aims to identify, quantify, and evaluate the potentials and sensitivities of power
flow control strategies for heterogeneous battery energy storage systems in several
applications and system designs. Moreover, it aims at developing a versatile power
flow control strategy for battery energy storage systems.

The experimental research design was used to analyze the causal relationships
between the inputs and the outputs of heterogeneous battery energy storage sys-
tems. In this context, a methodological framework was developed that includes
a validated simulation model of a battery energy storage system and methods to
systematically evaluate and visualize these causal relationships for different power
flow control strategies and applications. The results showed that the trade-offs
between the target indicators “performance,” “efficiency,” and “service life” can
be quantified accurately. Furthermore, the individual influences of the power flow
control strategies and applications on the target indicators were analyzed. It was
shown that, for example, a heterogeneous battery energy storage system could in-
fluence the service life of the batteries in different ways depending on the applied
power flow control strategy. The findings of this work show that the applied power
flow control strategy, system design, and application are essential factors to con-
sider when operating heterogeneous battery energy storage systems. These factors
influence the resulting power distribution within the system, which is, in turn, a



decisive point for reliable and sustainable operation. In many cases, a trade-off
between the target indicators “efficiency” and “service life” was observed, requiring
a decision on a more equal or a more individual power-sharing. A more individual
power-sharing, for example, might be beneficial in the case of the peak shaving
scenario, especially in terms of efficiency. However, this often decreases the service
life and demands a premature replacement of a single battery.

Generally, this work contributes to the body of knowledge on power flow control
strategies for battery energy storage systems by incorporating a methodological
framework for researchers and industries to analyze and develop battery energy
storage systems. The benefits gained from the methodological framework address
system operator needs across a wide range of different applications. This work
focuses, among other aspects, on the successful implementation of the method-
ological framework for heterogeneous battery energy storage systems. However,
most battery energy storage systems are included in higher-level systems, result-
ing in new challenges to be addressed. A further study could assess the potentials
and sensitivities of operating strategies for microgrids or other higher-level systems
using the methodological framework of this work.



Kurzfassung

In den vergangenen Jahren hat sich durch die Integration erneuerbarer Energien in
vielen Ländern weltweit eine rasche Umgestaltung der Stromnetze vollzogen. Die
damit verbundene und zunehmend volatile Stromerzeugung sowie auch der un-
regelmäßigere Verbrauch zwingen die Netzbetreiber zum Ausgleich resultierender
Stromschwankungen. Batteriespeichersysteme sind dafür prädestiniert eine rei-
bungslose Integration erneuerbarer Energien zu gewährleisten, erfordern aber ein
entsprechendes Energiemanagement. Forschungsarbeiten in diesem Gebiet haben
gezeigt, dass ein koordinierter Betrieb einen wesentlichen Beitrag zur Zuverläs-
sigkeit von Energiespeichersystemen und somit von Stromnetzen leistet. Die Ent-
wicklung von Batteriespeichersystemen erfordert unter anderem Betriebsstrategien
zur effizienten Leistungsflusssteuerung bei sich schnell und kontinuierlich ändern-
den Leistungsanforderungen. Daher zielt diese Arbeit darauf ab, die Potenziale
und Sensitivitäten von Betriebsstrategien für heterogene Batteriespeichersysteme
in verschiedenen Anwendungen und Systemkonfigurationen zu identifizieren, zu
quantifizieren und schließlich zu bewerten. Darüber hinaus verfolgt sie die Ent-
wicklung einer vielseitigen Betriebsstrategie für Batteriespeichersysteme.

Um die Wirkungszusammenhänge von heterogenen Batteriespeichersystemen zu
analysieren, wurde ein experimentelles Forschungsdesign verwendet. In diesem
Zusammenhang wurde ein methodischer Rahmen entwickelt, der ein validiertes Si-
mulationsmodell eines Batteriespeichersystems und Methoden zur systematischen
Bewertung und Visualisierung der Wirkungszusammenhänge bei verschiedenen
Betriebsstrategien und Anwendungen umfasst. Die Ergebnisse zeigten, dass die
einzugehenden Kompromisse zwischen den Zielindikatoren „Funktionserfüllung“,
„Effizienz“ und „Lebensdauer“ genau quantifiziert werden können. Darüber hin-
aus wurden die einzelnen Einflüsse der Betriebsstrategien, Systemkonfigurationen
und Anwendungen auf die Zielindikatoren bewertet. Es konnte gezeigt werden,
dass z.B. die Heterogenität eines Batteriespeichersystems je nach verwendeter Be-
triebsstrategie die Lebensdauer der Batterien unterschiedlich beeinflussen kann.
Die Ergebnisse dieser Arbeit legen dar, dass die genannten Faktoren wesentlich auf



einen optimierten Betrieb heterogener Batteriespeichersysteme Einfluss nehmen
und für die resultierende Leistungsaufteilung innerhalb des Systems essenziell sind.
Die Leistungsaufteilung wiederum ist der entscheidende Punkt für einen zuverläs-
sigen und nachhaltigen Betrieb. In vielen Fällen wurde beispielsweise ein Ziel-
konflikt zwischen den Zielindikatoren „Effizienz“ und „Lebensdauer“ beobachtet,
welcher folglich eine Entscheidung über eine gleichmäßigere oder individuellere
Leistungsaufteilung erfordert. Im Hinblick auf die Effizienz ist im Anwendungs-
fall der Lastspitzenkappung oft eine individuellere Leistungsaufteilung vorteilhaft.
Diese führt jedoch häufig zu einer geringeren Lebensdauer und somit zu einem
vorzeitigen Austausch einer einzelnen Batterie.

Insgesamt leistet diese Arbeit einen wesentlichen Beitrag zum aktuellen Wissens-
stand von Betriebsstrategien für Batteriespeichersysteme, indem sie einen metho-
dischen Rahmen für die Analyse und Entwicklung von Batteriespeichersystemen
für Forschung und Industrie bietet. Die Vorteile, die sich aus dem methodischen
Rahmen ergeben, können die Anforderungen von Systembetreibern in einem brei-
ten Spektrum unterschiedlicher Anwendungen erfüllen. Diese Arbeit konzentriert
sich unter anderem auf die erfolgreiche Umsetzung des methodischen Rahmens
für heterogene Batteriespeichersysteme. Die meisten Batteriespeichersysteme sind
jedoch Teil eines übergeordneten Systems, wodurch sich wiederum neue Heraus-
forderungen ergeben. Eine nachfolgende Studie könnte die Potenziale und Sensiti-
vitäten von Betriebsstrategien für Microgrids oder andere übergeordnete Systeme
unter Verwendung des hier entwickelten methodischen Rahmens bewerten.
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1 Introduction and motivation

The development of battery energy storage systems involves identifying current or
potential design and operating strategy gaps and developing methods to resolve
these gaps. Research about power flow analysis and control, including design,
operating strategies, and failure/protection issues, has clearly established that co-
ordinated control is an essential contributor to the reliable operation of power
grids and battery energy storage systems as one crucial part of future power grids.
However, there are conflicting views and an overall lack of research regarding how
best to manage the power flow in battery energy storage systems in which power
requirements are rapidly and continuously changing due to increasing irregular
power consumption and generation in the power grid. The research presented in
this work aims to identify, quantify, and evaluate the potentials and sensitivities
of power flow control strategies for heterogeneous battery energy storage systems
since the reliable and sustainable operation of power grids and thus energy systems
is becoming more critical for the future. This chapter provides an introduction to
the work by first discussing the background and context, followed by the general
research problem, the research aims and objectives, the significance, the overall
limitations, and lastly, the structure of the dissertation.

In the new global economy, sustainability has become a central issue for several
businesses. This dissertation is particularly motivated by connecting sustainabil-
ity and operating strategies for battery energy storage systems. The three dimen-
sions of sustainability, namely “economic,” “environmental,” and “social,” have
been gaining ground since the early 1990s [1]. In terms of battery energy storage
systems, these three dimensions will be introduced in this work as a profitable
operation of the energy system (economic), conservation of resources (environ-
mental), and stable energy supply for residents (social). The past decade has
seen a rapid transformation of electric power systems in many countries world-
wide through integrating renewable energy sources. A considerable amount of
renewable energy sources is indispensable on the pathway to a sustainable energy
supply; however, renewable energy sources require a more flexible energy system
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1 Introduction and motivation

to integrate these technologies [2]. A recent report of the International Renewable
Energy Agency (IRENA) [3] confirmed that battery energy storage systems are
particularly predestined for providing a more flexible energy system, thus enabling
the integration of higher shares of renewable energy sources. According to a review
by Hesse et al. [4], lithium-ion-based battery energy storage systems are a promis-
ing candidate for several applications in power grids since, for example, different
lithium-ion battery technologies provide individual benefits in terms of lifetime,
safety, or costs. They stated that a sophisticated energy management system1 is
required to enable optimal system operation and maximize the value of an energy
storage system in a given application. Operating strategies, in particular power
flow control strategies, for battery energy storage systems have been an object of
research in several power grid applications. Comparative reviews on power flow
control strategies in different fields have been presented in the literature, such as
[5–8]. However, most power flow control strategies focus on specific aspects to
be analyzed and optimized [4]. This poses a problem for a system operator that
faces the development process of a battery energy storage system since picking
the most effective (or even most sustainable) solution is impossible without more
profound analysis. As a result, the existing research provides no access to knowl-
edge about causal relationships between the inputs and the outputs of battery
energy storage systems when, for example, boundary conditions such as power
requirements are subject to change, and sustainable operation should be enabled.
Therefore, industries in such environments may find themselves ill-equipped in
terms of methodologies to evaluate an adequate solution for their systems and
problems.

Following the Cynefin for engineers framework [9],2 these characteristics assign
the identified problem to a complex problem, requesting a trade-off comparison
among possible solutions. In this case, the inputs have to be influenced systemat-
ically and outputs have to become perceptible and quantifiable. Figure 1.1 illus-
trates the described complex problem in terms of battery energy storage system
development by showing several input parameters (power flow control strategy,
application, configuration), the battery energy storage system as a black-box, and
output parameters (technical indicators, economic indicators).

1for, e.g., coordinated control of multiple battery energy storage systems or the consideration
of battery specific parameters, application constraints, etc.

2This framework is based on Snowden and Boone’s Cynefin framework [10].
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Figure 1.1: Overview of the described complex problem in terms of battery energy

storage system development emphasizing the inputs and outputs on
which this work is mainly focused (marked in black). Unused inputs
and outputs are grayed out.

Given the lack of research regarding battery energy storage system development
in terms of power flow control analysis, this work aims to identify, quantify, and
evaluate the potentials and sensitivities of power flow control strategies for het-
erogeneous battery energy storage systems in different applications and several
system designs by developing a methodological framework. Furthermore, it aims
at developing a versatile power flow control strategy for battery energy storage
systems. The objectives of this research are to:

1. determine reasonable input and output parameters,

2. develop a comprehensible, adequate, and validated simulation model of a
battery energy storage system, and

3. gain knowledge about the potentials of power flow control strategies for bat-
tery energy storage systems and the resulting causal relationships between
the inputs and the outputs.3

This work contributes to the body of knowledge on power flow control strategies
for battery energy storage systems by incorporating a methodological framework
for researchers and industries to analyze and develop battery energy storage sys-
tems. It will further help close the current research gap in this area and provide
real-world value to companies operating in such environments. However, it is

3considering no complete simulation model that covers all electric, thermal, and aging charac-
teristics of the battery energy storage system, resulting in model uncertainties
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beyond the scope of this work to develop a power flow control strategy to gain
information on a global optimum for a specific application and system design. In-
stead, it focuses on the correct setting of existent and proposed power flow control
strategies that are parametrizable. Moreover, this work cannot encompass the
entire field of possible applications for battery energy storage systems yet aims
at achieving generalizability. Therefore, there is no guarantee that the results are
fully transferable to other applications without any modifications.

In Chapter 1, the context of this work has been introduced. The research aims
and objectives have been identified and the value of such research argued. The
limitations of this work have also been discussed. The overall structure of this
work takes the form of eight chapters, as shown in Figure 1.2.

1. Introduction and motivation

8. Conclusion and future perspectives

7. Evaluation

6. Simulation studies
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2. Storage systems 3. Optimization
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Figure 1.2: Structure of the dissertation “Evaluation of power flow control strate-
gies for heterogeneous battery energy storage systems” emphasizing
the chapters.

After the broad introduction and motivation of the research topic, Chapters 2
and 3 narrow down the topic of interest by laying out the theoretical dimensions
of the research. Chapter 2 presents the fundamentals and the operation of battery
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energy storage systems. In addition, battery energy storage system applications,
target indicators, and power flow control strategies are identified and developed.
Chapter 3 gives an overview of the fundamentals of multi-objective (black-box)
optimization and the state-of-the-art approaches to solving such problems. This
chapter closes with the formulation of the research question resulting from the
identified research gap.

The fourth and fifth chapters are concerned with the methodology used for this
work. Chapter 4 introduces the simulation model of the battery energy storage
system used in this work and presents the verification and validation process of
the individual submodels. Moreover, a peripheral system, including the validated
simulation model, is outlined to solve the multi-objective black-box optimization
problem. The fifth chapter describes the methodological framework for evaluat-
ing power flow control strategies by introducing a battery energy storage system-
adapted toolchain and process flow. This chapter further addresses the implemen-
tation of the methods for evaluation and visualization of this work’s results.

Chapter 6 presents the simulation studies on power flow control strategies for
the two battery energy storage system applications peak shaving and frequency
regulation. The results of both applications are shown with regard to the three
methods for evaluation and visualization. Then, the simulation studies are sum-
marized by comparing the results of the developed power flow control strategies
with the state-of-the-art power flow control strategy.

The evaluation of the power flow control strategies is given in Chapter 7. This
chapter discusses the findings in more detail by moving away from the specific
presentation of the results to a broader, more general focus. Moreover, it shows
how the findings relate to the research questions, fit into the research map, and
lastly, affect the latter.

In Chapter 8, a conclusion is drawn, outlining the most important insights and
the main contribution of this work. Then a summary is given, reflecting the key
elements of each chapter. Finally, the identified limitations of this work and future
perspectives are presented in detail.

5





2 Fundamentals of battery energy
storage systems

With regard to the research aim, profound understanding of battery energy storage
systems (BESSs) and the operation of them is needed to evaluate power flow
control strategies (PFCSs) for heterogeneous BESSs. The necessary fundamentals,
therefore, will be outlined in this chapter. An introduction to the basics of BESSs,
describing such systems from the top down is given in Section 2.1. The operation of
BESSs is then outlined in Section 2.2, providing an overview of applications, target
indicators, control concepts, and PFCSs for such systems. Finally, Section 2.3
reveals the limitations in the current research and identifies the challenges to be
tackled. It should be noted that the following sections are partly based on my
published works [11–14].

2.1 Battery energy storage systems

Research into integrating batteries in grid applications has a long history. However,
earlier reviews on BESSs in power systems, such as [15], focus only on lead-acid
batteries due to their technical feasibility at that time. Over the past two decades,
there has been an increasing amount of literature on other BESS technologies,
as several reviews [16–18] over the past fifteen years have shown. According to
a recent review by Stecca et al. [18], lithium-ion, sodium-sulfur, lead-acid, and
redox flow batteries have become the main battery technologies used in grid appli-
cations. The authors further elaborated the performance differences among these
battery technologies in terms of costs, energy density, efficiency, power density,
and lifetime. They found that especially lithium-ion-based BESSs show high per-
formances comparative to the most relevant battery technologies.

A BESS is typically composed of a battery, including its battery management
system (BMS), and optionally a bidirectional inverter, depending on the system

7



2 Fundamentals of battery energy storage systems

topology (see direct current (DC) coupled BESS and alternating current (AC)
coupled BESS). Batteries are built of cells connected in series and/or in parallel
forming a module. These modules are then usually interconnected in series to
achieve higher voltages which are necessary for grid-scale BESSs. Depending on the
grid connection (cf. Section 2.1.1) and the converter topology (cf. Section 2.1.2),
an additional bidirectional DC/DC converter or a transformer might be required
to match the different voltage levels. DC coupled BESSs are then connected to a
common DC bus, while AC coupled BESSs are connected to the point of common
coupling (PCC). According to Hesse et al. [4], a BESS management system that
controls the overall system often consists of a thermal management, supervisory
control and data aquisition (SCADA), and an energy management system (EMS).
They describe these components as follows: The thermal management regulates
the heating or cooling of the system containment. The SCADA is a part of the
general monitoring and the EMS is responsible for the power flow control, energy
management, and distribution within the system. It further enables the execution
of operating strategies. [4]

A schematic diagram of a BESS with its components indicating a DC coupled
BESS and an AC coupled BESS is shown in Figure 2.1. Dashed lines indicate the
communication lines and optional components are grayed out.

Grid

Battery 
& BMS

Battery
& BMS

AC coupled BESSDC coupled BESS

DC

AC

BESS management system

EMS SCADA

Thermal management

DC bus PCC

DC

DC

DC

AC

Transformer

DC

DC

Figure 2.1: Schematic diagram of a BESS indicating a DC coupled BESS and an
AC coupled BESS. The BESS management system is often composed
of a thermal management, SCADA, and an EMS. Dashed lines indicate
the communication lines and optional components are grayed out.
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2 Fundamentals of battery energy storage systems

2.1.1 System design

The system design of BESSs is largely dependent on the application and thus on
the connection to the specific grid level. While only few BESSs are connected
to higher grid levels, such as the transmission grid or the medium voltage (MV)
distribution grid, most of the BESSs that are currently installed are connected to
the low voltage (LV) distribution grid (0.4 kV AC) [19]. DC voltages of BESSs,
on the other hand, are usually below 1 kV due to safety issues during installa-
tion and the maximum voltages of commonly used power semiconductor devices
[20]. Grid connection topologies are closely linked with the topology of the applied
power converters and can be divided into transformer-based and transformerless
topologies [21], suggesting the connection to the respective grid level. More specif-
ically, they are either single-stage or double-stage topologies which indicate the
structure and thus the number of applied power converters [22]. Figure 2.2 gives
an overview of typical grid connection topologies of BESSs comprising batteries,
DC/DC converters, DC/AC inverters, transformers, and the grid levels. AC cou-
pled BESSs are marked in pink, DC coupled BESSs in cyan. Topologies a) and d)
are single-stage topologies, b) and c) represent double-stage topologies. Each of
the four topologies could be either connected to the LV distribution grid (without
a transformer) or higher grid levels via a transformer [4, 20].
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Figure 2.2: Schematic diagram of typical grid connection topologies of BESSs com-
prising batteries, DC/DC converters, DC/AC inverters, transformers,
and the grid levels. Adapted from Bauer [23] and Schimpe et al. [20].
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2 Fundamentals of battery energy storage systems

Topologies a), b), and c) benefit from the fact that each string of the BESS can
be controlled individually. This allows using the BESS in multiple grid applica-
tions simultaneously, and individual strings can be turned off, avoiding operation
under part-load conditions [4]. A clear advantage of topology d) is the reduced
costs due to fewer power electronics components in the BESS. However, this topol-
ogy requires matching batteries and uniform operation, as compensating currents
can occur, leading to, e.g., enhanced losses. Battery matching is also a problem
in topology a). Several batteries have to be connected in series to achieve the
necessary voltage level of the inverter. In this case, the weakest battery deter-
mines the performance of the whole string, comprising a risk of lower efficiencies
and reliability issues [23]. Topology b) and c) suffer from increased costs due to
the double-stage topology which requires more power electronics components. Re-
gardless of the topology, galvanic isolation is required at some level to, e.g., control
each string of a BESS individually. Furthermore, batteries basically form an isolé-
terre (IT) network in which the battery itself has no connection to Earth at all.
Galvanic isolation allows preserving the safety concept of a battery that is usually
connected to the IT network. Comprehensive comparisons of system designs for
BESSs can be found in [20, 22, 24–26].

Batteries, power electronics devices, and consequently BESSs are subject to
manufacturing tolerances and dissimilar connections between BESS components.
Thus, an entirely homogeneous BESS cannot be guaranteed. However, with an
increasing number of second-life electric vehicle batteries becoming available for
stationary applications [27], a homogeneous BESS is in some cases deliberately
not intended. Batteries with different capacities, power capabilities, or state of
health (SoH) are employed in BESSs. This aspect might be challenging, as a het-
erogeneous system entails a heterogeneous power distribution when it comes to the
operation of the BESS [23]. In this case, the operating limits of an individual BESS
become more significant and it might be subject to more intense stress, affecting its
performance. These aspects will be discussed later in this work. Throughout this
work, the term “heterogeneity” is considered the variation of the rated capacity
and internal resistance. Although the capacity of an individual battery (as defined
in Section 4.4) might be subject to change, the sum of all battery capacities and
the total energy of the BESSs remain unchanged by definition in this work.
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2 Fundamentals of battery energy storage systems

2.1.2 Power electronics

Power electronics has become a key technology in the conversion of electrical power
in various modern applications, such as electric vehicles, renewable energy systems,
or (battery) energy storage systems. With the rise of smart grids, power electron-
ics has established its role in power engineering [28]. Research into several fields,
including the improvement of semiconductor devices, converter topologies, or dig-
ital control techniques, will help to strengthen the role of power electronics by
cheaper, more efficient, and more available devices and systems [29].

Fundamental concept
The fundamental principle of a power conversion system is based on the processing
of electrical power using a power converter to control the energy flow between a
source and a load [30]. An electric power conversion system is composed of a power
input port, power output port, and a control input port [31], as can be seen in
Figure 2.3.

Power converterPower 
input

Power 
output

Control 
input

Figure 2.3: Schematic diagram for electric power conversion. Adapted from [31].

Some power systems allow power flow in only one direction (unidirectional), and
some allow power flow in two directions (bidirectional). A BESS is a good example
for the latter. In this case, the input and output are dependent on the direction of
power flow. In general, electric power conversion can be performed in four different
ways concerning the power flow: DC/DC, AC/DC, DC/AC, and AC/AC, and is
described in [31] as follows: A DC/DC converter converts the input voltage to a
smaller or larger output voltage. An AC/DC rectifier rectifies an AC input voltage
to a DC output voltage, while each waveform of the voltages may be controlled.
In a DC/AC inverter, the input voltage is transformed to an AC output voltage of
controllable magnitude and frequency. The AC/AC converter converts the input
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2 Fundamentals of battery energy storage systems

voltage to an output voltage, where the magnitude and frequency can be set arbi-
trarily. [31] Each power converter has to be controlled in every case, regardless of
the type of power conversion, aiming to achieve high efficiency and reliability [30,
31]. Depending on the application, either one specific type of power conversion or
a combination is required. In BESS applications, for example, a combination of
different types of power conversion is needed, as the power flow is bidirectional and
different voltage levels are present. Furthermore, the rectifier and converter are
often combined in one component, as the function only depends on the direction
of power flow. Thus, a suitable power converter topology must be chosen to meet
application requirements.

Topologies for BESS applications
BESSs have to adapt their output voltage to the AC voltage level of the grid [32].
Power electronics enable the interconnection between batteries and the grid, us-
ing either transformer-based or transformerless topologies [21] (cf. Section 2.1.1).
According to Vazquez et al. [32], the topology of the power converter is dependent
on the technology and the application. They stated that power converters applied
to BESSs have to primarily manage the energy flow bidirectionally to control the
charging and discharging process and obtain a high level of efficiency.

In the case of transformer-based topologies, a simple three-phase two-level con-
verter with a transformer constitutes a conventional combination for BESS appli-
cations [32]. A review by Wang et al. [21] showed that alternative topologies to the
well-established two-level converter had been studied in the literature. These in-
clude a three-level neutral-point clamped converter, active neutral-point clamped
converter, three-level flying capacitor converter, and five-level converter. In an-
other review, Stecca et al. [18] concluded that such alternative topologies could
guarantee better performances concerning efficiency, cost, power density, and reli-
ability than the common two-level converter.

In the case of transformerless topologies, the voltage has to be boosted on the
DC side. This can be done by either connecting more batteries in series, adding
an additional DC/DC converter stage between the battery and the grid-tied in-
verter [21], or by directly connecting the batteries to the grid by using cascaded
modular converters [33, 34]. Here, the focus is on DC/DC converter stages, as this
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2 Fundamentals of battery energy storage systems

topology was applied in this work.1 The most commonly used topologies are the
bidirectional buck-boost converter [35] and the dual-active-bridge converter [36].
However, there are numerous other isolated and non-isolated bidirectional DC/DC
converter topologies, e.g., for BESS applications, as a review by Gorji et al. [37]
has shown. The two common topologies are illustrated in Figure 2.4.

vdcC
L

vbat

a)

Cvbat C vdc

b)

L

Figure 2.4: Commonly used bidirectional DC/DC converter topologies. a) buck-
boost converter with the battery in the low-voltage side (boost), and
b) dual-active-bridge converter. Adapted from [21].

As noted by Vazquez et al. [32], large-scale power systems based on transformer-
less topologies can be built by connecting several BESS strings in parallel to a
common DC bus. The common DC bus is then connected to the grid-tied inverter
(cf. Figure 2.2 c)).

2.1.3 Lithium-ion batteries

Prior to the work of Whittingham [38] in the 1970s, the role of rechargeable lithium
batteries was largely unknown. Serious discussions emerged when Whittingham
demonstrated the first rechargeable lithium-ion battery in 1976 [39] using a metallic
lithium anode and a titanium disulfide (TiS2) cathode. However, this combination
revealed numerous challenges, particularly safety concerns due to the hazard of
short-circuiting. A few years later, the research group of John B. Goodenough
substituted the cathode material in [40] using lithium cobalt oxide (LCO) instead
of titanium disulfide. This new approach doubled the voltage and led to an in-
creased energy density. In 1985, the US patent of Yoshino et al. [41] laid the

1A synchronous buck-boost converter was applied in this work, and the dual-active-bridge
converter was used in the UnABESA research project. UnABESA was a joint project of the
partner Bayerische Motoren Werke AG (Coordinator), University of Applied Sciences Munich,
Inductron Inductive Electronic Components GmbH, and Munich Electrification GmbH. It was
funded by the Federal Ministry for Economic Affairs and Energy (03ET6126B).
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foundations for commercial rechargeable lithium-ion batteries by producing the
first prototype of a safer and more stable lithium-ion battery. They used carbona-
ceous materials as the anode and LCO as the cathode in a non-aqueous electrolyte,
eliminating the safety problems of metallic lithium. The revolutionary groundwork
of all these researchers2 led to the lithium-ion battery, which is currently used in
several applications, such as consumer electronics, electric vehicles, or BESSs.

Fundamental concept
The working principle of a lithium-ion battery is based on the galvanic cell or
voltaic cell, respectively, converting chemical energy into electrical energy and
vice versa. A lithium-ion battery is composed of two electrodes connected to an
electric circuit, the electrolyte, and the separator, as can be seen in Figure 2.5.
Electrochemical reactions take place in the two electrodes, namely the anode and
cathode. The electrolyte serves as an ionic conductor and simultaneously as an
electronic insulator to enable only ionic charge transfer between the electrodes.
The separator constitutes a barrier material that impedes the physical (electric)
contact of the two electrodes.
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Figure 2.5: Schematic diagram of a lithium-ion battery. Adapted from [42, 43].
2Nobel Prize winners in Chemistry 2019
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During discharge, the oxidation process at the anode releases electrons into the
electric circuit. The remaining positive ions move into the electrolyte and enter the
crystal structure of the cathode to compensate for the electron flow. This process
is called intercalation. At the cathode, electrons recombine with positive ions,
forming neutral lithium atoms. Consequently, the lithium-ion battery discharges
its energy through the load, converting chemical energy into electrical energy. For
secondary batteries, i.e., rechargeable ones, the electrochemical reactions can take
place in reverse order. For a more detailed description of the inner workings of a
lithium-ion battery, please refer to [42].

The performance of lithium-ion batteries is strongly dependent on the choice of
the materials for all components as, for example, electrical, thermal, or mechanical
characteristics are directly affected. In the case of anode materials, carbon-based
materials can be found in most lithium-ion batteries due to their impressive elec-
trical and thermal conductivity [44] and the good reversibility of lithium interca-
lation. Regarding cathode materials, two groups of active materials are considered
state of the art due to their high operating voltage and the resulting higher energy
storage capability: layered transition metal oxides, such as LCO, lithium nickel
cobalt aluminium oxide (NCA), or lithium nickel manganese cobalt oxide (NMC),
and polyanion compounds, such as lithium iron phosphate (LFP) [44]. Further
information on key technological developments and challenges of lithium-ion bat-
tery electrodes can be found in, for example, [45]. Besides electrodes, numerous
studies on electrolytes and separators have been conducted to overcome, for ex-
ample, safety concerns of current lithium-ion batteries. A profound review on
state-of-the-art electrolytes can be found in [46] and on recent developments of
separators in [47]. Although the described processes and characteristics will not
be modeled exactly in this work, they influence the electrical and aging behavior.
Therefore, they are important to understand in order to interpret the obtained
results in Chapter 6 correctly.

Degradation
Degradation of lithium-ion batteries has been extensively and intensively studied
over the past two decades, for example, in [43, 48–51]. In more general terms,
a battery degrades both over time (calendar aging) and due to operation loads
(cycle aging). Calendar aging represents aging without load. In contrast, cycle
aging is described by the number of cycles until the end of a battery’s life. The
degradation is mainly caused by physical and chemical properties and causes the
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two main effects of degradation: capacity fade and power fade [43]. While capacity
fade means a reduction in the amount of energy that can be stored, power fade
represents a reduction in the power that can be provided due to resistance increase.

The main degradation modes include loss of lithium inventory and loss of active
material. Loss of lithium inventory describes the reduction of the amount of cy-
clable lithium, and loss of active material represents the reduction of available sites
for lithium intercalation [52]. The processes and degradation mechanisms respon-
sible for it need to be investigated and understood in order to limit degradation or
extend it in time. Degradation occurs mainly at the anode, cathode, and inactive
materials, such as the binder, current collector, or separator. However, studying
these effects proves difficult because individual effects happen on the same time
scales or interact with each other [48]. A graph by Birkl et al. [43] shows the
main degradation mechanisms of lithium-ion cells illustratively, as can be seen in
Figure 2.6.

Figure 2.6: Schematic overview of degradation mechanisms in lithium-ion cells
(CC BY 4.0 Birkl et al. [43]).

The main degradation mechanisms include solid electrolyte interphase (SEI)
formation and lithium plating (all in the anode) [48], loss of active material, elec-
trolyte degradation, and SEI growth (all in the cathode) [51], and decomposition,
corrosion, metal dissolution, and electrical or mechanical contact losses (all in the
inactive materials) [52]. These degradation mechanisms are subject to complex
processes that occur during storage and operation loads and are related to spe-
cific degradation variables. A literature review by Dubarry et al. [53] showed
that time, temperature, and state of charge (SoC) are considered to be the most
crucial degradation variables for calendar aging, regardless of the cell chemistry.
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They found that for all chemistries with a carbon-based anode, high tempera-
tures and high SoCs are detrimental in terms of a battery’s service life and the
capacity loss is mainly driven by the loss of lithium inventory. Another study
by Gewald et al. [54] concluded that for cyclic aging, temperature, charge or dis-
charge current, average SoC, depth of discharge (DoD), and charge throughput
were found to be the variables with the most substantial influence on degradation.
However, the authors stated that controversy on relevant stress factors exists and
especially the relevance of the discharge current is controversially discussed in the
literature. Different stress factors or combinations of stress factors are applied in
the literature depending on the specific battery. They further expressed that the
continuous development of lithium-ion batteries makes it impossible to generalize
the quantitative effects of the individual stress factors.

Modeling
The reasons for modeling lithium-ion batteries are highly diverse, ranging from
design purposes to the optimization and operation of BESSs. Battery models can
be evaluated according to their accuracy, computational complexity, configura-
tion effort, and analytical insight [55]. Consequently, the intended purpose of the
battery model is the most decisive factor for its selection, meaning that, for ex-
ample, the most accurate model may not always be the best choice. The existing
literature on lithium-ion battery models is extensive and focuses particularly on
electrical, thermal, and aging models. Here, the focus is on electrical and aging
models for lithium-ion batteries, as both play a vital role in this work. Thermal
models would increase the accuracy of the electrical and aging model but are not
part of this work to reduce the complexity and computational effort. For more
information on thermal modeling of lithium-ion batteries, see the review of Band-
hauer et al. [56]. In the case of electrical and aging models, several models have
been developed to model the states (mainly SoC and SoH) of lithium-ion batteries.
They can be further categorized into three categories relative to their physical in-
terpretation: mechanistic white-box models, phenomenological gray-box models,
and data-driven black-box models [57, 58].

White-box models
Mechanistic models, or synonymously electrochemical models, aim at modeling
prevailing chemical and physical processes and thus the resulting states inside
a battery [58]. For accurate predictions, continuum models that take into ac-
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count electrochemical kinetics and transport phenomena are commonly used in
this field [59]. An accepted and widely used model for single cells is the pseudo-
two-dimensional (P2D) model of Doyle, Fuller, and Newman [60]. It is based on
the principles of the porous electrode theory, concentrated solution theory, and
kinetics equations [60]. However, the P2D model and some of its variations, such
as the single particle model, are typically not real-time capable [61] which consti-
tutes a major drawback for their use in BESS applications. Therefore, simplified
P2D models have been proposed in the literature, leading to, e.g., lower compu-
tation complexity. An extensive review of simplified P2D models can be found
in [61]. In [62], for example, a physics-based (electrochemical) model, including a
degradation model, has been used in an energy trading application showing that
both an increased revenue and decreased degradation can be achieved by applying
such models. However, the models are still computationally more expensive than,
for example, gray-box models, and require model parameters that are difficult to
extract (cf. Ecker et al. [63, 64]).

Gray-box models
An equivalent circuit model (ECM) consisting of simple electrical elements that
represent the dominating electrochemical processes is a common phenomenological
(gray box) approach to model a battery’s behavior [58]. According to Plett [42],
the majority of battery management systems use some form of ECMs due to its
simplicity and robustness. However, ECMs vary in their accuracy and computa-
tional complexity. Simple models only contain a SoC-dependent controlled voltage
source to represent the open-circuit voltage (OCV) and a resistance in series to
model instantaneous polarization. By adding resistor-capacitor (RC)-circuits in
series, additional polarization effects that develop and decay over time, such as
diffusion processes, can be modeled [42]. However, the ambiguity of the individual
circuits might lead to a misinterpretation of the effects, even if the terminal be-
havior is correctly reproduced [57]. The characterization of the elements can take
place either in the frequency domain or in the time domain using impedance or
pulse measurement.

One approach to model degradation when using gray-box approaches is to keep
track of the impedance spectra [65, 66]. The impedance spectra are subject to
change over time and due to operation loads, allowing the aging behavior to be
concluded. Another approach is to extend the electric model by a separate aging
model, as shown in several studies [67–72]. In this case, aging experiments at,
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e.g., different temperatures or SoCs are carried out beforehand, providing insights
into the capacity fade and resistance increase as a function of time and cycles.
Gray-box models are usually implemented by adapting model parameters relative
to the current operating point.

Black-box models
Data-driven black-box models take an empirical approach to modeling a battery.
They require a large amount of historical, operational, or experimental data, yet
no knowledge about the underlying physicochemical processes [58]. A mathemati-
cal function of the input-output correlations is trained and provides feedback and
predictions of the states of the battery. This approach results in less computational
complexity and a low configuration effort. However, this function has mostly no
physical significance, meaning that no analytical insights can be provided and no
conclusions can be drawn about the underlying cause of a particular behavior. Fur-
thermore, black-box models are not suited for extrapolation beyond the measured
data. Several approaches, such as artificial neural network algorithms, fuzzy-logic,
or regression algorithms, for data-driven state estimation have been studied and
summarized in the literature for both SoC estimation [73] and SoH estimation [74].

Definition of parameters
Most battery parameters are not directly accessible by measurement, as shown in
the last subsection. Only the current, voltage, and temperature are measurable.
Thus, a proper definition of battery parameters, and particularly non-measurable
parameters, is indispensable.

Sign convention
In this work, the battery current ibat is considered positive for charging and nega-
tive for discharging the battery. Unlike what was stated in ISO 12405-1 [75], this
is in line with the vast majority of scientific works.

Terminal voltage and open-circuit-voltage
The terminal voltage vbat of a battery describes the potential difference measured
across its positive and negative terminal under load. If no current is being drawn
from the battery for a sufficiently long time, dynamic processes are no longer
present. In that case, the OCV of a battery is measured, and the battery is in
electrochemical equilibrium.
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Battery capacity
Following the definitions of Plett [76], two different definitions of the capacity are
used in this work: First, the rated (or nominal) capacity Crat of a battery is defined
as a manufacturer-specified quantity (determined by the anticipated application
of the cell) indicating the charge a battery is rated to hold. Second, the actual
discharge capacity (here Cact) is defined as the quantity of charge removed during
discharge at a defined temperature, the charging method defined in the data sheet,
and a specified and constant discharge current from 100 % SoC until the terminal
voltage reaches the defined cut-off voltage. The unit of both the rated and actual
capacity is ampere-hours (Ah).

Coulombic efficiency
The coulombic efficiency ηc describes the ratio between the discharge capacity
and the charge capacity of a battery resulting from an entire cycle. In [77], the
coulombic efficiency was found slightly lower than unity (ηc > 0.98) for commer-
cial lithium-ion batteries. They further stated that coulombic efficiency becomes
closer to unity for decreasing temperatures and at higher C-rates. Therefore, it
is defined as equal to unity in this work as enhanced temperatures and very low
C-rates will not be the standard case.

C-rate
The C-rate defines the rate at which a battery is charged or discharged relative
to its rated capacity [75]. A C-rate of one means that the battery will be entirely
charged or discharged in one hour.

Full equivalent cycle
Following the definition of Naumann [78], a full equivalent cycle (FEC) is defined
as the ratio of the cumulative capacity throughput to twice the battery capacity.

FEC(t) = FEC(t0) + 1
2 · Cact

t0+t!

t0

ηc · |ibat(τ)| dτ (2.1)

In this work, the actual discharge capacity Cact is applied, and the cumulative
capacity throughput is calculated by the integral of the absolute battery current
ibat over the time t. FEC (t0) is the initial FEC and ηc the coulombic efficiency.
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State of charge
The SoC is defined in this work using current integration to determine the change
in battery capacity over time (coulomb-counting method), as given by

SoC(t) = SoC(t0) + 1
Cact

t0+t!

t0

ηc · ibat(τ) dτ , (2.2)

where SoC (t0) is the initial SoC, t the current time, ηc the coulombic efficiency
(which is equal to unity), and C act the actual discharge capacity.

Depth of discharge
The DoD refers to the amount of charge added to or removed from the battery in
relation to the actual capacity. In particular, the DoD as used for the aging model
is defined as the absolute difference between the SoC at the beginning of a charging
or discharging process (SoCstart) and the SoC at the end of the identical charging
or discharging process (SoCend). Thus, the DoD is recalculated in the event of a
change of sign and is valid for a monotonic charging or discharging process.

DoD = |SoCstart − SoCend| (2.3)

2.2 Operation of battery energy storage systems

The economic, environmental, and social benefits of a BESS are primarily de-
pendent on an optimal design and operation. Efficient operation, multi-level col-
laborative optimization control, and the achievement of multiple objectives are
essential goals in the future development of centralized or distributed BESSs [8].
The operation of BESSs concerns a variety of different aspects, such as applica-
tions, objectives of the operator, control concepts, and operating strategies. The
following subsections provide information about the state of the art of these aspects
and improvements undertaken in the course of this work.

2.2.1 Applications

The selection of suitable BESS applications contributes significantly to the evalu-
ation of PFCSs for heterogeneous BESSs. BESS applications can be identified at
various sites in the electricity grid. According to a study by Fitzgerald et al. [79],
the value proposition of BESSs is dependent on where they are deployed and the
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respective stakeholders. Thus, they divided the grid into three levels for BESS
deployment: transmission level, distribution level, and behind the meter (cf. Sec-
tion 2.1.1). The authors further identified three main stakeholder groups: cus-
tomers, system operators, and utilities, and described their benefits as follows:
Customer services provide benefits to end-users in monetary form when the BESS
is deployed behind the meter (e.g., time-of-use bill management). Simultaneously,
benefits are provided to system operators as the demand side is much easier and
less costly to match up with the generation side. System operators further benefit
from ancillary services, such as regulating the frequency or voltage required to en-
sure grid stability. BESSs are capable of providing these ancillary services. Utility
services help utilities to a) defer investments in transmission and distribution in-
frastructure and b) meet system peaking requirements on a day-to-day basis. [79]
Figure 2.7 gives an overview of BESS applications with respect to stakeholder
groups.

Energy
arbitrage Spin / 

Non-spin 
reserve

Frequency
regulation

Voltage
support

Black 
start

Resource 
adequacy

Transmission 
congestion 

relief

Transmission
deferral

Distribution
deferral

Time-of-use 
bill 

management

Demand 
charge 

reduction

Increased
self-

consumption

Backup
power

Figure 2.7: BESS applications with respect to stakeholder groups. The circles
indicate the range of individual services considering the stakeholder
(outer ring) and the grid level (inner rings). Adapted from [79].
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BESSs can provide a wide range of individual services to meet the interests of
the stakeholders, as shown in the figure. However, only some of them are techni-
cally and economically attractive in a standalone application [79, 80]. Therefore,
the focus is on two common BESSs applications: peak shaving and frequency
regulation.

Peak shaving is one form of time-of-use bill management. Commercial and res-
idential customers reduce the power drawn from the grid by using BESSs during
times of peak demand to reduce the demand charge component of the electricity
bills [80]. A considerable amount of literature has been published on sizing, evalu-
ating, and managing BESSs for peak shaving applications. By focusing on control
strategies, in [81] for example, a peak shaving algorithm in combination with a con-
tinuous battery peak power estimation algorithm for a BESS is proposed. Tests on
a real-time microgrid (MG) suggested that the proposed algorithm allows limiting
power exchanges between the MG and the grid. Uddin et al. [82] introduced an
algorithm for peak load management, facilitated by BESSs, and tested it in a real
MG. The results showed that substantial savings could be achieved for MG utility
while reducing the peak demand of the MG. An extensive review of peak load
shaving strategies can be found in [83].

Frequency regulation services, on the other hand, deal with grid stability issues
by keeping the frequency of the grid within an acceptable tolerance band [80].
In this case, an immediate and automatic response to frequency deviations is re-
quired to match demand and generation [79]. Much of the current literature pays
particular attention to the operation of BESSs for frequency regulation services.
In [84], the impact of operation strategies on different parameters, such as FEC
or SoC, was investigated in a case study for a 2 MWh BESS under the German
regulatory framework. Optimization methods are suggested to ensure the BESS’s
operability during primary control supply. Stroe et al. [85] investigated from a
battery lifetime perspective the suitability of five strategies for frequency regula-
tion. The results showed that depending on the control strategy, different success
ratios and expected lifetimes occurred. In [86], a profit-maximizing BESS control
strategy with a focus on both the frequency regulation and SoC recovery phase is
proposed. Findings suggest that the proposed control scheme is optimal and the
runtime complexity is low. A review of frequency control in future power systems
is provided by Obaid et al. [87].
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In a joint publication [88], a method was presented to generate and analyze
standardized BESS load profiles. These profiles relate to a self-consumption in-
crease, peak shaving, and frequency regulation service. Based on the approaches
presented in [88], two artificial application-oriented profiles for peak shaving and
frequency regulation were generated within the scope of this work. These profiles
are shown later in Figure 4.6.

The artificial peak shaving profile was derived from the German standard load
profile G0 and covered an operating period of one day with a 15 minute sampling
time. In order to obtain a higher resolution (one second) and a more realistic load
profile, its values were interpolated in the first place and then replaced by random
numbers at equidistant intervals. Arbitrary values remained inside the standard
deviation of 0.0025 of the normal distribution with a mean of the interpolated
value. Then, the load profile was normalized to the maximum value and trans-
formed into a profile suitable for BESS applications. For this reason, the peak load
time window defined by the respective distribution system operator in Germany
was extracted,3 a threshold for peak shaving was selected, and the remaining pro-
file was set to zero. The user could select the free parameters of the profile: the
amplitude, energy throughput, peak shaving threshold, and the time and intensity
of the recharging. Thus, both technical and time factors were adjustable. The
profile was characterized by a high energy throughput between sign changes and
long resting periods, resulting in only a few sign changes.

The profile for the frequency regulation service was derived from frequency mea-
surements (December 2018) in Munich. The measurement data covered one day
and was on a per-second basis. The frequency profile was decreased by the nom-
inal frequency of 50 Hz and normalized to the maximum value. For reasons of
simplicity, the desired power follows the normalized frequency deviation. In this
case, the user can only manipulate the amplitude. This profile is characterized by
many sign changes and a low energy throughput between sign changes.

The artificial application-oriented profiles are considered scenarios and consti-
tute one part of the use case. Throughout this dissertation, the term “use case”
will be used to refer to a combination of a specific BESS application and a specific
system design.

3The peak load time window depends on the season and the distribution system operator. It
refers to a forecast period in which the loads are highest and is calculated by the respective
distribution system operator.
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2.2.2 Target indicators

Target indicators are figures designed to reflect the current status of a BESS.
With the aim of evaluating PFCSs in BESS applications, quantitative target indi-
cators are required. Target indicators for BESSs should follow the widely accepted
“SMART criteria,” introduced by Doran [89] as a guide for setting objectives in
management processes. In the figurative sense, target indicators for BESSs should
be specific, measurable, assignable, realistic, and time-related when following his
statements. Here, the target indicators should additionally represent the three
dimensions of sustainability: social, economic, and environmental, as described in
Chapter 1. Therefore, three target indicators, namely “performance,” “efficiency,”
and “service life” are applied in this work and have already been introduced in a
previous collaborative work [90].

The performance criterion (PE) indicates the fulfillment of the power require-
ments and provides information on the operating times of the BESS. It assesses
the difference between the requested and the supplied energy. In terms of sustain-
ability, it represents the stable energy supply for residents (social benefit) and is
defined as

PE = 1 −
"
(|P ∗(t) − Psys(t)|) dt

"
|P ∗(t)| dt

, (2.4)

where P* is the requested power from the grid and Psys the output power of the
system. The limits of integration are the start point and endpoint of the simulation
or operation.

For most applications, a system would be designed and operated in a way to
achieve full performance. However, in home storage applications, for example,
a performance of less than one might also be reasonable as the main goal is to
enhance the self-sufficiency. A system where PE = 1 indicates an uninterrupted
operation of the BESS. However, limitations such as rounding errors or latencies
have to be considered in real applications. Obviously, the performance criterion
would not be a distinctive indicator in cases of a full performance. Instead, pa-
rameters correlated with the system size or the application can be varied to find
the minimum system size or maximum amplitude at which full performance can
be achieved.
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The efficiency criterion (ηrt) shows the round-trip efficiency ηrt of the system to
evaluate the system’s lost energy. It aims to indicate a profitable operation of the
energy system (economic benefit) and is defined as follows:

ηrt = 1 −
"
(Psys(t) − Pbat(t)) dt

"
Pref(t) dt

with Pref(t) =

#
$

%
Psys(t) for P ∗(t) ≥ 0
|Pbat(t)| for P ∗(t) < 0

(2.5)

Pbat constitutes the output power of the battery, Psys the output power of the
entire system, P* the requested power from the grid, and Pref represents a variable
that changes with respect to the operation mode. The target indicator considers
the losses of each battery and each converter stage inside the system. The limits
of integration are again the start point and the endpoint of the simulation or oper-
ation. Definitions of the performance and efficiency criteria might look similar but
apply to two distinct target indicators. A system with high power losses will have
a poor efficiency but still covers full performance if it is sufficiently oversized. For
underdesigned systems, the two criteria might correlate but are affected differently
by the PFCS.

The service life criterion (SL) represents a battery’s estimated remaining life
before reaching a defined end-of-life (EOL) criterion. Conservation of resources
(environmental benefit) is paramount for this indicator, which is formulated as
follows:

SL = 1 − Q∗
loss −

"
qloss,min(t) dt

Qloss,max −
"

qloss,min(t) dt
with (2.6a)

Q∗
loss = Q∗cal

loss + Q∗cyc
loss , (2.6b)

Qloss,max = BOLC − EOLC , (2.6c)

qloss,min = qcal
loss,min(T, SoC, t∗) , (2.6d)

where Q∗
loss is the accumulated value of the differential capacity losses of both

calendar and cycle aging, Qloss,max is the maximum permitted capacity loss de-
fined by the beginning-of-life (BOL) and EOL criteria, qloss,min is the minimum
differential capacity loss due to calendar aging, BOLC is the initial capacity of a
battery at BOL, and EOLC is the remaining capacity at EOL. Note that all pa-
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rameters are normalized to the initial capacity. Thus, Equations (2.6a)–(2.6d) are
expressed per unit. The limits of integration are also the start point and endpoint
of the simulation or operation. It should be further noted that the target indicator
“service life” could be considered differently. One way is to take into account all
batteries’ accumulated service life (i.e., the accumulated capacity loss as shown in
Equation (2.6a)). This means the overall deterioration of the BESSs should be
minimized, which could lead to premature replacement of a single BESS. Alter-
natively, only the most degraded battery is decisive for the service life criterion.
This might lead to a more balanced deterioration among the BESSs, presumably
leading to longer service intervals. The first alternative was implemented in this
work, as this constitutes a more critical assessment of the service life.

The introduced target indicators follow the “SMART criteria” as mentioned pre-
viously. The target indicators serve a specific purpose (specific), indicate the cur-
rent status of the BESS (measurable), specify which BESS is affected (assignable),
indicate what realistically can be achieved using a specific PFCS (realistic), and
provide feedback at any time (time-related). Additionally, the target indicators
reflect the three dimensions of sustainability, as previously mentioned. Even if
these target indicators are somewhat technical, economic target indicators could
be derived if necessary. For example, these could be penalties for non-fulfillment
of performance requirements, lost revenues through energy losses, or maintenance
costs caused by enhanced degradation of the components. However, economic tar-
get indicators depend on many legal conditions, some of which are outside the
system operators’ scope of action and are thus not considered in this work.

2.2.3 Control concepts

The control concepts presented in this subsection are usually from other engineer-
ing areas, such as control engineering. In recent years, however, several researchers
have also repurposed these concepts in fields of modern power systems like smart
grids or MGs, as reviews have shown [5, 91–94]. The operation of an MG or BESS
using such control concepts can be realized by operating the interfacing power con-
verters properly [93]. However, the selection of an appropriate control concept for a
BESS depends on its topology and the application. Figure 2.8 gives an overview of
basic control concepts, namely centralized, decentralized, and distributed control.
Dashed lines indicate the communication lines.

27



2 Fundamentals of battery energy storage systems

a)

C

BE
SS

 1

BE
SS
i

BE
SS

 2

b)

C1

BE
SS

 1

BE
SS
i

BE
SS

 2

C2 Ci

c)

C1

BE
SS

 1

BE
SS
i

BE
SS

 2

C2 Ci

Figure 2.8: Overview of basic control concepts. a) centralized, b) decentralized,
and c) distributed. Dashed lines indicate the communication lines be-
tween the BESSs and the controllers (abbr. C). Adapted from [93].

In the context of MGs, or more specifically BESSs, these three control concepts,
their advantages and their disadvantages can be described as follows: Central-
ized control (a) describes a control concept in which a central controller collects
and processes data sent from BESSs and transmits information back to them [94].
While a clear advantage of this concept constitutes strong observability and con-
trollability, it suffers from reduced reliability, flexibility, and expandability [93].
Decentralized control (b) provides no communication link between the individual
BESS controller, and BESSs are controlled rather by their own local variables
[94]. This has the advantage of simplicity and independence from communication
technologies but is limited in its performance due to the lack of information from
other BESSs [92]. Distributed control (c) combines the concepts of centralized
and decentralized control. As indicated in Figure 2.8, BESSs communicate only
with their neighbors through communication lines, sharing important information
in order to achieve coordinated control among all BESSs [93]. In case of a failure,
the systems remain fully functional [92]. However, one main challenge is to achieve
the consensus to fulfill, e.g., optimization objectives [93].

With MGs becoming more important in the 2000s, in 2009, Guerrero et al. [95]
proposed a general approach towards standardization: a general hierarchical multi-
level control for DC and AC MGs. This constitutes a special form of control con-
cept and has gained much attention in the literature. The hierarchical control can
be implemented to either replicate a centralized, decentralized, or distributed con-
trol concept. According to Guerrero et al. [95], the hierarchical multi-level control
is divided into three levels: primary, secondary, and tertiary control, and interacts
as follows: Primary control adjusts the voltage reference provided by upper-level
controllers to local parameters, such as those for the inner current and voltage con-
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trol loop. As a result, it enables the parallel operation between the converters and
improves the dynamic performance of the output voltage. However, this yields
a load-dependent voltage deviation. For this reason, secondary control appears
on top of primary control and restores the load-dependent voltage deviation by
sensing and comparing the actual voltage level with the voltage reference. The
compensation of the resulting voltage error is done via a controller and ensures
that the system is operated within its approved operating limits. Tertiary control
appears on top of all control levels and manages the power flow. [95] At this level,
the PFCSs are usually implemented.

2.2.4 Power flow control strategies

In general, power-sharing defines how the requested power of the grid will be
distributed among the BESSs. The calculation of the power-sharing within the
system can be expressed as shown in Equation (2.7) regardless of the applied
PFCS. It varies according to the power-sharing factor α.

P ∗
i = P ∗ · αi , (2.7)

where P∗
i is the desired output power of the ith BESS and P* is the requested

power from the grid. It should be noted that for the power at the battery’s input,
the efficiency of the converter stage must be considered. Moreover, each αi ranges
between zero and one, whereby the sum of all power-sharing factors equals one.

However, two special cases exist when implementing Equation (2.7). First, the
system’s maximum output power might be lower than the requested power. In
this case, P∗

i is calculated as stated in Equation (2.7) but only the maximum out-
put power of the respective BESS is provided. Second, in the case of reaching a
battery’s limit, the maximum output power of one BESS could be lower than the
calculated share even if it is within the nominal power limits. This means the sys-
tem output power is reduced accordingly. As a remedy, some PFCSs redistribute
the power, forcing other BESSs to take over a larger share. In both cases, the
output power of a BESS is calculated as follows:

|Pi| = min(|P ∗| · αi, |Pmax,i|) , (2.8)
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where P i is the output power of the ith BESS and Pmax,i is the maximum output
power of the respective BESS (regardless of the operating mode) when battery
limits are reached.

PFCSs for an efficient and reliable operation of BESSs have been widely studied
in several fields of BESS applications, such as MGs, grid applications, or electric
vehicles. They aim to meet certain requirements given by, e.g., the application
or the system operator. The existing literature on PFCSs is extensive and has
revealed that different levels of implementation effort and operating parameters
can be identified. Consequently, PFCSs can be classified into three distinctive
categories, namely static, dynamic, and optimization-based PFCSs, as previously
mentioned in a collaborative work [90].

Static PFCSs apply constant power-sharing factors during operation and are
based on nominal values of the battery, e.g., the number of utilized BESSs or the
rated capacity of these. In terms of complexity, computing power, and imple-
mentation effort, static PFCSs are the most straightforward approach. Dynamic
approaches, in contrast, adapt power-sharing factors during operation, yielding
a more efficient operation. Battery state variables, such as SoC or available en-
ergy/power, can be considered, and the implementation effort is nearly as low as
for static PFCSs given that the state variables are available. Power-sharing factors
of optimization-based PFCSs are changing during operation relative to the output
of a specified objective function. Several optimization methods can be applied and
specific optimization goals can be addressed. However, in terms of complexity and
computing power, optimization-based PFCSs are costly.

Only a few studies on static PFCSs can be found in the literature. Jiang and
Dougal [96], for example, presented a static PFCS for active power-sharing among
multiple battery branches in which the charging currents were equally distributed.
In my published work [11], two static PFCSs were applied to analyze different
PFCSs in heterogeneous BESSs systematically. The first one shares the requested
power relative to the number of utilized BESSs and the second one takes into ac-
count the rated capacity.

A common dynamic PFCS in the field of MGs is to balance the SoC of partici-
pating BESSs, ensuring a reliable and coordinated operation [93]. There is a large
volume of published studies [97–108] describing the role of SoC balancing in MGs
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by using the well-known droop method. This method is based on the concept of
changing the droop coefficients of the interfacing DC/DC converters according to
the respective SoCs of participating BESSs. Besides the standard droop method,
Ali et al. [109] proposed a dynamic coordinated control strategy that takes into
account the SoC, SoH, and capacity of the batteries, aiming to improve battery
life. Apart from the research area of MGs, dynamic PFCSs have also been investi-
gated in the field of grid applications and electric vehicles. Instead of balancing the
SoC, other BESS parameters were taken into account in these areas. Li et al. [110]
proposed a SoH-balancing PFCS in order to equalize the degradation during the
long-term operation. In [111], a PFCS for the provision of primary control reserve
in combination with intraday trading was proposed, aiming to reduce the power
electronics’ losses by minimizing their in-operation time. One of the presented
PFCSs by Choi et al. [112] shares the requested power according to the available
energies of each battery with the aim of improving the energy efficiency of the
entire system. Jiang and Dougal [96] further presented a dynamic PFCS in which
the charging current of a battery is proportional to the fraction of its DoD. In
[113], a PFCS based on the state of the available power (SoAP) for a hybrid en-
ergy storage system was proposed, yielding performance improvements in terms of
battery lifetime, vehicle range, and regenerative braking energy recovery.

Beyond static and dynamic PFCSs, researchers have assessed the efficacy of
PFCSs using optimization-based approaches. In this respect, several studies have
been published in the research area of MGs. Morstyn et al. [114] proposed a
model predictive control (MPC) PFCS with receding time horizon optimization
that considers line losses and voltage drops. In [115] a particle swarm optimiza-
tion (PSO)-based PFCS was established, which balances the SoC and reduces
power losses in an island DC MG. Meng et al. [116] applied an optimization-based
approach considering the SoC and the overall system efficiency at the same time.
The results showed that the SoC balancing was successfully implemented into the
system efficiency optimization problem. In [117], a multi-dimensional droop sur-
face (parameter map) was developed determining optimal droop parameters based
on different capacities and SoCs to optimize a global cost function. The work
of Wang et al. [118] presents a distributed method of minimizing the difference
between the SoC values and their reference values and minimizing the controlling
power consumption. Apart from the research area of MGs, optimization-based
PFCSs have also been investigated in the field of grid applications. In [119], a
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multi-agent PSO for large-scale BESSs was presented. Fluctuations of a wind
power station were stabilized and the SoC imbalance of the BESS was gradually
reduced in a one-day operation. In [120], PSO was used to minimize the multiple
operation costs of a BESS. The BESS was composed of retired batteries with a dif-
ferent SoH and its economical operation was optimized by applying a use case with
shifting peak loads. Fortenbacher et al. [121, 122] proposed a MPC framework
for power system applications to maximize the battery life and provide optimal
control of multiple battery sets in real-time. Optimal scheduling of a small-scale
photovoltaic-battery hybrid system has been proposed by Wu et al. [123]. They
used an optimal control method to schedule the hybrid system’s power flow to
minimize electricity costs. In the work of Kim et al. [124], an optimal operation
framework for BESSs was implemented for load management of a large-scale cus-
tomer under time-based pricing, proving the reliability and effectiveness of the
PFCS. An optimization-based MPC approach for controlling a stationary energy
storage system is presented in [90]. The proposed approach provides the flexibil-
ity to design a PFCS that enables the trade-off between multiple objectives to be
managed. Besides PSO and MPC, other PFCSs based on optimization techniques
have been proposed. Zhu and Zhang [86] considered a profit-maximization PFCS
that coordinates a distributed BESS to provide primary frequency control ser-
vice. Kang et al. [125] proposed a distributed multi-objective power management
scheme, in which economic power dispatch objectives, dissatisfaction costs, and
system voltage loss are optimized using a Nash bargaining solution. Recent stud-
ies also consider machine learning approaches to control energy storage systems
in different applications, such as grid applications [126] or electric vehicles [127,
128]. Figure 2.9 gives an overview of PFCSs for BESS applications categorized
into static, dynamic, and optimization-based PFCSs.
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Figure 2.9: Overview of power flow control strategies for BESS applications.

2.3 Summary of the review

The studies presented thus far provide evidence that the optimal operation of
BESSs depends on three key criteria: system design, application, and objectives of
the operator. As mentioned by Hesse et al. [4], most PFCSs focus on specific as-
pects to be analyzed and optimized. Consequently, there are some conflicting views
regarding how best to manage the power flow in BESSs while considering multiple
objectives. Achieving multiple objectives in BESS applications, such as fulfilling
power requirements, increasing the BESS’s overall efficiency, and reducing battery
degradation necessitates solving a multi-objective optimization (MOO) problem
[90]. Moreover, each MOO process demands decision-making at some point to
achieve the optimal operation of a BESS. Therefore, the vast majority of pub-
lished works on PFCSs consider optimization-based approaches, for example [90,
118–122, 125]. However, two crucial challenges emerge from the studies discussed
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so far: First, there is only a limited thorough analysis of the multiple objectives
mentioned in these studies. In most MOO problems, no single solution exists that
concurrently optimizes multiple objectives and adequately satisfies the operator’s
objective. Thus, rational decision-making cannot be guaranteed since there is no
set of solutions to quantify the trade-offs and provide information about conflicting
objectives. Second, the existing research provides no access to general knowledge
about causal relationships between the inputs and the outputs of BESSs when, for
example, boundary conditions such as power requirements are subject to change
and sustainable operation should be enabled. By bringing together the challenges
of providing information about conflicting multiple objectives and knowledge about
causal relationships, new opportunities arise to analyze and consequently operate
BESSs more efficiently and sustainably. In this case, a systematic and concurrent
optimization for multiple objectives is required, classifying the resulting problem
into a MOO problem.

In this work, a special focus is placed on three dynamic PFCSs as the imple-
mentation effort and computation complexity is low: the state-of-the-art PFCS for
several homogeneous and heterogeneous BESS applications (PFCS SoC), a para-
metric PFCS (PFCS SoAP), and a sequential PFCS (PFCS Pseq). Although the
calculation method of the parameters used in the following (e.g., SoC or predicted
power) may vary, the calculation of the power-sharing factors could be equally
considered. Furthermore, each PFCS can be implemented in a MOO framework.

State-of-the-art PFCS
A well-known and state-of-the-art PFCS for several BESS applications constitutes
SoC balancing. This PFCS has been investigated by several researchers, e.g.,
Lu et al. [97] or Marcelino et al. [106]. The basic idea is to share the requested
power proportional to the SoC. Concerning the operation mode, αi can be calcu-
lated for the charging/discharging case by

αSoC,i = f(SoCi, p)
nBESS&
n=1

f(SoCn, p)
, (2.9)

where nBESS represents the number of applied BESSs and SoC the state of charge
of the respective battery. f(SoC, p) and p represent the compensation function
(see Table 2.1) and the convergence factor, both as proposed in [106]. The SoC is
typically determined by the coulomb-counting method as defined in Equation (2.2).
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The compensation function and the convergence factor are considered design vari-
ables. According to Marcelino et al. [106], typical compensation functions4 are as
follows:

Table 2.1: Compensation functions f(SoC, p) to calculate the power-sharing factor
[106].

Function Charging mode Discharging mode
Power SoC−p SoCp

Exponential e−p·(SoC−1) ep·(SoC−1)

Linear p · (1 − SoC) + 1 p−1 · (SoC − 1) + 1
Hyp. sine sinh(−p · (SoC − 1)) + 1 sinh(p−1 · (SoC − 1)) + 1

Logarithmic −p · ln(SoC) + 1 p−1 · ln(SoC) + 1

Parametric PFCS
The parametric PFCS shares the requested power relative to the maximum avail-
able power of the batteries. This quantity changes during operation concerning
the current status of the battery. Masih-Tehrani and Dahmardeh [113] proposed
such an algorithm in a hybrid energy storage system consisting of a battery and an
ultracapacitor. This approach was further developed within my published works
[12, 13]. For each BESS, the power-sharing factor

αSoAP,i = |Ppred,i|
nBESS&
n=1

|Ppred,n|
(2.10)

is calculated, where Ppred,i is the maximum available charging/discharging power
of the ith battery. The respective share of each BESS can be adjusted applying
Equation (2.10). If one BESS hits its operating limits, other BESSs take over a
larger share of the required power as long as their limits are not exceeded.

The maximum available power Ppred is calculated by voltage limits, current
limits, and the maximum available charging and discharging energy of a BESS.
For both charging and discharging, Ppred is defined as

|Ppred| = min(|Ppred,I|, |Ppred,V|, |Ppred,E|) , (2.11)

where Ppred,I, Ppred,V, and Ppred,E are the maximum available power for the current,
voltage, and energy limit of the battery. Their calculation is based on an ECM of

4Charging and discharging mode are reversed compared to [106].
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a battery (see Section 4.2) and subject to current, voltage, and energy/capacity
limitations for a predefined time frame of a few seconds to a few hours. The
maximum available charging and discharging power for current and voltage limits
(Ppred,I and Ppred,V) can be predicted by, for example, the method proposed in
[129] and Equations (2.12) and (2.13). The prognosis of the maximum available
power is based on a predefined prediction horizon tpred,p of usually a few seconds.
Here, ilim and vlim are the current and voltage limits of the battery.

Ppred,I(t) = vpred,I(t) · ilim (2.12)

Ppred,V(t) = ipred,V(t) · vlim (2.13)

In the simplest case, the maximum available charging and discharging energy Epred

can be predicted by applying the following equations under the assumption that
dynamic processes are neglected:

Epred,ch(t) = Cact(T, SoH) ·
! SoCmax

SoC(t)
OCV (SoC, T, SoH) dSoC , (2.14)

Epred,dch(t) = Cact(T, SoH) ·
! SoC(t)

SoCmin
OCV (SoC, T, SoH) dSoC , (2.15)

where Cact is the capacity subject to temperature and SoH of the battery, and OCV
is the open-circuit voltage which depends on the battery’s SoC, temperature, and
SoH. The limits of the integration are the actual SoC and the SoC limits of the
battery. By neglecting the impact of dynamic processes, a prediction error of the
maximum available energy has to be accepted.

In order to improve the predicted value of the maximum available energy, dy-
namic processes in batteries can be modeled using a more detailed ECM. Conse-
quently, the charge and discharge cut-off voltage will be reached earlier. This leads
to a reduced maximum available charging and discharging energy of the battery
during operation, reducing the capacity relative to the load. Moreover, integration
limits have to be adjusted concerning the minimum and maximum SoC. In gen-
eral, the maximum available charging and discharging power for the energy limit
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is calculated by

Ppred,E(t) = Epred(t)
tpred,e

, (2.16)

where tpred,e is an arbitrary prediction horizon of usually minutes or hours. The
prediction horizons are considered design variables. In the case of the more de-
tailed predicted value of the maximum available energy, Equation (2.16) might not
be simply solvable as the maximum available energy is dependent on the predicted
charging/discharging power.

Sequential PFCS
The sequential PFCS (PFCS Pseq) shares the requested power based on a pre-
defined power limit while using the BESSs sequentially. A similar PFCS was
investigated by Bauer [23]. The BESSs are arranged in a fixed ascending (BESS 1,
BESS 2, BESS 3) or descending (BESS 3, BESS 2, BESS 1) order considering the
size (i.e., rated capacity) of the BESSs (cf. Appendix Table C.6). The first BESS
will be charged/discharged as long as predefined power and SoC limits are not ex-
ceeded. If the limits are exceeded, the next BESS takes over the residual power. It
should be noted that the last BESS in the sequence might be charged/discharged
with a higher power than the predefined power limit (if possible). The variables to
set the power limit (Pmax) and the order of the BESSs (Sorting) applied are con-
sidered design variables. Other methods to arrange the BESSs, such as dynamic
sorting relative to the SoC, are possible but will not be considered in this work.
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3 Fundamentals of multi-objective
optimization

The identified optimization problem mentioned in Section 2.3 is characterized by
simultaneously optimizing the three defined target indicators, which could be ex-
pressed as nonlinear objective functions over a set of variables, such as the previ-
ously mentioned design or use case variables. This defines the given problem as a
nonlinear MOO problem. In order to solve this problem, appropriate methods and
processes are necessary. Thus, this research field has to be reviewed academically
and suitable approaches have to be selected. For this reason, the basic scientific
knowledge about nonlinear multi-objective (black-box) optimization is presented
in this chapter. Section 3.1 gives an overview of the fundamentals of MOO and
its terminology. In Section 3.2, an overview of black-box optimization is given and
the state-of-the-art methods currently used in black-box optimization are then
presented. In Section 3.3 an appropriate tool to solve the black-box optimization
problem is described. Section 3.4 summarizes relevant findings from the current
literature and manifests the research gap. Finally, in Section 3.5 the research
questions of this work are outlined.

3.1 Multi-objective optimization

Optimization is basically concerned with finding an optimal, i.e., a feasible decision
from a set of possible alternatives (subject to several constraints) that optimize
an objective function [130]. However, real-world optimization problems are often
nonlinear and have multiple conflicting objectives [131]. The process of optimizing
more than one objective function at the same time is referred to as MOO. In this
context, optimization means finding a maximum or a minimum of an objective
function, whereby a maximization problem can always be transformed into a min-
imization problem. Following the notation of Ehrgott [132], a MOO problem can
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be formulated as

min f(x) = min(f1(x), ..., fp(x))
s.t. x ∈ X ,

(3.1)

where f(x) is the objective vector, p the number of objective functions, x a vector
of feasible decisions, and X the feasible decision space.

MOO problems give rise to a set of solutions in the objective space and aim
at identifying all the feasible decisions that simultaneously optimize each objec-
tive function value. These solutions are defined as Pareto-optimal (PO) or non-
dominated. In this case, no accessible decision of the feasible decision space is
capable of improving any specific objective function value without causing a si-
multaneous deterioration to at least one other objective function value [133]. The
set of all non-dominated solutions, in turn, forms the Pareto-front. Figure 3.1
shows the decision and objective space indicating non-dominated solutions (cyan),
i.e., the Pareto-front.

x2

x1 f1

f2

a) decision space b) objective space

Figure 3.1: Representation of the decision and objective space indicating non-
dominated solutions (cyan), i.e. the Pareto-front. Adapted from [131].

However, function evaluations to optimize one or multiple objective functions
may be computationally expensive due to, e.g., complex simulation models. Es-
pecially in industrial optimization problems, where complex computer simulations
are used, expensive-to-evaluate functions are often existent [134]. In general, com-
putationally expensive refers to an optimization problem where a single run (func-
tion evaluation) takes a few minutes to hours or even days [135]. In the case of
computationally expensive function evaluations, a careful and adaptive selection
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of values to evaluate is reasonable [136]. Proper methods for that are explained in
the next section.

Moreover, each MOO process necessitates decision-making at some point. Mar-
ler and Arora [137] divide the methods to model the preference of a decision-maker
into three major categories: a priori, a posteriori, and no articulation of prefer-
ences, and describe them as follows. Methods with a priori articulation of pref-
erence allow the user to specify preference information in terms of goals or the
importance of different objectives before a solution that satisfies these preferences
is found [137]. In this case, the MOO problem is often transformed into a single-
objective optimization problem. Common a priori methods are, e.g., scalarizing
methods, goal programming, or the lexicographic method. A posteriori methods
allow the decision-maker to choose from a set of PO solutions that were found be-
forehand [137]. Well-known a posteriori methods are mathematical programming-
based approaches, such as the Normal boundary intersection method or the Normal
constraint method. Methods with no articulation of preference do not require any
preference information as they identify solutions independently [137]. The most
common methods are global criterion methods and the Nash arbitration scheme.
Considering the third research aim, the a posteriori articulation of preferences
could be a reasonable approach in this work. The identified set of PO solutions
can be investigated afterward, which allows analyzing the causal relationships be-
tween the inputs and the outputs.

3.2 Black-box optimization

Black-box optimization describes the optimization of an objective function where
the budget for evaluations is limited [136]. Reasons for such black-box optimiza-
tion may be diverse. For example, there is no structure to exploit any analytical
or derivative information of the problem [135], or input-output relationships are
simply not known. In particular, the inner workings of the system under obser-
vation will be treated as a black-box function, for which only inputs and outputs
are known [138]. Such a black-box function problem can be formulated as shown
in Equation (3.1). In contrast, the function here refers to a function of the input-
output relationship that has no analytical form.
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Suitable methods to solve such problems and evaluate the given function are
limited to mainly derivative-free methods and surrogate-based methods. Never-
theless, these methods can be used to identify the best operating parameters for
systems where the output is measurable and the input parameters are customiz-
able [136]. Additionally, proper performance metrics are required to quantify the
error between the real (measured or virtually derived) and the predicted output.

Function evaluation methods
Heuristics, such as evolutionary algorithms, simulated annealing, or tabu search,
are the most common way to solve black-box optimization problems, as they are
easy to implement and only rely on function evaluations [135]. Such stochastic
algorithms are easy to parallelize, avoid becoming stuck in a local minimum, and
help to optimize the objective function globally [139]. Bayesian optimization is an-
other common approach for global optimization of black-box functions in which the
function is expensive to evaluate. This method is high performant for continuous
objective functions with typically less than 20 dimensions [140]. A comprehensive
review of Bayesian optimization is provided by Shahriari et al. [141]. Another
way is to use classic derivative-free methods. For example, random search con-
stitutes the most straightforward method, selecting possible decisions arbitrarily.
Direct-search methods, such as the Nelder-Mead algorithm [142], or model-based
methods like the trust region method perform a local search of points maintaining
either a search pattern or a simple model of the objective function [136]. These
methods are often deterministic and are advantageous when the objective func-
tion is expected to have a single global optimum. A review of these and other
derivative-free optimization methods can be found in [143].

According to Wang and Shan [138], for MOO problems involving expensive to
evaluate simulations, the use of surrogate approximation can be helpful. In this
case, a functional approximation term for output dependencies as a function of
inputs x is required, replacing the computationally expensive model by a less
expensive approximate (surrogate) model f̂ [144]. The surrogate model is a func-
tional approximation term for target indicator dependencies as a function of design
and use case variables, as can be seen in the following equation:

f̂ := f̂(x) ≈ f(x) (3.2)
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Surrogate-based methods seek to iteratively build a surrogate model to approxi-
mate the black-box function and use the functional approximation to search for
optimal solutions [145]. Surrogate models differ primarily in their mathematical
base of approximation. Besides the well-studied polynomial functions [146], sev-
eral other approaches like radial basis functions (RBFs) [147, 148], Kriging models
[149], or Gaussian Processes in general [150] have been thoroughly discussed. Sur-
rogate models could be an interesting candidate for this work, as they are rather
smooth and inexpensive to evaluate allowing efficient optimization [139]. A review
of surrogate-based methods can be found in [135].

Sampling
Regardless of the preferred surrogate model, the first step in surrogate-based meth-
ods is to find a set of starting points uniformly spread over the feasible decision
space [135]. This step is called sampling or design of experiments [151]. The most
straightforward method to obtain a design in terms of space-filling is to sample
the points uniformly, considering all possible combinations of the feasible deci-
sions [135]. This is called a full factorial design. However, with a growing number
of decision/design variables, a full factorial design becomes logistically infeasible
[139]. Consequently, only a fraction of the feasible decisions (fractional factorial
design) can be considered. Another approach is to use algorithms that rely on
random sampling. A well-known random sampling method is the Latin hypercube
sampling method introduced by McKay et al. [152]. One advantage is that this
method can be applied to multiple decision variables without becoming logistically
infeasible. An overview of experimental designs can be found in [135, 139].

Performance metrics
Relying on model-based outputs requires knowledge of a model’s confidence level.
For this purpose, the role of performance metrics has been intensively studied in re-
gression analysis evaluation. The most common performance metrics are the mean
square error (MSE), root mean square error (RMSE), mean absolute error (MAE),
mean absolute percentage error (MAPE), and the coefficient of determination R2.
While the error measures express the distance between the data points and the
regressor, the coefficient of determination expresses the relation between the de-
pendent variables and the independent variables [153]. A general overview of
regression analysis can be found in [154]. A recent comparative overview of regres-
sion analysis evaluation was provided by Chicco et al. [153]
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Tools
Besides proper methods for function evaluation, sampling strategies, and perfor-
mance metrics, tools are required to solve the MOO black-box optimization prob-
lem efficiently and effectively.1 In the literature, the Design Space Exploration has
become established as an appropriate tool for that [155–157]. It refers to a system-
atic exploration of design alternatives (i.e., feasible decisions) before implementa-
tion [158]. Another approach is the Hyper Space Exploration (HSE) presented by
Palm and Holzmann [159]. This methodology develops the Design Space Explo-
ration further and is an appropriate tool for multi-criterial quantitative trade-off
analysis for black-box optimization problems.

3.3 Hyper Space Exploration

The HSE significantly extends the Design Space Exploration approach. It consti-
tutes a system design methodology in complex environments and combines meth-
ods of virtual prototyping with methods of design of (virtual) experiment-based
studies for statistical learning [159]. According to the authors, the hyperspace
consists of three different spaces: the design space, use case space, and target in-
dicator space as spanned by design, use case, and target indicator variables within
their parameter value definition sets. As shown in the following equations, the
HSE methodology demands phrasing the optimization problem as a minimization
problem:

d(u) = argmin (t(d, u)) (3.3a)

s.t.

#
''''$

''''%

d = (d1, ... di)T ∈ D,

u = (u1, ... uj)T ∈ U,

t = (t1, ... tk)T ∈ T,

(3.3b)

where d spans the i-dimensional design space D, u the j-dimensional use case
space U , and t the k-dimensional target indicator space T .

1In this context, efficiency is characterized by a minimum number of required function evalu-
ations to statistically learn on functional input-output dependencies and to identify the set
of PO solutions; the identification and trade-off quantification of PO solutions characterizes
efficacy [12].
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The HSE methodology aims at identifying all the parameter value combinations
for design space vectors that simultaneously optimize each of the target indicators
for a given use case combination. In the context of MOO, such identified solutions
are defined as PO or non-dominated (cf. Section 3.1). The set of all non-dominated
target indicator vectors for a given use case forms the Pareto-front P (u):

P (u) := {t ∈ T | ∄ t′(d′, u) : t(d, u) ≺ t′(d′, u) ∀ d, d′ ∈ D}, (3.4)

where D represents the set of all parameter value combinations for design space
vectors d.

3.4 Summary of the review

To recap the main challenges carved out in the previous chapter, there is only a
limited thorough analysis of the trade-offs between the multiple objectives, and
the existing research provides no access to general knowledge about causal rela-
tionships between the inputs and the outputs of BESSs. Considering all of the
studies reviewed here, a time series problem, as present in this work, aggravates
the solution-finding for these two challenges and has to be treated specially. In
this case, decision-making must occur after a predefined number of time steps,
ranging from at least once in the period considered to after each time step. As
noted by Deb [131], once a set of PO solutions is found, the set can be investigated
as a post-optimality analysis, presumably revealing interesting knowledge on the
trade-offs between the objectives. However, this entails three significant aspects
to be considered: First, not every method mentioned in Section 3.1 is practicable
in terms of a post-optimality analysis. Second, depending on the frequency of
decision-making and the method applied, the evaluation of the MOO problem can
become costly concerning computing complexity. Third, due to the presence of a
complex problem (cf. Chapter 1), the correlations between the inputs and outputs
of the BESS are only available through expensive to evaluate simulations which
characterize the MOO problem as a MOO on a black-box function problem [138].

Consequently, it might be favorable to postpone the decision-making process
and analyze the set of PO solutions (in terms of trade-offs between the objectives
and causal relationships) after the considered period. This also tackles the problem
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when an analytically closed form of the functional correlation between the outputs
and the inputs is not accessible. By using black-box optimization, one benefit is
that any PFCS can be applied for analysis, and optimization-based PFCSs, such
as evolutionary algorithms, are not necessary to obtain a set of PO solutions.
For this reason, the HSE methodology in combination with the surrogate-based
method (cf. Section 3.2) can be a valuable approach to achieve the research aims.

3.5 Research questions

In view of all that has been mentioned in Chapters 2 and 3, existing approaches
in the literature are not sufficient to a) perform comparative trade-off analyses
between the multiple objectives and b) gain access to general knowledge about
causal relationships between the inputs and the outputs of BESSs. Based on these
findings and in consideration of the research aims, the following research question
and five subordinate research questions emerge:

How can the potentials and sensitivities of power flow control
strategies for heterogeneous battery energy storage systems be

quantified?

1. How can the Hyper Space Exploration methodology be applied to perform a
potential analysis for power flow control strategies?

By performing a potential analysis, existing trade-offs between the defined
objectives (cf. Section 2.2) should be gained, and a functional approximation
term of the causal relationships between the inputs and the outputs derived.
This creates the opportunity to learn how different power flow control strate-
gies affect, e.g., the aging behavior.

2. How can the trade-offs of the applied target indicators be quantified?

Technical target indicators usually have different units and are thus hardly
comparable due to the lack of a common basis for comparison. Reason-
able features should be identified to quantify and analyze the trade-offs ad-
equately.

3. What are the sensitivities of the target indicators with regard to the design
variables?
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Trivial solutions for choosing the design variables of the power flow control
strategies to maximize, e.g., the efficiency of the system, are not immedi-
ately evident. By performing a sensitivity analysis, these correlations should
become apparent.

4. What are the sensitivities of the target indicators with regard to the use case
variables?

The same applies to the fourth subordinate research question. The effects of
use case variables on, e.g., the system’s performance, are not immediately ev-
ident. By performing a sensitivity analysis, these correlations should become
apparent.

5. What are the design rules that can be derived to support operators of battery
energy storage systems?

The design rules are sets of recommendations on how to enable sustainable
and reliable operation of battery energy storage systems. Based on the find-
ings made in this work, generally valid recommendations should be given.
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In order to quantify the potentials and sensitivities of PFCSs for heterogeneous
BESSs, an appropriate simulation model is required. This work’s simulation model
was first introduced in my published work [11] and has been further extended in
my published works [12, 14]. Its basic topology was derived from the concept
proposed within the UnABESA research project, in which the incorporation of
PFCSs for heterogeneous BESSs was a main part of the research conducted. The
basic idea of this chapter is to introduce the simulation model used here, confirm
the validity of the individual submodels, and extend the simulation model by a
peripheral system to solve the MOO on a black-box function problem.

The general system overview is presented in Section 4.1. Next, the model design,
including submodels for the batteries, power electronics, and control scheme, is
described in detail. In Section 4.3, the extension of the simulation model by an
appropriate process flow and toolchain is shown. After that, the verification and
validation of each submodel are provided. Finally, general difficulties and their
effects are explained. The following sections are mainly based on my published
works [11, 12, 14].

4.1 System overview

The system’s basic topology was derived from the concept and ideas proposed
within the UnABESA research project. In this context, different system topologies
were intensively reviewed in advance by Bauer [23] to identify a suitable topology
for investigating PFCSs for heterogeneous BESSs. The defining characteristic of
the chosen system topology (see Figure 4.1) is constituted by the parallelization of
strings denoted as BESSs (batteries and DC/DC converters) at the DC bus level,
allowing to expand the number of BESSs arbitrarily. Another advantage of using
this topology is that, due to the DC/DC converters, the freedom to control the
power flow of each participating BESS individually is provided. Consequently, the
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smallest possible configuration to distribute the power inside the system reasonably
is two BESSs connected in parallel. In this work, the number of BESSs connected
in parallel was set to three since this configuration constituted a reasonable system
size to investigate PFCSs systematically.
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Figure 4.1: Schematic diagram of the applied topology comprising multiple bat-
teries and DC/DC converters, one AC/DC converter, and the grid
connections. Adapted from Bauer [23].

The virtual experiments (simulations) were conducted, developing a simulation
model based on the chosen topology. The basic architecture of the simulation
model is composed of a BESS, including a battery and a bidirectional DC/DC con-
verter, a common DC bus, an AC/DC converter which is also bidirectional and
connected to the LV distribution grid, and a BESS management system. All these
submodels are coupled either via power lines or communication lines, allowing
modular development and modeling of the respective submodel. The system is
controlled based on the requested power at the grid side’s power electronics. The
requested charge/discharge power is represented by P* and is dependent only on
the investigated scenario (cf. Section 4.2). P* is considered positive for charging
and negative for discharging the system (cf. Section 2.1.3). The resulting power at
the battery terminals is then computed by implementing efficiency models of the
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converter stages. The total charged/discharged power of the system is indicated
by Psys and considers the efficiencies of each converter stage and the direction of
the power flow. In more detail, the charged/discharged power P i of each of the
three strings (BESS 1–3) adds up to the total system power. According to this,
the output power provided by a single battery Pbat,i is considered higher than the
output power of the entire BESS P i in discharging mode. In contrast, in charging
mode, the battery’s input power is considered lower than the input power of the
entire BESS. The battery’s input power is further used to calculate the battery’s
specific parameters, such as the terminal voltage or the capacity fade. Note that a
linear power derating starts at 5 % SoC and 95 % SoC, respectively, reducing the
charged/discharged power P i of the concerned string. In the case of the commu-
nication lines, the BESS management system controller is implemented to collect
data (e.g., P*, vdc, or BESS parameters) of the entire system. Here, the hierar-
chical control scheme is located (cf. Section 4.2). The collected data is used to
control the system in a centralized manner by calculating the respective power
share P∗

i of each BESS and keeping the voltage at the DC bus stable. Figure 4.2
shows the schematic diagram of the utilized BESS simulation model.
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Figure 4.2: Schematic diagram of the utilized BESS simulation model comprising
a BESS, a common DC bus, an AC/DC converter, the grid connection,
and the BESS management system. Adapted from my published work
[14].
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The software that simulates the described system must enable the variation
of different input parameters since it is essential when quantifying the potentials
and sensitivities of PFCSs for heterogeneous BESSs. The simulation model was
programmed using MathWorks MATLAB® and Simulink® software. This software
provides a suitable environment for designing, simulating, and analyzing dynami-
cal BESS systems rapidly and allows for programmatically running multiple sim-
ulations with varying input parameters. Both the BESS model and the BESS
management system were realized in the discrete-time domain (fixed-step discrete
solver and a fixed-step size of 1 s) to decrease the simulation time and to enable
a fast implementation on a microcontroller target. The latter is of particular im-
portance for verifying or validating individual submodels, which constitutes an
essential part to confirm the validity of this work’s results.

4.2 Model design

The different submodels were established based on the system shown in Section 4.1
and the assumptions presented in the following. The basic concept of quantifying
the potentials and sensitivities of PFCSs for heterogeneous BESSs relies on mul-
tiple simulations with varying input parameters and a defined period (here 24 h).
Consequently, a simulation step-size of 1 s was used to reduce computational costs
and keep the time for a simulation run at around one minute. A lower simulation
step-size would increase the computational costs disproportionately and multiple
simulations with varying input parameters would be infeasible. However, the level
of detail of each submodel was limited in this case yet sufficiently accurate (cf.
Section 4.4). This means, for example, high dynamic effects of the battery and
converter models could not be modeled. At the system-level, further assumptions
were made. Instead of using current and voltage values, the DC power flow was
simulated. The advantage of using the DC power flow is that the simulation model
is less complex and less computation-intensive since the different voltage levels are
considered implicitly and algebraic loops can be avoided. At the same time, the
maximum system power was limited to the power limitations of the battery and
the DC/DC converters. This approach is one way to avoid states of the submod-
els which are not validated. Furthermore, line losses were neglected due to short
cable lengths. They are assumed to be low compared to the losses of the power
electronics.
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4.2.1 Battery model

In this work, the battery model is based on a lithium-ion battery pack typically
designed for low power, low energy, and low voltage applications. Even though
common BESSs designed for stationary applications are different regarding the
voltage level or the rated capacity, for simpler testing under laboratory conditions
and the validation of the battery model, the low power, low energy, and low volt-
age battery pack was used here. Nevertheless, the transferability of the results to
real-world systems is still given due to similar operational behavior. For example,
operating parameters such as the C-rate or the DoD can be aligned accordingly,
and a comparable energy density or power density can be assumed due to similar
cell chemistry. The battery model is separated into an electric model and an aging
model. Because of the basic concept of quantifying the potentials and sensitivities
of PFCSs for heterogeneous BESSs mentioned above, no thermal model, no model
for self-discharge, and no feedback loop for the aging parameters are mandatory.
Although, for example, self-discharge and degradation occur within the defined
period of 24 h, the effects on the results can be assumed to be low. However, slight
improvements concerning the efficiency and the aging behavior of the batteries
might occur.

One main assumption of the battery model is that a SoC-dependent OCV and
diffusion voltages, calculated using an ECM, adds up to the battery terminal volt-
age. Here, an ECM consisting of the OCV as a voltage source, the ohmic resistance
Rs, and one RC-circuit was used. In a sensitivity analysis (see Appendix C Ta-
ble C.2), the difference between an ECM with zero RC-circuits, one RC-circuit,
and two RC-circuits regarding the used battery packs and the verification case
(cf. Section 4.4) was investigated. It was found that the median absolute model
error of the terminal voltage decreases with adding more RC-circuits. However,
the simulation speed was increased disproportionately. Therefore, an ECM with
one RC-circuit was applied here as a compromise. This is also in general agree-
ment with studies on modeling lithium-ion batteries for mobile and stationary
applications [160, 161]. Note that the ECM parameters exclusively depend on the
SoC, current, and battery temperature. Furthermore, the shortest time constant
of the RC-circuit values was constrained to values higher than 1 s to meet the
requirements of the simulation step-size. Using such a model, instantaneous po-
larization and additional polarization effects, such as diffusion processes, can be
modeled [42, 58]. Even though a hysteresis effect can be measured for lithium-ion
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batteries [162], a hysteresis model was not considered in this work as the effects
are considered small, especially for NMC cells1 [163]. The determination process
of the parameters2 is presented in Section 4.4. The applied ECM is shown in
Figure 4.3.

+
-OCV(SoC) vbat

ibat

Rs

Cp

Rp

vs
vrc

Figure 4.3: Equivalent circuit model of the used lithium-ion battery pack consisting
of the OCV as a voltage source, the ohmic resistance, and one RC-
circuit. Adapted from my published work [11].

As illustrated in this figure and previously mentioned in Section 2.1.3, the cur-
rent ibat is considered positive for charging and negative for discharging (cf. Sec-
tion 2.1.3). The respective elements of the applied battery model were parame-
terized by the two batteries described in Section 4.4. Applying Kirchhoff’s laws
results in the following (differential) equations:

d

dt
vrc = − vrc

RpCp
+ ibat

Cp
, (4.1a)

vbat = OCV (SoC) + Rs · ibat + vrc , (4.1b)

where the OCV is implemented as a look-up table using the SoC as breakpoints,
vs is the instantaneous ohmic voltage drop (vs = Rs · ibat), vrc is calculated by the
differential equation of the RC-circuit, and ibat is the battery’s output current. The
SoC is determined by the coulomb-counting method presented in Section 2.1.3.

1In the study of Barai et al. [163], the hysteresis voltage for the NMC cell was lower than 20 mV
across the whole SoC range.

2Detailed look-up table values are presented in Appendix C Tables C.3–C.5.
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An aging model, as introduced in my published work [14], further extends the
battery model. However, analyzing the potentials and sensitivities of PFCSs on
a higher level of abstraction requires a replicable and valid aging model to com-
prehend individual correlations independently from, e.g., a specific battery type.
Thus, a more generic modeling approach3 with a focus on capacity fade as pro-
posed by Motapon et al. [164] was further developed and implemented within this
work. The underlying assumption that capacity loss due to calendar and cycle
aging is linearly independent is a common simplification of more complex interde-
pendencies and is used in many publications [69, 70, 72, 165]. The applied aging
model incorporates all relevant stress factors concerning calendar and cycle aging.
The individual aging effects due to calendar and cycle aging, Qcal

loss and Qcyc
loss, are

then superimposed to create a combined aging model calculating Qloss, as shown
in Equation (4.2).

Qloss = Qcal
loss + Qcyc

loss (4.2)

The calendar and cycle aging models’ basic concept is that of weighted time and
charge throughput, respectively. This approach can often be found in the literature
[69–72]. Weighting factors are multiplied with a function of time and FECs at
each time step. For the sake of simplicity, higher-order interdependencies were
not considered, and the calculation of Qloss is expressed per unit, indicating the
percentage loss of the initial capacity. The structure itself allows eliminating stress
factors individually, e.g., for sensitivity analysis, and can get adjusted to the most
relevant lithium-ion batteries. However, this generic approach suffers from some
slight limitations due to the equations of the stress factors. If operating limits
are exceeded, occurring aging effects cannot be considered anymore. For example,
lithium plating may occur outside the defined operating range, especially at low
temperatures and high charge currents. In such cases, aging effects cannot be
covered by the aging model. Nevertheless, the generic aging model is applicable to
evaluate the potentials and sensitivities of PFCSs for heterogeneous BESSs as long
as the system is operated within the defined operating limits. Figure 4.4 shows
the general overview of the combined generic aging model.

3based on physical equations from fatigue theory
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Figure 4.4: General overview of the generic aging model according to my published
work [14].

A literature review by Dubarry et al. [53] showed that time, temperature, and
SoC are regarded as the most important stress factors of calendar aging regardless
of cell chemistries. They stated that in the literature, the capacity fade due to
calendar aging follows a power law with time, and most studies suggest a square
root dependence over time due to the SEI growth. According to the authors,
temperature effects are commonly modeled using the Arrhenius equation, while the
modeling of the SoC effects is limited in the examined models. Similar findings
have also been reported in a review by Gewald et al. [54]. In accordance with
these findings and reference [164], in this work, the capacity fade Qcal

loss caused by
calendar aging was calculated by

Qcal
loss(T, SoC, t) = dcal

T (T ) · dcal
SoC(SoC) · tzcal

, (4.3a)

dcal
T (T ) = x11 · e

−γcal
T ·

(
1
T

− 1
Tref

)

, (4.3b)

dcal
SoC(SoC) = x12 ·

*
SoC

SoCref

+ 1
γcal

SoC , (4.3c)
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where zcal is the exponential factor for the time, x11 and x12 are the calendar
aging pre-factors, and γcal

T and γcal
SoC are the stress exponents. T and SoC are

the temperature in Kelvin and the SoC during operation, and Tref and SoCref are
the reference values for the temperature in Kelvin and the SoC, respectively. It
should be noted that the aging pre-factors in combination with the reference values
are somewhat redundant. However, they were separated into two parameters for
reasons of clarity.

In the case of cycle aging, a review by Gewald et al. [54] has revealed that the
most relevant stress factors are temperature, charge/discharge current (or C-rate),
average SoC, DoD, and charge throughput. However, the authors stated that
the relevance of some stress factors is controversially discussed in the literature
and depends on the specific battery type (cf. Section 2.1.3). Consequently, the
capacity fade Qcyc

loss due to cycle aging was implemented as a customizable function
in this work:

Qcyc
loss(T, SoC, C-rate, DoD, FEC) =

dcyc
T (T ) · dcyc

SoC(SoC) · dcyc
C-rate(C-rate) · dcyc

DoD(DoD) · FECzcyc
,

(4.4a)

dcyc
T (T ) = x13 · e

−γcyc
T ·

(
1
T

− 1
Tref

)

, (4.4b)

dcyc
SoC(SoC) = x14 ·

*
SoC

SoCref

+ 1
γ

cyc
SoC , (4.4c)

dcyc
C-rate(C-rate) = x15 ·

*
C-rate

C-rateref

+ 1
γ

cyc
C-rate , (4.4d)

dcyc
DoD(DoD) = x16 ·

*
DoD

DoDref

+ 1
γ

cyc
DoD , (4.4e)

where dcyc
T , dcyc

SoC, dcyc
C-rate, and dcyc

DoD are the average stress factors for temperature,
SoC, C-rate, and DoD, zcyc is the exponential factor for the FEC, x13, x14, x15,
and x16 are the cycle aging pre-factors, and γcyc

T , γcyc
SoC, γcyc

C-rate, and γcyc
DoD are the

stress exponents. Tref , SoCref , C-rateref , and DoDref are the reference values for
temperature in Kelvin, SoC, C-rate, and DoD, respectively.

Different approaches such as the rainflow cycle-counting algorithm [165] or half-
cycle detection [72, 166] have been applied in the literature to detect a cycle event.
For the sake of simplicity, the half-cycle detection algorithm was used in this work
to determine the mean values of the stress factors for each half-cycle. However, this
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simplification implies some limitations. According to Magnor et al. [166], it has
to be assumed that, e.g., aging during a cycle is independent of previous events,
and aging occurs in the same way during the charging and discharging process.

The aging pre-factors for both calendar and cycle aging depend on the chosen
EOL criteria, and the weighting between calendar aging and cycle aging. It is also
assumed that the values of the stress factors equal their reference values. With
respect to the EOL criteria mentioned in Table 4.2, Equation (4.5a) and Equa-
tion (4.5b) were mathematically derived from Equation (4.3a) and Equation (4.4a),
respectively.

x1k =
,

ω · 1 − EOLC

tend
zcal

- 1
ncal

· λ(k) (4.5a)

with
ncal.

k=1
λ(k) = 1 ,

x1j =
,

(1 − ω) · (1 − EOLC)
FECend

zcyc

- 1
ncyc

· λ(j) (4.5b)

with
ncal+ncyc.

j=ncal+1
λ(j) = 1 ,

where ω is the weighting factor between calendar aging and cycle aging, EOLC is
the relative remaining capacity at EOL, tend and FEC end are the EOL criteria for
the time in seconds and FECs, ncal and ncyc are the number of applied stress fac-
tors, and λ are the weighting factors for the aging pre-factors. It should be noted
that the exponent and λ influence the weighting between the aging pre-factors,
i.e., stress factors, and are therefore somewhat redundant. For reasons of clarity,
they were separated into two parameters.

The generic aging model can be used for both static and dynamic applications,
in which stress factors are subject to change during operation. The latter especially
is of substantial interest for most BESS applications. In [71, 72], Naumann et al.
presented an appropriate approach for that and confirmed its validity. They sug-
gested deriving a differential form of Equation (4.3a) and Equation (4.4a). A
virtual time t* and a virtual full equivalent cycle FEC * to determine the differen-
tial capacity loss are also required, as stress factors are time-dependent. Therefore,
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three actions are to be repeated in each step n for using the generic aging model
for dynamic applications4:

1. The virtual values have to be derived by solving Equation (4.3a) and Equa-
tion (4.4a) for t or FEC, respectively (see Equations (4.6a) and (4.7a)).

2. These values are then used to calculate differential capacity loss in the next
interval (∆t and ∆FEC) using the differential form of Equation (4.3a) and
Equation (4.4a) (see Equations (4.6b) and (4.7b)). It should be noted that
(average) stress factors are assumed to be constant in the respective interval.

3. The accumulated differential capacity loss due to calendar aging Q∗cal
loss is

calculated by
Q∗cal

loss (n+1) = Q∗cal
loss (n) + qcal

loss(n) · ∆t ,
and the accumulated differential capacity loss due to cycle aging Q∗cyc

loss by
Q∗cyc

loss (n+1) = Q∗cyc
loss (n) + qcyc

loss(n) · ∆FEC ,
respectively.

Equations (4.6a) and (4.6b) present the calculation of the virtual time t∗ and
the differential form of Equation (4.3a), respectively.

t∗(T, SoC, Q∗cal
loss ) =

,
Q∗cal

loss
dcal

T (T ) · dcal
SoC(SoC)

- 1
zcal

(4.6a)

qcal
loss(T, SoC, t∗) = dcal

T (T ) · dcal
SoC(SoC) · zcal · t∗zcal−1 (4.6b)

With respect to cycle aging, Equations (4.7a) and (4.7b) present the calculation of
the virtual full equivalent cycle FEC∗ and the differential form of Equation (4.4a).

FEC∗(T, SoC, C-rate, DoD, Q∗cyc
loss ) =

,
Q∗cyc

loss
dcyc

T (T ) · dcyc
SoC(SoC) · dcyc

C-rate(C-rate) · dcyc
DoD(DoD)

- 1
zcyc (4.7a)

qcyc
loss(T, SoC, C-rate, DoD, FEC∗) =

dcyc
T (T ) · dcyc

SoC(SoC) · dcyc
C-rate(C-rate) · dcyc

DoD(DoD) · zcyc · FEC∗zcyc−1
(4.7b)

4Step n might be different regarding calendar and cycle aging.
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The aging parameters could be determined by fitting the model to measured data
of a specific battery type. This has successfully been tested with data from [68,
71, 72] (cf. Section 4.4) to confirm the validity. However, the task here is to find
a typical parameter set for a more generic approach to maintain a replicable and
comprehensible aging model. Thus, the aging parameters were determined through
parameterizing the model using definitions, certain assumptions, or parameters
supported by the relevant literature. The generic aging model was parameterized
to reproduce monotonic behavior for battery aging. The reference values for each
stress factor were based on values that typically occur in application-oriented sce-
narios, further described in this section. The exponential factors z were set to 0.5
since numerous studies observed a square root dependence for different batteries
over both time or cycles [53, 67, 69, 71, 72]. While the freely adjustable stress
exponents γ are based on assumptions to reproduce comprehensible aging effects,
the aging pre-factors x resulted from the values outlined in Table 4.2. In this work,
each stress factor was represented by a nearly linear behavior with increasing val-
ues. A linear aging behavior might not represent the actual aging behavior of all
stress factors exactly. However, this will not affect the results in qualitative terms
but strengthens their comprehensibility. Table 4.1 summarizes the parameters
used for the generic calendar and cycle aging model.
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Table 4.1: Definitions and assumptions for the generic calendar and cycle aging
model. The aging pre-factors x resulted from the values outlined in
Table 4.2.

Stress factor Calendar aging Cycle aging
Parameter Value Parameter Value

T T ref 298.15 K T ref 298.15 K
γcal

T 1000 γcyc
T 1000

x11 2.907e-03 x13 5.689e-01
SoC SoC ref 0.5 SoC ref 0.5

γcal
SoC 1 γcyc

SoC 1
x12 1.937e-03 x14 2.099e-01

C-rate - - C-rateref 1
- - γcyc

C-rate 1
- - x15 5.172e-02

DoD - - DoDref 0.8
- - γcyc

DoD 1
- - x16 7.241e-01

t zcal 0.5 - -
FEC - - zcyc 0.5

A widely accepted definition of the relative capacity at BOL and EOL is 1 and
0.8, respectively, and was therefore applied in this work. According to a recent
study on the degradation of commercial lithium-ion cells by Preger et al. [167], the
results suggest that a few hundred to a few thousand FECs constitute a reasonable
cycle life for NMC cells until a cell reaches 80 % of its initial capacity. Furthermore,
a comprehensible aging behavior can be expected in this operating range. The
EOL criteria for time and FEC, however, depend mainly on the operation of the
battery. With regard to this work’s use cases, a total operating time of ten years
(tend), which can often be found as the warrantied life, and 500 full equivalent
cycles (FECend) was assumed before the battery reaches its EOL. All of the
described stress factors were applied for both the calendar and cycle aging model.
However, the weighting factor between calendar and cycle aging ω was set to
0.5 since no consistent observations have been made in the literature [72, 168,
169]. The weighting λ between the stress factors is based on assumptions that
are supported by the literature. In the case of calendar aging, the impact of the
temperature on aging is higher in many cases than the impact of the SoC [69, 71].
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In the case of cycle aging, the DoD and the temperature often have a stronger
influence on aging than the SoC or the C-rate [54]. Note that the absolute value
of the parameters mentioned above is of subordinate interest for this work, as
the product of the stress factors d is not subject to change for varying weighting
factors λ. Nevertheless, reasonable weighting factors were selected with regard to
the findings made in the literature. Table 4.2 shows the chosen EOL criteria and
weighting factors.

Table 4.2: EOL criteria, definitions, and weighting factors for the generic aging
model.

Parameter Value
tend 10 a

FEC end 500
BOLC 1
EOLC 0.8
ncal 2
ncyc 4
ω 0.5

λ(k) 1.225, 1.225−1

λ(j) 2.2, 0.812, 0.2, 2.8

4.2.2 Power electronics

Connecting batteries to the public grid require at least one converter stage to tech-
nically match these components, as the applied topology reveals. In the case of
discharging the system, a DC/DC converter transforms the DC battery voltage
into a higher DC voltage before conversion from DC to AC voltage takes place.
This means different sources of possible losses, points of failure, and factors directly
affecting the power distribution are present due to the chosen topology. However,
the implementation of detailed power electronics models is not the focus of this
work since most DC/DC converters and inverters are considered highly dynamic
compared to the rest of the submodels, i.e., the battery model. Consequently,
dynamic effects of the converter stages can be neglected, and a static implementa-
tion of those is sufficient in this case. Furthermore, the inverter was considered a
nondissipative converter stage as the focus of this work is on quantifying the poten-
tials of PFCSs. Thus, only the bidirectional DC/DC converters were implemented
as look-up tables.
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The DC/DC converter model takes into account different voltages levels on
both the primary (45–52 V) and secondary side (25–42 V) as well as different power
values (0–400 W) (see Figure 4.5). Consequently, the resulting look-up table shows
the efficiency over the power at different voltage levels on both the primary and
secondary side. Note that the calculation of the transformed power inside the
BESS depends on the operation mode due to the converter’s efficiency. 500 W was
defined as Prat = 1 in this work and P/Prat related to the rated power of one BESS.

Figure 4.5: Efficiency map of the DC/DC converter showing the efficiency over the
power at different DC bus voltage levels and a battery voltage of 36 V,
as an example.

4.2.3 Hierarchical control

The concept of hierarchical control extends the simulation model to control the
individual system components properly. As shown in a review by Meng et al. [93],
hierarchical control has been successfully implemented in different DC microgrids,
in which BESSs play a key role. It consists of the three levels mentioned in
Section 2.2: primary, secondary, and tertiary control.
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A linear droop-control was implemented at the primary control level to specify
a setpoint for the desired output power P ∗

i of the individual BESS. The droop
control can be defined as

P ∗
i = v∗

ref + δv − vdc

mi

, (4.8)

where P∗
i represents the desired output power of the ith BESS, vdc the voltage

at the common DC bus, δv the control signal of the proportional integral (PI)-
controller of the secondary control, v∗

ref the reference DC voltage, and mi the droop
coefficient. The reference DC voltage was set to 48 V in this work. 48 V constitutes
a reasonable voltage level to enable boost operation of the DC/DC converters, as
the maximum voltage of the battery packs is 42 V. To calculate the droop coeffi-
cients, the desired output power shares were normalized to mmin = 0.25 V/kW.
This value was chosen to keep the load-dependent voltage deviation below 1 %.
Consequently, the maximum desired output power at each time step calculates
to m = 0.25 V/kW. For simulation reasons, the desired output power P∗

i was
directly calculated based on the applied PFCS. Equation (4.8) was only used to
emulate the droop voltage due to the load-dependent voltage deviation.

Secondary control was implemented via a PI-controller that restores the load-
dependent voltage deviation to the reference DC bus voltage v∗

ref . The computed
control signal δv acts as an input parameter for the primary control. The resulting
DC bus voltage vdc is used for the power electronics look-up table, respectively.
In this simulation model, the PI-controller was implemented as a discrete-time
PI-controller with a trapezoidal integrator method and can be defined as

δv(z) =
/
kp

*
1 + ki

Ts

2
z + 1
z − 1

+0
(v∗

ref − vdc) , (4.9)

where δv indicates the control signal, kp the proportional gain coefficient, k i the
integral gain coefficient, and T s the sampling period. Here, the gains of the sec-
ondary controller (kp = 0.00061 and ki = 7.5 1

s
) were chosen to meet a reasonable

compromise between the overshoot and the settling time. A detailed study on this
was the main part of a bachelor thesis [170] in the UnABESA research project.
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Tertiary control appears on top of both primary and secondary control and
manages the power flow in the system. At this level, the PFCSs are usually imple-
mented. In more detail, the parametric PFCS (PFCS SoAP) and the sequential
PFCS (PFCS Pseq) were implemented at this control level, and the power-sharing
factors concerning the applied PFCS were calculated.

4.2.4 Scenarios

The scenarios used in this work are similar to those described in Section 2.2. The
advantage of these two scenarios is that the profile characteristics such as the
length of the resting periods, the number of sign changes, or the energy between
sign changes are completely different. Thus, this work is based on two distinct
application-oriented scenarios suitable for BESS applications. Both profiles cover
an operating period of one day with a one-second sampling period. Each profile
is normalized to the rated system power for the simulations and can be scaled up
arbitrarily.

In the peak shaving scenario, a certain threshold can be set to precisely shave
the peak load (see pink line in Figure 4.6a)). The amount of the potentially dis-
charged energy is then recharged at an arbitrary time outside of the peak load time
window to assure comparability when quantifying the potentials and sensitivities
of different PFCSs. In this work, the discharged energy was recharged seven hours
after the beginning of the scenario with a total maximum charging power of 20 %
of the rated system power. Regardless of the peak shaving process, these values
ensure that the recharging is finished in time and that they intend to cause just a
low impact on the degradation of the batteries. The time for recharging, in turn,
depends on the discharged energy and is therefore variably, as indicated with the
gray arrow. In practice, the load profile might vary on different days. However,
the described scenario is an exemplary use case and could be replaced by any other
desired scenario.

In the frequency regulation profile, the energy throughput is also equalized for
comparability reasons regardless of the scaling factor. Figure 4.6 shows both uti-
lized application-oriented scenarios.
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Figure 4.6: Utilized application-oriented scenarios according to my published
works [11, 12]. a) peak shaving scenario, b) frequency regulation sce-
nario.

4.3 Peripheral system

In this work, each of the applied PFCSs is characterized by two freely selectable
parameters (design variables), as shown in Section 2.2. BESS applications are
characterized by the system design, e.g., the rated capacity of the batteries and
the use case scenario as defined by the profile scaling factor (use case variables).
From a BESS operator’s point of view, parametric design variables for a given
scenario should be chosen concerning simultaneously maximizing the efficiency,
performance, and service life of the BESS, i.e., optimizing the three independent
target indicators. However, an analytically closed form of the functional corre-
lation between the target indicators and the design and use case variables is not
accessible, as some parts of the BESS model are nonlinear. This characterizes
the problem as a MOO on a black-box function problem [138] (cf. Section 3.2).
Furthermore, the correlations are only available through expensive to evaluate
simulations. Solving this problem by using the HSE methodology requires (among
other things) modifying the toolchain presented in [159] to a BESS-specific envi-
ronment, including the presented simulation model.

According to Palm and Holzmann [159], different requirements should be met
to execute the HSE work flow. First, the simulation model should run domain or
cross-domain specific simulations individually. Second, for further processing, the
results of the individual simulations should be stored in a simulation result stor-
age. And third, the implemented HSE environment should run a five-step process
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flow (see Chapter 5). To meet these requirements, a BESS-specific HSE toolchain,
including the BESS simulation result storage and the five-steps process flow, was
programmed using the programming language Python™. An interface between
MathWorks MATLAB®/Simulink® and Python™ was set up to automatically run
Simulink® simulation models via a script. Finally, the HSE toolchain was mod-
ified by implementing the BESS simulation model as a modeling and simulation
environment. The complete BESS-specific HSE toolchain is shown in Figure 4.7.
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Figure 4.7: Modified mutli-objective BESS optimization HSE toolchain according
to [159]. Adapted from my published work [12].

As a result, the peripheral system to quantify the potentials and sensitivities of
PFCSs is formed, and a solid basis for answering the research questions is provided.
In the following, verification and validation of the submodels are presented to prove
the validity of the simulation model.

4.4 Model verification and validation

In this section, the model design, i.e., the submodels battery, power electronics,
and control scheme described in the previous sections, was tested in terms of a
verification and validation process.5 As shown in Figure 4.2, the utilized BESS
simulation model (system) is composed of different submodels, and each submodel
consists of individual units. Dating back to the ideas of Boehm [171], such a pro-
cess is ideally done by using a bottom-up approach. Therefore, the units, e.g.,
the generic aging model, are tested before the submodels, e.g., the entire battery.
Finally, the validation on a system-level shall prove the validity of the entire sim-

5For the sake of completeness, a formal verification of the target indicators can be found in
Appendix C Figures C.20 and C.21.
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ulation model and confirm whether the simulation model is suitable to solve the
given problem. For the latter, it would be necessary to validate each simulation
run by performing the corresponding measurement in this work. However, the time
and resources required for validations to this extent are not available due to the
extensive parameter variation when applying the HSE methodology. Furthermore,
such an approach would implicitly assume that, e.g., each battery configuration
is available and could be either measured in terms of the electric or aging be-
havior. To overcome this difficulty, one approach to ensure the validity of the
results in this work is to examine the transferability of each submodule (battery,
DC/DC converter, and control scheme) when design and use case variables are
changing. Another benefit of this approach is that sensitivities can be evaluated,
and consequently, the external validity is strengthened.

According to the IEEE Standard for System, Software, and Hardware Verifi-
cation and Validation [172], verification is defined as “the process of evaluating a
system or component to determine whether the products of a given development
phase satisfy the conditions imposed at the start of that phase” and validation
as “the process of evaluating a system or component during or at the end of the
development process to determine whether it satisfies specified requirements.” Con-
sequently, verification and validation can be interpreted as follows in the context
of this work: The verification confirms that the developed model is correctly im-
plemented and its output matches a defined measurement. The validation checks
whether the accuracy of the model is satisfactory in its intended application.

Verification and validation of the battery model
The verification and validation of the electric battery model were carried out on
a battery test system from ScienLab (SL80/100/8BT6C), providing up to 100 A
per channel. They were based on an analysis of the model error between the
simulated and measured voltage. Since the heterogeneity (use case variable) was
considered the variation of the rated capacity and internal resistance in this work,
two Samsung 18650 25R lithium-ion battery packs in 10s2p and 10s1p configura-
tion were analyzed to examine the battery model’s transferability when this use
case variable is changing. The applied battery pack (battery 1) comprised 20 Sam-
sung 18650 25R lithium-ion cells with a rated capacity of 5 Ah and a rated voltage
of 36 V. The other battery pack (battery 2) consisted of ten Samsung 18650 25R
lithium-ion cells with a rated capacity of 2.5 Ah and a rated voltage of 36 V. Note
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that the current measurement error of the battery test system was not considered
within the simulation model. However, simulations with the maximum specified
current measurement error of the battery test system were carried out, identifying
the boundaries of possible inaccuracies. The respective elements of the chosen
electric battery model were parameterized at 20 ◦C.

At first, the actual capacities of both battery packs were measured by discharg-
ing the full battery packs at a C-rate of 1 C. For battery 1 the discharge capacity
amounted to 4.98 Ah, and for battery 2 the discharge capacity was 2.49 Ah. The
static behavior was identified by measuring the OCV in both charging and dis-
charging mode at a constant C-rate of 0.05 C. The average value of both curves
was then used as the OCV curve. Since the OCV curves of battery 1 and battery 2
were almost similar over a broad SoC range, the OCV curve of battery 1 was ap-
plied for the battery model (see Appendix Figure C.1). The dynamic behavior was
characterized by a hybrid pulse power characterization (HPPC) test [173], in which
five different charging and discharging currents at eleven SoCs were applied. The
HPPC test is a common method to determine the dynamic behavior of lithium-ion
batteries [174, 175] and was therefore used within this work. Consequently, the
voltage responses of the batteries during the pulses (20 s) were analyzed, and the
values of Rs and the RC-circuit were determined. Figure 4.8 shows the comparison
of the simulated and the measured voltage of battery 1 in a voltage-time diagram.6

6The comparison of the simulated and the measured voltage of battery 2 can be found in Ap-
pendix C Figure C.2.
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Figure 4.8: Comparison of the simulated terminal voltage (blue) and the measured
terminal voltage (red) of battery 1. The dotted lines show exemplary
simulations with the maximum specified current measurement error of
the battery test system. a) terminal voltages, b) model error. Adapted
from my published work [12].

As can be seen, the simulated terminal voltage showed a similar behavior as
the terminal voltage of the real battery, indicating a successful verification. The
simulated voltage was following the measured one during almost the whole pulse
profile. Difference up to -2.4 V occurred only for a low SoC (≤ 10 %). Since the
voltage dropped disproportionately in this area, the difference between the simu-
lated and measured voltage, especially at the end of the highest discharge current,
was comparably high at SoCs less than or equal to 10 %. Similar results were ob-
tained for battery 2. More detailed results are shown in Figure C.3 in Appendix C,
in which boxplots represent the model errors for both batteries. The inaccuracies
can be attributed to at least two effects. First, the approximated OCV curve
showed a slight asymmetry between the charge and discharge curve leading to
deviations when applying the average values of both curves. Second, no current
measurement error of the battery test system was considered within the simulation
model. However, the dotted lines show exemplary simulations with the maximum
specified current measurement error (± 20 mA) of the considered battery test sys-
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tem. The resulting interval defines the range of possible simulation results for a
constant current measurement error. In general, the median model error of bat-
tery 1 was approximately -35 mV, and the median model error of battery 2 was at
around 41 mV. The peak value of outliers reached -2.4 V for battery 1 and 2.8 V
for battery 2, whereas, in the area > 10%, the model error of both batteries was
considerably smaller.

Since the model parameters were determined using the HPPC test, and thus
only short and defined pulses were applied, the battery model was further vali-
dated by two data sets that represent the scenarios as presented in Section 4.2.
The advantage of using these two distinct scenarios is that the effects of the battery
model and the parameterization method on the applied scenarios can be investi-
gated thoroughly. Consequently, the model behavior can be examined for a profile
with either low and high dynamics. By way of example, the simulation model with
the parameters of battery 1 was applied in the following.7

In the case of the frequency regulation scenario, a slight difference between the
simulated and measured terminal voltage was observed (median model error of
approximately -282 mV). Outliers of up to -1 V were observed only at the end of
the test for low SoCs. This is consistent with the results obtained in the verification
case and could be attributed to the increasingly inaccurate OCV curve at low SoCs
and the current measurement error of the battery test system.

7The results of the validation case for battery 2 can be found in Appendix C Figures C.4 and
C.5.
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Figure 4.9: Comparison of the simulated terminal voltage (blue) and the mea-
sured terminal voltage (red) of battery 1 for the frequency regulation
scenario. The dotted lines show exemplary simulations with the max-
imum specified current measurement error of the battery test system.
a) terminal voltages, b) model error.

However, Figure 4.10 reveals that another drawback of the battery model and the
parameterization method could be identified. Covering the effects of the recovery
phases remains difficult using the described ECM (see Figure 4.10 at around 8 h).
It is apparent that this effect implicates measurable voltage deviations due to a
faster decay behavior. Consequently, there is room for improvement concerning the
battery model and the parameterization method. More detailed results are shown
in Figure C.6 in Appendix C, in which boxplots represent the model errors for
both batteries. Nevertheless, considering the advantage of the gained computation
speed and the research questions, a median model error of roughly ± 280 mV is
acceptable. The battery model is valid and can be used to quantify the potentials
of different PFCSs.
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Figure 4.10: Comparison of the simulated terminal voltage (blue) and the mea-
sured terminal voltage (red) of battery 1 for the peak shaving sce-
nario. The dotted lines show exemplary simulations with the maxi-
mum specified current measurement error of the battery test system.
a) terminal voltages, b) model error.

In the case of the battery aging model, verification was done based on different
literature data sets. Validation was not part of this work since aging experiments
would be considerably time-consuming, especially for the different battery config-
urations resulting from the extensive parameter variation. Furthermore, a more
generic approach was chosen intentionally in this work to model common aging
effects regardless of the specific battery type or format. The generic aging model,
however, is based on assured knowledge of the aging effects of lithium-ion batteries
through only representing common aging effects that have already been investi-
gated thoroughly in the literature. Thus, the obtained results are supposed to be
transferable, too.
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The verification was performed by comparing the output of the fitted aging
model with measured data from the literature. For this reason, two specific battery
types—a 26650 LFP/C cell and an 18650 NMC/C cell—were successfully tested for
both calendar and cycle aging with data from [68, 71, 72]. By way of example,8

the results of the generic aging model using the data of the aging experiment
(26650 LFP/C cell - calendar aging) presented in [71] are given in Figure 4.11. In
more detail, a comparison between the measured values for Qloss and the results of
the generic aging model with a static SoC of 100 % for three different temperatures
was performed.

Figure 4.11: Results of the generic aging model using the data of the aging experi-
ment presented in [71]. a) loss of relative discharge capacity, b) model
error.

As shown in Figure 4.11, the obtained results indicated a slight difference be-
tween the measured and the fitted loss of the relative discharge capacity Qloss.
Consequently, the model error ranged between ± 2 %. However, this is consistent
with the results obtained in [71]. Similar results were obtained when using the data
of the cycle aging experiments presented in [72] and were also in good agreement
with the results there. However, the data presented in [72] showed an atypical

8Further results of the verification can be found in Appendix C Figures C.7–C.9.
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behavior resulting in a recovery of the capacity (cf. Appendix C Figure C.7). The
generic aging model used in this work cannot model such effects. In the case of the
18650 NMC/C cell, in most test points, the comparison revealed a similar behavior
with a model error lower than ± 3 %. However, the difference at some test points
was higher than ± 3 %, especially when the loss of the relative discharge capacity
was above 20 %. Nevertheless, losses of more than 20 % are not expected in this
work. Generally, the choice of the test points is crucial when modeling the aging
behavior of batteries. Even though the generic model cannot consider each aging
effect of a battery, the correct implementation and applicability of the presented
aging model was shown by the verification.

Verification and validation of the power electronics model
The verification and validation of the DC/DC converter model were performed
by using a bidirectional dynamic synchronous buck-boost converter as a reference.
This DC/DC converter was developed at the Institute for Sustainable Energy Sys-
tems (ISES) to build a reference system for the simulation model similar to the
system described in Section 4.1. Thus, the applied converter is specified to provide
a voltage range from 12–60 V on both the primary and secondary side (depending
on the application) with a rated power Prat of at least 500 W. Measurements were
carried out using a high-precision power analyzer from Zimmer (LMG670) to ac-
curately determine the input and output power of the DC/DC converter.

The verification was done by comparing the measured with the simulated effi-
ciency at different voltage levels for the primary and secondary sides. This ap-
proach was intended to check that the output of the simulation model correlates
with the real converter’s results and test the model’s response on varying input pa-
rameters. The latter is of great interest to ensure the transferability of the results
of this work, especially when use case variables or primary side voltage levels are
changing. As an example,9 the efficiency curves of the applied DC/DC converter
at a primary side voltage of 48 V are shown in the following.

9Efficiency curves at different primary side voltage levels can be found in Appendix C Fig-
ures C.10 and C.11.
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Figure 4.12: Efficiency curves of the applied bidirectional dynamic synchronous
buck-boost converter at a primary side voltage of 48 V. The solid lines
show the measured efficiencies at different secondary side voltages,
and the markers represent the corresponding simulated efficiencies.

The measured and simulated efficiencies in Figure 4.12 show a successful verifica-
tion of the DC/DC converter model, as both are similar. The measured efficiency
curves demonstrated the typical characteristics of such a DC/DC converter. It
should, however, be noted that at around 0.3–0.5 P/Prat slight steps in the effi-
ciency curves were observed. These little steps are attributable to the switching
between two different current measurement ranges. Nevertheless, comparing the
measured and simulated efficiencies shows that the simulation model calculated
the efficiency for different power steps and secondary side voltages (vbat) correctly,
and only slight differences occurred. In particular, the model error was lower for
increasing values of P/Prat. These slight differences resulted from the discrepancy
between the measured values (P , vbat, and vdc) and the values stored in the look-up
table. The median model error of all measured and simulated test points amounted
to -0.039 %. However, when the primary side voltage was set to 45 V, the median
model error was -0.042 %, and in the case of a primary side voltage of 52 V, the
median model error amounted to -0.033 %. Since these errors are considered small
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and hardly measurable, the model was correctly implemented. Furthermore, the
median model error for changing primary side voltages remains almost constant
which indicates the transferability of the results for changing input parameters.

The DC/DC converter was further validated to ensure that the simulation model
is valid for the scenarios used in this work and operational needs can be met.
For this purpose, the converter was connected to battery 1 on the secondary side
and the battery test system from ScienLab (SL80/100/8BT6C) on the primary
side. Measurements were again performed using the high-precision power analyzer
from Zimmer (LMG670) to accurately determine the input and output power on
both sides of the DC/DC converter. The converter was operated in boost-mode
at a primary side voltage of 48 V. The goal of this approach was to compare
the measured battery power Pbat with the simulated one to check the simulation
models’s accuracy. The first 20 min of the peak shaving scenario were applied in
a first test, as illustrated in Figure 4.13.

Figure 4.13: Comparison of the simulated and measured battery power Pbat for
the peak shaving scenario. The bidirectional dynamic synchronous
buck-boost converter was operated in boost-mode and at a primary
side voltage of 48 V. a) battery power, b) model error.
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The upper graph a) shows the comparison of the simulated and measured bat-
tery power Pbat and indicates that both are almost congruent for the whole testing
period. In the lower graph b), the model error concerning the power is displayed.
As can be seen in this graph, the model error was minimal in this case. Slight
differences occurred at the beginning and the end of the test, where outliers of up
to almost 6 W were observed. These errors are attributable to the switch-on/off
processes, where a short time delay between input and output power occurred.
Furthermore, the median model error amounted to 0.12 W for the peak shaving
scenario. It can be concluded that the model’s accuracy is very high for compa-
rable scenarios since the simulation model was parameterized accurately in these
operating ranges. However, a more dynamic scenario with various sign changes
and the minor output power led to a higher model error, as evident in Figure 4.14.

Figure 4.14: Comparison of the simulated and measured battery power Pbat for
the frequency regulation scenario. The bidirectional dynamic syn-
chronous buck-boost converter was operated in boost-mode and at a
primary side voltage of 48 V. a) battery power, b) model error.

Especially at an output power below 20 W, differences between the simulated
and measured battery power Pbat were observed, as shown in the upper graph
of Figure 4.14. Outliers of up to 5 W arose. This is consistent with the results
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obtained during verification. In these operating ranges, the simulation model was
hardly parameterized as power values were too small. Therefore, the efficiency
values of the last measured values were applied, accepting the resulting inaccura-
cies.10 The median model error was, however, small with 0.16 W. More detailed
results are shown in Figure C.12 in Appendix C, in which boxplots represent the
model errors of the output power of the battery model. Nevertheless, the energy
losses in these operating areas are relatively small compared to the overall energy
throughput. Thus, the simulation model is considered accurate and suitable when
quantifying the potentials and sensitivities of different PFCSs for heterogeneous
BESSs. Note that the range of validity is limited to power electronics with similar
characteristics such as the curve shape or the mainly monotonically increasing ef-
ficiency. In this case, the transferability of the results obtained in this work should
be preserved, even if absolute efficiency values change for different systems.

Verification of the control scheme
For verification of the control scheme, in particular, the tertiary control, simu-
lation results of eight different combinations of load profiles, use case variables,
PFCSs, and design variables were compared to its corresponding measurements.
The measurements were carried out on a battery test system from ScienLab
(SL80/100/8BT6C) with three batteries (2x battery 1 and 1x battery 2) connected
to separate channels. The BESS management system was implemented on a cen-
tral controller to calculate the power share of each battery concerning the four
criteria mentioned previously. Two generic load profiles were used, a static one
and a dynamic one, to check the tertiary control under very diverse conditions.
This further involved the variation of the profile scaling factor (use case variable).
In addition, the two presented PFCSs were tested for changing design variables.
As an example,11 the test case comprising the static load profile with a requested
power P ∗ of 40 % of the rated BESS power and the sequential PFCS (PFCS Pseq)
with the two design variables Pmax = 150 W and Sorting = 0 is shown in Fig-
ure 4.15. Pmax = 150 W means that the maximum power share of each battery
is limited to 150 W by the PFCS, and Sorting = 0 means that the batteries are
used in ascending order.

10The extrapolation mode was set to “clip,” and therefore, the last table value for inputs at or
above the last breakpoint was used.

11Further tests of the verification of the control scheme can be found in Appendix C Fig-
ures C.13–C.19.

79



4 System description and toolchain

Figure 4.15: Test case for verification of the control scheme. Static load profile
with a requested power P ∗ of 40 % of the rated BESS power and the
sequential PFCS (PFCS Pseq) with the two design variables Pmax =
150 W and Sorting = 0, indicating that the batteries were used in
ascending order.

From Figure 4.15 it can be seen that a good match between simulation and
measurement was achieved for both the charging and discharging mode. The
requested power was shared as intended, where the first battery provided a max-
imum of 150 W (equivalent to 0.3 P/Prat) and the second battery took over the
rest of the requested power. Here, the median error of the power was 0.19 W for
the first battery and 0.27 W for the second battery. Similar results were obtained
when testing other combinations of load profiles, use case variables, PFCSs, and
design variables, as can be seen in Appendix C. These slight differences between
the simulation and measurement results can be attributed to the inaccuracies of
the measurement. Nevertheless, the results demonstrate that the control scheme,
especially the tertiary control, fits well into BESSs and can be used within the
simulation model. Consequently, when design and use case variables change, the
transferability of the simulation results is still given.
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Conclusions for the verification and validation
Referring back to the ideas at the beginning of this section, one crucial point when
applying the HSE methodology is to ensure validity of this work’s results when
design and use case variables change during the simulations. The verification and
validation in this way helped overcome this problem generally. Furthermore, it
proved that the simulation model implemented in the HSE toolchain constitutes
an appropriate approach to answer the research questions adequately. However,
and as previously stated in the respective sections, some minor challenges are asso-
ciated with the submodels. For example, inaccuracies of the electric battery model
at very high or low SoCs slightly impact the target indicator “performance” since
battery limits are reached differently compared to the actual battery pack, as can
be seen in Figures 4.9 and 4.10. Furthermore, the parameterization of the generic
aging model affects the target indicator “service life” in quantitative terms. Quan-
titative mismatches on a small scale concerning the target indicator “efficiency”
are also present, e.g., for divergent efficiency curves of the power electronics (see
evaluation of different primary voltage levels). Continuing research could explore
how to a) quantify model inaccuracies of, e.g., the aging model concerning the
stress factors and b) develop the target indicators further to compensate for such
model inaccuracies.

Nevertheless, the difficulties mentioned above do not significantly affect this
work’s qualitative results as the focus here is on evaluating PFCSs and not on
detailed modeling of the systems’ submodels. Even if absolute values may change
for different battery types, power electronics, or parameters applied, the key points
remain the same for the specified validity ranges of the submodels. Thus, the ad-
vantages when using the HSE methodology outweigh potential model inaccuracies
by far. In the following chapter, the methodological framework to execute the
intended investigations is explained in detail.
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The BESS-adapted HSE toolchain, including the validated BESS simulation model,
provides the necessary foundation to quantify the potentials and sensitivities of
different PFCSs for heterogeneous BESSs both effectively and efficiently. In the
context of BESSs, this toolchain was first introduced in my published work [12], in
which it has been proven to successfully solve MOO problems for simulation acces-
sible environments and has since been used in my published work [14]. An evolved
version of it was utilized in this work to solve the MOO on a black-box function
problem and analyze the correlations between input variables and target indicators
more profoundly. Therefore, a methodological framework for evaluating PFCSs is
introduced by means of the HSE process flow as part of the BESS-adapted HSE
toolchain. The methodological framework enables quantifying the potentials and
sensitivities of PFCSs in different use cases and system designs. Consequently, it
improves the understanding of the correlations between the PFCSs, use cases, and
target indicators by systematically analyzing them. The content of this chapter is
built on my published work [14].

Accordingly, this chapter addresses the implementation of the HSE process flow
and the methods for evaluation and visualization of this work’s results. In general,
the generic HSE process flow is separated into five steps and explained in detail
by Palm and Holzmann [159]. Detailed information about the HSE process flow
and the parameters and optimization algorithms used within this work is provided
in the following sections. In Section 5.1, a comprehensive definition of the BESS
hyperspace is provided as this constitutes the first step of the process flow. Based
on the defined hyperspace, an initial experimental test plan is created by suitable
algorithms in step two before the simulations are executed according to this plan,
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and the results are filed in the BESS simulation result storage in step three. The
parameters and algorithms used for the design of virtual experiments (DovE) (i.e.,
experimental test plan) are described in Section 5.2. In step four, the BESS sur-
rogate models are built based on the results of the previous step. The surrogate
models are further optimized in step five, enabling a conclusive analysis of different
PFCSs for heterogeneous BESSs. Steps two to five are executed in a loop. The
chosen surrogate models and their characteristics are also explained in Section 5.2.
Finally, the different evaluation and visualization methods complete the method-
ological framework and are presented in Sections 5.3–5.5. An overview of the
methodological framework, including the HSE process flow, is given in Figure 5.1.

BESS Hyper
Space definition

Design of virtual
experiments (DovE)

Run of virtual BESS
experiments (simulation)

BESS surrogate
model build

System and BESS 
surrogate model

optimization

Use case-specific
potential analysis

Surrogate model-based
sensitivity analysisPotential analysis

Figure 5.1: Methodological framework for evaluating PFCS, including the HSE
process flow according to [159] and the methods for evaluation and
visualization. Adapted from my published work [12].

5.1 Hyperspace definition
The BESS hyperspace consists of three different spaces: design space, use case
space, and target indicator space, as previously mentioned in Section 3.3. As a
preliminary point, however, fixed parameters of the BESS simulation model were
specified. As defined in Section 4.1, the number of BESSs was set to three in this
work, resulting in a rated system power of 1500 W. In the case of the peak shaving
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scenario, the initial SoC of each battery was set to 90 %, and for the frequency
regulation scenario, the initial SoC of each battery was set to 50 %. These SoCs
are typical for BESSs deployed in such scenarios. Moreover, the ambient temper-
ature was specified at a constant value of 25 ◦C for both scenarios, suggesting a
tempered system containment. All these parameters were entirely fixed and did
not change during the virtual experiments.

However, design variables and use case variables changed within a specified
range during the virtual experiments. The design variables were further linked to
the PFCSs, which have already been presented in Section 2.2. Note that differ-
ent PFCSs could be used interchangeably since the PFCS is independent of the
premises stated in this section. In this work, the virtual experiments were carried
out using two distinct PFCSs. The first PFCS (PFCS SoAP) copes with the tran-
sition between power balancing and state of energy (and similarly state of charge)
balancing due to the two freely selectable prediction horizons tpred,p and tpred,e and
is therefore well suited for this work. Both were considered continuous design vari-
ables. The second PFCS (PFCS Pseq) allows operating BESSs sequentially, which
is a significant difference from the first PFCS. Here, the two arbitrary parame-
ters, namely Pmax and Sorting S, are decisive for each individual BESS’s maximum
allowed charge/discharge power and the merit order of the BESSs.1 Pmax was con-
sidered a continuous design variable and S a discrete design variable.

Regarding the use case variables, the arbitrary parameters were linked to the
system design (heterogeneity) and the scenario (profile scaling factor). The het-
erogeneity HC was considered the variation of the batteries’ rated capacity and
internal resistance. In particular, it constituted a vector of four discrete values,
each representing one specific system design (cf. Appendix C Table C.6). In this
case, the heterogeneity is not bijective, meaning that another system design could
result in the same heterogeneity. A heterogeneity of zero would be the equivalent of
a completely homogeneous system. In this work, however, the values were chosen
to consider more heterogeneous system designs. The profile scaling factor PSF

was used to scale up the normalized profiles regarding the rated system power of
1500 W. Therefore, the maximum value of the specific normalized profile corre-
sponds to the proportion of the rated system power defined by the profile scaling
factor. Note that 1500 W was defined as Prat,sys = 1 in this work and P/Prat,sys

10 = ascending order, 1 = descending order
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relates to the rated system power. Both use case variables were considered discrete.

The target indicators have already been presented in Section 2.2. The target
indicator “performance” TP indicates the difference between the requested and the
supplied energy by way of reminder. In contrast, the target indicator “efficiency”
TE evaluates the system’s energy losses. The third target indicator, namely “service
life” TSL, represents a battery’s estimated remaining life until it reaches a defined
EOL criterion. Table 5.1 sums up the specification of the entire hyperspace.

Table 5.1: Specification of the design space for the parametric (DSoAP) and se-
quential (DPseq) PFCS, use case space for the peak shaving (U UC1) and
frequency regulation (U UC2) scenario, and target indicator space.

Space Parameter Value
Design space DSoAP tpred,p [1, 20] s

tpred,e [1, 3600] s
Design space DPseq Pmax [1, 400] W

S {0, 1}
Use case space U UC1 H C {0.75, 1, 1.25, 1.5}

PSF {20, 21, 22, 23} %
Use case space U UC2 H C {0.75, 1, 1.25, 1.5}

PSF {25, 26, 27, 28, 29, 30, 31} %
Target indicator space T TP [0, 1]

TE [0, 1]
TSL [0, 1]

The results presented in my published works [11, 12] show that the chosen value
ranges for the design and use case variables are reasonable for analyzing the impact
of these variables on the target indicators.

5.2 Multi-objective optimization implementation
Further information about the problem formulation, chosen parameters, and uti-
lized algorithms is required in order to implement the remaining steps of the HSE
process flow appropriately. First of all, the optimization problem to quantify
PFCSs for heterogeneous BESSs must be formulated correctly. In general, the op-
timization problem is characterized by simultaneously optimizing the three target
indicators “performance,” “efficiency,” and “service life,” defining it as a MOO
problem. Since an analytically closed form of the functional correlation between
the target indicators and the design and use case variables was not accessible in
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this work (cf. Section 4.3), the MOO problem is further characterized as a MOO
on a black-box function problem. The HSE methodology enables solving such
problems, as outlined in Sections 3.2 and 3.3. Moreover, it aims at identifying all
the parameter value combinations for PFCS parameters that simultaneously opti-
mize each of the target indicators for a given use case combination. This approach
allows exposing the maximum potential of each PFCS applied. For this purpose,
the design variables, use case variables, and target indicators described in Table 5.1
have to be considered as follows in this work when applying Equation (3.3):

d = (tpred,p, tpred,e)T or (Pmax, S)T , (5.1a)

u = (HC, PSF )T , (5.1b)

t = (1 − TP, 1 − TE, 1 − TSL)T (5.1c)

Following the process flow given in Figure 5.1, the initial experimental test plan
was created as one part of step two. By using a full factorial design,2 the test
plan for the peak shaving scenario consisted of 16 different use case combinations.
For the frequency regulation scenario, the test plan was composed of 28 different
use case combinations. Furthermore, for each use case combination 100 simula-
tion runs were carried out. The number of simulation runs was obtained from
preliminary analysis (see Appendix C Figure C.22) evaluating the hypervolume3

for several simulation runs. It should be noted that this part of the test plan was
updated iteratively during the experiments to identify PO solutions based on the
previous results. Consequently, the entire test set for each PFCS amounted to
1600 and 2800 simulation runs, respectively.

For the 100 simulation runs per use case combination, however, a suitable MOO
underlying search method is required to identify PO solutions for the given use
case. Besides random search algorithms such as Latin hypercube sampling [152],
adaptive sampling approaches may improve the search performance. In my pub-
lished work [12], a genetic algorithm in the implementation form of an NSGA-II
[177] was applied for most of the simulation runs. This approach tended to be
robust but required a substantial amount of simulation runs to achieve acceptable

2Each possible combination of the two discrete use case variables was included in the test plan.
3The hypervolume indicator [176] is a performance metric for indicating the quality of the

approximated Pareto-fronts generated by multi-objective optimizers.
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results when applying the computationally expensive simulation. To tackle this
problem, surrogate model-based approaches are gaining popularity due to an in-
creased search efficiency [178]. Therefore, the computationally expensive model
t = t(d, u) was replaced here by an analytically accessible and approximated sur-
rogate model t̂. The BESS surrogate model t̂ is a functional approximation term
for target indicator dependencies as a function of design and use case variables
(cf. Section 3.2).

Surrogate model-based search algorithms vary concerning their effectiveness and
efficiency depending on the mathematical behavior of the black-box function [144,
179]. In this work, one primary requirement is high accuracy for the training points
to guarantee good model predictions. Comparative studies have shown that the
RBF-based surrogate model [147, 148] performs well in different test problems and
engineering applications and can achieve high accuracies [180]. Thus, the RBF-
based surrogate model was chosen due to its general applicability, easily adjustable
smoothness, and powerful convergence properties [181]. In particular, the surro-
gate optimization toolbox (pySOT) from Eriksson et al. [182] was used utilizing
their RBF surrogate model.4

Steps two to five were carried out following the multi-objective surrogate opti-
mization algorithm proposed by Müller [183]. Thus, the initial DovE sets (20/100
simulation runs) per use case combination were defined by the standard Latin hy-
percube sampling approach as described before. The number of initial DovE sets
was derived from the Pareto principle, i.e., the 80/20 rule, which is a widely ac-
cepted approach in optimization. After performing the 20 expensive function eval-
uations (simulation runs) at the selected points, the three surrogate models (one
for each target indicator) were computed based on the identified non-dominated
points. Then, an iterative sampling process took place using information from the
surrogate models to select the next sampling points. This means the experimental
test plan was updated after each simulation run depending on the results ob-
tained until the 100 simulation runs were completed. Within the iterative process,
function evaluations were performed, non-dominated points were identified, and
surrogate models were updated. More detailed information about the optimization
algorithm and its sampling strategies is provided in [183].

4Parameters of the RBF surrogate model during optimization: kernel = cubic, tail = linear,
eta = 1e-06.
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For further analysis, the surrogate models were used to evaluate and quantify the
potentials and sensitivities of different PFCSs. In contrast to my published work
[14], in which the BESS-adapted HSE toolchain and HSE process flow were used
to implement a PO-PFCS, decision-making is not covered in the methodological
framework of this work, as the focus is on the analysis of the causal relationships
between the inputs and the outputs of BESSs. Furthermore, some limitations
regarding the implementation and the interpretation of the subsequent results
exist. The presumably most important limitation is that the applied methodology
cannot guarantee to identify the global optimum for the t(d, u) system behavior
since both the accuracy of the simulation model (i.e., the surrogate models) and
the utilized PFCSs restrict it. However, this methodological framework provides
the basis to systematically quantify the potentials and sensitivities of different
PFCSs. In the following sections, the methods for evaluation and visualization of
this work’s results are presented.

5.3 Potential analysis

The purpose of the potential analysis is twofold. First, an overview of existing
target indicator trade-offs is gained to analyze the correlations between the differ-
ent target indicators “performance,” “efficiency,” and “service life.” Second, full
access to the analytical surrogate models of the t(d, u) system behavior is granted
as the entire hyperspace is investigated systematically. The HSE process flow is
capable of providing both results. Therefore, the space of potential solutions was
built up systematically in steps two to five, and the surrogate models were trained
to approximate the t(d, u) behavior of the BESS simulation model based on effi-
cient search strategies, as discussed in Section 5.2. Especially steps four and five
involved the identification of the set of PO target indicator trade-offs. In these two
steps, various surrogate models t̂ to approximate t(d, u) were assessed and com-
pared to each other concerning their prognosis power. Moreover, these surrogate
models can be used for further processing and analysis (see Sections 5.4 and 5.5).
Examining the target indicator space for all accessible PFCS layout alternatives
by varying the design variables within the given parameter boundaries allowed
identifying possible PO configurations. The Pareto-front in this context may be
considered to prove the potential of the utilized PFCSs. The potential analysis is
illustrated using a matrix plot.
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5.4 Surrogate model-based sensitivity analysis
Knowing PO target indicator trade-offs as a result of the potential analysis does
not yet provide information about the input-output relationship of the BESSs.
Moreover, even if dominated solutions are sorted out, different correlations be-
tween, e.g., the design variables of the PFCS and the target indicators might
exist. Consequently, trivial solutions for, e.g., how to chose the design variables
to minimize the degradation of the batteries, are not immediately evident. For
this purpose, knowledge of the target indicator versus design or use case variables
sensitivities is required. The surrogate model-based sensitivity analysis was car-
ried out, enabling a thorough investigation of these correlations and sensitivities.
However, relying on surrogate model-based decisions requires knowledge of the
surrogate model’s confidence level. For this purpose, the surrogate models derived
within the potential analysis and a K-fold cross-validation-based mean coefficient
of determination R2 [184, 185] were used for analysis (cf. Section 3.2). The K-
fold cross-validation constitutes a state-of-the-art machine learning methodology
to evaluate a surrogate model’s prediction power quality [186] by estimating a
model’s accuracy. Furthermore, it is a proven performance metric without adding
computational expenses.

accuracy := 1
K

K1

k=1
R2

k , (5.2)

where K is the number of entire folds, i.e., groups of data sets, R2
k are the individ-

ual coefficients of determination, and k = 1, ...K is the data set used for validation.
According to Kuhn and Johnson [187], K is usually set to 5 or 10. However, the dif-
ference between the estimated and true values becomes smaller for larger K ’s [187].

The surrogate model-based sensitivity analysis is usually considered an interac-
tive plot to experience the sensitivities by changing the values of the design and
use case variables independently. Here, it is visualized by plotting each target
indicator versus each design and use case variable for only one given design and
use case combination.
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5.5 Use case specific-potential analysis
Finally, the use case-specific potential analysis expands on using surrogate models
for a fixed use case. Therefore, surrogate models with a sufficient confidence level
were used and allowed identifying PO solutions for the fixed use case within a
computationally inexpensive algorithm. Assigning fixed values to the use case
variables “heterogeneity” and “profile scaling factor” limits the target indicator
trade-off degrees of freedom to the design space dimension. Thus, the potential
of the applied PFCS for the fixed use case was calculated on a surrogate model
basis for all design variable parameters within the given boundaries. These results
(dominated and non-dominated solutions) are presented within a pairwise target
indicator trade-off analysis.

91





6 Simulation studies on power flow
control strategies

Results obtained in my published works [11, 12] analyzing different PFCSs in-
dicated that the selection of the PFCS depends on the chosen use case and the
objectives of the system operator. However, in the field of DC MGs, by way of
example, in which BESSs play a key role, a SoC-balancing PFCS is often applied
(cf. Section 2.2) without any proof of whether this PFCS is the most reasonable
one. Understanding the causal relationships in complex BESSs to enable sustain-
able operation requires analyzing different PFCS systematically. Thus, the goal of
the simulation studies in this work is to quantify the potentials and sensitivities
of different PFCSs for heterogeneous BESSs, which constitutes the main research
question of this work. The methodological framework presented in the previous
chapter provides an appropriate setting for this. Moreover, the methods for eval-
uating and visualizing this work’s results are closely related to the subordinate
research questions outlined in Section 3.5.

Therefore, in Sections 6.1 and 6.2 the results of the parametric and the se-
quential PFCS are presented for both scenarios. Following the structure of the
methodological framework, a threefold analysis for each PFCS is carried out to
answer the research questions thoroughly. First, an overview of existing target
indicator trade-offs is gained by applying the potential analysis. Second, the sur-
rogate model-based sensitivity analysis is performed, analyzing the sensitivities
and correlations between target indicators and design or use case variables. Third,
the use case-specific potential analysis is conducted using the surrogate models for
a fixed use case to identify a set of PO solutions. Finally, a comparison between
the two distinct PFCSs applied here and the SoC-balancing PFCS, as well as a
summary of the simulation studies, are provided in Section 6.3. It should be noted
that the presentation of the results in Section 6.1 is partly based on my published
work [14].
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6.1 Use case I: Peak shaving
In this section, the results of the parametric and the sequential PFCS for the peak
shaving scenario are presented to quantify the potential of these two computation-
ally inexpensive PFCSs in variable use cases, i.e., system designs and applications.
As mentioned earlier, the test set consisted of 1600 independent simulations in the
case of the parametric PFCS (PFCS SoAP). In the case of the sequential PFCS
(PFCS Pseq), the test set also amounted to 1600 simulation runs. Regarding the
interpretation of the target indicators’ value, zero is the optimal value a target
indicator could achieve. For example, in the case of the performance criterion zero
means the entire system can fulfill the power requirements at any time. This is in
contrast to the definitions in Section 2.2. However, the MOO problem was formu-
lated as a minimization problem, resulting in a different interpretation. Referring
back to the ideas in Section 2.2, the target indicator “service life” was considered
the accumulated service life (i.e., the accumulated capacity loss) of all batteries in
this work’s results. This means the overall deterioration of the BESSs should be
minimized.1

6.1.1 Potential analysis

The first two subquestions of the research questions were tested by means of the
potential analysis. The entire test set was used to quantify the overall potential
of the parametric PFCS (PFCS SoAP) concerning the three target indicators.
Note that each data point represents one possible design alternative for the peak
shaving use case. In general, trade-offs between the different target indicators
were observed and the maximum potential of the applied PFCS was exposed.
The results obtained from the potential analysis are shown in Figure 6.1. The
potential analysis is illustrated using a matrix plot showing the potential of a
specific target indicator on its main diagonal. The upper triangular matrix shows
the target indicator trade-offs. It can be observed from the data in the matrix
plot’s main diagonal that each target indicator was limited (Performance = 100 %,
Efficiency = 94.0 %, Service life = 96.0 %). Consequently, better results cannot be
expected regarding the specified design space and the use case space. The most
interesting aspect of the potential analysis can be seen in the upper triangular
matrix, where the trade-offs between the three target indicators are presented.

1However, this might lead to an increased deterioration of a single BESS. Nevertheless, no
significant differences regarding the correlations of the target indicators were found as, for
example, a comparison between Figure 6.1 and Figure C.23 reveals.
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These plots are very revealing in several ways. First, pseudo-grouped data sets
can be observed, e.g., in the upper right plot. Second, the correlations between
the target indicators are indicated. A positive correlation was found between the
target indicators “performance” and “efficiency,” whereas a negative correlation
was observed between the service life criterion and the other target indicators.
The interpretation of these results is given in Section 7.1.

Figure 6.1: Results of the parametric PFCS (PFCS SoAP) potential analysis for
the peak shaving scenario within the specified design space, use case
space, and target indicator space. Adapted from my published work
[14].

Turning now to the potential analysis of the sequential PFCS (PFCS Pseq), it is
evident from the results that the correlations and the maximum potentials are dif-
ferent from the results obtained using the parametric PFCS (PFCS SoAP). The up-
per triangular matrix in Figure 6.2 indicates that strong positive or strong negative
correlations between the target indicators were not present. Only a low positive
correlation was noticed between the target indicators “efficiency” and “service life.”
However, comparing the matrix plot’s main diagonal in Figures 6.1 and 6.2 reveal
that the maximum potentials of the target indicators “efficiency” and “service life”
had changed to some extent. Interestingly, in as many as 56 % of cases, increased
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efficiency was observed compared to the parametric PFCS (PFCS SoAP), and the
maximum efficiency amounted to 95.0 %. The maximum service life was equal to
95.8 % using the sequential PFCS (PFCS Pseq), which is about 0.2 percentage
points lower when compared with the parametric PFCS (PFCS SoAP). In other
words, in 32 % of cases using the parametric PFCS (PFCS SoAP), service life was
even higher than the maximum obtainable service life when using the sequential
PFCS (PFCS Pseq).

Figure 6.2: Results of the sequential PFCS (PFCS Pseq) potential analysis for the
peak shaving scenario within the specified design space, use case space,
and target indicator space.

6.1.2 Sensitivity analysis

Regarding the subordinate research questions about sensitivities, this subsection
deals with the sensitivity analysis of the target indicators, design variables, and
use case variables. The results of the surrogate model-based sensitivity analy-
sis are divided into two parts as follows: First, the results of the K-fold cross-
validation described in Section 5.4 are presented. Second, the results of the surro-
gate model-based sensitivity analysis are shown for both PFCSs. In general, the
K-fold cross-validation was used to evaluate the quality of the surrogate model,
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i.e., the confidence level and its predictions. A surrogate model represented each
target indicator’s relations to design and use case variables. For the simulation
results of both PFCSs, the data were randomly split into 20 folds of equal size due
to a lower bias (cf. Section 5.4). This means, in the case of the parametric PFCS
(PFCS SoAP), 80 simulation results (one fold) were retained as the validation set
for testing the model, and the remaining 1520 simulation results (19 folds) were
used as training data. In the case of the sequential PFCS (PFCS Pseq), 80 simu-
lation results also represented one fold and were retained as the validation set for
testing reasons. The remaining 19 folds, i.e., 1520 simulation results, were used
as training data. In each case, this process was repeated 20 times and, therefore,
precisely once for each fold. Table 6.1 shows the accuracy (cf. Equation (5.2)) of
each of the six surrogate models.

Table 6.1: Results of the K-fold cross-validation. The accuracy of each surrogate
model was higher than 91.2 %

Model Folds Validation set Training set accuracy
parametric PFCS

Efficiency 20 80 1520 0.994
Performance 20 80 1520 0.999
Service life 20 80 1520 0.999

sequential PFCS
Efficiency 20 80 1520 0.941

Performance 20 80 1520 0.912
Service life 20 80 1520 0.946

The applied RBF surrogate models were represented by a cubic kernel with a lin-
ear tail and a regularization parameter of 1e-03 in the case of the parametric PFCS
(PFCS SoAP). Regarding the sequential PFCS (PFCS Pseq), a cubic kernel with a
linear tail and a regularization parameter of 7e-03 were applied as hyperparameters
for the subsequent evaluation. These are common hyperparameters and are partly
defined as the default, i.e., for the kernel and the tail. The validation showed that
there was a high accuracy (> 99.4 %) for the surrogate models in the case of the
parametric PFCS (PFCS SoAP). The accuracy of the surrogate models in the case
of the sequential PFCS (PFCS Pseq) was somewhat less, with values higher than
91.2 %. The lower accuracy can be attributed to slightly too few simulation runs in
specific design space areas and the discrete use case variable. Moreover, it should
be noted that there was a discrepancy between the selection of the hyperparameters
during optimization and the subsequent evaluation. Since hyperparameters were
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not being optimized during the simulations, the default parameters mentioned in
Section 5.2 were used in the first place. Thus, slight deviations in accuracy might
occur between the surrogate models used during optimization and the subsequent
evaluation. Nevertheless, reasonable accuracies were obtained, and the surrogate
models could be used to analyze the sensitivities further.

The surrogate model-based sensitivity analysis was carried out to enable a thor-
ough analysis of the impact of design and use case variables on the target indicators.
In the case of the parametric PFCS (PFCS SoAP), the sensitivities were exem-
plified using an arbitrary design and use case combination.2 Both the set values
of the design and use case variables were chosen to achieve full performance. The
results of this sensitivity analysis are provided in Figure 6.3.

design variables use case variables

Figure 6.3: Sensitivity analysis of the target indicators “efficiency,” “performance,”
and “service life” concerning the design variables of the parametric
PFCS (PFCS SoAP) and the use case variables of the peak shav-
ing scenario. The set values of the design and use case variables are
shown in red. tpred,p = 20 s, tpred,e = 1500 s, Heterogeneity = 1.5, and
PSF = 20 %. Adapted from my published work [14].

2tpred,p = 20 s, tpred,e = 1500 s, HC = 1.5, and PSF = 20 %
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Surprisingly, the impact of the design variable tpred,p on each target indicator
was negligible. In contrast, the influence of the design variable tpred,e on the tar-
get indicators was severe. A positive correlation was noticed between tpred,e and
both the target indicators “efficiency” and “performance” on the one hand. On
the other hand, a negative correlation was observed between tpred,e and the target
indicator “service life.” In the case of the use case variable “heterogeneity,” only
a slight impact on the target indicators was present. A more homogeneous sys-
tem led to a marginally lower efficiency of up to 0.1 percentage points and higher
service life of roughly 0.3 percentage points. The impact on the target indicator
“performance” was negligible for the specified use case combinations; however, a
higher profile scaling factor reduced performance by about six percentage points
and service life by roughly 0.5 percentage points. Here, the impact on efficiency
was minimal. The interpretation of these results is given in Section 7.2.

From the sensitivity analysis of the sequential PFCS (PFCS Pseq), it is appar-
ent that in most cases, different correlations were observed. Figure 6.4 shows the
results obtained from the sensitivity analysis of the target indicators “efficiency,”
“performance,” and “service life” concerning the design variables of the sequential
PFCS (PFCS Pseq) and the use case variables. In this figure, the sensitivities
were exemplified using a design and use case combination with Pmax = 400 W,
Sorting = 1, HC = 1.5, and PSF = 20 %. These values were chosen to provide com-
parability between Figures 6.3 and 6.4.
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design variables use case variables

Figure 6.4: Sensitivity analysis of the target indicators “efficiency,” “performance,”
and “service life” concerning the design variables of the sequential
PFCS (PFCS Pseq) and the use case variables of the peak shaving sce-
nario. The set values of the design and use case variables are shown in
red. Pmax = 400 W, Sorting = 1, Heterogeneity = 1.5, and PSF = 20 %.

It can be seen in Figure 6.4 that there was a significant negative correlation
between the design variable Pmax and each target indicator. Efficiency and service
life were enhanced by almost two percentage points and performance by up to
20 percentage points with an increasing design variable. Interestingly, negative
correlations were also found in the case of the other design variable. Efficiency
and service life could be worsened by 1.5–2.5 percentage points when changing
the merit order of the BESSs, i.e., using the smallest battery first. In agreement
with the parametric PFCS (PFCS SoAP), the results indicated that a less het-
erogeneous system decreased the target indicator “efficiency,” and no significant
correlation was found concerning the target indicator “performance.” However,
contrary observations were made regarding the service life criterion. A less het-
erogeneous system reduced service life by about 0.8 percentage points using the
sequential PFCS (PFCS Pseq). The impact of the profile scaling factor on the
target indicators showed a positive correlation. Each target indicator could be
reduced by about 1–3 percentage points with an increasing profile scaling factor.
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6.1.3 Use case-specific potential analysis

The use case-specific potential analysis was carried out in the final part to test
the last subquestion (design rules). For this reason, an exemplary use case was
defined, setting the heterogeneity to 1.5 and the profile scaling factor to 20 %. The
use case variables were selected to make the results more comparable with those of
the sensitivity analysis. The sorted surrogate model-based results of both PFCSs
are presented within a pairwise target indicator trade-off analysis (see Figures 6.5
and 6.6). It should be noted that the blue/red data points represent all surrogate
model-based solutions for the specific use case and the pink ones show PO solu-
tions. In general, the surrogate models tend to give predictions that are parallel
to the experimental data from corresponding simulations (cf. Figures 6.1 and 6.2).
Figure 6.5 illustrates the results of the parametric PFCS (PFCS SoAP).

tpred,e

tpred,e

tpred,e

Figure 6.5: Pairwise target indicator trade-off analysis for the specified peak shav-
ing use case emphasizing PO solutions concerning the parametric PFCS
(PFCS SoAP). The heterogeneity was set to 1.5 and the profile scaling
factor amounted to 20 %. Adapted from my published work [14].

In accordance with the results of the potential analysis, in which no surrogate
models were used, it can be observed from Figure 6.5 that the same correlations
between the target indicators occurred. An interesting aspect of this figure is that
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both all solutions and PO solutions lay close together. However, considerable dif-
ferences between the minimum and maximum values of each target indicator were
noticed. In the case of the target indicator “performance,” the difference amounted
to 12.6 percentage points, and for the target indicator “service life,” the highest
difference was 2.1 percentage points. The range between the highest and lowest
efficiency was roughly one percentage point. In these ranges, PO solutions were
identified. Furthermore, the effect of the most influential design variable tpred,e is
illustrated by the arrows. There is evidence to indicate that an increasing value
of tpred,e led to lower performance, lower efficiency, but higher service life. This is
also consistent with the results of the sensitivity analysis (cf. Figure 6.3). The
interpretation of these results is given in Section 7.3.

In the case of the sequential PFCS (PFCS Pseq), an overall concordance between
the surrogate models and the experimental data from corresponding simulations
can be observed when comparing Figures 6.6 and 6.2.

Pmax

Pmax

Pmax

Pmax

Pmax

Pmax

Figure 6.6: Pairwise target indicator trade-off analysis for the specified peak shav-
ing use case emphasizing PO solutions concerning the sequential PFCS
(PFCS Pseq). The heterogeneity was set to 1.5 and the profile scaling
factor amounted to 20 %.
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The pairwise target indicator trade-off analysis indicates that two disconnected
solution spaces existed due to the discrete use case variable “sorting.” This is
in line with the results of the potential analysis. On the right-hand side of each
plot, the solutions for an ascending order of the BESSs (Sorting = 0) can be found.
In contrast, the solutions for a descending order of the BESSs are shown on the
left-hand side of the plots. Interestingly, the design variable Pmax influenced both
solution spaces in different ways, as illustrated by the arrows in the plots. However,
the results suggest that only the descending order is of importance when seeking
PO solutions. Therefore, an increasing value of Pmax yielded higher performance,
higher efficiency, and higher service life in this case. Consequently, PO solutions
were observed for this design variable combination. The interpretation of these
results is given in Section 7.3.

6.2 Use case II: Frequency regulation
Similar to the previous section, the results of the parametric and the sequential
PFCS for the frequency regulation scenario are presented to quantify the potentials
and sensitivities of these two PFCSs. In both cases, the entire test set consisted
of 2800 independent simulation runs. Again, zero is the optimal value a target
indicator can achieve since the MOO problem was formulated as a minimization
problem.

6.2.1 Potential analysis

In the first step, the first and the second subquestion were again tested by means
of the potential analysis. The potential analysis was applied to the parametric
PFCS (PFCS SoAP) to quantify the potentials of this PFCS. It is evident from
the results that correlations were existent, as can be seen from Figure 6.7.
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Figure 6.7: Results of the parametric PFCS (PFCS SoAP) potential analysis for
the frequency regulation scenario within the specified design space, use
case space, and target indicator space.

However, only closer inspection of the upper triangular matrix reveals the in-
dividual correlations between the target indicators adequately. What is striking
about the correlations of the target indicators is that these correlations changed
in most cases depending on the design and use case variable combinations. A
positive correlation was found between the target indicators “performance” and
“efficiency.” However, the correlation changed within a specific range of the design
variable tpred,e depending on the use case variables. In contrast, a negative correla-
tion was observed between the target indicator “service life” and the other target
indicators. However, in both cases positive correlations were noticed for specific
design and use case variable combinations. Furthermore, the matrix plot’s main
diagonal shows the limits of each target indicator. For the target indicator “perfor-
mance” the limit was 100 %, whereas the target indicator “efficiency” was limited
to 89.6 %. In the case of the target indicator “service life,” the limit amounted to
97.1 %. As far as the potential analysis of the sequential PFCS (PFCS Pseq) is
concerned, the correlations and the maximum potentials differ from the parametric
PFCS (PFCS SoAP) in several aspects.
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Figure 6.8: Results of the sequential PFCS (PFCS Pseq) potential analysis for the
frequency regulation scenario within the specified design space, use
case space, and target indicator space.

From the upper triangular matrix in Figure 6.8 it can be seen that strong posi-
tive or strong negative correlations between the target indicators were non-existent.
However, a low negative correlation was observed between efficiency and the other
two target indicators. Moreover, between the target indicators “performance” and
“service life,” a low positive correlation was found. The most striking result to
emerge from the data is that the maximum potentials of the target indicators
changed significantly. In contrast to the maximum efficiency using the paramet-
ric PFCS (PFCS SoAP), here, the lowest efficiency amounted to 90.4 %. Thus,
increased efficiency was noticed in each case, as can be seen in the matrix plot’s
main diagonal in Figures 6.7 and 6.8. When using the sequential PFCS (PFCS
Pseq), a maximum service life of 96.5 % could be achieved. Interestingly, in 95.3 %
of cases using the parametric PFCS (PFCS SoAP), service life was even higher
than the maximum service life here.
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6.2.2 Sensitivity analysis

Similar to Section 6.1, the surrogate model-based sensitivity analysis results con-
cerning the frequency regulation scenario are separated into two parts and aim to
answer the subquestions about sensitivities. Starting with the results of the K-fold
cross-validation, the quality of the surrogate models was evaluated. For the 2800
simulation results of the parametric PFCSs (PFCS SoAP), the data were randomly
split into 20 folds of equal size due to a lower bias (cf. Section 5.4). This means
140 simulation results (one fold) were retained as the validation set for testing the
model and the remaining 2660 simulation results (19 folds) were used as training
data. Thus, this process was repeated 20 times and consequently exactly once for
each fold. In the case of the sequential PFCS (PFCS Pseq), the data were ran-
domly split into only 18 folds of equal size as the accuracy was enhanced in this
case. Therefore, 155 simulation results represented one fold and were retained as
the validation set for testing reasons. The remaining 2645 simulation results, were
used as training data. Here, this process was repeated 18 times and thus once for
each fold. Table 6.2 provides the accuracy (cf. Equation (5.2)) of each surrogate
model.

Table 6.2: Results of the K-fold cross-validation. The accuracy of each surrogate
model was higher than 48.1 %

Model Folds Validation set Training set accuracy
parametric PFCS

Efficiency 20 140 2660 0.996
Performance 20 140 2660 0.999
Service life 20 140 2660 0.946

sequential PFCS
Efficiency 18 155 2645 0.999

Performance 18 155 2645 0.481
Service life 18 155 2645 0.962

In the case of the parametric PFCS (PFCS SoAP), the applied RBF surrogate
models were represented by a cubic kernel with a linear tail and a regularization
parameter of 9e-03. The validation showed high accuracy (> 94.6 %) for these sur-
rogate models. Regarding the sequential PFCS (PFCS Pseq), a TPS kernel with a
linear tail and a regularization parameter of 1e-09 were applied as hyperparameters
for the subsequent evaluation. Here, the accuracy of at least two surrogate models
was also high (> 96.2 %). However, the surrogate model of the target indicator
“performance” showed somewhat less accuracy, with a value of 48.1 %. As previ-
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ously mentioned in Section 6.1, the lower accuracy can be attributed to slightly too
few simulations in specific design space areas, the discrete use case variable, and
the discrepancy between the selection of the hyperparameters during optimization
and the subsequent evaluation. Nevertheless, the surrogate model was used for
further analysis of the sensitivities since no significant deviations were expected
(cf. Figure C.24).

In the second part of the surrogate model-based sensitivity analysis, the im-
pact of the design and use case variables on the target indicators was analyzed
using the validated surrogate models. Regarding the parametric PFCS (PFCS
SoAP), the sensitivities were exemplified using an arbitrary design and use case
combination with tpred,p = 5 s, tpred,e = 700 s, HC = 0.75, and PSF = 27 %. In this
case, for both the design and use case variables, entirely different values were se-
lected compared to the peak shaving scenario. The design variables were chosen to
achieve full performance, and the use case variables to show a sensitivity analysis
for a less heterogeneous system. The results of the sensitivity analysis are given
in Figure 6.9.
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design variables use case variables

Figure 6.9: Sensitivity analysis of the target indicators “efficiency,” “performance,”
and “service life” concerning the design variables of the parametric
PFCS (PFCS SoAP) and the use case variables of the frequency reg-
ulation scenario. The set values of the design and use case variables
are shown in red. tpred,p = 5 s, tpred,e = 700 s, Heterogeneity = 0.75, and
PSF = 27 %.

The effects of the design variables tpred,p and tpred,e on each target indicator were
similar to those of the other use case. No significant correlation was found be-
tween tpred,p and the target indicators. However, a positive correlation was found
between tpred,e and the target indicators “efficiency” and “performance,” and a
negative correlation was noticed between tpred,e and the target indicator “service
life.” The impact of the use case variable “heterogeneity” on the target indicator
“efficiency” was noticeable. An increasing heterogeneity led to higher efficiency of
up to one percentage point. In addition, a more heterogeneous system worsened
service life slightly by as much as 0.2 percentage points. The target indicator “per-
formance” appeared to be unaffected by the heterogeneity in this case. In contrast,
a significant positive correlation was found between the profile scaling factor and
the target indicator “performance” leading to a two percentage point worse perfor-
mance with an increasing profile scaling factor. Moreover, a higher profile scaling
factor reduced service life by about 0.4 percentage points but enhanced efficiency
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by roughly 0.7 percentage points within the specified parameter range.

Regarding the surrogate model-based sensitivity analysis of the sequential PFCS
(PFCS Pseq), the sensitivities were exemplified using a design and use case combi-
nation with Pmax = 400 W, Sorting = 1, HC = 0.75, and PSF = 27 %. This example
aligns with the ideas mentioned before, achieving full performance and represent-
ing a less heterogeneous system. The results obtained from the sensitivity analysis
of the target indicators “efficiency,” “performance,” and “service life” concerning
the design variables of the sequential PFCS (PFCS Pseq) and the use case variables
are shown in Figure 6.10.

design variables use case variables

Figure 6.10: Sensitivity analysis of the target indicators “efficiency,” “perfor-
mance,” and “service life” concerning the design variables of the se-
quential PFCS (PFCS Pseq) and the use case variables of the fre-
quency regulation scenario. The set values of the design and use case
variables are shown in red. Pmax = 400 W, Sorting = 1, Heterogene-
ity = 0.75, and PSF = 27 %.

From Figure 6.10 it can be seen that there were different correlations between
the design variable Pmax and each target indicator. While a negative correlation
was found between the design variable Pmax and the target indicator “efficiency,”
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a positive correlation was observed between Pmax and the target indicator “service
life.” No significant correlation was noticed regarding the performance criterion.
Furthermore, efficiency could be enhanced by one percentage point when changing
the merit order of the BESSs from ascending to descending, i.e., using the largest
battery first. An impact on the target indicators “performance” and “service life”
was not found. Another negative correlation was observed between efficiency and
the use case variables “heterogeneity” and “profile scaling factor.” In both cases,
efficiency could be enhanced by about 0.5–0.7 percentage points with increas-
ing values of the use case variables. Whereas no significant correlation between
the target indicator “performance” and the use case variable “heterogeneity” was
observed, positive correlations were found between performance and the profile
scaling factor and between the target indicator “service life” and the two use case
variables. A higher profile scaling factor worsened performance by roughly two
percentage points and service life by roughly 0.4 percentage points. A more het-
erogeneous system reduced service life by about 0.4 percentage points using the
sequential PFCS (PFCS Pseq). The interpretation of these results is given in
Section 7.2.

6.2.3 Use case-specific potential analysis

The use case-specific potential analysis moves on to describe an exemplary use case
in more detail and again tests the last subquestion (design rules). Therefore, the
use case as defined above was applied for analysis. The heterogeneity was set to
0.75 and the profile scaling factor to 27 %. These use case variables were selected to
make the results more comparable with those of the respective sensitivity analysis.
Similar to the previous section, the sorted surrogate model-based results of both
the parametric and the sequential PFCS are presented within a pairwise target
indicator trade-off analysis (see Figures 6.11 and 6.12). Again, it is evident that the
surrogate model-based results obtained were in good agreement with existing data
from corresponding simulations. Figure 6.11 presents the results of the parametric
PFCS (PFCS SoAP).
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tpred,e

tpred,e

tpred,e

Figure 6.11: Pairwise target indicator trade-off analysis for the specified frequency
regulation use case emphasizing PO solutions concerning the para-
metric PFCS (PFCS SoAP). The heterogeneity was set to 0.75 and
the profile scaling factor amounted to 27 %.

The main finding of the corresponding potential analysis was that the correla-
tions between the target indicators changed in most cases depending on the design
and use case variable combinations. This is in line with the findings here for a spe-
cific use case variable combination. As shown in Figure 6.11, changing correlations
between the target indicators were observed. Consequently, the resulting PO solu-
tions were directly affected. In the case of the target indicator “performance,” PO
solutions were obtained in the range between 93.0 % and 100 %, and for the target
indicator “service life,” PO solutions ranged from 96.8 % to 97.1 %. Regarding
the target indicator “efficiency,” PO solutions were obtained for efficiencies higher
than approximately 87.6 %. Moreover, the impacts of the design variable tpred,e

on the target indicators are displayed by the arrows. An increasing value of tpred,e

led to significantly lower performance, slightly lower efficiency, but higher service
life. These results are qualitatively similar to those of the sensitivity analysis. The
interpretation of these results is given in Section 7.3.
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Regarding the sequential PFCS (PFCS Pseq), the results were similar to those
of the potential analysis, as can be seen when comparing Figures 6.12 and 6.8.

Pmax

Pmax

Pmax

Sorting = 1 Sorting = 0

Sorting = 0

Sorting = 1

Figure 6.12: Pairwise target indicator trade-off analysis for the specified frequency
regulation use case emphasizing PO solutions concerning the sequen-
tial PFCS (PFCS Pseq). The heterogeneity was set to 1.5 and the
profile scaling factor amounted to 20 %.

Generally, the solution space was divided into two parts due to the design vari-
able “sorting,” as the pairwise target indicator trade-off analysis revealed. An
ascending order of the BESSs (Sorting = 0) led to lower efficiency and perfor-
mance. In contrast, the target indicator “service life” could be slightly enhanced.
Moreover, the design variable Pmax influenced both solution spaces similarly, as
demonstrated by the arrows in the plots. An increasing value of Pmax improved
both performance and efficiency of the system slightly. The target indicator “ser-
vice life,” on the other hand, was worsened with an increasing value of Pmax. Thus,
PO solutions were observed for performances close to 100 %, efficiencies higher than
90.8 %, and a service life in the range of 96.1 % and 96.3 %. The interpretation of
these results is given in Section 7.3.

112



6 Simulation studies on power flow control strategies

6.3 Summary of the simulation studies

Thus far, the simulation studies have been separated into the two use cases and
further into the two PFCSs to investigate several aspects individually. The fol-
lowing part of this section moves on to describe in greater detail the results of the
potential analysis for all PFCSs applied. Therefore, the results of the potential
analysis for the peak shaving scenario are put together and compared with the
state-of-the-art PFCS (PFCS SoC).3 For each PFCS, the parameter ranges of the
design variables are chosen to represent physically and technically reasonable val-
ues. Figure 6.13 summarizes the results of the three PFCSs for the peak shaving
scenario.

Figure 6.13: Summarized results of the potential analysis for the peak shaving
scenario within the specified design space, use case space, and target
indicator space.

It can be observed from the data in the matrix plot’s main diagonal that the
potentials of each of the three PFCSs were entirely different. The SoC-balancing
PFCS tended to achieve high performance for each design variable combination,

3Design variables: convergence factor: 1–5, compensation function: linear, power, exponential,
hyp. sine, logarithmic
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whereas a broader range of performance was found for the other two PFCSs. In the
case of efficiency, high efficiencies were found using the sequential PFCS (PFCS
Pseq). In contrast, slightly lower efficiencies were noticed using the parametric
and state-of-the-art PFCSs. An inverted effect was observed in terms of the target
indicator “service life,” indicating that the sequential PFCS (PFCS Pseq) led to
lower service life in numerous cases. What is interesting about the data in the ma-
trix plot’s main diagonal is that the potentials of the SoC-balancing PFCS could be
covered by adapting the design variables of the parametric PFCS (PFCS SoAP).
Closer inspection of the upper triangular matrix gives access to this observation. It
is apparent from these plots that higher efficiencies for similar performances were
achieved when using the parametric PFCS (PFCS SoAP). As far as the target in-
dicator “service life” is concerned, this is not necessarily the case since the specific
use case must be considered. Thus, lower service life for similar performance was
found in most cases when using the parametric PFCS (PFCS SoAP). In contrast,
the sequential PFCS (PFCS Pseq) tended to achieve both higher performance and
higher efficiency in most cases compared to the other two PFCSs. However, this
PFCS could not necessarily enhance the target indicator “service life.” The in-
terpretation of results for a specified design and use case combination is given in
Section 7.1.

Likewise to the peak shaving scenario, the results of the potential analysis for
the frequency regulation scenario are put together and compared with the state-
of-the-art PFCS (PFCS SoC). The results are summarized in Figure 6.14. The
interpretation of results for a specified design and use case combination is given in
Section 7.1.
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Figure 6.14: Summarized results of the potential analysis for the frequency regu-
lation scenario within the specified design space, use case space, and
target indicator space.

The matrix plot’s main diagonal data shows that some similarities to the peak
shaving scenario were found. In most cases, high performances for different design
variable combinations were achieved using the SoC-balancing PFCS. In contrast,
high efficiencies were found using the sequential PFCS (PFCS Pseq). Using the
parametric and state-of-the-art PFCSs, lower efficiencies were observed. Again,
an inverted effect was noticed concerning the target indicator “service life.” The
sequential PFCS (PFCS Pseq) led to lower service life in numerous cases, whereas
for the other two PFCSs a higher service life was found. In contrast to the peak
shaving scenario, the potentials of the SoC-balancing PFCS could not be covered
at all when adapting the design variables of the parametric PFCS (PFCS SoAP).
As the upper triangular matrix shows, higher efficiencies for similar performances
were achieved using the state-of-the-art PFCS (PFCS SoC). On the other hand,
higher service life for similar performance was found in most cases when using the
parametric PFCS (PFCS SoAP). In the case of the sequential PFCS (PFCS Pseq),
higher efficiencies were observed in almost all cases. However, the exact opposite
was noticed for the target indicator “service life.”
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Together, the results obtained in this work provide essential insights into the
causal relationships between the inputs and the outputs in complex heterogeneous
BESSs. The two most striking aspects emerging from the simulation studies are
that the potentials of the PFCSs and the correlations between the target indicators,
design variables, and use case variables were precisely quantified. The experimental
research design based on simulations to investigate the potentials and sensitivities
of different PFCSs for heterogeneous BESSs was used. Based on this approach,
the methodological framework offered a generic process to solve the MOO on a
black-box function problem effectively and efficiently by using surrogate models.
However, the accuracy of the performance surrogate model in the case of the
sequential PFCS (PFCS Pseq) for the frequency regulation scenario was slightly
too weak yet acceptable. Therefore, an additional sensitivity analysis based on
the real data is shown in Appendix C Figure C.24, confirming the validity of the
performance surrogate model. The next chapter discusses the findings in more
detail and checks whether the research questions are answered.
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The results presented in the previous chapter indicate that this work’s method-
ological framework quantifies the potentials and sensitivities of different PFCSs
for heterogeneous BESSs effectively and efficiently. Therefore, the methodologi-
cal framework provides sensitive information for analyzing the causal relationships
between the inputs and the outputs of heterogeneous BESSs to enable the sustain-
able operation of such systems. Especially the analysis of the sensitivities funda-
mentally improves the understanding of the relationships between design variables,
use case variables, and the target indicators. In general, revealing aspects emerged
from the data, and insights into the multi-objective black-box function problem
were provided. It is possible to hypothesize that the power distribution within the
system is a key issue for sustainable operation. Thus, this chapter moves on to
evaluate and discuss these findings in more detail. In Section 7.1, the evaluation
based on the potential analysis is presented. The evaluation based on the sen-
sitivity analysis is outlined in Section 7.2. Section 7.3 continues to evaluate the
results of the use case-specific potential analysis before Section 7.4 summarizes the
evaluation process. It should be noted that the following discussion of the results
is partly based on my published works [11, 12, 14].

It is important to reiterate that MOO problems for BESSs have already been
studied in the literature (cf. Section 2.2). However, these studies have either
turned the MOO problem into a single-objective optimization problem, i.e., weight-
ing the objectives or using heuristics, or have not focused on a thorough analysis
of the multiple objectives to provide information about conflicting target indica-
tors. Moreover, especially in the field of DC MGs, an SoC-balancing PFCS is
often applied without a comprehensive analysis of its applicability. In this work,
the potentials of PFCSs in different use cases were evaluated, and the sensitivities
on target indicators were systematically analyzed to improve the understanding
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of the correlations between the PFCSs, use case, and target indicators. It was
found that trade-offs between the multiple objectives occurred and no single solu-
tion, e.g., weighting, existed that concurrently optimizes multiple objectives ade-
quately. Furthermore, it was observed that in many cases, either the parametric
PFCS (PFCS SoAP) and the sequential PFCS (PFCS Pseq) achieved better results
concerning the target indicators than the state-of-the-art PFCS (PFCS SoC). Un-
like existing studies, this work provides a new approach to analyze MOO problems
for BESS applications without simplifying the problem itself. The results obtained
are in contradiction to the assumptions of several authors that the SoC-balancing
PFCS generally constitutes a reasonable operational strategy of BESSs. On the
whole, the presented methodological framework and the findings put, for example,
the recommendations of Li and Wang [8] into practice, developing an innovative
control and operation method for BESSs considering several requirements, e.g.,
efficient operation or multi-objective control and management [8]. In addition, the
methodological framework applies to other PFCSs, use cases, and target indica-
tors, allowing fellow researchers to compare their PFCSs, use cases, and objectives
using this framework. So far, the discussion has focused on where this work fits
into the research map and how it affects it. The rest of this chapter provides a
detailed look into the meaning of the results and explains how these results relate
to the research questions.

7.1 Evaluation based on the potential analysis

With respect to the first subordinate research question, a systematic analysis of
the target indicators is examined. The results suggest that the potentials of each
of the three PFCSs were dependent on the resulting power distribution within the
system. In my published work [14], it has been concluded that a PFCS, in which
not necessarily all BESSs are in operation, could achieve improvement. In some
cases, the results of the potential analysis found support for this hypothesis, as
discussed in the following. Concerning the peak shaving scenario, a maximum
performance of 100 % (1-Performance = 0) was observed for each PFCS, as shown
in Figure 6.13. This was due to the use case space, which was defined in such
a way as to achieve performances around 100 %. However, closer inspection of
the results (see Figure 7.1) revealed that both the parametric and the sequential
PFCS (PFCS Pseq) gained a higher performance with an increasing (discrete)
profile scaling factor than the state-of-the-art PFCS (PFCS SoC).
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Figure 7.1: Analysis of the target indicator “performance” for an increasing profile
scaling factor in the case of the peak shaving scenario. The PFCSs are
illustrated in groups and refer to the respective discrete profile scaling
factor.

This is attributable to the fact that all BESSs are charged/discharged equally
concerning their capacity when using the SoC-balancing PFCS. Consequently, the
SoCs remain balanced, and all batteries hit their operating limits equally, resulting
in instant performance loss. In contrast, the batteries hit their operating limits
differently due to equal power-sharing for the other two PFCSs. Although a single
battery might hit operating limits prematurely, another battery can take over a
larger share of the power but is not yet limited by the derating. Consequently, per-
formance loss is delayed and slowed down. Deeper analysis with different PFCSs
can be found in my published work [11].

Concerning the target indicator “efficiency,” differences between the three PFCSs
were identified. One interesting finding is that generally, high efficiencies were
found using the sequential PFCS (PFCS Pseq) while lower efficiencies were no-
ticed using the parametric and state-of-the-art PFCSs. These differences can be
explained by showing the energy losses over one specific simulation run. Therefore,
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the same design and use case combination1 as previously used for the sensitivity
analysis (see Section 6.1) serves as an example. For all PFCSs, a performance of
100 % was achieved, and therefore the energy throughput was identical.

Figure 7.2: Analysis of the target indicator “efficiency” showing the normalized en-
ergy losses when using different PFCSs in the case of the peak shaving
scenario.

As can be seen in the diagram, the total energy losses were around 25 % lower
using the sequential PFCS (PFCS Pseq). An explanation for this can also be
found in Figure 7.2. In the case of the other two PFCSs, the batteries are
charged/discharged equally with respect to their capacity. Considering the sys-
tems’ heterogeneity, two BESSs operate at low power (Ploss,bat is low) resulting,
however, in lower efficiencies due to the part-load operation of the DC/DC con-
verters (Ploss,dcdc is high). It should be noted that there are some design and use
case combinations where the energy losses using the sequential PFCS (PFCS Pseq)
are equal or even higher compared with the other two PFCSs. This is especially
the case when using the BESSs in ascending order, i.e., the smallest battery first.

1HC = 1.5, PSF = 20 %, PFCS Pseq: Pmax = 400 W, Sorting = 1, PFCS SoAP: tpred,p = 20 s,
tpred,e = 1500 s, PFCS SoC: convergence factor: 3, compensation function: power
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Another important finding was that an inverted effect was observed in terms
of the target indicator “service life.” The data suggests that the sequential PFCS
(PFCS Pseq) led to lower service life in numerous cases. This has been investigated
by applying the same design and use case combination again, except that the design
variable “sorting” was varied. The results are summarized in Table 7.1.

Table 7.1: Analysis of the target indicator “service life” showing the capacity losses
when using different PFCSs in the case of the peak shaving scenario.

PFCS Qcal
loss Qcyc

loss Qloss
Pseq (Sorting = 0) 0.75 % 0.62 % 1.38 %
Pseq (Sorting = 1) 0.62 % 0.27 % 0.89 %

SoAP 0.70 % 0.28 % 0.98 %
SoC 0.67 % 0.24 % 0.91 %

The data in the table shows that there are design and use case combinations
where the sequential PFCS (PFCS Pseq) leads to lower service life, i.e., increased
capacity loss. In these cases, the capacity loss due to cycle aging is often enhanced
drastically. Analysis has shown that this can be explained by the fact that smaller
BESSs are forced to be operated at high C-rates or with great DoDs. Furthermore,
a slight increase of the capacity loss due to calendar aging is present. This is due
to the slightly higher SoCs after recharging the smaller BESSs. The BESSs remain
constant at a high SoC, resulting in an increased capacity loss since the batteries
degrade faster at higher SoCs (cf. Section 4.2). Please note that cases exist where
the sequential PFCS (PFCS Pseq) leads to higher service life, as indicated in the
table. This is especially the case when using the BESSs in descending order, in
which the largest battery is operated first, and therefore stress factors are compa-
rably low.

Concerning the frequency regulation scenario, similar investigations were made.
In contrast to the peak shaving scenario, the results presented in Figure 7.3 suggest
that both the parametric and the state-of-the-art PFCS gained higher performance
with an increasing (discrete) profile scaling factor than the sequential PFCS (PFCS
Pseq).
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Figure 7.3: Analysis of the target indicator “performance” for an increasing dis-
crete profile scaling factor in the case of the frequency regulation sce-
nario. The PFCSs are illustrated in groups and refer to the respective
discrete profile scaling factor.

This can be explained by considering the power distribution. In the case of the
sequential PFCS (PFCS Pseq), BESSs hit their operating limits progressively, re-
sulting in instant performance loss when the last BESS hits its limits. By using the
parametric PFCS (PFCS SoAP), for example, the power is shared more regularly
compared to the sequential PFCS (PFCS Pseq). Although smaller BESSs might
hit operating limits prematurely, the largest BESS is still away from its limits. It
can take over a larger share of the power and is not yet limited by the derating.
Consequently, performance loss is delayed and slowed down.

As far as the target indicator “efficiency” is concerned, increased efficiency was
noticed in almost every case using the sequential PFCS (PFCS Pseq), as can be
seen in Figure 6.14. Looking at the energy losses over one specific simulation run
provides insights into this. Here, the same design and use case combination2 as
previously used for the sensitivity analysis (see Section 6.2) serves as an example.

2HC = 0.75, PSF = 27 %, PFCS Pseq: Pmax = 400 W, Sorting = 1, PFCS SoAP: tpred,p = 5 s,
tpred,e = 700 s, PFCS SoC: convergence factor: 3, compensation function: power
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Again, for all PFCSs, a performance of 100 % was achieved. Therefore, the energy
throughput was identical. The total energy losses were around 40 % lower using
the sequential PFCS (PFCS Pseq). An explanation for this can be derived from
Figure 7.4.

Figure 7.4: Analysis of the target indicator “efficiency” showing the normalized
energy losses when using different PFCSs in the case of the frequency
regulation scenario.

Generally, the respective power-shares, especially for smaller BESSs, are com-
parably low using the parametric and state-of-the-art PFCSs. Consequently, all
DC/DC converters are forced to operate under part-load conditions, resulting in
lower efficiencies, i.e., higher accumulated losses.

Regarding the target indicator “service life,” it was found that an inverted effect
occurred in almost every case, and the sequential PFCS (PFCS Pseq) led to lower
service life. This has been investigated applying the same design and use case
combination again. The results are presented in Table 7.2.
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Table 7.2: Analysis of the target indicator “service life” showing the capacity losses
when using different PFCSs in the case of the frequency regulation sce-
nario.

PFCS Qcal
loss Qcyc

loss Qloss
Pseq 0.73 % 0.05 % 0.78 %
SoAP 0.63 % 0.01 % 0.64 %
SoC 0.62 % 0.01 % 0.63 %

The data in the table indicates that the sequential PFCS (PFCS Pseq) leads
to lower service life, i.e., increased capacity loss. The observed increase of the
capacity loss can be attributed to the combination of the scenario and the PFCS.
The scenario is characterized by more of a charging behavior initially and more of
a discharging behavior towards the end. After the charging, two batteries remain
constant at a high SoC as only one BESS is needed for almost the rest of the
time. Consequently, these batteries degrade faster at higher SoCs, resulting in
lower overall service life.

All these findings confirm that the first subordinate research question has been
answered conclusively. The methodological framework enables the conduct of a
comprehensive potential analysis of different PFCSs for heterogeneous BESSs by
systematically performing simulations to identify the Pareto-front for each PFCS.
In addition, its results have important implications for developing a PFCS to en-
able the sustainable operation of such systems. Although a suitable PFCS depends
on the specific use case and the objectives of the system operator, the results sug-
gest that economic, environmental, and social benefits can be accomplished in
every case. For example, using the sequential PFCS (PFCS Pseq) in peak shaving
scenarios, higher performances could be achieved for an increasing profile scaling
factor. This means the system could be designed smaller to achieve the same re-
sults using other PFCSs, resulting in an economic benefit. On the other hand,
using the sequential PFCS (PFCS Pseq) in peak shaving scenarios might lead to
a premature replacement of a single battery. In contrast, other PFCSs reduce the
capacity loss, leading to longer service life and an environmental benefit.

In the previous section, a deeper analysis of the results has made it clear that
the potentials of the PFCSs are related to the individually applied power and con-
sequently to the energy throughput of each BESS. However, the results indicate
that the individual applied power, in turn, depends mainly on the design variables
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and the specific use case. Further analysis of the triangular matrix’s results is
necessary to quantify the target indicators’ trade-offs adequately (second subor-
dinate research question). Therefore, the potential analysis has been used further
to identify and quantify the different trade-offs between the target indicators con-
cerning the design and use case variables. Moreover, the correlations between the
target indicators have been analyzed likewise. In the following, both aspects are
discussed in more detail through the example of the peak shaving scenario and the
parametric PFCS (PFCS SoAP). It should be noted that the identical procedure
could be applied to the other use cases and PFCSs. In the case mentioned above,
the two most important findings were that, first, pseudo-grouped data sets were
observed, and second, positive as well as negative correlations were found. Fig-
ure 7.5 illustrates the results of the potential analysis considering the influence of
the design variable tpred,p.

Figure 7.5: Results of the parametric PFCS (PFCS SoAP) potential analysis for
the peak shaving scenario within the specified design space, use case
space, and target indicator space. The results consider the influence of
the design variable tpred,p (see color bar).

This analysis suggests that the design variable tpred,p did not significantly affect
the trade-offs and correlations. There may be a minor influence on the correla-
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tions concerning efficiency, but no significant impact can be identified. A possible
explanation for this might be that this design variable influences a battery’s pre-
dicted charge/discharge power only slightly, resulting in barely unaffected power
distribution. Therefore, the second design variable tpred,e has been investigated in
more detail. The results of the potential analysis considering the influence of this
design variable are shown in Figure 7.6.

Figure 7.6: Results of the parametric PFCS (PFCS SoAP) potential analysis for
the peak shaving scenario within the specified design space, use case
space, and target indicator space. The results consider the influence of
the design variable tpred,e (see color bar).

The analysis of the design variable tpred,e gives an unambiguous indication that
the correlations between the target indicators are related to this design variable.
Regarding the performance-efficiency trade-off, an efficiency in the range of 92.7 %
and 94.0 % and a performance of 79.0 % to 100 % can be expected for the spec-
ified design space. Reducing the design variable tpred,e caused higher efficiency
and higher performance at the same time. In contrast, an inverse behavior can
be identified concerning the trade-off between performance and service life. A de-
creasing value of tpred,e also entails higher performance but severely lower service
life. Here, the trade-off ranges from 94.0 % to 96.0 % in the case of service life and
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again from 79.0 % to 100 % for the target indicator “performance.” Consequently,
for the trade-off between efficiency and service life, increasing efficiency and a de-
creasing service life were identified with a decreasing value of tpred,e. All these
findings are likely to be related to the resulting power-sharing within the system.
Depending on the value of the design variable, the PFCS strives to balance the
power or the state of energy/charge among all BESSs. The former may enhance
efficiency due to lower accumulated losses of the DC/DC converters. For the lat-
ter, the largest BESS is supposed to take over the applied power’s largest share,
resulting in proportional power-sharing. In this case, service life is likely to show
improvements since no BESS is forced to be operated at high C-rates or with great
DoDs. However, a too aggressive state of energy/charge balancing might lead to
performance losses as power requirements cannot be fulfilled anymore.

The first part of the analysis has shown that most of the trade-offs are quantifi-
able and reasonable explanations for the correlations can be provided. However,
interactions between the design variables might occur and may affect the results
to different extents. Furthermore, the use case variables are also likely to influence
the trade-offs and correlations between the target indicators. For this reason, the
second part of the analysis deals with the influence of the use case variables on
the trade-offs and correlations of the target indicators. Figure 7.7 illustrates the
results of the potential analysis, however, now considering the influence of the use
case variable “heterogeneity.”
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Figure 7.7: Results of the parametric PFCS (PFCS SoAP) potential analysis for
the peak shaving scenario within the specified design space, use case
space, and target indicator space. The results consider the influence of
the use case variable “heterogeneity” (see color bar).

The analysis indicates that the use case variable “heterogeneity” affected the
trade-offs considerably, yielding higher or lower target indicator values. In con-
trast, the correlations themselves were not directly influenced by the heterogeneity.
In the case of the performance-efficiency trade-off, a lower heterogeneity caused
noticeably lower efficiency but not necessarily lower performance. Differences of
up to several tenths of a percent occurred. This relationship may be explained
by the fact that the power-sharing within the system might be disadvantageous
for efficiency, but the total energy throughput remains constant. Similar results
were found regarding the performance-service life trade-off. In some cases, a less
heterogeneous system can enhance service life. The explanation for it may be sim-
ilar. The power-sharing within the system might change favorably concerning the
target indicator “service life,” but the total energy throughput is still identical.
Regarding the trade-off between efficiency and service life, a more heterogeneous
system resulted in higher efficiency and higher service life. This contrary effect
may be interfered with using a design variable combination where performance is
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reduced, resulting in higher service life due to a lower energy throughput. How-
ever, this effect changed, as can be seen on the right-hand side of the plot. Here,
a more heterogeneous system resulted in higher efficiency but lower service life.
This may be due to a less equal power-sharing, leading to a shorter part-load op-
eration of the DC/DC converters as operating limits might be reached earlier, yet
concurrently, to a more stressful operation for a single battery.

Since the use case variables were changed independently, a closer look into the
influence of the use case variable “profile scaling factor” is required. Figure 7.8
shows the results of the potential analysis, considering the effects of the use case
variable “profile scaling factor.”

Figure 7.8: Results of the parametric PFCS (PFCS SoAP) potential analysis for
the peak shaving scenario within the specified design space, use case
space, and target indicator space. The results consider the influence of
the use case variable “profile scaling factor” (see color bar).

The most obvious finding to emerge from the analysis is that the pseudo-grouped
data resulted from the discrete profile scaling factor, as can be seen in the upper
right plot. The analysis further suggests that the use case variable “profile scal-
ing factor” also influenced the trade-offs, but the correlations were not directly
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affected. As far as the trade-off between performance and efficiency is concerned,
a higher profile scaling factor reduced performance to some extent. However, effi-
ciency was not imperatively enhanced as expected.3 This aspect may be explained
by the interactions between the use case variable and the design variables. A high
value of tpred,e leads to a too aggressive state of energy/charge balancing, resulting
in a curtailment of the power. Consequently, DC/DC converters are forced to
operate in part-load operation, which, in turn, reduces the target indicator “effi-
ciency.” The trade-off between performance and service life indicated that with an
increasing profile scaling factor, a high service life can still be achieved but only
at the expense of the target indicator “performance.” For example, to achieve a
service life in the range of 94.0 % to 95.5 %, a performance in the range of 97.5 % to
100 % can be expected for a smaller profile scaling factor. In contrast, to achieve
the same service life for the highest profile scaling factor, a performance between
84.0 % and 97.5 % must be accepted. A possible explanation for these results may
be that a higher profile scaling factor results in increased energy throughput. This
indicates both the reduction in performance and the battery’s service life due to
higher stress factors. A note of caution is due here since a performance loss implies
a lower energy throughput, resulting in possibly higher service life. Concerning the
trade-off between efficiency and service life, a higher profile scaling factor resulted
in lower efficiency and possibly lower service life. A possible interference of the
other design and use case variables cannot be ruled out and is yet likely, as a first
analysis has shown. Nevertheless, this behavior seems to vanish at some point, as
can be seen on the right-hand side of the plot. In this case, efficiency increases
with an increasing profile scaling factor, but at the same time, service life gets
worse in most cases. This may be explained by the fact that the required power
and thus the energy throughput increases, which yields higher individual powers,
i.e., higher efficiencies of the DC/DC converters but enhanced stress for the bat-
teries. However, clear exceptions to this exist in some cases. A higher energy
throughput, for example, may yield a lower SoC in the resting periods, resulting
in a lower calendar aging. In such cases, service life could be enhanced depending
on the aging characteristics of the battery.

In sum, the second subordinate research question has been answered based on
the example of the peak shaving scenario and the parametric PFCS (PFCS SoAP).
The trade-offs between the target indicators can be quantified accurately consid-

3A higher profile scaling factor should enhance efficiency due to higher efficiencies of the
DC/DC converters.
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ering the design and use case variables. One of the issues that emerges from these
findings is the interactions between them. Due to superimposed effects, individual
influences of the design and use case variables cannot always be clearly assigned.
It can be concluded that only a potential analysis is not sufficient to adequately
analyze the causal relationships between the inputs and the outputs of hetero-
geneous BESSs. For this reason, the surrogate model-based sensitivity analysis
has been conducted to gain knowledge about the target indicator versus design
or use case variables sensitivities. A major benefit of this analysis is that indi-
vidual influences can be analyzed separately, enabling a detailed evaluation of the
explanations stated in the potential analysis.

7.2 Evaluation based on the sensitivity analysis

In this section, the results of the sensitivity analysis are discussed, considering the
third and fourth subordinate research questions. In general, they suggest that the
concrete impacts of the design and use case variables on the target indicators vary
significantly depending on the specific PFCS or applied scenario. Furthermore, as
presented in the previous section, individual influences are hardly assignable due
to the interactions between the design and use case variables. The goal here is to
improve the understanding of the causal relationships, i.e., the relations between
design variables, use case variables, and target indicators, by analyzing the results
of the sensitivity analysis in the time domain. However, a thorough evaluation of
all results obtained by the surrogate model-based sensitivity analysis presented in
Section 6.1 and Section 6.2 is not feasible within the scope of this work. Therefore,
the focus is on a comprehensive analysis of two different examples that offer unique
insight. The first one is continuing the evaluation of the results of the parametric
PFCS (PFCS SoAP) in the peak shaving scenario. In contrast, the second one
focuses on the results of the sequential PFCS (PFCS Pseq) in the frequency reg-
ulation scenario. Referring to Section 5.4, the surrogate model-based sensitivity
analysis was done by investigating the relations between each target indicator and
each design and use case variable for only one given design and use case combina-
tion. It should be noted that for other design and use case combinations, different
relationships may occur.

Concerning the first example, an interesting finding of the sensitivity analysis
was that the impact of the design variable tpred,p on each target indicator was
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negligible. In contrast, the influence of the design variable tpred,e on the target
indicators was severe. Furthermore, different correlations were noticed between
the use case variables and the target indicators. In the following, six exemplary
simulation runs of the parametric PFCS (PFCS SoAP) in the case of the peak
shaving scenario are presented in the time domain. These simulation runs consider
the set values of the sensitivity analysis (see Figure 6.3) as a reference case and the
minimum and maximum values of the design and use case space (cf. Table 5.1).
The exact design and use case variables and the results for the six exemplary
simulation runs are summarized in Table 7.3.

Table 7.3: Design variables, use case variables, and target indicator values for the
six exemplary simulation runs of the parametric PFCS (PFCS SoAP)
in the case of the peak shaving scenario.

tpred,p in s tpred,e in s H C PSF in %
a) 20 1500 1.5 20
b) 1 1500 1.5 20
c) 20 1 1.5 20
d) 20 3600 1.5 20
e) 20 1500 0.75 20
f) 20 1500 1.5 23

1-Performance 1-Efficiency 1-Service life
a) 0.000 0.066 0.049
b) 0.000 0.066 0.049
c) 0.000 0.062 0.061
d) 0.126 0.070 0.040
e) 0.000 0.067 0.046
f) 0.053 0.066 0.054

As can be seen in the table, the design and use case variables were varied indi-
vidually concerning the minimum or maximum values of the defined design or use
case space. Case a) serves as a reference case, and the respective set values are
in line with the ones applied in the sensitivity analysis (see Section 6.1) to ensure
easy comparability and, most of all, comprehensibility. In cases b) to f), each de-
sign and use case variable was varied individually compared to the reference case.
Moreover, the target indicator values were also consistent with those obtained in
the surrogate model-based sensitivity analysis, confirming the high accuracy of
the surrogate models. For reasons of clarity, Figure 7.9 shows the results of the
parametric PFCS (PFCS SoAP) potential analysis for the peak shaving scenario
again, however, now emphasizing the results of the six exemplary simulation runs.
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Figure 7.9: Results of the parametric PFCS (PFCS SoAP) potential analysis for
the peak shaving scenario emphasizing the results of the six exemplary
simulation runs (cyan markers).

It is apparent from Figure 7.9 that the results of the exemplary simulation runs
cover the target indicator space essentially. The target indicator “performance”
ranged between 87.4 % and 100 %, efficiency between 93.0 % and 93.8 %, and the
target indicator “service life” between 93.9 % and 96.0 %. Therefore, different
aspects of the sensitivities of the design and use case variables on the target in-
dicators can be examined unambiguously as noticeable differences result from the
variation that was carried out. In Figure 7.10, the analysis of the six exemplary
simulation runs of the parametric PFCS (PFCS SoAP) in the case of the peak
shaving scenario is presented. The power distributions over time are shown on the
left side, whereas, on the right side, the respective SoCs over time are provided.
The set values of the design and use case variables for each simulation run can be
found in Table 7.3.
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a)

b)

c)

d)

e)

f)

Figure 7.10: Analysis of six exemplary simulation runs of the parametric PFCS
(PFCS SoAP) in the case of the peak shaving scenario showing the
power distribution (left side) and the SoCs (right side) over time. The
set values of the design and use case variables for each simulation run
can be found in Table 7.3.

In general, the requested charge/discharge power is represented by P* (black
line) and the total charged/discharged power of the entire system is indicated by
Psys (pink line), as previously described in Section 4.1. The latter considers the
efficiencies of each DC/DC converter and the direction of the power flow. The indi-
vidual charged/discharged power P i (BESS 1: blue line, BESS 2: red line, BESS 3:
yellow line) of a string adds up to the total system power. Furthermore, the SoC of
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each battery is denoted as, for example, SoC1 (battery 1: blue line, battery 2: red
line, battery 3: yellow line). With the exception of the fifth simulation run, BESS 1
and BESS 2 are always identical (cf. Table 7.3). Consequently, the behavior of
both BESSs is similar and only the red lines (BESS 2) are visible in the graphs.

The first simulation run (reference case) suggests that the set values of the de-
sign variables led to a mostly proportional power-sharing, resulting in a moderate
state of energy/charge balancing, as shown in graphs a). In this case, the power
requirements could be fulfilled, and the target indicator “performance” amounted
to 100 %. The target indicator “efficiency” was 93.4 %, and the target indicator
“service life” was 95.1 %.

For the second simulation run b), the design variable tpred,p was changed from
its maximum value to its minimum value of 1 s. As both graphs b) reveal, the
power distribution and the SoCs virtually did not change compared to the refer-
ence case. An explanation for this may be that this design variable influences a
battery’s predicted charge/discharge power only slightly, resulting in barely unaf-
fected power distribution, as explained in the previous section. Thus, all target
indicator values remain de facto identical, and it can be concluded that this design
variable is without any influence on the system.

For the third and fourth exemplary simulation runs c) and d), only the design
variable tpred,e was varied to its minimum value of 1 s, displayed in graphs c), and
to its maximum value of 3600 s, shown in graphs d). A small design variable tpred,e

of about one second led to full performance and an increase of efficiency (93.8 %)
on the one hand, but a decrease of the target indicator “service life” (93.9 %) on
the other hand. In contrast, a design variable tpred,e of about one hour resulted
in severely lower performance (87.4 %) and a reduced target indicator “efficiency”
(93.0 %), but also noticeably higher service life (96.0 %). Consequently, the calcu-
lation of the energy limits cannot be neglected. These findings are explained by the
current, voltage, and energy limits of each battery and the operating point of each
BESS. Within a specific operating range around an average SoC, the voltage limit
is basically non-effective compared with the other limits. Moreover, a small design
variable tpred,e of, e.g., one second practically disables the energy limit additionally
due to a comparatively high charge/discharge power. Consequently, the matched
current limits of the batteries define the maximum available power, which in turn
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leads to a more balanced power distribution among all BESSs, as can be seen in
graph c) on the left side. In a heterogeneous system, smaller BESSs (here BESS 1
and BESS 2) hit their voltage limits prematurely during a charge/discharge pro-
cess, causing a redistribution of the individual power shares. Larger BESSs are
then supposed to take over a larger share of the requested power to still fulfill the
power requirements. This behavior can be observed after roughly one hour, as the
plot on the left side illustrates. Consequently, the SoCs become more balanced
outside the normal operating range, and the performance remains constant or in-
creases. Regarding efficiency, a balanced power distribution enhances efficiency
due to lower accumulated losses of the DC/DC converters when each converter
stage operates at comparably higher efficiencies. However, service life decreases
at the same time since BESSs are forced to operate at higher C-rates and with
greater DoDs. In contrast, a prediction horizon tpred,e of one hour leads to unbal-
anced power distribution, yielding a balanced state of energy/charge, as graphs d)
indicate. In this case, the largest BESS is supposed to take over the largest share.
However, a too aggressive state of energy/charge balancing often leads to perfor-
mance losses as power requirements cannot be fulfilled anymore. This behavior
was found, e.g., after roughly one hour, as the plot on the left side demonstrates.
Furthermore, the accumulated losses of the DC/DC converters are higher due to
the extreme part-load operation of two BESSs, resulting in a decreased target indi-
cator “efficiency.” Contrary to the third exemplary simulation run c), here, service
life increases as two BESSs are operated at lower C-rates and with greater DoDs.
However, these results must be interpreted with caution since reduced performance
yields a lower energy throughput, resulting in higher service life at the same time.
On the whole, this analysis suggests that the target indicators are highly sensitive
to the design variable tpred,e.

In the case of the fifth exemplary simulation run e), the use case variable “het-
erogeneity” was changed to its minimum value of 0.75. The decrease of the het-
erogeneity, i.e., BESS 1 and BESS 2 were scaled up and BESS 3 was scaled down,
resulted in marginally lower efficiency (93.3 %) and higher service life (95.4 %).
The target indicator “performance” was not affected as the power requirements
did not change and no aggressive state of energy/charge balancing was applied.
As can be seen in graphs e), the observed decrease in efficiency can be attributed
to the resulting power-sharing between the BESSs. A more homogeneous system
results in a more equal distribution, as can be seen in the graph on the left side.
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Consequently, all DC/DC converters operate in part-load operation, yielding lower
efficiency. On the other hand, an increase was found for the target indicator “ser-
vice life.” An explanation for this is that the influence of the aging stress factors,
for example the C-rate, on the capacity fade due to cycle aging becomes lower for
larger BESSs. The findings suggest that the system’s heterogeneity constitutes an
important factor in this case as the power distribution is directly affected by this
use case variable. However, as defined in this work, the heterogeneity is not bijec-
tive, meaning that a similar heterogeneity could lead to slightly different results
(cf. Section 5.1).

An increase of the use case variable “profile scaling factor” to its maximum value
of 23 % suggests different behavior, as the sixth exemplary simulation run revealed.
Graphs f) provide information about the power distribution and the SoCs for this
case. First, a discrepancy between the desired power P ∗ and the system power
Psys was observed. The power curtailment started after not even one and a half
hours to keep the SoCs balanced. After roughly two hours, the batteries were fully
discharged, resulting in performance loss (94.7 %). Second, almost no change was
noticed for the target indicator “efficiency” (93.4 %). This somewhat contradic-
tory result (at least in this specific case) is due to a rapidly decreasing efficiency of
the DC/DC converters after the power requirements cannot be fulfilled anymore,
even if higher efficiencies were observed initially. Third, the increase of the pro-
file scaling factor led to lower service life (94.6 %). This can be attributed to the
recharge process after seven hours. Due to the increased energy throughput, the
influence of the aging stress factors, such as the DoD, on the capacity fade (cycle
aging) gets higher for smaller BESSs. Furthermore, the SoCs of the batteries are
noticeably higher after the recharging process, as can be seen in graph f) on the
right side, causing a higher capacity fade due to increased calendar aging. It can
be concluded that the use case variable “profile scaling factor” is also decisive for
a sustainable operation of the overall system. However, it is important to bear in
mind that such systems will often be designed to fulfill the power requirements at
any time. Exceptions are, e.g., home storage applications.

In general, all these findings helped improve the understanding of the causal re-
lationships in the peak shaving scenario and the parametric PFCS (PFCS SoAP).
Influencing design or use case variables were identified and the individual impact
was quantified. The second example moves on to identify and quantify the sensi-
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tivities in the case of the frequency regulation scenario and the sequential PFCS
(PFCS Pseq), seeking to similarly reveal the causal relationships.

As far as the second example is concerned, the most surprising finding of the
sensitivity analysis was that the correlations between each design and use case
variable and a specific target indicator were quite similar. However, deeper analysis
is necessary to evaluate these results correctly. Therefore, six exemplary simulation
runs of the sequential PFCS (PFCS Pseq) in the case of the frequency scenario
are presented in the time domain. The simulation runs consider the set values
of the sensitivity analysis (see Figure 6.10) as a reference case and the minimum
and maximum values of the design and use case space (cf. Table 5.1). Detailed
information about the design and use case variables as well as the results for the
six exemplary simulation runs is provided in Table 7.4.

Table 7.4: Design variables, use case variables, and target indicator values for the
six exemplary simulation runs of the sequential PFCS (PFCS Pseq) in
the case of the frequency regulation scenario.

Pmax in W Sorting H C PSF in %
a) 400 1 0.75 27
b) 100 1 0.75 27
c) 400 0 0.75 27
d) 400 1 1.5 27
e) 400 1 0.75 25
f) 400 1 0.75 31

1-Performance 1-Efficiency 1-Service life
a) 0.000 0.081 0.039
b) 0.000 0.085 0.038
c) 0.000 0.090 0.038
d) 0.000 0.075 0.043
e) 0.000 0.083 0.036
f) 0.023 0.078 0.040

The data in the table indicates that the design and use case variables were varie-
gated individually concerning their minimum or maximum values. The respective
set values are parallel to those applied in the sensitivity analysis (see Section 6.2)
and therefore ensure easy comparability. Again, case a) serves as a reference case,
whereas in cases b) to f) each design and use case variable was varied individually
compared to the reference case. The target indicator values were mainly consistent
with the ones obtained in the surrogate model-based sensitivity analysis. Although
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the accuracy of the performance surrogate model was somewhat less, only a slight
difference of 0.1 percentage points between the value obtained by the surrogate
model and the one obtained here in case f) was observed. Regarding the other
target indicators, the high accuracy of the surrogate models was confirmed. Fig-
ure 7.11 shows the results of the sequential PFCS (PFCS Pseq) potential analysis
for the frequency regulation scenario, emphasizing the results of the six exemplary
simulation runs (cyan markers).

Figure 7.11: Results of the sequential PFCS (PFCS Pseq) potential analysis for
the frequency regulation scenario emphasizing the results of the six
exemplary simulation runs (cyan markers).

The results of the exemplary simulation runs indicate that, in contrast to the first
example, less broad coverage of the target indicator space was achieved, as can be
seen in Figure 7.11. The target indicator “performance” amounted to either 97.7 %
or 100 %, efficiency ranged between 91.0 % and 92.5 %, and the target indicator
“service life” was between 95.7 % and 96.4 %. Nevertheless, the individual effects
of the design and use case variables on the target indicators can be examined since
relevant information about the sensitivities resulted from the variation carried
out. Figure 7.12 illustrates the analysis of the six exemplary simulation runs of
the sequential PFCS (PFCS Pseq) in the case of the frequency regulation scenario.
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The graphs on the left side show the power distribution over time, whereas the
graphs on the right side present the respective SoCs over time. The set values of
the design and use case variables for each simulation run can be found in Table 7.4.

a)

b)

c)

d)

e)

f)

Figure 7.12: Analysis of six exemplary simulation runs of the sequential PFCS
(PFCS Pseq) in the case of the frequency regulation scenario showing
the power distribution (left side) and the SoCs (right side) over time.
The set values of the design and use case variables for each simulation
run can be found in Table 7.4.

Again, P* (black line) displays the requested charge/discharge power and Psys

(pink line) shows the total charged/discharged power of the entire system, as
previously described in Section 4.1. Psys takes into account the efficiencies of
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each DC/DC converter and the direction of the power flow. The individual
charged/discharged power P i (BESS 1: blue line, BESS 2: red line, BESS 3: yellow
line) of a BESS adds up to Psys. Moreover, the batteries’ SoCs are denoted as SoCi

(battery 1: blue line, battery 2: red line, battery 3: yellow line).

The reference case (first simulation run) indicates that the set values of the de-
sign variables led to a power-limited sequential use with the BESSs deployed in
descending order. As can be seen in graphs a), BESS 3 was charged/discharged as
long as Pmax was less or equal to 400 W (P / Prat,sys = 0.26) or operating limits
were not exceeded. In this case, the comparable low power requirements were
fulfilled, and performance amounted to 100 %. The target indicator “efficiency”
accounted for 91.9 % and the target indicator “service life” was 96.1 %.

In the case of the second exemplary simulation run b), the design variable Pmax

was changed to its minimum value of 100 W. No performance loss was observed
here, and therefore the target indicator “performance” accounted for 100 %. How-
ever, graphs b) illustrate that the power distribution was different as the first two
BESSs deployed were limited to a charge/discharge power4 of 100 W. Through
this power limitation, another BESS is forced to operate at low power, resulting
in a decreased target indicator “efficiency” of about 91.5 % due to the part-load
operation of both DC/DC converters. In contrast, the target indicator “service
life” was slightly improved (96.2 %). The explanation for this is twofold. First,
the calendar aging is improved marginally as the batteries did not remain at high
SoCs for such a long time. Second, the deployed BESSs were operated at lower
C-rates and with greater DoDs, resulting in a slightly lower capacity fade due to
cycle aging. It can be concluded that this design variable influences the system.
In this specific case, however, the effects on the target indicators were rather low.
Nevertheless, interactions between the use case variables and this design variable
might reinforce the influence considerably. With regard to efficiency, this design
variable should not be selected too small in practice, as this would lead to a shorter
operating time and an aggravated part-load operation of one BESS. Consequently,
other BESSs would be forced to be on standby, resulting in additional energy losses.

For the third exemplary simulation run c), the design variable “sorting” was var-
ied, causing deployment of the BESSs in ascending order with respect to their rated

4According to the algorithm of the sequential PFCS (PFCS Pseq), only the last BESS is not
limited by Pmax.
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capacity. This resulted in significantly lower efficiency (91.0 %) and marginally
higher service life (96.2 %). Although the power distribution was different from
the reference case, the target indicator “performance” was not affected as the power
requirements did not change, resulting in a performance of 100 %. As can be con-
cluded from graphs c), the observed decrease in efficiency can mainly be attributed
to the power losses of the smaller BESS in operation. Even if the losses through
the DC/DC converters are quite similar to the reference case, the power losses of
the smaller batteries are significantly higher due to an increased resistance. On
the other hand, for the target indicator “service life,” a slight increase was noticed.
Although the capacity loss of battery 1 due to cycle aging was drastically enhanced
(esp. higher C-rates and greater DoDs), the overall capacity loss due to calendar
aging was somewhat less compared to the reference case. As a result, marginally
higher service life was noticed here. The findings suggest that the sorting of the
BESSs is particularly decisive for the target indicator “efficiency” in this case.

Regarding the fourth exemplary simulation run d), the use case variable “het-
erogeneity” was changed to its maximum value of 1.5. The increase of the het-
erogeneity, i.e., BESS 1 and BESS 2 were scaled down and BESS 3 was scaled up,
resulting in considerable efficiency gain (92.5 %) and noticeably lower service life
(95.7 %). Again, the target indicator “performance” was not biased as the power
requirements were identical and therefore rather low. As far as the target indica-
tor “efficiency” is concerned, the significant increase can be explained considering
both the power losses of the batteries and the DC/DC converters. From graphs
d), it can be seen that mainly BESS 3 was operated due to the set values of the
design variables and the increase of this BESS. Thus, the losses of the battery
were comparably low (low resistance), and the DC/DC converter was operated at
higher powers, yielding higher efficiency. Concerning the target indicator “service
life,” however, a notable decrease was found. An explanation for this can be found
in the plot on the right side and relates to the capacity fade due to calendar aging.
Batteries 1 and 2 remain almost unused at high SoCs for a long time, resulting in a
comparatively higher capacity loss. Battery 3 is also operated at a higher SoC, as
can be seen when comparing graphs a) and d). Compared to the calendar aging,
a rather minor yet enhanced capacity loss due to cycle aging was observed as a
result of the two down-scaled BESSs. All these findings indicate that the system’s
heterogeneity is an essential factor in the case of the frequency regulation scenario
as the power distribution is directly affected by this use case variable.
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For the fifth and sixth exemplary simulation runs e) and f), only the use case
variable “profile scaling factor” was varied to its minimum value of 25 %, displayed
in graphs e), and to its maximum value of 31 %, illustrated in graphs f). A small
profile scaling factor of about 25 % led to full performance and a slight decrease
in efficiency (91.7 %) on the one hand, but an increase of the target indicator
“service life” (96.4 %) on the other hand. In contrast, a higher profile scaling fac-
tor of about 31 % resulted in a considerably lower target indicator “performance”
(97.7 %) and a marginally reduced target indicator “service life” (96.0 %), but
also somewhat higher efficiency (92.2 %). Regarding the target indicator “perfor-
mance,” the power requirements were lower in the fifth simulation run, resulting in
no performance loss. However, in the sixth simulation run f), the power require-
ments were higher, leading to a discrepancy between the desired power P ∗ and
the system power Psys, as can be seen in the plot on the left side. After roughly
seven hours, the batteries were fully charged, yielding performance loss. As far
as the target indicator “efficiency” is concerned, it correlates almost in direct pro-
portion to the profile scaling factor in this case since mainly only one BESS is
in operation at the same time, resulting in a higher or lower efficiency of the re-
spective DC/DC converter, respectively. In terms of the target indicator “service
life,” the plots showing the SoC over time are very revealing in several ways. The
variation of the profile scaling factor affects the time batteries remaining at high
SoCs, leading to an enhanced capacity fade due to calendar aging and the energy
throughput of each battery, resulting in an enhanced capacity fade due to cycle
aging. However, a non-linear decrease of the target indicator “service life” can be
observed for decreasing profile scaling factors. An explanation for this constitutes
the combination of both aspects mentioned before. In this case, batteries remain
at lower SoCs, and the energy throughput is concurrently lower for small profile
scaling factors. From these findings, it can be concluded that the use case variable
“profile scaling factor” is again decisive for a sustainable operation of the overall
system.

To sum up the second example, the findings also improved the understanding
of the causal relationships for the frequency regulation scenario and the sequential
PFCS (PFCS Pseq). Influencing design or use case variables were identified and
their individual impact was quantified.

In general, the impacts of the design and use case variables on the target indi-
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cators were thoroughly examined based on two specific examples. Consequently,
the third and the fourth subordinate research questions have been answered pro-
foundly. In both cases, essential causal relationships have been revealed, analyzing
the target indicator versus design or use case variables sensitivities in the time
domain. This combination of findings supports the conceptual premise that sus-
tainable operation depends on the resulting power distribution within the system.
As the results have shown, the resulting power distribution, in turn, is mainly
dependent on the design and use case variables. One important implication of this
is the possibility to design and operate heterogeneous BESSs more beneficially us-
ing this work’s methodological framework. The surrogate model-based sensitivity
analysis especially helps to improve the understanding of the causal relationships
using an interactive plot to experience the sensitivities by changing the values of
the design and use case variables independently.

7.3 Evaluation based on the use case-specific
potential analysis

Having discussed the potentials and sensitivities of heterogeneous BESSs utilizing
different PFCSs in different scenarios, this section moves on to derive specific and
general design rules for PFCSs. Therefore, the results of the use case-specific po-
tential analysis are discussed, considering the fifth subordinate research question
(design rules). This analysis expanded on using surrogate models for a fixed use
case combination. Assigning fixed values to the use case variables limited the de-
grees of freedom to the two design variables. Dominated as well as non-dominated
solutions (PO solutions) were then calculated on a surrogate model basis for all
design variable parameters within the defined boundaries.

In the case of the peak shaving scenario and the parametric PFCS (PFCS SoAP),
considerable differences between the minimum and maximum values of the target
indicators were noticed, as previously presented in Figure 6.5. As extensively
discussed in the previous sections, the resulting correlations can be attributed to
the design variable tpred,e. Furthermore, it was observed that both dominated
solutions and PO solutions lay close together. An explanation for this is that
the impact of the design variable tpred,p on the target indicators was somewhat
marginally yet existent, resulting in only minor differences. The evaluation of the
design space of the PO solutions revealed PO design variables across the entire
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defined range for both design variables. Concerning the design variable tpred,e, most
of the PO design variables were identified in the range between roughly 1200 s and
3600 s. No clear trend could be observed for the other design variable tpred,p,
strengthening the argument that both dominated solutions and PO solutions are
hardly distinguishable. In sum, for the selected use case combination and PFCS,
the following design rules can be derived:

• focus on target indicator “efficiency”: tpred,p arbitrary, tpred,e low

• focus on target indicator “performance”: tpred,p arbitrary, tpred,e < 1500 s

• focus on target indicator “service life”: tpred,p arbitrary, tpred,e high

Turning to the peak shaving scenario and the sequential PFCS (PFCS Pseq)
illustrated in Figure 6.6, the two most important findings were that the solution
space was disconnected and the influence of Pmax on those two disconnected so-
lution spaces was entirely different. The design variable “sorting” can explain
the former. Depending on this design variable, either the smaller BESSs or the
larger BESSs are forced to operate first, resulting in two distinct effects. Although
there was almost no difference in terms of the target indicator “performance” here,
operating the BESSs in an ascending order resulted in both lower efficiency and
lower service life in most cases. In combination with an increasing design variable
Pmax, an ascending order caused lower efficiency due to increased battery losses,
especially for the smaller ones. Simultaneously, the capacity loss due to calendar
and cycle aging was enhanced as the smaller batteries remained unused at higher
SoCs and were operated with greater DoDs. For a descending order and an in-
creasing design variable Pmax, contrary effects were observed. Thus, PO design
variables were only identified for the BESSs operated in descending order and for
values of Pmax greater than roughly 300 W, resulting mainly in an operation of the
larger BESSs. This means there are no trade-offs between the target indicators.
Altogether, for the selected use case combination and PFCS, the following design
rules can be derived:

• focus on target indicator “efficiency”: descending order, Pmax high

• focus on target indicator “performance”: descending order, Pmax high

• focus on target indicator “service life”: descending order, Pmax high
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The main finding in the case of the frequency regulation scenario and the para-
metric PFCS (PFCS SoAP) (see Figure 6.11) was that the correlation between
the target indicator “efficiency” and the other two changed at some point. As the
design variable tpred,e is the most influential one, this can be mainly attributed to
the fact that this design variable directly affects the power distribution within the
system. For this use case combination, values greater than roughly 700 s shifted the
priority of the PFCS towards balancing the SoCs instead of fulfilling the power re-
quirements. Consequently, the target indicator “performance” might be decreased,
and the losses of the DC/DC converters may rise due to an increasing part-load
operation. As explained in the previous sections, service life might be enhanced
when balancing the SoCs. However, performance loss also means a lower energy
throughput, which also positively affects the service life. Interestingly, PO design
variables were found in the range between roughly 700 s and 3600 s concerning the
design variable tpred,e, yielding more balanced SoCs during operation. Again, no
clear trend could be observed for the design variable tpred,p. For the selected use
case combination and PFCS, the following design rules can be derived:

• focus on target indicator “efficiency”: tpred,p arbitrary, tpred,e roughly 700 s

• focus on target indicator “performance”: tpred,p arbitrary, tpred,e < 700 s

• focus on target indicator “service life”: tpred,p arbitrary, tpred,e high

In terms of the frequency regulation scenario and the sequential PFCS (PFCS
Pseq), the results shown in Figure 6.12 indicated that the solution space was also
disconnected due to the design variable “sorting”. However, the influence of Pmax

on those two disconnected solution spaces was similar in this case. As a result of
the use case combination, almost no difference was observed concerning the target
indicator “performance,” regardless of the design variable values. As far as the
target indicators “efficiency” and “service life” are concerned, a decreasing value
of Pmax decreases efficiency but enhances service life at the same time. As explained
in the previous sections, limiting the maximum power of a BESS forces another
one to operate at low power as well. This results in a decreased target indicator
“efficiency” due to the part-load operation of both DC/DC converters. On the
other hand, when reducing the value of Pmax, the calendar aging may be improved
as the batteries do not remain at high SoCs for such a long time. Moreover, the
deployed BESSs are operated at lower C-rates and with smaller DoDs, resulting in
a slightly lower capacity fade due to cycle aging. Altogether, PO design variables
were found across the entire defined range for the design variable Pmax. In the
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case of the design variable “sorting,” PO design variables were noticed for an
ascending order but mainly for descending order. Therefore, for the selected use
case combination and PFCS, the following design rules can be derived:

• focus on target indicator “efficiency”: descending order, Pmax high

• focus on target indicator “performance”: descending order, Pmax high

• focus on target indicator “service life”: ascending order, Pmax low

In general, the results suggest that the individual analysis of the PFCSs supports
identifying the overall potential of the applied PFCS for a fixed use case. Even
though the methodological framework successfully identifies PO solutions, it suffers
from the limitation that no global optimum for a specific use case can be found. As
a remedy, one approach to classify the potential of a specific PFCS is to compare
different PFCSs. For this reason, the results of the use case-specific potential
analysis were combined for a particular use case, and a common Pareto-front was
identified. Consequently, general design rules can be derived. Figure 7.13 shows
the surrogate model-based results of the parametric and sequential PFCSs for the
peak shaving scenario. As an exemplary use case combination, the set values for
the heterogeneity and the profile scaling were set to 1.5 and 20 %, respectively.
Pink markers emphasize PO solutions.
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Figure 7.13: Pairwise target indicator trade-off analysis for the specified peak shav-
ing use case emphasizing PO solutions concerning the parametric and
sequential PFCSs. The heterogeneity was set to 1.5 and the profile
scaling factor amounted to 20 %.

As can be seen in Figure 7.13, both PFCSs covered somewhat different areas
of the target indicator space, suggesting that switching between the PFCSs might
be favorable in some cases. The parametric PFCS (PFCS SoAP) yielded possibly
higher service life but suffered from decreased efficiency. The sequential PFCS
(PFCS Pseq), on the other hand, increased efficiency significantly, but the potential
of the target indicator “service life” was strongly dependent on the design variable
“sorting.” Explanations for that have already been provided. Nevertheless, PO
solutions for both PFCSs were found. The evaluation of the design space suggests
that PO design variables can be identified in the range between roughly 2600 s
and 3600 s concerning the design variable tpred,e, i.e., in the case of the parametric
PFCS (PFCS SoAP). For the sequential PFCS (PFCS Pseq), PO design variables
can be found for values of Pmax greater than approximately 300 W and in the case
of a descending order of the deployed BESSs. However, PO solutions with full
performance were only observed in the case of the sequential PFCS (PFCS Pseq).
At least for this specific use case combination, these observations support the
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hypothesis that a PFCS, where not necessarily all BESSs are in operation, achieves
improvement. For reasons of clarity, a spatial representation of the results can be
found in Figure C.25 in Appendix C. For the selected use case combination and
both PFCSs combined, the following design rules can be derived:

• focus on target indicator “efficiency”: descending order, Pmax high

• focus on target indicator “performance”: descending order, Pmax high

• focus on target indicator “service life”: tpred,p arbitrary, tpred,e high

With regard to the surrogate model-based results of the parametric and sequen-
tial PFCSs for the frequency regulation scenario, these are presented in Figure 7.14,
emphasizing PO solutions (pink markers). As an exemplary use case combination,
the values for the heterogeneity and profile scaling factor were set to 0.75 and 27 %,
respectively.
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Figure 7.14: Pairwise target indicator trade-off analysis for the specified frequency
regulation use case emphasizing PO solutions concerning the para-
metric and sequential PFCSs. The heterogeneity was set to 0.75 and
the profile scaling factor amounted to 27 %.

According to the results shown in Figure 7.14, different areas of the target indi-
cator space were covered using the parametric and sequential PFCSs for the fre-
quency regulation scenario. The results indicate that PO solutions for both PFCSs
were found, and switching between the PFCSs may again be advantageous in some
cases. Similar to the peak shaving scenario, the parametric PFCS (PFCS SoAP)
caused slightly higher service life than the sequential PFCS (PFCS Pseq) but suf-
fered significantly decreased efficiency. In this case, the differences due to the
design variable “sorting” were rather minimal. These relationships have already
been discussed in the previous sections. Evaluating the design space reveals that
PO design variables were found in the range between approximately 700 s and
3600 s regarding the design variable tpred,e, yielding more balanced SoCs during
operation. In the case of the sequential PFCS (PFCS Pseq) and the BESSs de-
ployed in ascending order, PO solutions were found for values of Pmax lower than
130 W. In contrast, for BESSs deployed in descending order, PO solutions were
observed across the whole defined range. Contrary to the peak shaving scenario,
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PO solutions with full performance were observed for both PFCSs. The observa-
tions clearly indicate that possible trade-off decisions between the target indicators
can be handled by, e.g., switching between different PFCSs. A spatial representa-
tion of the results can be found in Figure C.26 in Appendix C for reasons of clarity.
For the selected use case combination and both PFCSs combined, the following
design rules can be derived:

• focus on target indicator “efficiency”: descending order, Pmax high

• focus on target indicator “performance”: descending order, Pmax high

• focus on target indicator “service life”: tpred,p arbitrary, tpred,e high

Although a PO-PFCS depends on the specific use case and the objectives of
the system operator, economic, environmental, and social benefits can be accom-
plished by means of PO solutions. Except in the case of the peak shaving scenario
and the sequential PFCS (PFCS Pseq), trade-offs between the target indicators
have to be accepted. The findings of this section have important implications for
designing a PO-PFCS for a specific use case combination. Therefore, three general
design rules have been derived from these findings, supporting operators of such
systems to enable sustainable and reliable operation.

First, clarification is required whether the target indicator “performance” will
be treated as a constraint. In the case of this work, a performance of 100 % should
be ensured as both exemplary applications usually require full performance. How-
ever, in the case of residential photovoltaic BESSs, for example, full performance
is not mandatory. In general, this design rule may yield economic as well as social
benefits. Under consideration of the target indicator “performance,” profits can be
enhanced by sizing BESSs appropriately, and a reliable and secure power supply
might be guaranteed.

Second, often a trade-off between the target indicators “efficiency” and “service
life” exists, requiring, therefore, a decision on a more equal or a more individual
power-sharing, as the results showed. In this work, for example, a more individual
power-sharing might be beneficial in the case of the peak shaving scenario,5 es-
pecially in terms of efficiency. However, using the sequential PFCS (PFCS Pseq)

5Without consideration of the power requirements after the defined period of 24 h.
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might lead to a premature replacement of a single battery. In contrast, other
PFCSs reduce the capacity loss, leading to longer service life and an environmen-
tal benefit. On the whole, decision-making here strongly depends on the applied
use case and the overall objectives of the operator.

Third, the operator has to select preferable trade-offs between non-dominated
target indicator trade-offs to match system requirements most favorably. How-
ever, decision-making based on the target indicator trade-offs requires quantitative
knowledge about the significance of each target indicator. Therefore, as proposed
in the literature, concepts of proper optimality might not be the favored solution
in most cases. As a remedy, another approach is to analyze the differences between
the target indicator values pragmatically. For example, the performance-service
life trade-off, presented in Figure 7.14, indicates that a gain of about 0.3 percent-
age points in terms of the target indicator “service life” can only be achieved at
the expense of a performance loss of about six percentage points. Consequently,
it can be presumed that the positive effects on service life will not outweigh the
severe negative effects on performance.

In general, the use case-specific potential analysis proved to be worthwhile. Non-
dominated solutions (PO solutions) were identified on a surrogate model basis,
yielding the overall potential of the applied PFCSs for a fixed use case. In this
case, however, benefits are comparably low as no conclusions can be drawn about
the potentials of the applied PFCS relative to other PFCSs. Further analysis
has shown that comparing different PFCSs may increase the benefits gained by
deriving a common Pareto-front. Consequently, design rules to support operators
enabling sustainable and reliable operation of BESSs can be provided, answering
the fifth subordinate research question.

7.4 Summary of the evaluation process

This chapter has provided a detailed look into the meanings of the results and
has explained how these results relate to the research questions. In the first step,
the methodological framework enabled the conduct of a comprehensive potential
analysis of different PFCSs for heterogeneous BESSs by systematically performing
simulations to identify the Pareto-front for each PFCS. Thus, the trade-offs be-
tween the target indicators were quantified accurately, considering the design and
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use case variables. However, the findings suggest that only a potential analysis
is not sufficient to adequately analyze the causal relationships between the inputs
and the outputs of heterogeneous BESSs. Therefore, the surrogate model-based
sensitivity analysis was conducted to learn about the target indicator versus design
or use case variables sensitivities. A major benefit of this analysis is that individual
influences can be analyzed separately, improving the understanding of the causal
relationships considerably. Based on the findings, the conceptual premise that
sustainable operation depends on the resulting power distribution within the sys-
tem is supported. In the last step, non-dominated solutions (PO solutions) were
identified on a surrogate model basis, yielding the overall potential of the applied
PFCSs for a fixed use case. Analysis revealed that comparing different PFCSs may
increase the benefits gained by deriving a common Pareto-front. As a result, design
rules to support operators enabling sustainable and reliable operation of BESSs
can be provided. This work, therefore, indicates that the benefits gained from
the methodological framework may address BESS-operator needs across a wide
range of different use cases. Most notably, this is the first work to the best of the
authors’ knowledge to provide a methodological framework to analyze, quantify,
and classify PFCSs in heterogeneous BESSs systematically.
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8 Conclusion and future
perspectives

This research addressed the question of how the potentials and sensitivities of
power flow control strategies for heterogeneous battery energy storage systems
can be quantified. Based on a quantitative analysis of the causal relationships
between the inputs and the outputs of heterogeneous battery energy storage sys-
tems, it can be concluded that the applied power flow control strategy and the
use case are essential factors to consider when designing and operating hetero-
geneous battery energy storage systems. The results indicate that both factors
influence the resulting power distribution within the system, which is, in turn, a
decisive point for sustainable operation of heterogeneous battery energy storage
systems. This work has shown that the developed methodological framework is
able to quantify the potentials and sensitivities of power flow control strategies for
heterogeneous battery energy storage systems effectively and efficiently. It further
contributes to the analysis of multi-objective optimization problems and specifi-
cally power flow control strategies for battery energy storage system applications.
In the following, a reflective summary of the main points of this work is given,
limitations of the work are presented, and future perspectives are outlined. Note
that some limitations and future perspectives are based on my published work [14].

Summary
In Chapter 1, an introductory presentation of battery energy storage systems and
their operating strategies was provided. This topic was motivated by the idea of
operating battery energy storage systems sustainably, yielding economic, environ-
mental, and social benefits. Enabling the sustainable operation of such systems
requires knowledge about causal relationships. However, these relationships are
not immediately apparent as no simple logical procedures to operate battery en-
ergy storage systems sustainably exist. According to the Cynefin for engineers
framework [9], this assigns the given problem to a complex problem, requesting a
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trade-off comparison among potential solutions to select an operating strategy for
the sustainable operation of battery energy storage systems. The question thus
emerged as to how the inputs can be influenced systematically, effects become
perceptible and quantifiable, and the resulting power distribution within battery
energy storage systems affects a sustainable operation.

After examining the fundamentals of battery energy storage systems, appropri-
ate use cases and power flow control strategies for battery energy storage system
applications were identified and developed in Chapter 2. Furthermore, suitable
target indicators representing the three dimensions of sustainability (economic,
environmental, and social) were defined. This approach was expected to provide a
fundamental basis to quantify the causal relationships by influencing the battery
energy storage system systematically through different power flow control strate-
gies and use cases. However, achieving sustainable operation requires solving a
multi-objective optimization problem as the different target indicators should be
optimized simultaneously. Lacking an analytically closed form of the functional
correlation between the inputs and the outputs, the multi-objective optimization
problem is further characterized as a multi-objective optimization on a black-box
function problem. Therefore, the fundamentals of multi-objective (black-box) op-
timization and state-of-the-art approaches to solve such problems were presented
in Chapter 3. The Hyper Space Exploration methodology as proposed by Palm
and Holzmann [159] was identified as a useful tool to solve the multi-objective
black-box optimization problem.

Referring to the research question, an appropriate methodological framework
that includes the Hyper Space Exploration methodology and a simulation model
of a battery energy storage system was required to quantify the potentials and sen-
sitivities of power flow control strategies for heterogeneous battery energy storage
systems. Thus, the battery energy storage system simulation model, including the
generic aging model, the Hyper Space Exploration process flow, and the battery en-
ergy storage system-adapted Hyper Space Exploration toolchain were described in
Chapters 4 and 5. The entire framework was expected to solve the multi-objective
black-box optimization problem and profoundly analyze the causal relationships.
However, two crucial points arise using the presented framework. First, when
applying the Hyper Space Exploration methodology, it is challenging to ensure
validity of the results due to the extensive parameter variation. Therefore, the
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transferability of each submodule of the battery energy storage system simulation
model (battery, DC/DC converter, and control scheme) was examined for varying
input variables, confirming its validity. Second, proper methods for evaluating
and visualizing the results were required for the unambiguous interpretation of
the results. Thus, the methods either provided insights into existing target indi-
cator trade-offs to reveal the potentials of power flow control strategies, analyzed
the causal relationships between the inputs and the outputs for different power
flow control strategies, or identified Pareto-optimal solutions for a fixed use case
to derive design rules. Moreover, each method was closely related to subordinate
research questions, answering them thoroughly.

The methodological framework thus provided the necessary foundation for com-
prehensive analysis. However, understanding the causal relationships in complex
battery energy storage systems to enable sustainable operation required analyzing
different power flow control strategies systematically. Therefore, in Chapter 6, the
results of two power flow control strategies were presented for two distinct use
cases. Following the structure of the methodological framework and its methods
for evaluation, a threefold analysis for each power flow control strategy was carried
out to answer the research questions profoundly. The results suggested that the
methodological framework offered a generic process to adequately solve the multi-
objective black-box optimization problem. The two most striking aspects that
emerged from the simulation studies were that, first, the potentials of the power
flow control strategies and, second, the correlations between the target indicators
and the input variables were precisely quantified. Moreover, the results obtained
provided essential insights into the causal relationships between the inputs and the
outputs in complex heterogeneous battery energy storage systems. Consequently,
a sustainable operation of battery energy storage systems was enabled, strength-
ening the initial idea.

The discussion in Chapter 7 revealed that the methodological framework quan-
tified the potentials and sensitivities of different power flow control strategies for
heterogeneous battery energy storage systems effectively and efficiently, answering
the research questions profoundly. First, the methodological framework enabled a
comprehensive potential analysis to quantify the existing target indicator trade-offs
accurately. Second, the surrogate model-based sensitivity analysis improved the
understanding of the causal relationships considerably. Third, Pareto-optimal so-
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lutions were identified on a surrogate model basis, deriving design rules to support
operators enabling sustainable and reliable operation of battery energy storage sys-
tems. Thus, these findings indicated that both the fundamental basis, e.g., suitable
target indicators, and the methods for evaluating and visualizing the results are
sufficient to gain the required knowledge about causal relationships to operate het-
erogeneous battery energy storage systems sustainably. Moreover, the conceptual
premise that sustainable operation depends on the resulting power distribution
within the system was supported. The benefits gained from the methodological
framework may address battery energy storage system operator needs across a
wide range of different use cases.

Limitations and future perspectives
Nevertheless, this work is subject to certain limitations which should be addressed
in future works. During the course of this work, three noticeable limitations have
been identified:

First, each multi-objective optimization process necessitates decision-making at
some point. However, in this work, decision-making on a power-sharing level
was set aside to focus on the implementation of the methodological framework,
proper methods for evaluation and visualization, and analysis of the potentials
and sensitivities of power flow control strategies. Especially in practice or in
the case of application-oriented case studies, it is indispensable as battery en-
ergy storage system operator’s needs have to be addressed. Referring back to the
survey of Marler and Arora [137], three categories are known to model a decision-
maker’s preferences: a priori, a posteriori, and no articulation of preferences.
This work’s methodological framework basically entails the a posteriori decision-
making method, as this work focuses on the analysis of all solutions identified in the
multi-objective optimization process. However, this requires a) adaptive sampling
approaches with an enhanced search efficiency to effectively and efficiently iden-
tify Pareto-optimal solutions and b) selecting one Pareto-optimal solution from a
set of mathematically equivalent Pareto-optimal solutions after the optimization
process. While this work successfully identifies Pareto-optimal solutions among
various power flow control strategies, it did not offer an explicit approach for the
required a posteriori decision-making, i.e., selecting one Pareto-optimal solution to
meet the operator’s needs and preferences. Further research should be carried out
to establish an (automated) approach for a posteriori articulation of preferences
relative to the ideas of the third general design rule presented in Section 7.3.

158



8 Conclusion and future perspectives

Second, this work is limited by the lack of information on a global optimum for
a specific use case. The chosen power flow control strategies limit the solutions
in the target space, i.e., better solutions might exist with other power flow con-
trol strategies. It would at least be possible to find a near-global optimum if all
target indicators were combined into a single one, i.e., if the total cost of own-
ership, or heuristics, such as particle swarm optimization or genetic algorithms,
were applied. However, this approach usually entails a substantial computational
expense, requires further assumptions, and most importantly, provides only one
near-global optimal solution. Even though heuristics may provide a near-global
optimal solution, no clear statement can be made about how good the identi-
fied solution is [188], as the actual global optimum is unknown and cannot be
proved. Most importantly, it does not allow for the consideration of the shape
of the Pareto-front, which is an important aspect for both analyzing the causal
relationships and enabling sustainable operation of battery energy storage sys-
tems. Thus, the approach of comparing different power flow control strategies was
used in this work. Notwithstanding the lack of globally optimal solutions, this
work offers valuable insights into the causal relationships between the inputs and
the outputs of heterogeneous battery energy storage systems. Further research
should be undertaken to explore how to a) implement heuristics in the method-
ological framework and simultaneously consider the shape of the Pareto-front and
b) develop a global optimal power flow control strategy as a reference. Reasonable
approaches to tackle, for example, the latter issue could be to deploy dynamic pro-
gramming methods or machine learning techniques, such as reinforcement learning.

Third, this work focuses, among other things, on the successful implementa-
tion of the methodological framework for heterogeneous battery energy storage
systems. However, most battery energy storage systems are included in higher-
level systems, resulting in new challenges to be addressed. Since the simulation
study, i.e., the battery energy storage system simulation model, was limited to
heterogeneous battery energy storage systems for reasons of expediency, it is un-
known how the presented methodological framework and, therefore, the analysis
of power flow control strategies applies to other systems. Microgrids, for exam-
ple, have a similar basic architecture compared with the heterogeneous battery
energy storage system presented in this work. In addition to storage systems,
renewable energy sources and loads are interconnected via a common (DC) bus,
forming a small (islanded) distribution network. Operating strategies considering
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intermittent power generation and irregular consumption in microgrids could be
implemented into the methodological framework, targeting the challenge of a bal-
anced system. Moreover, multi-use applications such as simultaneously equalizing
power fluctuations and charging electric vehicles are gaining popularity but require
thorough analysis to achieving sustainable operation of such systems. Although
the current work is based on heterogeneous battery energy storage systems, the
methodological framework is basically capable of adjustment to other systems.
Even if no power distribution is possible, free parameters (design variables) could
be derived from, e.g., the scenario to influence the charging and discharging be-
havior of the system. Therefore, a further study could assess the potentials and
sensitivities of power flow control strategies for microgrids or other higher-level
systems, enabling sustainable operation of those. This requires an extension of
the validated battery energy storage system model by additional system compo-
nents, such as renewable energy sources. Furthermore, application-oriented power
flow control strategies and use cases should be developed and implemented into
the methodological framework to address the challenges adequately.
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Appendix





A Abbreviations

AC alternating current

BESS battery energy storage system

BMS battery management system

BOL beginning-of-life

DC direct current

DoD depth of discharge

DovE design of virtual experiments

ECM equivalent circuit model

EMS energy management system

EOL end-of-life

FEC full equivalent cycle

HPPC hybrid pulse power characterization

HSE Hyper Space Exploration

ISES Institute for Sustainable Energy Systems

IT isolé-terre

LCO lithium cobalt oxide

LFP lithium iron phosphate

LV low voltage

MG microgrid

I



MOO multi-objective optimization

MPC model predictive control

MV medium voltage

NCA lithium nickel cobalt aluminium oxide

NMC lithium nickel manganese cobalt oxide

OCV open-circuit voltage

PCC point of common coupling

PI proportional integral

PFCS power flow control strategy

PO Pareto-optimal

PSO particle swarm optimization

RBF radial basis function

RC resistor-capacitor

SCADA supervisory control and data aquisition

SEI solid electrolyte interphase

SoAP state of the available power

SoC state of charge

SoH state of health

II



B Nomenclature

accuracy model’s accuracy
αi power-sharing factor of the ith BESS
αSoAP,i power-sharing factor of the ith BESS (PFCS SoAP)
αSoC,i power-sharing factor of the ith BESS (PFCS SoC)
BOLc (relative) initial capacity
C capacitance
Cact actual discharge capacity
Cp parallel capacitance
Crat rated (or nominal) capacity
C-rate C-rate
C-rateref reference value (C-rate)
δv control signal of PI-controller
∆FEC full equivalent cycle interval
d design space vector
d′ another design space vector
dcal

SoC calendar aging stress factor (SoC)
dcal

T calendar aging stress factor (temperature)
dcyc

C-rate cycle aging stress factor (C-rate)
dcyc

DoD cycle aging stress factor (DoD)
dcyc

SoC cycle aging stress factor (SoC)
dcyc

T cycle aging stress factor (temperature)
D design space
DPseq design space for the sequential PFCS
DSoAP design space for the parametric PFCS
DoD depth of discharge
DoDref reference value (DoD)
Eloss system losses
Eloss,bat battery losses
Eloss,dcdc DC/DC converter losses
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Eloss,max maximum system losses
Epred maximum available charging/discharging energy
Epred,ch maximum available charging energy
Epred,dch maximum available discharging energy
Efficiency efficiency
Efficiencyact actual value of the target indicator “efficiency”
EOLc (relative) remaining capacity at end-of-life
f(x) objective vector
FEC full equivalent cycle
FEC∗ virtual full equivalent cycle
FECend end-of-life criterion (full equivalent cycles)
ηc coulombic efficiency
ηrt round-trip efficiency
HC heterogeneity (use case variable)
ibat battery current
ilim current limit
ipred,V current response (voltage limit)
ki integral gain coefficient
kp proportional gain coefficient
K folds
L inductance
mi droop coefficient of the ith BESS
nBESS number of applied BESSs
ncal number of applied stress factors (calendar aging)
ncyc number of applied stress factors (cycle aging)
OCV open-circuit voltage
p convergence factor
P ∗ requested power
Pbat output power of the battery
Pbat,i output power of the ith battery
Pbat,meas measured battery power
Pbat,sim simulated battery power
Perr model power error
P ∗

i desired output power of the ith BESS
Pi output power of the ith BESS
Ploss system losses
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Ploss,bat battery losses
Ploss,dcdc DC/DC converter losses
Pmax maximum allowed charging/discharging power (design variable)
Pmax,i maximum output power of the ith BESS
Ppred maximum available charging/discharging power
Ppred,i maximum available charging/discharging power of the ith BESS
Ppred,E maximum available charging/discharging power (energy limit)
Ppred,I maximum available charging/discharging power (current limit)
Ppred,V maximum available charging/discharging power (voltage limit)
Prat rated power
Prat,sys rated system power
Pref reference variable (system power or output power of the battery)
Psys system power
P (u) Pareto-front
PE performance
Performance performance
Performanceact actual value of the target indicator “performance”
PSF profile scaling factor (use case variable)
qloss differential capacity loss
qcal

loss differential capacity loss (calendar aging)
qcyc

loss differential capacity loss (cycle aging)
qloss,min minimum differential capacity loss
qcal

loss,min minimum differential capacity loss (calendar aging)
Qerr model capacity loss error
Qloss capacity loss
Q∗

loss accumulated value of the differential capacity losses
Qloss,max maximum permitted capacity loss
Qcal

loss capacity loss (calendar aging)
Q∗cal

loss accumulated differential capacity loss (calendar aging)
Qcyc

loss capacity loss (cycle aging)
Q∗cyc

loss accumulated differential capacity loss (cycle aging)
Rs ohmic resistance
R2 coefficient of determination
R2

k kth coefficient of determination
Rp parallel resistance
S sorting (design variable)
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Service Life service life
SL service life
SoC state of charge
SoCend state of charge at the end of a charging or discharging process
SoCi state of charge of the ith battery
SoCmax maximum state of charge
SoCmin minimum state of charge
SoCref reference value (SoC)
SoCstart state of charge at the beginning of a charging or discharging process
SoH state of health
Sorting merit order of BESSs (design variable)
∆t time interval
τ time interval (integration variable)
t time
t solution space (target indicator) vector
t∗ virtual time
t′ another solution space (target indicator) vector
t̂ surrogate model
t0 starting time
tend end-of-life criterion (time)
tpred,e prediction horizon (energy limit)
tpred,p prediction horizon (current and voltage limit)
tsim simulation time
T temperature
T target indicator space or solution space
TE target indicator “efficiency”
TP target indicator “performance”
Tref reference value (temperature)
Ts sampling period
TSL target indicator “service life”
TiS2 titanium disulfide
u use case space vector
U use case space
UUC1 use case space for the peak shaving scenario
UUC2 use case space for the frequency regulation scenario
vbat terminal voltage of the battery
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vdc DC bus voltage
verr model voltage error
vlim voltage limit
vmeas measured terminal voltage
vpred,I voltage response (current limit)
vrc voltage drop (RC-circuit)
v∗

ref reference DC voltage
vs ohmic voltage drop
vsim simulated terminal voltage
x vector of feasible decisions
X feasible decision space
x11 calendar aging pre-factor (temperature)
x12 calendar aging pre-factor (SoC)
x13 cycle aging pre-factor (temperature)
x14 cycle aging pre-factor (SoC)
x15 cycle aging pre-factor (C-rate)
x16 cycle aging pre-factor (DoD)
zcal exponential factor (time)
zcyc exponential factor (FEC)
γcal

SoC calendar aging stress exponent (SoC)
γcal

T calendar aging stress exponent (temperature)
γcyc

C-rate cycle aging stress exponent (C-rate)
γcyc

DoD cycle aging stress exponent (DoD)
γcyc

SoC cycle aging stress exponent (SoC)
γcyc

T cycle aging stress exponent (temperature)
λ(k) kth weighting factor (calendar aging)
λ(j) jth weighting factor (cycle aging)
ω weighting factor between calendar and cycle aging
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C Supplementary material

Figure C.1: Experimental OCV curve of the battery model at 20 ◦C.

Table C.2: Median absolute model error of the terminal voltage of the battery
model for the verification case.

Battery 1 Battery 2
0RC 1RC 2RC 0RC 1RC 2RC

Median absolute model error 66 mV 59 mV 45 mV 48 mV 47 mV 47 mV
Computational complexity + 0 - + 0 -
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Table C.3: Look-up table of the battery model (battery 1) showing the ohmic
resistance (in Ohm) over the SoC (in %) at different currents (in A).
10 20 30 40 50 60 70 80 90

-40 0.109 0.103 0.101 0.099 0.098 0.097 0.097 0.098 0.099
-20 0.112 0.107 0.103 0.102 0.101 0.100 0.101 0.101 0.103
-10 0.114 0.107 0.106 0.103 0.104 0.103 0.103 0.104 0.105
-4 0.122 0.111 0.104 0.104 0.102 0.102 0.103 0.107 0.110
-1 0.129 0.115 0.106 0.108 0.104 0.110 0.112 0.111 0.107
0 0.111 0.101 0.093 0.097 0.093 0.098 0.091 0.094 0.094
1 0.093 0.086 0.079 0.086 0.081 0.085 0.070 0.076 0.080
2 0.098 0.095 0.091 0.089 0.088 0.085 0.089 0.089 0.089
3 0.105 0.100 0.100 0.094 0.094 0.094 0.094 0.094 0.094
5 0.107 0.101 0.099 0.096 0.097 0.096 0.095 0.096 0.096
8 0.108 0.101 0.098 0.098 0.097 0.094 0.096 0.097 0.097

Table C.4: Look-up table of the battery model (battery 1) showing the polarization
resistance (in Ohm) over the SoC (in %) at different currents (in A).
10 20 30 40 50 60 70 80 90

-40 0.327 0.148 0.064 0.054 0.050 0.054 0.053 0.054 0.050
-20 0.229 0.071 0.072 0.061 0.058 0.063 0.065 0.070 0.058
-10 0.233 0.066 0.076 0.069 0.066 0.080 0.086 0.090 0.063
-4 0.216 0.072 0.082 0.075 0.076 0.108 0.106 0.104 0.066
-1 0.184 0.083 0.103 0.082 0.089 0.131 0.100 0.127 0.065
0 0.182 0.077 0.082 0.069 0.077 0.107 0.095 0.114 0.065
1 0.180 0.070 0.062 0.056 0.065 0.083 0.090 0.101 0.066
2 0.172 0.068 0.071 0.061 0.063 0.103 0.085 0.088 0.063
3 0.168 0.068 0.070 0.064 0.065 0.095 0.077 0.086 0.062
5 0.161 0.066 0.070 0.061 0.063 0.084 0.069 0.077 0.060
8 0.118 0.070 0.065 0.060 0.060 0.071 0.061 0.070 0.056
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Table C.5: Look-up table of the battery model (battery 1) showing the polarization
capacitance over the SoC (in %) at different currents (in A).

10 20 30 40 50 60 70 80 90
-40 78 190 149 157 151 141 135 125 146
-20 88 156 158 158 150 121 122 118 140
-10 97 147 162 167 161 119 124 121 135
-4 103 155 170 167 170 119 135 131 142
-1 101 145 184 87 146 123 124 201 106
0 96 155 160 123 197 118 114 168 99
1 92 164 136 159 247 114 103 134 93
2 93 131 185 176 144 141 137 105 139
3 94 148 132 118 158 117 120 133 114
5 101 151 153 157 155 123 121 129 121
8 105 164 143 161 151 121 143 133 140

Table C.6: Factors to consider the heterogeneity H C of the system. The capacity,
capacitive ECM elements, rated power, and energy of each BESS are
multiplied by these factors, resistive ECM elements of each BESS are
divided by these factors. Battery 1 serves as the reference data set and
is thus the equivalent of a factor of one.

H C BESS 1 BESS 2 BESS 3
0.75 0.65 0.95 1.4

1 0.6 0.8 1.6
1.25 0.55 0.65 1.8
1.5 0.5 0.5 2
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Figure C.2: Comparison of the simulated terminal voltage (blue) and the measured
terminal voltage (red) of battery 2. The dotted lines show exemplary
simulations with the maximum specified current measurement error of
the battery test system. a) terminal voltages, b) model error. Adapted
from a previous work [12].

Figure C.3: Model error of the terminal voltage of the battery model. The red
central mark indicates the median value and the box indicates the 25th
and 75th percentiles, respectively. Adapted from a previous work [12].

XII



Figure C.4: Comparison of the simulated terminal voltage (blue) and the mea-
sured terminal voltage (red) of battery 2 for the frequency regulation
scenario. The dotted lines show exemplary simulations with the max-
imum specified current measurement error of the battery test system.
a) terminal voltages, b) model error.

Figure C.5: Comparison of the simulated terminal voltage (blue) and the measured
terminal voltage (red) of battery 2 for the peak shaving scenario. The
dotted lines show exemplary simulations with the maximum specified
current measurement error of the battery test system. a) terminal
voltages, b) model error.
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Figure C.6: Model error of the terminal voltage of the battery model. The red
central mark indicates the median value and the box indicates the
25th and 75th percentiles, respectively.

Figure C.7: Results of the generic aging model using the data of the cycle aging
experiment presented in [72]. a) loss of relative discharge capacity, b)
model error.
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Figure C.8: Results of the generic aging model using the data of the calendar aging
experiment presented in [68]. a) loss of relative discharge capacity, b)
model error.

Figure C.9: Results of the generic aging model using the data of the cycle aging
experiment presented in [68]. a) loss of relative discharge capacity, b)
model error.
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Figure C.10: Efficiency curves of the applied bidirectional dynamic synchronous
buck-boost converter at a primary side voltage of 45 V. The solid lines
show the measured efficiencies at different secondary side voltages,
and the markers represent the corresponding simulated efficiencies.

Figure C.11: Efficiency curves of the applied bidirectional dynamic synchronous
buck-boost converter at a primary side voltage of 52 V. The solid lines
show the measured efficiencies at different secondary side voltages,
and the markers represent the corresponding simulated efficiencies.
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Figure C.12: Model error of the output power of the simulation model. The red
central mark indicates the median value and the box indicates the
25th and 75th percentiles, respectively.

Figure C.13: Test case for verification of the control scheme. Dynamic load profile
with a requested power P ∗ of 40 % of the rated BESS power and the
sequential PFCS (PFCS Pseq) with the two design variables Pmax =
150 W and Sorting = 0.
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Figure C.14: Test case for verification of the control scheme. Static load profile
with a requested power P ∗ of 20 % of the rated BESS power and the
sequential PFCS (PFCS Pseq) with the two design variables Pmax =
500 W and Sorting = 1.

Figure C.15: Test case for verification of the control scheme. Dynamic load profile
with a requested power P ∗ of 20 % of the rated BESS power and the
sequential PFCS (PFCS Pseq) with the two design variables Pmax =
500 W and Sorting = 1.
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Figure C.16: Test case for verification of the control scheme. Static load profile
with a requested power P ∗ of 30 % of the rated BESS power and
the parametric PFCS (PFCS SoAP) with the two design variables
tpred,p = 1 s and tpred,e = 1 s.

Figure C.17: Test case for verification of the control scheme. Dynamic load profile
with a requested power P ∗ of 30 % of the rated BESS power and
the parametric PFCS (PFCS SoAP) with the two design variables
tpred,p = 1 s and tpred,e = 1 s.
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Figure C.18: Test case for verification of the control scheme. Static load profile
with a requested power P ∗ of 30 % of the rated BESS power and
the parametric PFCS (PFCS SoAP) with the two design variables
tpred,p = 10 s and tpred,e = 1200 s.

Figure C.19: Test case for verification of the control scheme. Dynamic load profile
with a requested power P ∗ of 30 % of the rated BESS power and
the parametric PFCS (PFCS SoAP) with the two design variables
tpred,p = 10 s and tpred,e = 1200 s.
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Figure C.20: Formal verification of the target indicators “performance” and “effi-
ciency” for a) charging and b) discharging. Within the first 50 time
steps, the requested power P ∗ was fulfilled at any time. After 50 time
steps, the system power Psys was set to 0 in the case of the perfor-
mance criterion. Thus, the overall performance was reduced to 50 %.
In the case of the efficiency criterion, after 50 time steps, only the
battery power Pbat was changed to 100 W and -400 W, respectively.
Consequently, the overall efficiency was reduced to 75 % and 66.7 %,
respectively. These results prove the correct implementation.

Figure C.21: Formal verification of the target indicator “service life.” The differen-
tial capacity loss qloss was set to 2e-3 1/time step, the minimum differ-
ential capacity loss due to calendar aging qloss,min to 2e-4 1/time step,
and the maximum allowed capacity loss Qloss,max to 0.2 within the
100 time steps. Thus, service life was reduced to 0 % within the 100
time steps. These results prove the correct implementation.
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Figure C.22: Preliminary analysis to determine the number of simulation runs.
The heterogeneity was set to 1.5 and the profile scaling factor
amounted to 20 %. The results indicate that 100 simulation runs
are reasonable as this constitutes an acceptable cost-benefit ratio.
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Figure C.23: Results of the parametric PFCS (PFCS SoAP) potential analysis for
the peak shaving scenario within the specified design space, use case
space, and target indicator space. The target indicator “service life”
was considered the worst service life among all BESSs here.

Figure C.24: Real data sensitivity analysis of the target indicator “performance”
concerning the design variables of the sequential PFCS (PFCS Pseq)
and the use case variables of the frequency regulation scenario. The
correlations are comparable to the ones described in Section 6.2.
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Figure C.25: Analysis of the surrogate model-based results concerning the para-
metric and sequential PFCS for the specified peak shaving scenario,
emphasizing PO solutions (pink markers). The heterogeneity was set
to 1.5 and the profile scaling factor amounted to 20 %.

Figure C.26: Analysis of the surrogate model-based results concerning the para-
metric and sequential PFCS for the specified frequency regulation
scenario, emphasizing PO solutions (pink markers). The heterogene-
ity was set to 0.75 and the profile scaling factor amounted to 27 %.
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D Deutsche Zusammenfassung

In den vergangenen Jahren hat sich durch die Integration erneuerbarer Energien in
vielen Ländern weltweit eine rasche Umgestaltung der Stromnetze vollzogen. Die
damit verbundene und zunehmend volatile Stromerzeugung sowie auch der unre-
gelmäßigere Verbrauch zwingen die Netzbetreiber dazu resultierende Stromschwan-
kungen auszugleichen. Batteriespeichersysteme sind dafür prädestiniert eine rei-
bungslose Integration erneuerbarer Energien zu gewährleisten, erfordern aber ein
entsprechendes Energiemanagement. Forschungsarbeiten in diesem Gebiet haben
gezeigt, dass ein koordinierter Betrieb einen wesentlichen Beitrag zur Zuverläs-
sigkeit von Energiespeichersystemen und somit von Stromnetzen leistet. Die Ent-
wicklung von Batteriespeichersystemen erfordert unter anderem Betriebsstrategien
zur effizienten Leistungsflusssteuerung bei sich schnell und kontinuierlich ändern-
den Leistungsanforderungen. Daher zielt diese Arbeit darauf ab, die Potenziale
und Sensitivitäten von, teilweise in dieser Arbeit entwickelten, Betriebsstrategien
für heterogene Batteriespeichersysteme in verschiedenen Anwendungen und Sys-
temkonfigurationen zu identifizieren, zu quantifizieren und schließlich zu bewerten.

In Kapitel 1 wird dazu zu Beginn eine Einführung in das Themengebiet der Bat-
teriespeichersysteme und deren Betriebsstrategien gegeben. Diese Thematik wird
durch die Idee motiviert, Batteriespeichersysteme nachhaltig zu betreiben, um
wirtschaftliche, ökologische und soziale Vorteile zu erzielen. Jedoch sind Kennt-
nisse über die Wirkungszusammenhänge erforderlich, um den nachhaltigen Betrieb
solcher Systeme zu ermöglichen. Diese Zusammenhänge sind meist nicht unmit-
telbar ersichtlich, da es keine einfachen logischen Verfahren für den nachhaltigen
Betrieb von Batteriespeichersystemen gibt. Gemäß dem Cynefin Framework für
Ingenieure [9] wird damit die gegebene Problemstellung zu einem komplexen Pro-
blem. Komplexe Probleme wiederum erfordern bei der Auswahl einer nachhaltigen
Betriebsstrategie einen Vergleich zwischen identifizierten möglichen Lösungen.
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Im Anschluss zur Aufarbeitung der Grundlagen von Batteriespeichersystemen
werden in Kapitel 2 geeignete Betriebsstrategien und Anwendungsfälle für Batte-
riespeichersysteme identifiziert und entwickelt. Darüber hinaus werden geeignete
Zielindikatoren definiert, die die drei genannten Dimensionen der Nachhaltigkeit
repräsentieren. Diese Ansätze liefern eine Grundlage für die Quantifizierung der
Wirkungszusammenhänge, bei der das Batteriespeichersystem durch eine systema-
tische Variation der verschiedenen Betriebsstrategien und Anwendungsfälle unter-
schiedlich beeinflusst wird. Dies erfordert das Lösen eines multi-kriteriellen Opti-
mierungsproblems, bei dem die verschiedenen Zielindikatoren gleichzeitig optimiert
werden. Aufgrund des nicht vorhandenen analytischen Zusammenhangs zwischen
Ein- und Ausgangsgrößen, wird das vorliegende Optimierungsproblem als multi-
kriterielles Black-Box Optimierungsproblem betrachtet. Dementsprechend werden
in Kapitel 3 die Grundlagen der Mehrzieloptimierung, der multi-kriteriellen Black-
Box Optimierung sowie Ansätze zur Lösung solcher Probleme vorgestellt. Die
Recherche ergibt, dass die von Palm und Holzmann [159] vorgeschlagene Methode
der Hyper Space Exploration als nützliches Werkzeug zur Lösung des vorhandenen
Optimierungsproblems gilt.

Um die Wirkungszusammenhänge von heterogenen Batteriespeichersystemen zu
analysieren, wird ein experimentelles Forschungsdesign auf der Grundlage von Si-
mulationen verwendet. Dafür ist wiederum ein geeigneter methodischer Rahmen
erforderlich, der ein validiertes Simulationsmodell eines Batteriespeichersystems
und die Hyper Space Exploration umfasst. Zu diesem Zweck wird in Kapitel 4 ein
Simulationsmodell entwickelt und dessen Module verifiziert bzw. validiert. Weiter-
hin wird in Kapitel 5 ein an das Batteriespeichersystem angepasster Prozessablauf
der Hyper Space Exploration als Teil einer gesamtheitlichen Werkzeugkette be-
schrieben. Die Erwartungshaltung dabei ist, dass dadurch das multi-kriterielle
Black-Box Optimierungsproblem gelöst wird und die Wirkungszusammenhänge
tiefgreifend analysiert werden. Bei der Anwendung des vorgestellten methodi-
schen Rahmens sind zwei entscheidende Punkte von großer Bedeutung. Erstens
ist es bei der Anwendung der Hyper Space Exploration aufgrund der umfangreichen
Parametervariation schwierig, die Gültigkeit jedes erzielten Ergebnisses zu gewähr-
leisten. Dementsprechend muss die Übertragbarkeit jedes Teilmoduls des Simula-
tionsmodells (Batterie, DC/DC-Wandler und Regelungskonzept) bei variierenden
Eingangsvariablen untersucht und so die Validität der Ergebnisse bestätigt werden.
Zweitens sind geeignete Methoden zur Auswertung und Visualisierung der Ergeb-
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nisse erforderlich, um diese eindeutig interpretieren zu können. Demnach liefern
diese Methoden entweder Einblicke in einzugehende Kompromisse zwischen den
Zielindikatoren, analysieren die Wirkungszusammenhänge bei verschiedenen Be-
triebsstrategien oder identifizieren Pareto-optimale Lösungen für einen bestimmten
Anwendungsfall.

Der methodische Rahmen bietet somit die notwendige Grundlage für eine um-
fassende Analyse. Um die Wirkungszusammenhänge in komplexen Batteriespei-
chersystemen zu verstehen und einen nachhaltigen Betrieb zu ermöglichen, müssen
verschiedene Betriebsstrategien systematisch analysiert werden. Daher werden in
Kapitel 6 die Ergebnisse von zwei Betriebsstrategien für zwei unterschiedliche An-
wendungsfälle vorgestellt. Entsprechend der Struktur des methodischen Rahmens
und seiner Bewertungsmethoden wird für jede Betriebsstrategie eine dreiteilige
Analyse durchgeführt, um die Forschungsfragen umfassend zu beantworten. Die
Ergebnisse legen nahe, dass der methodische Rahmen einen generischen Prozess
zur Lösung des multi-kriteriellen Black-Box Optimierungsproblems bietet. Wei-
terhin zeigen sie, dass die einzugehenden Kompromisse zwischen den Zielindikato-
ren „Funktionserfüllung“, „Effizienz“ und „Lebensdauer“ genau quantifiziert wer-
den können. Darüber hinaus werden die einzelnen Einflüsse der Betriebsstrategien
und Anwendungen auf die Zielindikatoren bewertet und visualisiert. Dadurch
kann gezeigt werden, dass z.B. die Heterogenität eines Batteriespeichersystems
je nach verwendeter Betriebsstrategie die Lebensdauer der Batterien unterschied-
lich beeinflusst. Zusammengefasst verdeutlichen die Ergebnisse, dass sowohl die
grundlegende Basis (z.B. geeignete Zielindikatoren) als auch die Methoden zur
Auswertung und Visualisierung der Ergebnisse ausreichen, um das erforderliche
Wissen über Wirkungszusammenhänge für den nachhaltigen Betrieb heterogener
Batteriespeichersysteme zu gewinnen.

Die Diskussion in Kapitel 7 verdeutlicht, dass der methodische Rahmen die Po-
tenziale und Sensitivitäten verschiedener Betriebsstrategien für heterogene Batte-
riespeichersysteme effektiv und effizient quantifiziert und damit die Forschungsfra-
gen fundiert beantwortet. Der methodische Rahmen ermöglicht eine umfassende
Potenzialanalyse zur genauen Quantifizierung der bestehenden Kompromisse zwi-
schen den Zielindikatoren. Weiterhin verbessert die auf einem Surrogatmodell
basierende Sensitivitätsanalyse das Verständnis der Wirkungszusammenhänge er-
heblich. Mit Hilfe des Surrogatmodells können zudem Pareto-optimale Lösungen
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ermittelt werden, aus denen sich Designregeln ableiten lassen, die den Betreibern
einen nachhaltigen und zuverlässigen Betrieb von Batteriespeichersystemen ermög-
lichen. Die Ergebnisse dieser Studie legen demnach dar, dass die Betriebsstrate-
gie und der Anwendungsfall wesentliche Faktoren sind, die beim Betrieb hetero-
gener Batteriespeichersysteme zu berücksichtigen sind. Beide Faktoren sind für
die resultierende Leistungsaufteilung innerhalb des Systems essenziell. Die Leis-
tungsaufteilung wiederum ist der entscheidende Punkt für einen zuverlässigen und
nachhaltigen Betrieb. Somit wird die konzeptionelle Prämisse unterstützt, dass
ein nachhaltiger Betrieb von der resultierenden Leistungsverteilung innerhalb des
Systems abhängt.

Abschließend werden in Kapitel 8 nochmal die Hauptpunkte der einzelnen Ka-
pitel in reflektierender Form wiedergegeben, die wesentlichen Limitierungen dieser
Arbeit aufgezählt und gleichzeitig die Themen adressiert, die zukünftig behandelt
werden sollten. Die drei genannten Kernpunkte sind die Entscheidungsfindung
nach dem Optimierungsprozess, die Entwicklung einer global optimalen Betriebs-
strategie und die Übertragung des methodischen Rahmens auf weitere Systeme,
bei denen Batteriespeichersysteme eingesetzt werden.

Zusammengefasst leistet diese Arbeit einen wesentlichen Beitrag zum aktuel-
len Wissensstand von Betriebsstrategien für Batteriespeichersysteme, indem sie
einen methodischen Rahmen für die Analyse und Entwicklung von Batteriespei-
chersystemen für Forschung und Industrie bietet. Die Vorteile, die sich aus dem
methodischen Rahmen ergeben, können die Anforderungen von Systembetreibern
in einem breiten Spektrum unterschiedlicher Anwendungen erfüllen.
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