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Summary  

Biocides are applied to control harmful organisms. Especially the use of microbicides as 

disinfectants is a vital tool to prevent the spread of multidrug-resistant human pathogenic 

bacteria. Due to the increased use of disinfectants in recent years, concerns have been raised 

about biocide tolerance and the development of antibiotic cross-resistance. In vitro studies 

indicate biocide use as a risk factor for the emergence of antibiotic resistance. Still, a causal 

link between biocide usage and antibiotic resistance development in environmental settings 

needs to be verified. 

Thus, this thesis pursued three main objectives (I-III). The controversial current knowledge on 

the potential of bacteria to develop biocide tolerance and/or antibiotic resistance in response to 

biocide exposure was analyzed (objective I). Potential associations between biocide tolerance 

and antibiotic resistance, and underlying genetic determinants in field isolates were examined 

(objective II). The final aim of this thesis was to develop a ready-to-use test system enabling 

fast and accurate biocide susceptibility testing of bacteria (objective III). 

For the first aim, 78 in vitro biocide adaptation studies were evaluated. While literature 

demonstrated the general linkage between biocide exposure and antimicrobial cross-resistance, 

the potential of biocide–induced resistance development varied largely between biocides, 

bacterial target organisms, and experimental settings. Stable adaptation to biocides as well as 

altered antibiotic susceptibility profiles was frequently reported for biguanides, phenols, and 

quaternary ammonium compounds (QACs).  

For the second aim, comprehensive analyses were conducted of isolates from food (Listeria 

monocytogenes, n=93), livestock (Escherichia coli, n=93), and clinical environments 

(Enterococcus faecium, n=90) in Germany. Biocide and antibiotic susceptibility were 

determined for all isolates by broth microdilution methods according to ISO 20776-1. To 

differentiate susceptible isolates from those with reduced susceptibility to biocides, minimum 

inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) representing 
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95% of the tested population (MIC95, MBC95 values) served as tentative epidemiological cut-

offs. Underlying genetic determinants were detected by whole genome sequencing for 

L. monocytogenes and E. coli. The overall proportion of isolates with reduced biocide 

susceptibility was relatively low, and statistically significant phenotypic associations to 

antibiotic resistance were not found. However, genotypic associations were observed in E. coli. 

Biocide tolerance conferring genes co-located close to antibiotic resistance genes on plasmids 

were identified, highlighting the potential for co-selection. Biocide susceptibility of all tested 

isolates was well below in-use concentrations. That is why they are defined as non-resistant. 

Identified tolerances were associated with genetic determinants in several cases. Reduced 

susceptibility to QACs in L. monocytogenes could be mainly traced back to genes coding for 

small multidrug-resistance family efflux pumps. E. coli isolates with reduced formaldehyde 

susceptibility carried the gene coding for the degradative enzyme glutathione- and NAD-

dependent formaldehyde dehydrogenase.  

In contrast to antibiotic susceptibility testing, no generally accepted, standardized biocide 

susceptibility test methods are available. Thus, the third aim was to establish a reliable, high-

throughput screening system using vacuum dried biocide microtiter plates to identify bacteria 

resistant to cationic biocides frequently used in hospital settings. The developed test system 

was validated against the broth microdilution method using freshly prepared stocks of biocides. 

Biocide plates were evaluated for gram-positive Enterococcus spp. as well as gram-negative 

E. coli. This test system has been shown to provide highly reliable results. Subsequently, the 

test method served for the third susceptibility study of E. faecium from the clinical environment. 

The test system proved to be a fast and easy-to-handle surveillance tool to identify biocide 

tolerant isolates. Monitoring and early identification of clinical isolates tolerant to disinfectants 

applied in hospitals could help to adapt hygiene measures and control nosocomial infections 

while simultaneously reducing the frequency of antibiotic treatment. 
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Zusammenfassung  

Biozide werden zur Bekämpfung von Schadorganismen eingesetzt. Insbesondere der Einsatz 

von Mikrobiziden als Desinfektionsmittel ist eine wichtige Maßnahme, um die Ausbreitung 

multiresistenter, humanpathogener Bakterien zu verhindern. Aufgrund des verstärkten 

Einsatzes von Desinfektionsmitteln in den letzten Jahren sind jedoch Bedenken hinsichtlich 

Biozidtoleranzen und der Entwicklung von Antibiotikakreuzresistenzen aufgekommen. In vitro 

Studien deuten darauf hin, dass Biozide Antibiotikaresistenzen fördern. Ein kausaler 

Zusammenhang zwischen der Verwendung von Bioziden und der Entwicklung von 

Antibiotikaresistenzen in der Umwelt muss jedoch noch verifiziert werden.  

Daher verfolgte die These drei Hauptziele (I-III). Es wurde das aktuelle, kontroverse Wissen 

über das Potenzial von Bakterien Biozidtoleranzen und/oder Antibiotikaresistenz unter 

Biozidexpositionen auszubilden analysiert (Ziel I). Des Weiteren wurden mögliche 

Zusammenhänge zwischen Biozidtoleranz und Antibiotikaresistenz sowie die zugrunde 

liegenden genetischen Determinanten in Feldisolaten untersucht (Ziel II). Zudem sollte in 

dieser Arbeit ein gebrauchsfertiges Testsystem entwickelt werden, welches eine schnelle und 

genaue Biozidempfindlichkeitsprüfung von Bakterien ermöglicht (Ziel III). 

Zur Erfüllung der ersten Zielstellung wurden 78 in vitro Biozidadaptionsstudien ausgewertet. 

Während die Literatur den allgemeinen Zusammenhang zwischen Biozidexposition und 

antimikrobieller Kreuzresistenz belegt, variierte das Potenzial der biozidinduzierten 

Resistenzentwicklung stark zwischen Bioziden, bakteriellen Zielorganismen und 

experimentellen Bedingungen. Stabile Anpassung an Biozide sowie veränderte 

Antibiotikaempfindlichkeitsprofile wurden häufig für Biguanide, Phenole und quaternäre 

Ammoniumverbindungen (QACs) berichtet.  

Für das zweite Ziel wurden umfassende Analysen durchgeführt, die Isolate aus Lebensmittel- 

(Listeria monocytogenes, n=93), Nutztier-(Escherichia coli, n=93) und klinischer Umgebung 

(Enterococcus faecium, n=90) in Deutschland einschlossen. Die Biozid- und 
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Antibiotikaempfindlichkeit wurde für alle Isolate mittels Mikrodilutionsverfahren gemäß ISO 

20776-1 bestimmt. Um empfindliche Isolate von solchen mit verminderter 

Biozidempfindlichkeit zu unterscheiden, dienten minimale Hemmkonzentrationen (MIC) und 

minimale bakterizide Konzentrationen (MBC), die 95% der getesteten Population 

repräsentieren (MIC95-, MBC95-Werte), als vorläufig abgeleitete epidemiologische Cut-Off-

Werte. Zugrundeliegende genetische Determinanten wurden mittels Ganzgenomsequenzierung 

für L. monocytogenes und E. coli nachgewiesen. Der Gesamtanteil der Isolate mit reduzierter 

Biozidempfindlichkeit war relativ gering und es wurden keine statistisch signifikanten 

phänotypischen Assoziationen zur Antibiotikaresistenz gefunden. Allerdings wurden bei E. coli 

genotypische Assoziationen beobachtet. Biozidtoleranz verleihende Gene wurden in der Nähe 

von Antibiotikaresistenzgenen identifiziert, die auf Plasmiden kolokalisiert sind, was das 

Potenzial für eine Ko-Selektion hervorhebt. Die Biozidempfindlichkeit aller getesteten Isolate 

befand sich deutlich unter den in der Praxis verwendeten Konzentrationen. Daher wurden diese 

Isolate als nicht resistent definiert.  Identifizierte Toleranzen wurden in mehreren Fällen mit 

genetischen Determinanten in Verbindung gebracht. Eine reduzierte Empfindlichkeit 

gegenüber QACs in L. monocytogenes konnte hauptsächlich auf Gene zurückgeführt werden, 

die für die Small Multidrug Resistance – Familie kodieren. E. coli-Isolate mit reduzierter 

Formaldehydempfindlichkeit trugen ein Gen, welches für das degradierende Enzym der 

Glutathion- und NAD-abhängige Formaldehyd-Dehydrogenase kodiert.  

Im Gegensatz zur Antibiotika-Empfindlichkeitsprüfung gibt es für Biozidempfindlichkeitstests 

keine standardisierten Methoden. Daher wurde als drittes Ziel ein zuverlässiges Screening-

System etabliert, das auf vakuumgetrockneten Biozidmikrotiterplatten basiert und Bakterien 

identifiziert, die reduzierte Empfindlichkeiten gegenüber kationischen Bioziden aufweisen. 

Diese vakuumgetrockneten Biozidplatten wurden mit Hilfe von etablierten 

Mikrodilutionsmethoden unter Verwendung frisch hergestellter Biozidlösungen validiert. Die 

Biozidplatten wurden sowohl für gram-positive Enterococcus spp. als auch für gram-negative 
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E. coli ausgewertet. Insgesamt konnte nachgewiesen werden, dass dieses Testsystem sehr 

zuverlässige Ergebnisse lieferte. Anschließend diente die Testmethode für die dritte 

Empfindlichkeitsstudie von E. faecium aus dem klinischen Umfeld. Das Testsystem erwies sich 

als ein schnelles und einfach zu handhabendes Überwachungsinstrument zur Identifizierung 

biozidtoleranter Isolate. Die Überwachung und frühzeitige Identifizierung von klinischen 

Isolaten, die gegenüber den in Krankenhäusern eingesetzten Desinfektionsmitteln tolerant sind, 

könnte dazu beitragen, Hygienemaßnahmen anzupassen und nosokomiale Infektionen zu 

kontrollieren sowie gleichzeitig die Häufigkeit von Antibiotikabehandlungen zu reduzieren. 
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1 Introduction – Background  

1.1 Importance of disinfection in the era of multidrug-resistance 

Antimicrobial resistance (AMR) has become a 21st-century global health threat. Limiting its 

emergence and further spread is one public health priority worldwide. The global action plan 

on AMR by the World Health Organization in 2015 recommend the prudent use of 

antimicrobial compounds, preventing their unnecessary use, and reducing the spread of 

infections through effective prevention, sanitation, and hygiene measures (1). Effective 

disinfection is considered as one of the key pillars in the multi-barrier approach preventing the 

dissemination of multi-drug-resistant pathogens (2, 3).  

1.2 Biocides as part of disinfectants  

Cleaning and disinfection (C&D) are principally considered as combination methods to 

maintain the hygienic status. In general, cleaning is defined as the removal of soiling. In 

contrast, disinfection describes chemical, thermal or physical processes aiming to reduce 

microorganisms to a level (approx. reduction of the microbiological load of 2-4 log10) that the 

risk of infection or transmission is minimized (4, 5). Adequate cleaning is a crucial prerequisite 

for disinfection since disinfection without prior cleaning is almost ineffective. Dried films of 

organic matter (e.g., blood, excreta) may prevent the penetration of a disinfectant and are 

considered one of the most important environmental factors influencing disinfectant activity 

(6). Biocides form the basis for chemical disinfectants to ensure the hygiene status of different 

environments such as food processing, animal husbandry, and clinical settings (7). The 

authorization of biocides used in different applications is regulated in the EU Biocidal Products 

Regulation (BPR Regulation (EU) No 528/2012). Biocides used as disinfectants belong to main 

group 1 and are divided into five product types (PT) such as for human hygiene (PT 1), 

disinfectants and algaecides not intended for direct application to humans or animals (PT 2), 
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veterinary hygiene (PT 3), food and feed area (PT 4), and drinking water (PT 5) (ANNEX V, 

BPR Regulation No 528/2012 (8)). 

To implement hygiene measures, different legal frameworks and concepts must be considered 

for food production facilities, livestock industry, and clinical environments.  

1.2.1 Regulations in food production environments 

As one impressive example for food processing environments, the U.S. Interagency Retail Lm 

Risk Assessment estimated that the predicted risk for infection with Listeria monocytogenes 

from the consumption of ready-to-eat products sliced or prepared in retail deli departments 

would increase by approximately 41% if wiping, washing, and sanitizing activities were not 

performed (9). 

In Germany, three EU Regulations provide the legal framework to regulate important aspects 

of food hygiene. General hygiene requirements for all food business operators are described in 

Regulation (EC) No 852/2004 on the hygiene of foodstuffs (10). Regulation (EC) No 853/2004 

lays down specific hygiene rules for food of animal origin (11), while (EC) No 854/2004 

provides specific rules for the organization of official controls on products of animal origin 

intended for human consumption (12). Additionally, Regulation (EC) No 2073/2005 provides 

the basis for microbiological criteria for foodstuffs (13). Regulation (EC) No 852/2004 states, 

that all businesses in the food industry are obligated to implement a Hazard Analysis and 

Critical Control Points (HACCP) system. The HACCP system is a quality control and assurance 

system in all production processes in the food industry and among others, it regulates the use 

of food industry disinfectants. In Germany, the DIN 10516 - Food hygiene – Cleaning and 

disinfection (4) is related to Regulation (EC) No 852/2004 and serves as a guide to ensure 

hygienically safe conditions in food facilities. In general, the workflow follows cleaning, 

rinsing, disinfection, rinsing, and drying (4). Chemical disinfectants for food and feed areas 

belong to PT 4 of the EU BPR. The most comprehensive overview on effective chemical 
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disinfectants for the food sector has been published by the Industrial Hygiene and Surface 

Protection Association (Industrieverband Hygiene & Oberflächenschutz [IHO]) (14), and the 

German Association of Veterinary Medicine [DVG] (15). Currently, there are no absolute 

numbers on the use of various biocides. Frequently, listed disinfectants contain alcohols, 

aldehydes, chlorine-releasing compounds, quaternary ammonium compounds (QACs), or 

peracids (14). 

1.2.2 Regulations in livestock industry 

In modern animal husbandry, hygiene is an indispensable component of operational 

management. Even though, a total number of infection reduction rates is not published for farm 

animals it serves primarily to prevent the entry of diseases, to reduce the spread of multi-

resistant bacteria, and to ensure optimal performance conditions at the beginning of the food 

chain from farm to fork (5, 16). In 1995, Fotheringham reviewed that cleaning alone removes 

99% of bacteria under experimental conditions, whereas in farm environments, this figure is 

likely to be approximately 90%. Disinfection removes further 6-7% of bacteria in practice, and 

yet another 1-2% reduction can be obtained by fumigation (17). Various cleaning and 

disinfection (C&D) measures are available to implement favorable hygiene on the farm. As the 

contribution of animals as a reservoir of multi-resistant human pathogens has gained special 

attention, the application of HACCP principles, initially developed for the food processing 

plants, is also recommended to ensure safety along the entire food chain (18). The type of 

measures depends on the company-specific circumstances and the respective area of 

application. As mentioned before, criteria are laid down in Regulations (EC) 853/2004 and (EC) 

854/2004. The German Agricultural Society leaflet 364 (DLG, Deutsche Landwirtschafts-

Gesellschaft) (5) provides general instructions on hygiene technology and management for 

C&D of stable systems. Complete elimination of all germs, so-called sterilization, is neither 

possible nor necessary in agricultural practice. Almost all routine procedure protocols in animal 
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husbandry include chemical disinfection (5). Corresponding disinfectants belong to PT 3 of EU 

BPR. In Germany, approved disinfectants are listed by the DVG (15), the German Agricultural 

Society (Deutsche Landwirtschafts-Gesellschaft [DLG]) (19), or IHO (14), which are often 

used as guides in animal husbandry. The most listed active ingredients of these disinfectants 

include aldehydes, cresols, organic acids, oxidizing agents, and QACs (15). 

1.2.3 Regulations in clinical environments 

In addition to hand hygiene and proper reprocessing of medical devices, C&D of surfaces is of 

increasing importance in hospitals as part of a multi-barrier approach for preventing infection 

(20). Grabsch and colleagues, for example, showed that by implementing a hospital-wide 

improvement program, including bleach-based C&D measures, significant reduction of newly 

identified vancomycin-resistant enterococcus (VRE) colonization (25%) and reduction of 

environmental contamination (66%) could be observed. Furthermore, newly diagnosed VRE 

bacteremia in patients during hospitalization decreased by 83% (21). 

Since 2001, the German Hospital Hygiene and Infection Prevention Commission (KRINKO) is 

legally anchored in §23 of the German Protection Infection Act (Infektionsschutzgesetz [IfSG]). 

The KRINKO addresses general requirements for C&D of surfaces in the healthcare sector. 

Surface C&D measures need to be established individually depending on a) the probability of 

direct contact, b) the possible contamination with pathogens, and c) the degree of clinically 

relevant immunosuppression of patients. Workplace-related C&D measures are generally 

defined in standard operating procedures of hygiene plans providing detailed information on 

procedures and responsibilities of the staff (22, 23). The procedures of the C&D plan need to 

be established based on specifications of the IfSG (24) and the German Act on Medical Devices 

(MPG) (25). Occupational Health and Safety Regulations and versatile regulations complement 

certain specifications (8, 26-31). Suitable disinfectants recommended for use in health care 

sectors in Germany are listed by the Association for Applied Hygiene (VAH) (32) and the 
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Robert Koch-Institute (RKI) (33). These chemical disinfectants belong to PT 2 of the EU BPR. 

Most often listed surface disinfectants contain alcohols, aldehydes, biguanides, chlorine-

releasing compounds, bleach, or oxygen-releasing compounds (32, 33). Furthermore, biocidal 

agents like QACs, biguanides, phenolic compounds, and bipyridines are common ingredients 

reported to be used as disinfectants, or antiseptics (34). In contrast to disinfectants, antiseptics 

are applied to body surfaces to eradicate colonization with pathogens (35).  

1.2.4 Modes of action of biocides used in food, livestock, and healthcare industries 

General considerations on the efficacy of surface disinfectants include the modes of action of 

the active substance and its interaction with the organisms. An overview of the modes of action 

to bacteria is given in Figure 1 (adapted from Merchel Piovesan Pereira et al. (36)) and Table 1 

for relevant classes of biocides. So far, biocidal mechanisms of action are not fully understood 

and appear to be diverse. Most biocides affect multiple targets, whereby effects on the bacterial 

membrane are most frequently described. Any alteration in the outer membrane of gram-

negative bacteria e.g., changing the hydrophobic properties, or porin-related mutations (leading 

to loss or structural changes) can contribute to resistance. This critical layer is lacking in gram-

positive bacteria, which makes gram-negative bacteria less susceptible to antibiotics and 

biocides (37-39). Some biocides such as biguanides or QACs have lipophilic domains in their 

molecules, allowing close interactions with cell membrane phospholipids (40). Depending on 

the concentration, biocides may have bacteriostatic or bactericidal effects. Concentration-

dependent effects are marked in Table 1.  
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Table 1: Mode of action reported for relevant biocide classes 

Compounds Mode of action Cellular response Reference 

Alcohols 

Ethanol Protein denaturation by disruption of 

hydrogen bonds2 

DNA precipitation by removing 

hydration shell (hydrogen bonding)2 

Disruption of 

cytoplasmic membrane2 

Leakage of intracellular 

components2 

(41-43) 
Isopropanol 

Propan-1-ol 

Aldehydes 

Formaldehyde 
Alkylation and cross-linking of amino, 

sulphydryl, and hydroxyl groups of 

proteins and nucleic acids2 

Loss of essential cell 

function2 
(44, 45) 

Glutaraldehyde 

Alkylamines 

N-(3-aminopropyl)-N-

dodecylpropane-1,3-diamine 

Membrane destabilization by surfactant 

properties 

Increased membrane 

permeability 
(46) 

Biguanides 

Chlorhexidine 

Bridge formation between 

phospholipids 

Displacement of divalent cations 

Coagulation and precipitation of the 

cytoplasm2 

DNA interaction/chromosome 

condensation 

Reduction of membrane 

fluidity 

Destruction of 

membranes 

Leakage of intracellular 

components2 

(47-49) 

Polyhexamethylene biguanide 

Figure 1: Modes of action for relevant classes of biocides.  

The figure was adapted from Merchel Piovesan Pereira et al. (36). Mechanisms are illustrated for gram-

negative bacteria. They are also applicable to gram-positive species. QACs = quaternary ammonium 

compounds, ROS = reactive oxygen species 
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Compounds Mode of action Cellular response Reference 

Bipyridines 

Octenidine dihydrochloride 

Binding to lipid cell membrane 

components, like salts of fatty acid 

glycerol phosphates 

Interaction with enzymatic systems and 

polysaccharides in cell walls 

Loss of membrane 

functionality 

Leakage of intracellular 

compounds 

(50) 

Chlorine-releasing compounds 

Chlorine dioxide 

Potent oxidizers of organic material 

DNA interaction 

Destruction of cell 

protein activity 

Disruption of 

phosphorylation and 

membrane-associated 

activities 

(35, 51) 

Sodium hypochlorite 

Peroxides 

Hydrogen peroxide 
Strong oxidizing effects 

Production of free hydroxyl radicals 

Destruction of DNA, proteins, and 

lipids 

Loss of essential cell 

function (35) 
Peracetic acid 

Phenol derivatives 

Hexachlorophene 

Inhibition of dehydrogenase enzymes1 

Protein denaturation2 

Damage or disruption of the membrane2 

Coagulation of cytoplasm2 

Inhibition of electron 

transport chain and 

respiration1 and cellular 

metabolism1 

Leakage of intracellular 

compounds2 

Inhibition of release of 

intracellular material2 

(52-54) 

P-chloro-m-cresol 

Disruption of membrane potential and 

the membrane permeability of 

cytoplasmic membrane 

Cytoplasm coagulation2 

Loss of membrane 

functionality 

Loss of vital cell 

functions2 

(55) 

Triclosan 

 

Imitation of the natural substrate of type 

II fatty acid synthase enoyl-reductase1 

Intercalation into the cell membrane2 

Oxidizing effects 

 

Inhibition of bacterial 

lipid biosynthesis1 

Cell death2 

(56-59) 

Quaternary ammonium compound 

Benzyl group containing 

compound 

Benzalkonium chloride 

Benzethonium chloride 

Degradation of proteins and nucleic 

acids 

Disorganization of the membrane due to 

strong positive charge and hydrophobic 

regions1 

Inhibition of respiratory enzymes1 

Dissipation of proton motive force and 

oxidative stress1 

Destruction of 

membrane 

osmoregulation1 

Leakage of intracellular 

compounds2 

Lysis of the cell wall2 

(35, 49, 

60) 

Other QACs 

Didecyldimethyl ammonium 

chloride and bromide 

Cetrimide 

Cetylpyridinium chloride 

Cetyltrimethylammonium 

bromide 

1 = low concentration (bacteriostatic activity), 2 = higher concentration (bactericidal activity) 
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1.3 Bacterial tolerance to biocides 

1.3.1 Definitions associated with biocide tolerance 

Due to the indiscriminate use of biocides in different settings, the awareness of various hazards 

such as bacterial adaptation, as well as cross- and co-resistance development, increased (7, 41, 

61). This includes reduced susceptibility to used biocidal substances themselves, other biocides, 

or antibiotics. Furthermore, it is assumed that subinhibitory concentrations of biocides may lead 

to mutation propagation, horizontal gene transfer, or recombination events within bacterial 

populations (57, 62, 63). 

The term “tolerance” to biocides is associated with phenotypes able to survive biocidal stress. 

According to the Scientific Committee on Emerging and Newly Identified Health Risks 

(SCENIHR), tolerance is defined as “reduced susceptibility to an antimicrobial molecule 

characterized by a raised minimal inhibitory concentration (MIC), or a situation in which a 

preservative system no longer prevents microbial growth” (7). Such situations are often linked 

to reversible physiological alterations, including biofilm formation, expression of small colony 

variants, or slow growth. 

In contrast to tolerance, resistance describes a situation where a strain is not killed or inhibited 

by in-use concentrations (7). The ability to resist such in-use concentration is often linked to 

genetic mutations. Co-selection describes the selection pressure exerted by one antimicrobial 

agent on a single organism to different antimicrobial compounds. To survive, the co-selected 

organism uses strategies of cross- or co-resistance (64). In cross-resistant organisms, resistance 

to the biocide itself is accompanied by resistance to other biocides or antibiotics due to the same 

resistance mechanism (40). Co-resistant bacteria display resistance to the biocide itself and 

unrelated antimicrobial substances due to physical linkage of the genetic resistance 

determinants or their coordinated expression (65).  
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1.3.2 Mechanisms leading to biocide tolerance 

So far, mechanisms contributing to biocide tolerance are not fully understood. An overview of 

already described tolerance mechanisms to different biocide classes used in the described 

settings is given in Figure 2 (adapted from Merchel Piovesan Pereira et al. (36)) and Table 2.  

 

 

 

 

Table 2: Tolerance mechanisms reported for relevant biocide classes 

Compounds Tolerance mechanism Cellular response Reference 

Alcohols 

Ethanol Alteration of the fatty acid 

composition 

Enhanced biofilm formation 

capacity 

Increased growth rates 

accompanied by diverse 

genotypic changes 

Decreased uptake (42, 66-

71) 
Isopropanol 

Propan-1-ol 

Aldehydes 

Formaldehyde 

Biofilm formation  

Enzymatic degradation 

Increased expression of 

multidrug-resistance efflux 

pumps 

 

Decreased uptake  

Destruction of biocidal 

compounds 

Increased efflux 

(72-74) 

Glutaraldehyde 

Figure 2: Tolerance mechanisms for relevant classes of biocides in gram-positive and gram-negative bacteria. The 

figure was adapted from Merchel Piovesan Pereira et al. (36). QACs = quaternary ammonium compounds, OxyR = 

bacterial peroxide sensor 
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Compounds Tolerance mechanism Cellular response Reference 

 

Alkylamines 

N-(3-aminopropyl)-N-

dodecylpropane-1,3-

diamine 

No information available 

 

No information available 

 

 

Biguanides 

Chlorhexidine 

Alteration of the cell envelope 

Biofilm formation  

Changes of  

Cell surface hydrophobicity 

Membrane rigidity 

Lipopolysaccharide expression 

Outer membrane profile 

including net negative charge 

Upregulation of efflux pump 

activity 

Reduced uptake 

Increased efflux 
(74-79) 

Polyhexamethylene 

biguanide 

Bipyridines 

Octenidine 

dihydrochloride 
No information available No information available  

Chlorine-releasing compounds 

Chlorine dioxide 

Biofilm formation 

Changed cell morphology and 

ultrastructure  

Increased cell surface 

hydrophobicity 

Modification of efflux pumps 

 

 

 

 

 

Reduced uptake 

Increased efflux 

 

 

 

 

 

 

(74, 80-

82) 

Sodium hypochlorite 

Peroxides 

Hydrogen peroxide 
Biofilm formation  

Unspecific cell responses (e.g., 

induction of SoxRS system, 

OxyR-regulon) 

 

Increased efflux 

Prevention of the formation of 

radicals 

Deactivation of free radicals 

before damage of biological 

molecules 

Repairing of biomolecules 

after damage 

Reduced uptake 

(74, 83, 

84) 

Peracetic acid 

Phenol derivatives 

Hexachlorophene 

Activation of efflux pumps 

Alteration of the bacterial cell 

wall and outer membrane 

composition 

Increased efflux  

Reduced uptake 
(85) 

 

P-chloro-m-cresol 
No information available  No information available   
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Compounds Tolerance mechanism Cellular response Reference 

 

Triclosan 

Biofilm formation  

Enzymatic degradation 

Increased fabI expression due to 

mutation in the promoter region 

Less affected isoenzymes like 

FabK or FabV 

Overexpression of efflux pumps 

(sigma factor mutations or 

mutations in transcriptional 

regulators such as ramA, marA) 

Point mutation in the triclosan 

specific target encoding gene 

fabI(enoyl-reductase) 

 

 

Destruction of the biocidal 

compound 

Further production of enoyl 

reductase for fatty acid 

biosynthesis 

Increased efflux 

Reduced uptake 

 

 

 

(74, 85-

94) 

Quaternary ammonium compound 

Benzyl group containing 

compound 

Benzalkonium chloride 

Benzethonium chloride 

Acquisition of QAC specific 

efflux pumps 

Biofilm formation 

Change of  

cell surface charge 

hydrophobicity 

structure and density of porins 

membrane compositions 

Enzymatic degradation 

Overexpression of innate efflux 

pumps 

 

Increased efflux  

Reduced uptake 

(36, 60, 

90, 95-98) 

Other QACs 

Didecyldimethyl 

ammonium chloride and 

bromide 

Cetrimide 

Cetylpyridinium chloride 

Cetyltrimethylammonium 

bromide 

 

1.3.3 Study types assessing biocide tolerance development 

Different in vitro study types are used to investigate biocide tolerance development. The most 

common experimental setup is based on multiple exposures of bacterial isolates to low or 

moderately increasing concentrations of pure biocide substances until a significant increase of 

the MIC of the tested substance is observed or for a predefined number of passages (85, 99, 

100) . Based on in vitro studies, it is possible to assess the general bacterial ability to adapt to a 

biocide of interest. These results need to be verified in field studies since in vitro experiments 

do not cover the complex interplay between biocides and microbes in environmental settings. 

Latest field studies investigated putative associations between biocide tolerance and antibiotic 

cross-resistance by comparing susceptibility of bacterial isolates from different environments 
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to certain antimicrobials. Especially statistical evaluation of biocide susceptibility and antibiotic 

resistance data was used to identify associations between biocide tolerance and antibiotic 

resistance (101-105). In contrast to antibiotic resistance, there are fundamental issues assessing 

biocide tolerance because of the lack of epidemiological data that hampers the establishment of 

appropriate breakpoints. Only a few studies defined and used epidemiological cut-offs 

(ECOFFs) similar to antibiotic susceptibility evaluation for specific bacterial species and 

selected biocides to differentiate between susceptible and tolerant isolates, enabling an 

evaluation of biocide tolerance development (102, 104-107). In some studies, additional 

molecular investigations were carried out to identify underlying mechanisms (104, 105, 108, 

109).  

1.4 Methods used for biocide susceptibility testing 

Parameters such as the MIC and the minimum bactericidal concentration (MBC) are used to 

assess biocide susceptibility. For antibiotic susceptibility testing, the MIC is used together with 

pharmacokinetic and pharmacodynamic models to determine clinical breakpoints (S - 

Susceptible, standard dosing regimen, I – Susceptible, increased exposure, R – Resistant) to 

guide therapy (110). The MIC is defined as the lowest concentration (in mg/L) of an 

antimicrobial compound that prevents visible growth of a microorganism under defined 

conditions (111). Regarding biocide susceptibility, the MIC can be used as an indicator of 

tolerance development as elevated MICs reflect concentrations that would otherwise lead to 

inhibition of cell growth (7). However, it may provide limited information on the survival of 

single bacterial cells towards in-use biocide concentrations. It may be helpful in combination 

with other techniques such as the MBC used to measure biocide resistance (112). The MBC is 

defined as the lowest concentration of an antimicrobial agent needed to kill 99.9% of the final 

inoculum after incubation for 24 h under a standardized set of conditions described in CLSI 

document M26-A (113). The determination of the MBC is considered a convenient method that 



Introduction – Background 

13 

 

allows the comparison of lethality between wild-type (normal susceptibility) strain and 

potentially resistant strains (112). Thus, MBC is deemed to be an indicator of biocide resistance 

if compared to in-use concentration (7). While MIC and MBC testing of pure substances 

provide information on biocide susceptibility in bacterial populations, efficacy tests of 

disinfectants are carried out to prove the activity of disinfectants for specific conditions such as 

concentration and contact time. Efficiency tests are mandatory for disinfectants and 

prerequisites to register the product in the disinfectant lists of VAH, RKI, and DVG. 

1.4.1 MIC determination  

Techniques used to determine the MIC of biocides are based on antibiotic susceptibility test 

procedures described in standard protocols such as ISO 20776-1 or guidelines of the Clinical 

and Laboratory Standards Institute M07 (111, 114). Most frequently, the broth dilution test 

system is used. Broth dilution uses liquid growth medium containing geometrically increasing 

concentrations (typically two-fold dilution series) of the antimicrobial agent, which is 

inoculated with a defined number of bacterial cells (approx. 5 x 105 CFU/mL) (114). The final 

volume of the test defines whether the method is termed macrodilution (when a final volume 

of ≥ 2 mL is used) or microdilution (using microtiter plates with a final volume per well of 

≤ 500 µL). After incubation, increased turbidity or sediment indicates the growth of the 

organisms. Dilution methods are contemplated as reference methods for in vitro susceptibility 

testing and are also used to verify the performance of other susceptibility testing methods, such 

as the agar diffusion method (115). The methods of antibiotic susceptibility testing have shown 

that the main disadvantages of macrodilution are the effortful preparation of antimicrobial 

solutions, which is error-prone due to manual agent solution preparation. Furthermore, it 

requires a comparatively large amount of reagents and space (116). The advantage of the 

microdilution method is thus the reproducibility due to standardized preparation 

(mechanization) and the savings in reagents and space that result from the miniaturization of 
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the test system (116). Nevertheless, in any case, the final result is significantly influenced by 

the approach, which must be carefully controlled if reproducible results shall be attained (114). 

1.4.2 MBC determination  

The MBC is identified after broth dilution (macro- or microdilution) by neutralizing and sub-

culturing of a sample from wells or tubes without visible microbial growth on non-selective 

agar plates. When determining the MBC, the use of a neutralizing agent is vital to avoid an 

overestimation of the lethal concentration (7). The number of surviving cells (CFU/mL) is 

determined for each sample after 24h of incubation. MBC measurements by microdilution are 

characterized as simple and straightforward. They permit many of strains/biocidal compounds 

to be tested at the same time within 24 h, resulting in rapid data collection (112). 

1.4.3 Test limitations 

Besides a few attempts (117, 118), there are no standardized protocols and methods available 

to evaluate bacterial susceptibility to biocides. Often the state of knowledge on the 

methodological approach from antibiotic research is transferred to biocide susceptibility testing. 

Numerous critical parameters that influence the results of MIC testing for biocides have been 

reported, including the type of growth medium, plate material, and the inoculum preparation 

method (112, 119). The lack of standardization impedes comparison of different biocide 

susceptibility study results of field isolates and points towards the need for standard procedures 

in the future that allow intra- and inter-laboratory comparability, and reproducibility (7, 120). 

MBC suspension tests comprising neutralization and enumeration steps finally resulting in a 

diluted bacterial suspension. Thus, in turn, affect the detection limit of surviving countable 

organisms (112). 

Furthermore, it needs to be considered that experimental conditions such as biocide 

concentrations, exposure time, dilution, and bioavailability used for MIC and MBC testing do 

not reflect in-use conditions (117). Nevertheless, the determined MIC and MBC values are 
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important first indicators of a changing biocide susceptibility development. Pursuing methods 

like transcriptomic and whole genome sequence analysis can support these test results and 

explore underlying mechanisms. 
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2 Synopsis  

2.1 Aims and hypotheses 

According to EU BPR regulation (528/2012), biocides are supposed to deter, render harmless, 

or destroy harmful organisms. Especially the use of microbicides as disinfectants is an essential 

part to prevent the spread of multi-drug resistant human pathogenic bacteria. In vitro studies 

indicate biocide use as a risk factor for the emergence of antibiotic resistance. Still, it remains 

challenging to demonstrate a causal link between biocide usage and antibiotic resistance 

development in environmental settings such as food production facilities, livestock industry, 

and health care settings.  

The first aim of this thesis was to analyze the controversial current knowledge on the potential 

of bacteria to develop biocide tolerance or antibiotic resistance, or both, in response to biocide 

exposure. The second aim was to examine biocide susceptibility profiles for specific bacteria 

in chosen settings and to analyze potential associations between biocide tolerance and antibiotic 

resistance as well as underlying genetic determinants. The third aim of this thesis was to develop 

a ready-to-use test system enabling fast and accurate biocide susceptibility testing of bacteria 

for setting-specific substances. 

This thesis is finally dealing with the following hypotheses and biological questions. 

Hypothesis 1: Bacterial exposure to biocides induces biocide tolerance and antibiotic resistance 

In vitro adaptation studies were reviewed to answer the following questions: 

i. Which methods are currently described in the literature to investigate the adaptive 

potential of bacteria to biocides?  

ii. Are gram-positive and gram-negative bacteria able to adapt similarly to biocides 

during biocide exposure experiments? 
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iii. Are bacterial adaptations to biocides stable over time? What kind of differences can be 

observed between gram-positive and gram-negative bacteria? 

iv. Is it possible to draw general conclusions on the co-occurrence of antibiotic adaptation 

triggered by in vitro biocide exposure experiments? 

 

Hypothesis 2: Biocide tolerance is interlinked with antibiotic resistance in environments with 

regular disinfection regimes 

To gain more knowledge of biocide and antibiotic susceptibility profiles in environmental 

settings in Germany, field isolates collected from German food (L. monocytogenes), livestock 

(E. coli), and clinical environments (E. faecium) were investigated with focus to the following 

questions (2.3.2 Publication 1-3 Biocide tolerance and antibiotic resistance in environments 

with regular disinfection regimes) 

i. Are field isolates collected from environments with regular disinfection regimes less 

susceptible to relevant biocides and antibiotics in comparison with reported data?  

ii. Can reduced susceptibilities to biocides and antibiotics be associated with 

characteristic genetic determinants? 

iii. Do reduced biocide susceptibilities (increased MIC/MBC values) of field isolates 

correlate with reduced antibiotic susceptibilities (increased MIC values)? 
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Hypothesis 3: A vacuum-dried microtiter plate system enables fast, accurate, and reproducible 

routine biocide susceptibility testing 

To promote the harmonization of standardized biocide susceptibility testing, a new ready-to-

use test system for the identification of cationic biocide susceptibility profiles was developed 

and tested for gram-positive and gram-negative bacteria. The following questions were 

addressed (2.3.3 Publication 3, Part 1 The need for reproducible routine biocide susceptibility 

testing): 

i. Are biocide susceptibility profiles obtained with the newly developed vacuum-dried 

microtiter plate system comparable to results from broth microdilution method with 

freshly prepared biocide solutions? 

ii. Is it possible to interlink biocide susceptibility datasets obtained with the vacuum-

dried microtiter plate system with antibiotic susceptibility profiles to determine 

possible co-occurrence of biocide tolerance and antibiotic co- or cross-resistance in 

human pathogenic bacteria? 

iii. How can such test systems contribute to improve hygiene management regimes?  
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2.2 Study design 

To address the hypotheses and related questions, the thesis was designed as presented in Figure 

3.  

 

 

 

 

 

 

 

 

First, the controversial current knowledge on the potential of bacteria to develop biocide 

tolerance or antibiotic resistance, or both during biocide exposure were analyzed. For this 

purpose, publications investigating bacterial in vitro exposure to biocides were reviewed. In 

this review 78 biocide adaptation studies providing data of 1369 individual tests for planktonic 

cells (see Appendix I) were included. All studies were evaluated regarding adaptation capability 

of gram-positive and gram-negative bacteria to biocides, stability of the adaptation, and 

adaptation to antibiotics. Analyzed publications investigated exposure to various biocides, 

Figure 3: Schematic structure of the study design 

The study is divided into three parts. One to review the current state of research (1) and two with own 

laboratory work and their evaluation (2/3). 

ESBL= extended-spectrum ß-lactamase, AmpC = AmpC ß-lactamase, VRE vancomycin-resistant 

enterococci, VSE= vancomycin-susceptible enterococci 
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including alcohols, aldehydes, alkylamines, biguanides, chlorine-releasing compounds, 

peroxides, phenol derivatives, and QACs.  

In a second step, potential associations between biocide and antibiotic susceptibility in field 

isolates collected from German environments following a regular disinfection regime, including 

food processing plants (L. monocytogenes, n=93, Publication 1), animal husbandry (E. coli, 

n=93, Publication 2) and clinical environments (E. faecium, n= 90, Publication 3, Part 2) were 

analyzed. Study populations of E. coli and E. faecium contained proportions of extended-

spectrum ß-lactamase (ESBL, n=16) and AmpC ß-lactamases producing (n=13) E. coli as well 

as vancomycin-resistant E. faecium (n=42). Phenotypic biocide and antibiotic susceptibility 

testing were performed for all isolate sets using broth microdilution assays according to ISO 

20776-1. Based on these data, tentative ECOFFs according to the procedures for antibiotics in 

the EUCAST guidelines (121) for each dataset were defined, because there are currently no 

criteria available to distinguish between biocide tolerant and susceptible isolates. Substance-

specific ECOFFs represented 95% of the tested bacterial population (MIC95 or MBC95). 

Genotypic characterization was carried out for L. monocytogenes and E. coli using whole 

genome sequence data. It included the analysis of phylogenetic relationships as well as the 

determination of virulence, biocide, and antibiotic resistance-associated genes. Furthermore, 

data gained by the phenotypic and genotypic analysis were statistically analyzed for 

associations between reduced biocide susceptibility and antibiotic resistance in the different 

environments.  

In the third part of this thesis, a newly developed biocide susceptibility test based on microtiter 

plates containing vacuum-dried cationic biocides was evaluated. This customized microtiter 

plate was developed by MERLIN Diagnostika GmbH according to my specifications. During 

the evaluation, results obtained with the new assay and the standard method (use of freshly 

prepared biocide solutions in microdilution) under consideration of reproducibility and 

essential agreement (EA) according to ISO 20776-2 for a set of E. coli (n=5) and enterococci 
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(n=5) (Publication 3, Part 1) were compared. Subsequently, biocide susceptibility for 90 

E. faecium from clinical environments using the herewith published test method was 

determined. Obtained data served as the basis for the third epidemiological study (Publication 

3, Part 2). The application of the developed ready-to-use test system enables the routine 

surveillance of bacterial tolerance towards disinfectants in hospitals.  
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2.3 Publications and extended discussions 

2.3.1 Literature review: Impact of in vitro biocide exposure to bacterial tolerance and 

antibiotic resistance  

An extensive literature search was conducted to obtain the current status on biocide and 

antibiotic resistance development. The focus was particularly on the ability of bacteria to adapt 

to biocides, the stability of the adaptation and the adaptability to antibiotics during in vitro 

biocide exposure assays. 

2.3.1.1 Bacterial adaptation to biocides and adaptation stability 

Data availability differed essentially between study types. However, the investigated datasets 

indicate that biocide adaptation events and adaptation stability seem to be dependent on several 

factors such as (i) experimental settings, (ii) tested substances, and (iii) bacterial properties.  

(i) Experimental settings 

In general, in vitro experiments could be classified as follows: a) multiple exposures to pure 

substances; b) multiple exposures to biocidal products, c) single exposure to pure substances, 

and d) single exposure to biocidal products (Hypothesis 1-i). Whereas multiple long-term 

exposure studies intend to induce de novo tolerance development due to mutations, single 

exposure experiments mainly interrogate the potential of an active substance or biocidal product 

to select for tolerant geno- and phenotypes pre-existing in a bacterial population. Adaptation to 

biocides during multiple exposures was slightly more frequently reported (33%; n=411) than 

single exposure experiments (25%; n=31, Appendix I)). However, stable adaptation was 

substantially more often reported for single exposure (85%, n=23) than multiple exposure 

experiments (43%, n=158). Interpretation of this observation remains difficult. It needs to be 

noticed that this outcome may be primarily linked to the tested substances instead of the 

experimental setting. A high proportion of single exposure experiments tested adaptation to 

specific biocides such as triclosan, for which stable adaptations are frequently reported (93, 94, 
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118, 122, 123). Nonetheless, the results might partially reflect the different approaches of both 

methods as well. Single exposure experiments aim for the selection of pre-existing 

subpopulations with reduced susceptibility to the tested substance. Thus, it seems explainable 

that pre-existing subpopulations remain stable in their susceptibility profiles. In contrast, 

multiple exposure experiments lead to gradual biocide adaptations due to mutations or 

phenotypic adaptation, or both. As mutational adaptations are frequently accompanied by 

fitness costs (40) and transient adaptation is often the result of a temporary cellular stress 

response (124, 125), the lower proportion of stable mutants after multiple exposures compared 

to single exposure is not astonishing. The stability of the adaptation events is an essential factor 

for biocide tolerance development. Nevertheless, only a small number of studies investigated 

this parameter (n=395 out of 1,369 individual tests). 

(ii) Tested substances  

Exposure to active ingredients of biocidal products helps to understand the effect of the active 

compound on emerging resistance, whereas the use of biocidal product formulations reflects 

actual use (126). Thus, the composition of the substance (pure substance vs. biocidal products) 

is another vital factor to consider in biocide adaptation experiments. In most experiments, 

bacteria were challenged via exposure to pure substances (82%, 1119 individual tests). This 

data creates an imbalance with regard to comparison of adaptation outcomes after exposure to 

pure substances and biocidal products. Overall, exposure to pure substances resulted more 

frequently in bacterial adaptations (38%, n=423) compared to biocidal products (8%; n=19). 

Stable adaptations after exposure to pure substances were reported for 174 individual tests 

(45%). Only a few studies investigated the stability of adapted isolates obtained after exposure 

to biocidal products (n= 9). Hence, trends cannot be observed. It is assumed that additional 

ingredients of biocidal products may act synergistically, leading to reduced bacterial viability 

and adaptation capacity (126). Stable adaptations to pure substances were frequently reported 

for biguanides, phenolic compounds, and QACs, while they were less often described for 
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aldehydes, alcohols, oxidizing agents, and chlorine-releasing compounds. Cationic biocides 

like QACs and biguanides are membrane active agents interacting with the cell surface and 

integrating into the cytoplasmic membrane (49). In low concentrations, they are bacteriostatic 

and bacteria may adapt more easily due to cell membrane modifications like alterations of the 

net negative charge (79), changes in cell membrane permeability (75), or the upregulation of 

efflux pump activity (76, 127-129). In contrast, biocides with strong oxidizing effects like 

peroxides act highly nonspecific in intracellular compartments. They are very effective due to 

the production of free hydroxyl radicals interacting with intracellular DNA, proteins, and lipids 

leading rapidly to cell death (35). Thus, chances to adapt due to unspecific stress responses may 

be meager. The number of studies investigating adaptation to highly reactive substances has 

been comparatively rare yet. This could create a bias concerning data interpretation and 

assessment of biocide tolerance development. 

(iii) Bacterial properties  

A total of 756 individual tests of gram-negative and 613 individual tests of gram-positive 

organisms were considered. While similar biocide adaptation frequencies in gram-positive and 

gram-negative bacteria (33%; n=202 vs. 32%; n=240 respectively) were observed (Hypothesis 

1-ii), the proportion of stability varied remarkably. 

Stable adaptations were generally more frequently observed in gram-negative bacteria 

(Hypothesis 1-iii). While 60% (n=127) of the stability tested gram-negative bacteria remained 

stable, only 29% (n=54) stable adaptations could be recorded for gram-positive bacteria. Stable 

adaptations may be attributable to the selection of mutants (130) containing genetic changes 

without or with a minor impact on fitness costs. Elevated mutation frequencies have been 

recently reported in natural and pathogenic gram-negative species like E. coli, S. enterica, and 

P. aeruginosa. They were associated with greater antibiotic resistance levels compared to non-

mutators (131). If biocides may be similarly involved establishing mutator populations with 

reduced antimicrobial susceptibility needs to be elucidated.  
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Structural differences between gram-positive and gram-negative bacteria influence the 

sensitivity to most antimicrobials. The outer membrane of gram-negative bacteria that is lacking 

in gram-positive bacteria contributes to reduced susceptibility to biocidal compounds and 

antibiotics (38, 39).  

Mutations of various regions can contribute to tolerance in bacteria and lead to reduced 

susceptibility. Prominent examples of biocide tolerance mechanisms in gram-negative bacteria 

include (over)expression of efflux pumps, reduction of porins, or alterations of the net negative 

charge of the bacterial cell wall as well as membrane composition (79, 129, 132-135). Often 

described mechanisms in gram-positive bacteria include transient alterations of thickness and 

degree of cross-linking of the peptidoglycan or glycocalyx formation, enzyme-mediated 

inactivation or increased efflux (39).  

In gram-positive and gram-negative bacteria, interspecies- as well as intraspecies-specific 

differences were observed regularly. The gram-positive Staphylococcus spp., for example, were 

frequently described to adapt to benzyl group containing QACs (71%) while they adapted less 

often to chlorhexidine (CHX, 24%) and triclosan (43%) during multiple exposure experiments 

with pure substances. In contrast, Enterococcus spp. could easily adapt to QACs (92%) and 

CHX (68%) but not to triclosan (17%).  

For the gram-negative Pseudomonas spp. adaptation during multiple exposure experiments 

with pure substances was often described for CHX (79%) but less frequently observed for 

QACs (21%) and triclosan (33%). In opposition to the findings for Pseudomonas spp., approx. 

50% of the investigated Salmonella spp. adapted to the respective substances. These examples 

demonstrate the difficulties arising from general statements to adaptive behavior of gram-

positive and gram-negative species. As the number of isolates per species varies widely (e.g., 

Staphylococcus spp. 14 isolates investigated for benzyl group containing QACs, and 38 isolates 

for CHX, 63 isolates for triclosan), species-specific adaptation frequencies could bias the 

comparison of adaptive capacities for gram-positive and gram-negative species. Ultimately, due 
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to the diversity of the applied methods and low level of comparability, no general statement 

whether gram-positive or gram-negative bacteria adapt more easily to specific biocides is 

possible. More specifically, adaptations might be species and strain-dependent.  

2.3.1.2 Antibiotic adaptation 

Subsequent antibiotic adaptation following in vitro exposure to biocides was investigated for 

490 individual tests of gram-positive and gram-negative bacteria. While contact with some 

substances like aldehydes, chlorine-releasing compounds, or peroxides seems to pose a lower 

risk, altered antibiotic susceptibility profiles were reported as a result of exposure to biguanides, 

phenolic derivatives, and QACs. Detailed information is provided in Figure 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Adaptation of bacteria to at least one antibiotic after exposure to the biguanides chlorhexidine 

(CHX) and polyhexamethylene biguanide (PHMB), phenol derivatives triclosan and hexachlorophene as 

well as the quaternary ammonium compounds (QACs) benzylgroup containing (BCC) QACs and other 

QACs. Results are shown separately for biocide adapted mutants (fold change, FC ≥ 4) and isolates without 

adaptation to the biocide of interest after exposure to the respective substance (FC < 4). Colors display 

observed antibiotic adaptation. 
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Even antibiotic resistance development due to biocide exposure is recognizable, the overall 

limited number of individual biocide tests and investigated isolates does not allow a predictive, 

general conclusion on the development of antibiotic resistance in biocide-adapted bacteria and 

may rather be strain-specific (Hypothesis 1-iv). As one example, Braoudaki was able to show 

that cross-resistance in triclosan adapted E. coli K-12 (n=1) and E. coli O55 (n=1) was observed 

to a lesser extent compared to E. coli O157:H7 (n=2). E. coli K-12 developed cross-resistance 

to chloramphenicol, while E. coli O55 exhibited resistance to trimethoprim. In comparison, 

E. coli O157:H7 was resistant to chloramphenicol, tetracycline, amoxicillin, 

amoxicillin/clavulanic acid, trimethoprim, benzalkonium chloride (BAC), and CHX after 

exposure to triclosan. The authors suggested that genetic variability in E. coli O157 and E.coli 

K12 may facilitate differences in cross-resistance profiles (136).  

It is important to highlight that observed changes in antibiotic susceptibility following in vitro 

biocide exposure were mainly moderate and seldom defined as clinical resistance according to 

CLSI and EUCAST guidelines. Nonetheless, even small changes may provide growth 

advantages under selective pressure and trigger the development of high-level resistance. 

In conclusion, the results of the literature review support hypothesis 1 that bacterial exposure 

to biocides can induce biocide tolerance and antibiotic resistance. 

2.3.1.3 Transferability of results obtained from in vitro exposure experiments to 

workaday environments 

In situ, bacteria might face selection pressure due to contact with sub inhibitory biocide 

concentrations for various reasons in different environments. This might occur due to 

application errors, dilution in the environment, interfering materials, degradation of biocidal 

products, or wash-off events. In general, in-use concentrations of disinfectants are much higher 

than the MICs of the microbial species of concern. Still, inevitably the use of concentrations 

well above the MIC values results in gradients over time and space which will finally overlap 
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with the sub-MIC levels (62). One example is the relative environmental persistence of many 

biocides like QACs and triclosan. Their tendency to bind to organic matter and soil provides a 

potential long-lasting low-level exposure to microorganisms (137, 138). Biocide residues found 

in different environments like surface water, wastewater, or sediments may force the selection 

of permanently adapted microorganisms. As a kind of chain reaction, elevated concentrations 

of biocides are needed to inhibit the growth of adapted bacterial populations, as was shown in 

an outbreak of Serratia marcescens on a neonatology ICU. Isolates exhibited resistance to 0.5% 

Mikrobac forte® consisting of benzyl-C12-18-alkyl dimethyl ammonium chloride 199 mg/g 

and N-(3-aminopropyl)-N-dodecylpropane-1,3-diamine 50 mg/g, which was regularly used for 

disinfection of surfaces before the outbreak. One of the measures to contain the outbreak 

included increasing the concentration of used Mikrobac forte® to 2% (139). Conceivably, the 

elevated concentration of disinfection may lead again to the disposition of higher remaining 

concentrations in the environment.  

Due to elevated biocidal selection pressure following risks may arise in situ:  

(i) Bacterial adaptation to the substance:  

Biocides may induce transient adaptation reactions by biofilm formation, expression of small 

colony variants, or slow growth, selecting for phenotypes with the ability to temporarily survive 

biocidal stress (40, 61, 140). A prominent example was reported by Sheridan et al. who found 

triclosan tolerance caused by mingled mechanisms, including growth inhibition, increased 

biofilm formation, and change in outer membrane proteins in triclosan tolerant E. coli 

0157:H19 (141). 

 (ii) Propagation of mutation  

Sub-MIC levels of biocides may act as mutagens and increase mutation rates which may 

influence the rate of de novo biocide, respectively, antibiotic resistance development (57, 142, 

143). Mutational antibiotic resistance caused by biocides, or byproducts could even explain 
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multidrug-resistance in areas lacking antibiotic selection pressure (57, 143). For example, Lv 

et al. demonstrated mutagenic activities of disinfection byproducts in disinfected drinking 

water, where antibiotic concentrations are too low to select antibiotic resistant strains 

effectively. After exposure to disinfection byproducts, resistance to individual antibiotics and 

multidrug-resistance were both raised in P. aeruginosa PAO1 by various levels. Norfloxacin 

and polymycin B resistances were 10-fold enhanced compared to a control (143). 

(ii) Influence on horizontal gene transfer  

Sublethal concentrations of biocides can increase or decrease transfer frequencies of MGEs 

such as plasmids and phages (41, 144, 145). Jutkina et al. were able to show that subinhibitory 

concentrations of CHX and triclosan (200 times and 20 times below the MIC, respectively) 

increased the frequency of antibiotic resistance gene transfer for the recipient E. coli strain by 

influencing the exchange rates of mobile genetic elements (62).  

(iv) Cross-resistance:  

Due to similar resistance mechanisms, biocides can select for bacteria expressing resistance not 

only to the used biocide but additionally to other biocides or antibiotics. An illustrative example 

for cross-resistance in clinical environments was described by Stein et al. (146). They have 

recently described a clonal cluster of carbapenem-resistant Klebsiella pneumoniae isolates 

showing diminished susceptibility to CHX. These isolates were detected on a ward that has 

implemented routine washing with CHX to reduce the rate of catheter-related infections. 

Strikingly, CHX tolerance was associated with resistance to colistin, likely caused by increased 

efflux of both substances via the same route. 

(v) Co-resistance:  

Due to the presence of physically linked genetic resistance mechanisms or their coordinated 

expression, biocides can select bacteria resistant to unrelated antimicrobial substances. In a 

large-scale bioinformatics approach based on analyzing completely sequenced bacterial 
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genomes and plasmids available in the NCBI repository, Pal et al. identified a higher proportion 

of plasmids carrying both biocide/metal resistance genes (BMRGs) and antibiotic resistance 

genes (ARGs) hosted by Escherichia, Staphylococcus, Salmonella, and Klebsiella compared to 

other bacterial genera (147). The BMRGs that commonly co-occurred with ARGs on plasmids 

were mercury resistance genes and the qacEΔ1 gene supposed to induce low-level resistance to 

quaternary ammonium compounds. A previous study has shown that qac resistance genes 

located on class 1 integrons are often present in bacteria exposed to detergents, biocides, or 

antibiotics (148). Thus, QACs may act as a major driver for the selection of class 1 integrons 

(149). This evidence and the findings of Pal et al. led to the author`s hypothesis that transposons 

and integrons are involved in the process of biocide/metal-driven co-selection of antibiotic 

resistance (147).  

In conclusion, in vitro studies support the hypothesis 1 that bacterial exposure to biocides can 

induce biocide tolerance and antibiotic resistance. However, this knowledge needs to be verified 

in field studies to explore and understand the possible risks arising in complex environments 

with regular hygiene measures using biocides as chemical disinfectants. 
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2.3.2  Publication 1-3: Biocide tolerance and antibiotic resistance in environments with 

regular disinfection regimes 

As shown in 2.3.1, the results of biocide exposure experiments tend to be highly variable. 

Outcomes are heavily influenced by the chosen experimental setting and by choice of biocides 

and microorganisms being examined. While being a useful tool to investigate possible 

outcomes to adaptation or co-selection, the transferability to real-world interactions of such 

controlled experiments remain questionable (40). 

In order to gain more knowledge on bacterial susceptibility to biocides and putative associations 

with antibiotic resistance in natural settings, I investigated field isolates collected from 

environments following a regular disinfection regime. According to the literature, carriage of 

ESBL in E. coli and vancomycin resistance in E. faecium has been associated with reduced 

susceptibility to certain biocides (108, 150, 151). To examine published associations, antibiotic 

resistant and susceptible isolates (ESBL/AmpC ß-lactamases (AmpC)-producing E. coli 

(n=29), and Non-ESBL-/AmpC-producing E. coli (n=64) in publication 2 of animal husbandry 

as well as VSE (n=48) and VRE (n=42) in publication 3 of clinical environments were included. 

Whole genome sequencing was performed for all L. monocytogenes and E. coli isolates to 

analyze phylogenetic relationships and resistance determinants (details are deposited at the 

National Center for Biotechnology Information database https://www.ncbi.nlm.nih.gov/, under 

accession numbers MK944275 to MK944277, and JAFMWT000000000-JAFMVF000000000, 

respectively). 

The study population of L. monocytogenes showed a broad heterogeneity of MLST clonal 

complexes (CC). Most CCs isolated from technical equipment and surfaces of German food 

production facilities included CC2, CC8, and CC9 as predominant genotypes (figure 2 in 

publication 1). In Germany, CC8 and CC2 isolates are frequently reported as causative agents 

of human listeriosis (152, 153). The detection of clinically relevant genetic lineages highlights 
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the importance of contaminated food production environments as transmission routes for 

virulent L. monocytogenes. 

The study population of E. coli also showed a broad heterogeneity of multilocus sequence types 

(STs). Most STs isolated from surfaces of grounds, walls, and equipment included ST117 and 

ST297 belonging to phylogroup F and B1, respectively. While phylogroup B1 comprises 

commensals or intestinal pathogens (154), phylogroup F is highly associated with 

extraintestinal pathogenic E. coli (ExPEC) (155-157). ExPEC can cause urinary tract 

infections, meningitis, or sepsis (158). ST 117 is also linked to avian pathogenic E. coli (APEC), 

the avian pathotype of ExPEC, causing colibacillosis. APECs were also isolated from human 

patients (159). These findings emphasize a zoonotic risk originating from farm environments. 

Overall, the datasets revealed a low proportion of biocide tolerant strains (L. monocytogenes: 

22%, E. coli: 10%, E. faecium: 0%) based on our definition of tentative ECOFFs (Hypothesis 

2-i). In general, susceptibilities to tested substances and proportions of biocide tolerant isolates 

were comparable to data already published in the literature (for detailed comparisons, see 

publications (104, 105, 107)) (Hypothesis 2-i). Several reduced phenotypic susceptibilities 

could be interlinked with genetic determinants (Hypothesis 2-ii). I identified 15 

L. monocytogenes isolates with reduced susceptibility to BAC. In 13 out of them, genetic 

determinants coding for efflux pumps of the small multidrug resistance family (SMR) were 

detected. These included qacH (n=10), bcrABC (n=1), and emrC (n=2). These efflux pumps 

have been previously associated with increased efflux of BAC in L. monocytogenes (160-163). 

Thus, it is very likely that they were responsible for the observed phenotypes. Interestingly, 

QAC tolerance was predominantly identified in isolates belonging to genetic lineages without 

known clinical relevance. Reduced susceptibility to sodium hypochlorite, peroxyacetic acid 

(PAA), and isopropanol was not associated with specific genetic determinants (104).  

Furthermore, I identified three E. coli isolates with reduced susceptibility to formaldehyde 

(increased MIC value). These isolates carried a gene coding for a glutathione-and NAD-
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dependent formaldehyde dehydrogenase located on a plasmid, which has been previously 

described to cause formaldehyde tolerance by enzymatic degradation of the biocide (72). 

Specific determinants associated with reduced susceptibility to p-chloro-m-cresol (identified in 

one isolate), BAC (four isolates), or PAA (one isolate) could not be found. Importantly, 

phenotypic biocide tolerance for FA, PAA, and BAC was found in isolates with and without 

clinical relevance. 

Intriguingly, qacEΔ1 and sugE(p) were identified in 10% and 8% of the isolates, respectively. 

Both genes encode efflux pumps of the SMR family and have been reported to be involved in 

QAC tolerance (164-166). However, reduced susceptibility to the investigated QACs, 

benzalkonium chloride and didecyldimethylammonium chloride, compared to isolates lacking 

the efflux pump encoding genes could not be observed in my study (105). This might be due to 

the substrate specificity of the efflux pumps themselves (164, 165) or the applied susceptibility 

test method influencing the mode of bacterial growth and expression of SMR efflux pumps 

(165). Interestingly, the QAC tolerance efflux pump determinants qacEΔ1, and sugE(p) were 

both located on mobile genetic elements close to antibiotic resistance genes sul1 and blaCMY-2, 

respectively. As qacEΔ1 and sugE(p) have been linked to phenotypes with reduced 

susceptibility to QACs in the past (164-166), co-location with antibiotic resistance genes on 

mobile genetic elements support the hypothesis of Pal et al. that mobile genetic elements such 

as integrons play an important role in biocide driven co-selection of antibiotic resistance (147). 

For L. monocytogenes and E. coli, antibiotic susceptibility testing was performed to compare 

with biocide susceptibility results. In addition, genetic determinants responsible for identified 

phenotypes were characterized. Detailed information on susceptibility profiles and underlying 

mechanisms are given in the corresponding publications (104, 105). In general, a low level of 

antibiotic resistance in L. monocytogenes isolated from food production environments in 

Germany was observed. Only five isolates (5%) were resistant to at least one antibiotic in three 

or more classes and therefore defined as multidrug-resistant (MDR). In contrast, antibiotic 
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susceptibility profiles were highly diverse in the tested E. coli population. In this study, 34 

isolates (37 %) were defined as MDR. 

With very few exceptions, antibiotic resistance could be traced back to known underlying 

genetic determinants (Hypothesis 2-ii). Correlation analyses of biocide susceptibility data and 

corresponding antibiotic resistance profiles did not reveal any correlation between reduced 

susceptibility (increased MIC or MBC) to biocides and antibiotics. Furthermore, biocide 

susceptibility was not significantly influenced by the expression of extended-spectrum ß-

lactamases in E. coli or vancomycin resistance in E. faecium as indicated in the literature (108, 

150, 151). This might be due to geographic variability or depend on the frequency at which 

isolates were previously exposed to biocides. For example, E. faecium originated from a clinical 

ward with low CHX usage, whereas Alotaibi et al. conducted an investigation with Danish VRE 

and VSE isolated from a hospital ward with heavy use of CHX (150).  

In summary, susceptibility profiles to various biocides did not differ between antibiotic 

susceptible or resistant isolates (Hypothesis 2-iii). Even though I could not generally support 

hypothesis 2 that biocide tolerance is interlinked with antibiotic resistance in environments with 

regular disinfection regimes, there is one epidemiological study describing antibiotic cross-

resistance. As mentioned before, Stein et al. reported a clonal cluster of carbapenem-resistant 

Klebsiella pneumoniae isolates with reduced susceptibility to CHX. These isolates originated 

from intensive care unit (ICU) patients on a ward using CHX for routine washing to decrease 

the rate of catheter-related infections. Alarmingly, reduced CHX susceptibility was associated 

with colistin resistance, likely caused by increased efflux of both substances via the same route 

(146).  

Given the identified low number of biocide-tolerant isolates in our studies, it is likely that 

additional factors contribute to the persistence of bacteria in different niches. 

Successful adaptation depends on various aspects, including the structure (sessile vs. 

planktonic), and composition (pure vs. mixed culture) of the bacterial community, temperature, 
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oxygen, and nutrient access, pH, detergents, or exposure times as these factors influence the 

growth, metabolism/physiology of the bacterial cells and the division cycle which are critical 

points for bacterial susceptibility (7, 35). Furthermore, these factors are involved in quorum 

sensing (transduction of cell-cell signals) and the formation of biofilms (7). Biofilm formation 

is an intrinsic survival strategy enabling bacteria to withstand harsh conditions like disinfection. 

The extracellular matrix provides a diffusion barrier protecting both gram-positive as well as 

gram-negative bacteria. It provides an enhanced medium for bacterial signaling (e.g., quorum 

sensing), genetic exchange as well as a potential site for neutralization or binding of chemical 

agents (40). Ten to 1000-fold elevated MIC values have been reported for different biocides 

such as BAC or oxidizing agents during comparison of biocidal activity against sessile vs. 

planktonic bacteria, including Listeria spp. or E. coli (167-169). Thus, biofilms provide a 

microenvironment in which pathogens might withstand disinfectant concentrations that 

otherwise kill planktonic cells. Consequently, bacteria can survive regular cleaning and 

sanitation procedures and persist in food-processing plants, animal husbandry, or clinical 

environments. In many of these environments, conditions favor attachment and biofilm 

formation, i.e., flowing water, suitable attachment surfaces, ample nutrients, and a sufficient 

number of bacteria supplied by the environment (168). Another key factor for biofilm formation 

is the promotion of microbial communication, also termed quorum sensing, and its role in 

establishing of resistant phenotypes (7, 140). Microorganisms within the assembled mass 

produce and receive small signal molecules (e.g., autoinducer-1, autoinducer-2, and peptides) 

that regulate microbial communication. With increasing densities of microbial cells, the density 

of different signal molecules increases. As a result, different autoinducers bind to specific 

receptors to activate or inactivate gene cascades (170). As a prominent example, Hassett et al. 

demonstrated that the expression of catalase and superoxide dismutase genes coding for 

protective enzymes against oxidizing stress was under the control of quorum sensing in 

P. aeruginosa biofilms (171).  



Synopsis 

36 

 

Efflux pumps are not only essential requisites to expel drugs and toxic metabolites. They may 

also release other molecules necessary for cell communication, biofilm formation, 

osmoregulation, or cell protection (172, 173), increasing the ability to persist in food production 

environments. Furthermore, in each bacterial population, there is a small subset of the 

population, called persisters, showing phenotypically resistant dormant variants without 

genotypic features (174). Bacteria may survive in different niches because they are located in 

areas difficult to reach for disinfectants. For E. coli isolates from animal husbandry, for 

example, it could be demonstrated that biocide tolerant strains isolated from transitions between 

floor and wall or cracks and crevices were able to survive hygiene measures (105). These are 

well-known critical locations in husbandry environments. As they are difficult to clean and 

disinfect (175, 176), exposure to subinhibitory concentrations of biocides due to improper 

disinfection practice and the exertion of sub-MIC selection pressure on biocide tolerant bacteria 

in such niches is very likely.  

In summary, the results of our susceptibility studies have shown, that indeed bacteria with 

reduced susceptibility to biocides (albeit few examples) are present in environments supposed 

to exert a high selection pressure due to the widespread use of disinfectants. This indicates that 

biocide tolerance might present one bacterial feature to survive disinfection processes. With the 

acquisition and, or the expression of tolerance determinants, bacteria might be able to persist in 

different environments for long periods. Theoretically, the increased prevalence of tolerant 

isolates might furthermore increase the chance of mutation or plasmid accumulation producing 

a higher level of stable antibiotic resistance (41). Later on, these determinants might be spread 

through bacterial populations and be detectable in the genomes of these bacteria.  

As most of the analyzed isolates were susceptible to investigated biocides, bacteria have to use 

additional strategies to survive in environments with regular disinfection regimes. Furthermore, 

the results do not yet support hypothesis 2 that biocide tolerance is per se interlinked with 

antibiotic resistance. Nonetheless, biocide tolerance determinants adjacent to antibiotic 
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resistance genes on mobile genetic elements could be identified, indicating that co-selection of 

biocide tolerant and antibiotic-resistant bacteria might be principally possible. 
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2.3.3 Publication 3-Part 1: The need for reproducible routine biocide susceptibility tests 

Chemical disinfection is a key factor in reducing the spread of resistant bacterial pathogens. 

However, laboratory settings have extensively demonstrated the possibility of biocide and 

antibiotic resistance development in bacteria due to exposure to low biocide concentrations. 

Albeit scarce, in vitro findings are supported by epidemiological studies reporting this causality 

(146). Furthermore, some reports link the introduction of biocides in clinical settings with the 

identification of bacteria showing reduced biocide susceptibility (146, 177, 178). Hardy et al., 

for example, have shown significantly decreased CHX and octenidine dihydrochloride (OCT) 

MIC and MBC values for Staphylococcus aureus from a major hospital trust in the UK after 

the introduction of CHX and OCT for decolonization regimes. Reduced susceptibility to OCT 

occurred right after the use of the substance in practice between 2013 and 2014 (177). My field 

studies provide the support that bacteria with reduced biocide susceptibility are detectable in 

environments with extensive use of disinfectants (104, 105). Within the investigated E. coli 

population, I could identify genetic determinants that have been reported to confer biocide 

tolerance co-localized with antibiotic resistance genes on mobile genetic elements, indicating 

the possibility of co-selection of antimicrobial resistance. Taken together, these results imply 

that antimicrobial resistance development and, or spread might be additionally driven by 

bacterial exposure to biocides and thus, point towards the need for regular monitoring not only 

for antibiotic resistance but also for biocide tolerance development. Screening of bacterial 

isolates for reduced biocide susceptibility becomes more and more important, especially in the 

light of drastically limited options of efficient antimicrobial therapy of infections caused by 

multidrug-resistant bacteria (179). Reliable and standardized screening methods, comparable 

between laboratories, would also be of value during authorization processes of biocides, as the 

EU BPR regulation requires information on the tendencies of microbicidal products to select 

for resistant bacteria (8).  
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In contrast to antibiotic susceptibility testing, generally accepted, standardized methods for 

biocide susceptibility testing are missing, even though there have been attempts to introduce 

respective protocols (117, 118, 179). As highlighted in the study by Bock et al., harmonization 

is of most importance as slight modifications in the choice of nutrient broth or assay plate 

material influence the outcome of biocide susceptibility profiles (119). Most procedures include 

broth macro- and microdilution methods to determine MIC and MBC values. These values are 

also the basis for establishing ECOFFs urgently needed to distinguish between biocide 

susceptible and tolerant bacteria. MIC values allow for the detection of bacterial isolates with 

reduced susceptibility to biocides and help to determine tolerance development at an early stage. 

MBC values, however are of matter where the lethal rather than the inhibitory concentration of 

the agent is of primary importance. So far, available epidemiological data are limited for this 

purpose (102, 106).  

As part of this thesis, a reliable high-throughput screening system using vacuum dried biocide 

microtiter plates for rapid biocide susceptibility testing applicable to gram-positive and gram-

negative bacteria was established (Publication 3, Part 1 (107)). The method resembles the 

standardized procedure for antibiotic resistance testing according to ISO standard 20776-1 

(111). While conventional methods depend on the time-consuming fresh preparation of biocide 

stock solutions, which are diluted to a range of concentrations covering MICs and MBCs 

(applied for the susceptibility studies to L. monocytogenes and E. coli), the newly developed 

system contains predefined concentrations of vacuum dried biocidal substances. In this study, 

the cationic biocides BAC, CHX, cetylpyridinium chloride (CTP), didecyldimethylammonium 

chloride (DDAC), and OCT were included since they are highly relevant for hospital settings. 

All substances can be easily de- and rehydrated. CHX and OCT, for example, are frequently 

used as antiseptics. The conventional microdilution method and the newly developed test 

system (reference wet plate and dried plate described on page 3 of publication 3 (107)) were 

used to characterize biocide susceptibility of a collection of E. coli and Enterococcus spp. 
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strains. Results were compared under consideration of reproducibility and essential agreement 

(EA). Whereas the reproducibility reflects the comparability of test results after repetition of 

applied test methods, the EA is a measure of comparability between the reference method and 

the method to be evaluated. The overall results have shown that vacuum dried biocide microtiter 

plates provide a performance level comparable to the reference broth microdilution method 

using freshly prepared biocide solutions (reference Method ISO 20776-2) (180) (hypothesis 3-

i). The EA amounted to 100% for all isolate/substance combinations while the reproducibility 

varied. For enterococci, reproducibility reached 100% for all measurements. For E. coli, 

reproducibility reached 100% for CTP and DDAC. It was lower for BAC (98%), CHX (96%), 

and OCT (96%) but still within an acceptable range (≥95%) according to ISO 20776-2 (180). 

The broad concentration ranges allowed MIC and MBC determination of an exemplarily chosen 

gram-positive and gram-negative species with the same plate design. Hence, the evaluated 

microtiter plates are suitable for quick and standardized biocide susceptibility testing of various 

bacterial species. 

The advantages of such a test system are that it is easy to handle, time-saving, and applicable 

for different purposes. On the one hand, it is valuable for biocide susceptibility monitoring over 

time to identify trends in biocide tolerance development as early as possible. Thus, bacteria 

isolated from clinical or processing environments with repeated exposure to biocides could be 

monitored using this assay. Susceptibility data of routine monitoring, for example, could help 

to select the most effective and economically suitable antimicrobial agents for decontamination 

of a particular environment. Furthermore, standardized processes might serve as a basis to 

collect epidemiological data in order to establish ECOFFs for diverse species/substance 

combinations similar to the collection of antibiotic ECOFF data accumulated by EUCAST 

(181). On the other hand, monitoring could also be useful to detect the development of antibiotic 

cross-resistance at an early stage. Simultaneous testing of antibiotic resistant and susceptible 

isolates like VRE and VSE enables rapid assessment of differences in biocide susceptibility 
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profiles for both groups. I have shown that the vacuum dried biocide microtiter plate generates 

fast, reliable, and accurate results comparable with standardized antibiotic test systems 

according to EUCAST or CLSI. In general, MIC values of biocide and antibiotic susceptibility 

tests can be evaluated regarding putative correlations. In this way, early occurrence of cross-

resistance might be reliably discovered (hypothesis 3-ii).  

Notably, such a test system is precious to standardize testing procedures and hereafter to 

improve hygiene management regimes. It can be used as a tool for the surveillance of bacterial 

tolerance in different environments. Based on biocide susceptibility profiles effective 

disinfectants can be chosen to control the spread of infections. Especially in animal husbandry 

or clinical environments this could help to reduce the frequency of antibiotic treatment 

(hypothesis 3-iii).  

In conclusion, our results support hypothesis 3 that vacuum-dried plate systems enable fast, 

accurate, and reproducible routine biocide susceptibility testing urgently needed to produce 

harmonized, reliable and comparable results. Such test systems are applicable in research and 

for surveillance programs. 

In each of my studies, biocide susceptibility profiles for planktonic cells were characterized. 

However, additional parameters could also be of valuable importance to determine and 

understand biocide tolerance development. As subinhibitory biocide concentrations can 

improve the biofilm formation capacity, like reported for E. coli, Salmonella (S.) enterica, 

methicillin-resistant Staphylococcus aureus (MRSA), or L. monocytogenes (81, 182-184), 

parameters such as the minimum biofilm inhibitory concentration (MBIC) or the minimum 

biofilm eradication concentration (MBEC) might help to understand the effects of biocides to 

bacterial populations and their possibilities to persist in different niches. Other assays such as 

the “biofilm biocide survival assay” and the “surface-dried cell biocide survival assay” can be 

used for detailed investigation of activities against surface-dried and biofilm communities 

(185). In addition, Maillard and the SCENIHR (7, 126) recommend further tests to understand 
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the underlying mechanisms of reproducible changes in biocide susceptibility. This might 

include molecular techniques to investigate transcriptomic and proteomic changes resulting 

from microbicide exposure (95, 142). Genotypic alterations due to biocide exposure might serve 

as potential resistance markers. Molecular techniques such as WGS, PCR, and microarray 

technology have been successfully used to identify microbicide resistance mechanisms (88, 

105, 186). 

3 Conclusion 

According to concerns arising from in vitro studies that bacteria are able to adapt to biocides, 

our field studies have demonstrated that biocide tolerant isolates (albeit very few) can occur in 

environments with regular disinfection regimes. As determined MICs and MBCs were still well 

below in-use concentrations, reduced susceptibility did not result in resistance to biocides. 

Although each biocide represents an individual case, so far, there is no conclusive evidence that 

the use of biocides leads to an increase in antibiotic resistance in everyday life settings. 

However, even small susceptibility changes may provide growth advantages and may trigger a 

higher frequency of high-level resistance development over time. The detection of biocide 

tolerance determinants adjacent to antibiotic resistance genes on mobile genetic elements 

corroborates the conclusion that co-selection of biocide and antibiotic resistance can occur, and 

respective susceptibility profiles need to be monitored. For this purpose, reliable and 

standardized screening methods as our developed vacuum-dried biocide microtiter plate are 

required. Large data sets will help to identify reliable ECOFFs and to interpret breakpoints. 

Together with molecular approaches like WGS, underlying mechanisms of biocide tolerance 

development, and associated antibiotic resistance mechanisms can be uncovered. This 

knowledge might improve hygiene measures to prevent the spread and further emergence of 

MDR-resistant pathogens. 
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Supplementary Table S2 

Biocide tolerance genes screened in this study 

Gene Gene description Accession no. Source 

qacEΔ1 quaternary ammonium compound efflux SMR transporter  JN596280 (1) 

qacE quaternary ammonium compound-resistance protein  X68232 (1) 

qacF quaternary ammonium compound efflux SMR transporter  JN596279 (1) 

qacH quaternary ammonium compound resistance protein  FJ160769 (1) 

qacI quaternary ammonium compound resistance protein  HQ875011 (1) 

qacG  quaternary ammonium compound resistance protein FJ950725 (1) 

emrE efflux-multidrug resistance protein AIGY01000024 (1) 

mdfa 
multidrug efflux pump/Na(+):H(+) antiporter/K(+):H(+) 

antiporter 
Y08743 (1) 

sugE(c) SMR family transporter X69949 (1) 

sugE(p) SMR family transporter HQ023864 (1) 

ydgE multidrug transporter subunit NC_011745 (1) 

ydgF multidrug transporter subunit  NC_011745 (1) 

BW690_25775 S-(hydroxymethyl)glutathione dehydrogenase X73835.1 (2) 

slp (Acid Fitness 

Island) 
starvation lipoprotein NC_000913 (3) 

yhiF (Acid Fitness 

Island) 
putative DNA-binding transcriptional regulator NC_000913 (3) 

yhiD (Acid Fitness 

Island) 
inner membrane protein  NC_000913 (3) 

hdeB (Acid 

Fitness Island) 
periplasmic acid stress chaperone NC_000913 (3) 

hdeA (Acid 

Fitness Island) 
acid stress chaperone NC_000913 (3) 

hdeD (Acid 

Fitness Island) 
acid-resistance membrane protein NC_000913 (3) 

gadE (Acid 

Fitness Island) 
DNA-binding transcriptional activator  NC_000913 (3) 

yhiU (Acid Fitness 

Island) 
multidrug efflux pump membrane fusion protein  NC_000913 (3) 

yhiV (Acid Fitness 

Island) 
multidrug efflux pump RND permease  NC_000913 (3) 

gadW (Acid 

Fitness Island) DNA-binding transcriptional dual regulator  
NC_000913 (3) 

gadY (Acid 

Fitness Island) 
small regulatory RNA  NC_000913 (3) 

gadX (Acid 

Fitness Island) 
DNA-binding transcriptional dual regulator  NC_000913 (3) 

gadA (Acid 

Fitness Island) 
glutamate decarboxylase A NC_000913 (3) 
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Virulence associated genes (VAGs) screened in this study 

Gene Gene description Accession no. Source Group 

afaB/afaC afimbrial-adhesin-encoding gene X76688.1 (4) adhesion 

afaE afimbrial-adhesin-encoding gene M12868 (5) adhesion 

bmaE M-agglutinin subunit M15677 (4) adhesion 

fimA type-1 fimbrial protein, A chain NC_000913.3 (6) adhesion 

fimC periplasm fimbrial chaperone protein CP004009.1 (7) adhesion 

fimH mannose-specific adhesin of type 1 fimbriae AJ225176 (4) adhesion 

focG F1C fimbriae subunit S68237 (4) adhesion 

gafD G-fimbrial lectin protein L33969 (4) adhesion 

iha bifunctional enterobactin receptor/adhesin protein GU725392 (8) adhesion 

papA fimbrial major pilin protein X61239 (4) adhesion 

papC fimbrial major pilin protein X61239 (4) adhesion 

papEF fimbrial major pilin protein X61239 (4) adhesion 

papG allele 

I 
fimbrial major pilin protein X61239 (4) adhesion 

papG allele 

I' 
fimbrial major pilin protein X61239 (4) adhesion 

papG-

allele-II 
fimbrial major pilin protein M20181 (4) adhesion 

sfa/foc S and F1C fimbriae subunits DQ301498 (4) adhesion 

sfaS S fimbriae minor subunit SfaS CP000243 (4) adhesion 

tsh temperature-sensitive hemagglutinin 
AY545598/ 

AF218073 
(9), (10) adhesion 

chuA outer membrane hemin receptor U67920.1 (11) 
iron 

uptake 

feoB ferrous iron transporter, protein B GU361604.1 (12) 
iron 

uptake 

fyuA yersiniabactin/pesticin outer membrane receptor Z38064 (13) 
iron 

uptake 

ireA iron-responsive element AE014075 (8) 
iron 

uptake 

iroD 
salmochelin siderophore system, ferric enterochelin 

esterase 
DQ381420.1 (14) 

iron 

uptake 

iroN iron outer membrane receptor AF449498 (14) 
iron 

uptake 

irp-2 yersiniabactin biosynthetic protein L18881.1 (15) 
iron 

uptake 

iucA N(2)-citryl-N(6)-acetyl-N(6)-hydroxylysine synthase X76100.1 - 
iron 

uptake 

iucD Iron uptake chelate protein D M18968.1 (16) 
iron 

uptake 

iutA aerobactin receptor X05874 (4) 
iron 

uptake 

sitA structural injection transglycosylase AY126440.1 (17) 
iron 

uptake 

flicC (H7) H7 variant of the Escherichia coli flagellin gene NC002695 (8) 
miscellan

eous 

ibeA invasion of brain endothelium AF289032 (4) 
miscellan

eous 

ompT Protease 7 41044 (8) 
miscellan

eous 

PAI(malX) pathogenicity islands (PAIs)  AF00372 (4) 
miscellan

eous 

cvi-cvaC 
colicin V immunity protein-colicin V synthesis 

protein 
X57525 (18) protectins 
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Gene Gene description Accession no. Source Group 

iss increased serum survival protein CP001855 (8) protectins 

kpsMT 

(K1) 
Kl capsular polysaccharide M57382.1 (4) protectins 

kpsMT II group 2 capsular polysaccharide units X53819.1 (4) protectins 

kpsMT III Group III capsular polysaccharides AF007777.1 (4) protectins 

neuC UDP–N-acetylglucosamine (GlcNAc) 2-epimerase M84026.1 (19) protectins 

ompA outer membrane protein A CP004009.1 (7) protectins 

rfc Escherichia coli O antigen polymerase gene U39042 (4) protectins 

astA arginine succinyltransferase AY545598 (10) toxins 

cdtB cytolethal distending toxin protein AJ508930 (20) toxins 

cnf-1 cytotoxic necrotizing factor U42629 (4) toxins 

hlyA hemolysin A M10133 (21) toxins 

hlyD hemolysin D 2128 (8) toxins 

hlyE hemolysin E AF052225 (22) toxins 

hlyF hemolysin F 14615 - toxins 

vat vacuolating autotransporter toxin X16664 (23) toxins 
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The separate Excel file for Table S1 and Table S3 containing the isolate information, 

phenotypic raw data on biocide and antibiotic susceptibility, virulence determinants, accession 

numbers of whole genome sequences, and in silico screening for biocide resistance 

determinants can be accessed under: 

https://www.mdpi.com/2076-2607/9/3/651/s1 
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Table S1: E. faecium study population  

Isolate ID species 
Vancomycin 

 resistance 

Isolation 

 source 

18-47-214 E. faecium VSE urine 

18-47-215 E. faecium VSE swab 

18-47-216 E. faecium VSE swab 

18-47-217 E. faecium VSE swab 

18-47-218 E. faecium VSE swab 

18-47-219 E. faecium VSE swab 

18-47-220 E. faecium VSE blood culture 

18-47-221 E. faecium VSE blood culture 

18-47-222 E. faecium VSE blood culture 

18-47-223 E. faecium VSE blood culture 

18-47-254 E. faecium VRE blood culture 

18-47-255 E. faecium VRE blood culture 

18-47-256 E. faecium VRE blood culture 

18-47-257 E. faecium VRE blood culture 

18-47-258 E. faecium VRE blood culture 

18-47-259 E. faecium VRE blood culture 

18-47-260 E. faecium VRE blood culture 

18-47-261 E. faecium VSE blood culture 

18-47-262 E. faecium VRE blood culture 

18-47-263 E. faecium VSE blood culture 

18-47-264 E. faecium VSE blood culture 

18-47-265 E. faecium VSE blood culture 

18-47-266 E. faecium VRE blood culture 

18-47-267 E. faecium VSE blood culture 

18-47-268 E. faecium VRE blood culture 

18-47-269 E. faecium VSE blood culture 

18-47-270 E. faecium VSE blood culture 

18-47-271 E. faecium VSE blood culture 

18-47-272 E. faecium VSE blood culture 

18-47-273 E. faecium VSE blood culture 

18-47-274 E. faecium VSE blood culture 

18-47-275 E. faecium VSE blood culture 

18-47-276 E. faecium VSE blood culture 

18-47-277 E. faecium VSE blood culture 

18-47-278 E. faecium VSE blood culture 

18-47-279 E. faecium VSE blood culture 

18-47-280 E. faecium VRE blood culture 

18-47-281 E. faecium VRE blood culture 

18-47-282 E. faecium VRE urine 

18-47-283 E. faecium VRE fecal samples 

18-47-284 E. faecium VRE blood culture 

18-47-285 E. faecium VRE blood culture 

18-47-286 E. faecium VRE blood culture 

18-47-287 E. faecium VRE blood culture 

18-47-288 E. faecium VRE blood culture 

18-47-289 E. faecium VRE blood culture 

18-47-290 E. faecium VRE blood culture 

18-47-291 E. faecium VRE blood culture 

18-47-292 E. faecium VRE blood culture 

18-47-293 E. faecium VRE blood culture 

18-47-294 E. faecium VSE blood culture 
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Isolate ID species 
Vancomycin 

 resistance 

Isolation 

 source 

18-47-295 E. faecium VSE blood culture 

18-47-296 E. faecium VSE blood culture 

18-47-297 E. faecium VSE blood culture 

18-47-298 E. faecium VSE blood culture 

18-47-299 E. faecium VSE blood culture 

18-47-300 E. faecium VSE urine 

18-47-301 E. faecium VSE urine 

18-47-302 E. faecium VSE urine 

18-47-303 E. faecium VSE fecal samples 

18-47-304 E. faecium VRE swab 

18-47-305 E. faecium VRE fecal samples 

18-47-306 E. faecium VSE blood culture 

18-47-307 E. faecium VSE blood culture 

18-47-308 E. faecium VSE blood culture 

18-47-309 E. faecium VSE blood culture 

18-47-310 E. faecium VRE blood culture 

18-47-311 E. faecium VRE blood culture 

18-47-312 E. faecium VRE blood culture 

18-47-313 E. faecium VRE blood culture 

18-47-314 E. faecium VRE blood culture 

18-47-315 E. faecium VRE blood culture 

18-47-316 E. faecium VRE blood culture 

18-47-317 E. faecium VRE blood culture 

18-47-318 E. faecium VRE blood culture 

18-47-319 E. faecium VRE blood culture 

18-47-320 E. faecium VSE blood culture 

18-47-321 E. faecium VSE blood culture 

18-47-322 E. faecium VSE blood culture 

18-47-323 E. faecium VSE blood culture 

18-47-324 E. faecium VSE blood culture 

18-47-325 E. faecium VSE blood culture 

18-47-326 E. faecium VRE urine 

18-47-327 E. faecium VRE fecal samples 

18-47-328 E. faecium VRE swab 

18-47-329 E. faecium VRE blood culture 

18-47-330 E. faecium VSE blood culture 

18-47-331 E. faecium VSE blood culture 

18-47-332 E. faecium VRE blood culture 

18-47-333 E. faecium VRE blood culture 

 

Abbreviations: E. = Enterococcus, VRE = vancomycin resistant E. faecium, VSE = 

vancomycin susceptible E. faecium    
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7 Appendix I 

7.1 Table 1: Overview on reviewed individual tests for each substance according to exposure frequency and use of pure substance / biocidal product  

  Biguanides Phenol derivatives QACs 

Aldehydes  Alkylamines Alcohols 

Chlorine- 

releasing 

agents 

Peroxides 
 

Number (n) CHX  PHMB Triclosan  
Hexachloro-

phene  

Benzyl-group 

compounds other QACs Ʃ  

A: Multiple exposure to pure substances 

Individual tests 216 59 233 76 186 202 n.t. 16 n.t. 23 8 1019 

Adapted isolates (FC ≥ 4) 110 14 81 25 86 76 n.t. 0 n.t. 0 0 392 

Stable adaptations 44 3 49 6 26 23 n.t. 0 n.t. 0 0 151 

Unstable adaptations 53 9 19 19 59 49 n.t. 0 n.t. 0 0 208 

B: Multiple exposure to biocidal products 

Individual tests 4 16 n.t. n.t. 57 33 16 19 27 21 34 227 

Adapted isolates (FC ≥ 4) 4 0 n.t. n.t. 6 4 0 5 0 0 0 19 

Stable adaptations 4 0 n.t. n.t. 0 0 0 3 0 0 0 7 

Unstable adaptations 0 0 n.t. n.t. 0 0 0 2 0 0 0 2 

C: Single exposure to pure substances 

Individual tests 18 n.t. 20 n.t. 37 n.t. n.t. 4 n.t. 15 6 100 

Adapted isolates (FC ≥ 4) 6 n.t. 19 n.t. 6 n.t. n.t. 0 n.t. 0 0 31 

Stable adaptations 4 n.t. 19 n.t. 0 n.t. n.t. 0 n.t. n.a. n.a. 23 

Unstable adaptations 2 n.t. 0 n.t. 2 n.t. n.t. 0 n.t. n.a. n.a. 4 

D: Single exposure to biocidal products 

Individual tests n.t. n.t. n.t. n.t. n.t. n.t. 8 6 n.t. n.t. 9 23 

Adapted isolates (FC ≥ 4) n.t. n.t. n.t. n.t. n.t. n.t. 0 0 n.t. n.t. 0 0 

Stable adaptations n.t. n.t. n.t. n.t. n.t. n.t. 0 0 n.t. n.t. 0 0 

Unstable adaptations n.t. n.t. n.t. n.t. n.t. n.t. 0 0 n.t. n.t. 0 0 

Summary: Total number of individual tests (n) per substance class 

Individual tests 238 75 253 76 280 235 24 45 27 59 57 1369 

Adapted isolates (FC ≥ 4) 120 14 100 25 98 80 0 5 0 0 0 442 

Stable adaptations 52 3 68 6 26 23 0 3 0 0 0 181 

Unstable adaptations 55 9 19 19 61 49 0 2 0 0 0 214 

References (see 7.2) 1-25 1,3,4,6,19,26 
3,4,6,8,16,18,22,27

-44 
30 

1-

4,8,16,17,20,21,23,24, 

30,38,45-59 

1,3-7,11,14,45,60-63 8,38,64-67 
2,51,60,65,68, 

69 
8,46,70,71 

8,24,51,68,

72-78 

8,16,22,38

,39,51,66,

67,75,76, 

78 

 

FC= fold change, n.t. = not tested 
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