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Summary

Summary

Biocides are applied to control harmful organisms. Especially the use of microbicides as
disinfectants is a vital tool to prevent the spread of multidrug-resistant human pathogenic
bacteria. Due to the increased use of disinfectants in recent years, concerns have been raised
about biocide tolerance and the development of antibiotic cross-resistance. In vitro studies
indicate biocide use as a risk factor for the emergence of antibiotic resistance. Still, a causal
link between biocide usage and antibiotic resistance development in environmental settings
needs to be verified.

Thus, this thesis pursued three main objectives (I-111). The controversial current knowledge on
the potential of bacteria to develop biocide tolerance and/or antibiotic resistance in response to
biocide exposure was analyzed (objective I). Potential associations between biocide tolerance
and antibiotic resistance, and underlying genetic determinants in field isolates were examined
(objective 11). The final aim of this thesis was to develop a ready-to-use test system enabling
fast and accurate biocide susceptibility testing of bacteria (objective Il1I).

For the first aim, 78 in vitro biocide adaptation studies were evaluated. While literature
demonstrated the general linkage between biocide exposure and antimicrobial cross-resistance,
the potential of biocide—induced resistance development varied largely between biocides,
bacterial target organisms, and experimental settings. Stable adaptation to biocides as well as
altered antibiotic susceptibility profiles was frequently reported for biguanides, phenols, and
quaternary ammonium compounds (QACS).

For the second aim, comprehensive analyses were conducted of isolates from food (Listeria
monocytogenes, n=93), livestock (Escherichia coli, n=93), and clinical environments
(Enterococcus faecium, n=90) in Germany. Biocide and antibiotic susceptibility were
determined for all isolates by broth microdilution methods according to ISO 20776-1. To
differentiate susceptible isolates from those with reduced susceptibility to biocides, minimum

inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) representing
\Y



Summary

95% of the tested population (MICes, MBCgs values) served as tentative epidemiological cut-
offs. Underlying genetic determinants were detected by whole genome sequencing for
L. monocytogenes and E. coli. The overall proportion of isolates with reduced biocide
susceptibility was relatively low, and statistically significant phenotypic associations to
antibiotic resistance were not found. However, genotypic associations were observed in E. coli.
Biocide tolerance conferring genes co-located close to antibiotic resistance genes on plasmids
were identified, highlighting the potential for co-selection. Biocide susceptibility of all tested
isolates was well below in-use concentrations. That is why they are defined as non-resistant.
Identified tolerances were associated with genetic determinants in several cases. Reduced
susceptibility to QACs in L. monocytogenes could be mainly traced back to genes coding for
small multidrug-resistance family efflux pumps. E. coli isolates with reduced formaldehyde
susceptibility carried the gene coding for the degradative enzyme glutathione- and NAD-
dependent formaldehyde dehydrogenase.

In contrast to antibiotic susceptibility testing, no generally accepted, standardized biocide
susceptibility test methods are available. Thus, the third aim was to establish a reliable, high-
throughput screening system using vacuum dried biocide microtiter plates to identify bacteria
resistant to cationic biocides frequently used in hospital settings. The developed test system
was validated against the broth microdilution method using freshly prepared stocks of biocides.
Biocide plates were evaluated for gram-positive Enterococcus spp. as well as gram-negative
E. coli. This test system has been shown to provide highly reliable results. Subsequently, the
test method served for the third susceptibility study of E. faecium from the clinical environment.
The test system proved to be a fast and easy-to-handle surveillance tool to identify biocide
tolerant isolates. Monitoring and early identification of clinical isolates tolerant to disinfectants
applied in hospitals could help to adapt hygiene measures and control nosocomial infections

while simultaneously reducing the frequency of antibiotic treatment.

VI



Zusammenfassung

Zusammenfassung

Biozide werden zur Bekdampfung von Schadorganismen eingesetzt. Insbesondere der Einsatz
von Mikrobiziden als Desinfektionsmittel ist eine wichtige MalRnahme, um die Ausbreitung
multiresistenter, humanpathogener Bakterien zu verhindern. Aufgrund des verstarkten
Einsatzes von Desinfektionsmitteln in den letzten Jahren sind jedoch Bedenken hinsichtlich
Biozidtoleranzen und der Entwicklung von Antibiotikakreuzresistenzen aufgekommen. In vitro
Studien deuten darauf hin, dass Biozide Antibiotikaresistenzen foérdern. Ein kausaler
Zusammenhang zwischen der Verwendung von Bioziden und der Entwicklung von
Antibiotikaresistenzen in der Umwelt muss jedoch noch verifiziert werden.

Daher verfolgte die These drei Hauptziele (I-111). Es wurde das aktuelle, kontroverse Wissen
Uber das Potenzial von Bakterien Biozidtoleranzen und/oder Antibiotikaresistenz unter
Biozidexpositionen auszubilden analysiert (Ziel 1). Des Weiteren wurden mogliche
Zusammenhange zwischen Biozidtoleranz und Antibiotikaresistenz sowie die zugrunde
liegenden genetischen Determinanten in Feldisolaten untersucht (Ziel 11). Zudem sollte in
dieser Arbeit ein gebrauchsfertiges Testsystem entwickelt werden, welches eine schnelle und
genaue Biozidempfindlichkeitsprifung von Bakterien ermdglicht (Ziel 111).

Zur Erfillung der ersten Zielstellung wurden 78 in vitro Biozidadaptionsstudien ausgewertet.
Wahrend die Literatur den allgemeinen Zusammenhang zwischen Biozidexposition und
antimikrobieller Kreuzresistenz belegt, variierte das Potenzial der biozidinduzierten
Resistenzentwicklung stark zwischen Bioziden, bakteriellen Zielorganismen und
experimentellen Bedingungen. Stabile Anpassung an Biozide sowie verdnderte
Antibiotikaempfindlichkeitsprofile wurden h&ufig fir Biguanide, Phenole und quaterndre
Ammoniumverbindungen (QACSs) berichtet.

Fur das zweite Ziel wurden umfassende Analysen durchgefihrt, die Isolate aus Lebensmittel-
(Listeria monocytogenes, n=93), Nutztier-(Escherichia coli, n=93) und klinischer Umgebung

(Enterococcus faecium, n=90) in Deutschland einschlossen. Die Biozid- und
VIl



Zusammenfassung

Antibiotikaempfindlichkeit wurde fir alle Isolate mittels Mikrodilutionsverfahren gemaf 1SO
20776-1 bestimmt. Um empfindliche Isolate von solchen mit verminderter
Biozidempfindlichkeit zu unterscheiden, dienten minimale Hemmkonzentrationen (MIC) und
minimale bakterizide Konzentrationen (MBC), die 95% der getesteten Population
représentieren (MIC95-, MBC95-Werte), als vorlaufig abgeleitete epidemiologische Cut-Off-
Werte. Zugrundeliegende genetische Determinanten wurden mittels Ganzgenomsequenzierung
fiir L. monocytogenes und E. coli nachgewiesen. Der Gesamtanteil der Isolate mit reduzierter
Biozidempfindlichkeit war relativ gering und es wurden keine statistisch signifikanten
phanotypischen Assoziationen zur Antibiotikaresistenz gefunden. Allerdings wurden bei E. coli
genotypische Assoziationen beobachtet. Biozidtoleranz verleihende Gene wurden in der Néhe
von Antibiotikaresistenzgenen identifiziert, die auf Plasmiden kolokalisiert sind, was das
Potenzial fiir eine Ko-Selektion hervorhebt. Die Biozidempfindlichkeit aller getesteten Isolate
befand sich deutlich unter den in der Praxis verwendeten Konzentrationen. Daher wurden diese
Isolate als nicht resistent definiert. Identifizierte Toleranzen wurden in mehreren Féllen mit
genetischen Determinanten in Verbindung gebracht. Eine reduzierte Empfindlichkeit
gegeniiber QACs in L. monocytogenes konnte hauptsachlich auf Gene zuriickgefuhrt werden,
die fur die Small Multidrug Resistance — Familie kodieren. E. coli-Isolate mit reduzierter
Formaldehydempfindlichkeit trugen ein Gen, welches fiir das degradierende Enzym der
Glutathion- und NAD-abhangige Formaldehyd-Dehydrogenase kodiert.

Im Gegensatz zur Antibiotika-Empfindlichkeitsprifung gibt es fur Biozidempfindlichkeitstests
keine standardisierten Methoden. Daher wurde als drittes Ziel ein zuverlassiges Screening-
System etabliert, das auf vakuumgetrockneten Biozidmikrotiterplatten basiert und Bakterien
identifiziert, die reduzierte Empfindlichkeiten gegeniber kationischen Bioziden aufweisen.
Diese  vakuumgetrockneten  Biozidplatten wurden mit Hilfe von etablierten
Mikrodilutionsmethoden unter Verwendung frisch hergestellter Biozidlésungen validiert. Die

Biozidplatten wurden sowohl fiir gram-positive Enterococcus spp. als auch flir gram-negative
VIl



Zusammenfassung

E. coli ausgewertet. Insgesamt konnte nachgewiesen werden, dass dieses Testsystem sehr
zuverlassige Ergebnisse lieferte. AnschlieBend diente die Testmethode fiir die dritte
Empfindlichkeitsstudie von E. faecium aus dem klinischen Umfeld. Das Testsystem erwies sich
als ein schnelles und einfach zu handhabendes Uberwachungsinstrument zur Identifizierung
biozidtoleranter Isolate. Die Uberwachung und frithzeitige ldentifizierung von klinischen
Isolaten, die gegeniiber den in Krankenhdusern eingesetzten Desinfektionsmitteln tolerant sind,
konnte dazu beitragen, HygienemaRnahmen anzupassen und nosokomiale Infektionen zu

kontrollieren sowie gleichzeitig die Haufigkeit von Antibiotikabehandlungen zu reduzieren.



Introduction — Background

1 Introduction — Background

1.1 Importance of disinfection in the era of multidrug-resistance

Antimicrobial resistance (AMR) has become a 21st-century global health threat. Limiting its
emergence and further spread is one public health priority worldwide. The global action plan
on AMR by the World Health Organization in 2015 recommend the prudent use of
antimicrobial compounds, preventing their unnecessary use, and reducing the spread of
infections through effective prevention, sanitation, and hygiene measures (1). Effective
disinfection is considered as one of the key pillars in the multi-barrier approach preventing the

dissemination of multi-drug-resistant pathogens (2, 3).

1.2 Biocides as part of disinfectants

Cleaning and disinfection (C&D) are principally considered as combination methods to
maintain the hygienic status. In general, cleaning is defined as the removal of soiling. In
contrast, disinfection describes chemical, thermal or physical processes aiming to reduce
microorganisms to a level (approx. reduction of the microbiological load of 2-4 logio) that the
risk of infection or transmission is minimized (4, 5). Adequate cleaning is a crucial prerequisite
for disinfection since disinfection without prior cleaning is almost ineffective. Dried films of
organic matter (e.g., blood, excreta) may prevent the penetration of a disinfectant and are
considered one of the most important environmental factors influencing disinfectant activity
(6). Biocides form the basis for chemical disinfectants to ensure the hygiene status of different
environments such as food processing, animal husbandry, and clinical settings (7). The
authorization of biocides used in different applications is regulated in the EU Biocidal Products
Regulation (BPR Regulation (EU) No 528/2012). Biocides used as disinfectants belong to main
group 1 and are divided into five product types (PT) such as for human hygiene (PT 1),

disinfectants and algaecides not intended for direct application to humans or animals (PT 2),
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veterinary hygiene (PT 3), food and feed area (PT 4), and drinking water (PT 5) (ANNEX V,
BPR Regulation No 528/2012 (8)).
To implement hygiene measures, different legal frameworks and concepts must be considered

for food production facilities, livestock industry, and clinical environments.

1.2.1 Regulations in food production environments

As one impressive example for food processing environments, the U.S. Interagency Retail Lm
Risk Assessment estimated that the predicted risk for infection with Listeria monocytogenes
from the consumption of ready-to-eat products sliced or prepared in retail deli departments
would increase by approximately 41% if wiping, washing, and sanitizing activities were not
performed (9).

In Germany, three EU Regulations provide the legal framework to regulate important aspects
of food hygiene. General hygiene requirements for all food business operators are described in
Regulation (EC) No 852/2004 on the hygiene of foodstuffs (10). Regulation (EC) No 853/2004
lays down specific hygiene rules for food of animal origin (11), while (EC) No 854/2004
provides specific rules for the organization of official controls on products of animal origin
intended for human consumption (12). Additionally, Regulation (EC) No 2073/2005 provides
the basis for microbiological criteria for foodstuffs (13). Regulation (EC) No 852/2004 states,
that all businesses in the food industry are obligated to implement a Hazard Analysis and
Critical Control Points (HACCP) system. The HACCP system is a quality control and assurance
system in all production processes in the food industry and among others, it regulates the use
of food industry disinfectants. In Germany, the DIN 10516 - Food hygiene — Cleaning and
disinfection (4) is related to Regulation (EC) No 852/2004 and serves as a guide to ensure
hygienically safe conditions in food facilities. In general, the workflow follows cleaning,
rinsing, disinfection, rinsing, and drying (4). Chemical disinfectants for food and feed areas

belong to PT 4 of the EU BPR. The most comprehensive overview on effective chemical
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disinfectants for the food sector has been published by the Industrial Hygiene and Surface
Protection Association (Industrieverband Hygiene & Oberflachenschutz [IHO]) (14), and the
German Association of Veterinary Medicine [DVG] (15). Currently, there are no absolute
numbers on the use of various biocides. Frequently, listed disinfectants contain alcohols,
aldehydes, chlorine-releasing compounds, quaternary ammonium compounds (QACs), or

peracids (14).

1.2.2 Regulations in livestock industry

In modern animal husbandry, hygiene is an indispensable component of operational
management. Even though, a total number of infection reduction rates is not published for farm
animals it serves primarily to prevent the entry of diseases, to reduce the spread of multi-
resistant bacteria, and to ensure optimal performance conditions at the beginning of the food
chain from farm to fork (5, 16). In 1995, Fotheringham reviewed that cleaning alone removes
99% of bacteria under experimental conditions, whereas in farm environments, this figure is
likely to be approximately 90%. Disinfection removes further 6-7% of bacteria in practice, and
yet another 1-2% reduction can be obtained by fumigation (17). Various cleaning and
disinfection (C&D) measures are available to implement favorable hygiene on the farm. As the
contribution of animals as a reservoir of multi-resistant human pathogens has gained special
attention, the application of HACCP principles, initially developed for the food processing
plants, is also recommended to ensure safety along the entire food chain (18). The type of
measures depends on the company-specific circumstances and the respective area of
application. As mentioned before, criteria are laid down in Regulations (EC) 853/2004 and (EC)
854/2004. The German Agricultural Society leaflet 364 (DLG, Deutsche Landwirtschafts-
Gesellschaft) (5) provides general instructions on hygiene technology and management for
C&D of stable systems. Complete elimination of all germs, so-called sterilization, is neither

possible nor necessary in agricultural practice. Almost all routine procedure protocols in animal
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husbandry include chemical disinfection (5). Corresponding disinfectants belong to PT 3 of EU
BPR. In Germany, approved disinfectants are listed by the DVG (15), the German Agricultural
Society (Deutsche Landwirtschafts-Gesellschaft [DLG]) (19), or IHO (14), which are often
used as guides in animal husbandry. The most listed active ingredients of these disinfectants

include aldehydes, cresols, organic acids, oxidizing agents, and QACs (15).

1.2.3 Regulations in clinical environments

In addition to hand hygiene and proper reprocessing of medical devices, C&D of surfaces is of
increasing importance in hospitals as part of a multi-barrier approach for preventing infection
(20). Grabsch and colleagues, for example, showed that by implementing a hospital-wide
improvement program, including bleach-based C&D measures, significant reduction of newly
identified vancomycin-resistant enterococcus (VRE) colonization (25%) and reduction of
environmental contamination (66%) could be observed. Furthermore, newly diagnosed VRE
bacteremia in patients during hospitalization decreased by 83% (21).

Since 2001, the German Hospital Hygiene and Infection Prevention Commission (KRINKO) is
legally anchored in §23 of the German Protection Infection Act (Infektionsschutzgesetz [IfSG]).
The KRINKO addresses general requirements for C&D of surfaces in the healthcare sector.
Surface C&D measures need to be established individually depending on a) the probability of
direct contact, b) the possible contamination with pathogens, and c) the degree of clinically
relevant immunosuppression of patients. Workplace-related C&D measures are generally
defined in standard operating procedures of hygiene plans providing detailed information on
procedures and responsibilities of the staff (22, 23). The procedures of the C&D plan need to
be established based on specifications of the IfSG (24) and the German Act on Medical Devices
(MPG) (25). Occupational Health and Safety Regulations and versatile regulations complement
certain specifications (8, 26-31). Suitable disinfectants recommended for use in health care

sectors in Germany are listed by the Association for Applied Hygiene (VAH) (32) and the
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Robert Koch-Institute (RKI) (33). These chemical disinfectants belong to PT 2 of the EU BPR.
Most often listed surface disinfectants contain alcohols, aldehydes, biguanides, chlorine-
releasing compounds, bleach, or oxygen-releasing compounds (32, 33). Furthermore, biocidal
agents like QACs, biguanides, phenolic compounds, and bipyridines are common ingredients
reported to be used as disinfectants, or antiseptics (34). In contrast to disinfectants, antiseptics

are applied to body surfaces to eradicate colonization with pathogens (35).

1.2.4 Modes of action of biocides used in food, livestock, and healthcare industries

General considerations on the efficacy of surface disinfectants include the modes of action of
the active substance and its interaction with the organisms. An overview of the modes of action
to bacteria is given in Figure 1 (adapted from Merchel Piovesan Pereira et al. (36)) and Table 1
for relevant classes of biocides. So far, biocidal mechanisms of action are not fully understood
and appear to be diverse. Most biocides affect multiple targets, whereby effects on the bacterial
membrane are most frequently described. Any alteration in the outer membrane of gram-
negative bacteria e.g., changing the hydrophobic properties, or porin-related mutations (leading
to loss or structural changes) can contribute to resistance. This critical layer is lacking in gram-
positive bacteria, which makes gram-negative bacteria less susceptible to antibiotics and
biocides (37-39). Some biocides such as biguanides or QACs have lipophilic domains in their
molecules, allowing close interactions with cell membrane phospholipids (40). Depending on
the concentration, biocides may have bacteriostatic or bactericidal effects. Concentration-

dependent effects are marked in Table 1.
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Figure 1: Modes of action for relevant classes of biocides.
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The figure was adapted from Merchel Piovesan Pereira et al. (36). Mechanisms are illustrated for gram-
negative bacteria. They are also applicable to gram-positive species. QACs = quaternary ammonium

compounds, ROS = reactive oxygen species

Table 1: Mode of action reported for relevant biocide classes

Compounds Mode of action Cellular response Reference
Alcohols

Ethanol Protein denaturation by disruption of Disruption of

hydrogen bonds? cytoplasmic membrane? (41.43)
Isopropanol DNA precipitation by removing Leakage of izntracellular

hydration shell (hydrogen bonding)? components
Propan-1-ol

Aldehydes

Alkylation and cross-linking of amino, .

Formaldehyde sulphydryl, and hydroxyl groups of Loss _of gssentlal cell (44, 45)
: S function
Glutaraldehyde proteins and nucleic acids
Alkylamines
N-(3-aminopropyl)-N- Membrane destabilization by surfactant  Increased membrane (46)
dodecylpropane-1,3-diamine properties permeability
Biguanides

Bridge formation between
Chlorhexidine phospholipids Reduction of membrane

Displacement of divalent cations fluidity

Coagulati(;n and precipitation of the Destrtl;lctlon of (47-49)

o DNA interaction/chromosome Leakage of intracellular

Polyhexamethylene biguanide  ondensation components?
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Compounds Mode of action Cellular response Reference
Bipyridines
Binding to lipid cell membrane
. . Loss of membrane
components, like salts of fatty acid functionality
Octenidine dihydrochloride glycerol phosphates . (50)
. . . Leakage of intracellular
Interaction with enzymatic systems and
A compounds
polysaccharides in cell walls
Chlorine-releasing compounds
Destruction of cell
Chlorine dioxide protein activity
Potent. OXIdIZ(.éI’S of organic material Disruption of (35, 51)
DNA interaction phosphorylation and '
Sodium hypochlorite membrane-associated
activities
Peroxides
Hydrogen peroxide Strong (?X|d|zmg effects - -
Production of free hydroxyl radicals Loss of essential cell (35)
Peracetic acid Destruction of DNA, proteins, and function
lipids
Phenol derivatives
Inhibition of electron
transport chain and
Inhibition of dehydrogenase enzymes! respiration® and cellular
lorooh Protein denaturation? metabolism* ,
Hexachlorophene Damage or disruption of the membrane? ~ Leakage ofzintracellular (52-54)
Coagulation of cytoplasm? compounds
Inhibition of release of
intracellular material®
Disruption of membrane potential and Loss of membrane
the membrane permeability of functionality
P-chloro-m-cresol cytoplasmic membrane Loss of vital cell (55)
Cytoplasm coagulation? functions?
Imitation of the natural substrate of type Inhibition of b ial
11 fatty acid synthase enoyl-reductase! nni |t_|on 0 a(_:terla
Triclosan _, lipid biosynthesis! (56-59)
Intercalation into the cell membrane? 5
. Cell death
Oxidizing effects
Quaternary ammonium compound
Benzyl group containing
compound Degradation of proteins and nucleic
Benzalkonium chloride acids Destruction of
Benzethonium chloride Disorganization of the membrane due to  membrane
Other QACs _ strong positive charge and hydrophobic ~ osmoregulation* (35, 49,
Dr:lde(_:élldlm dett?yl a_rgmomum regions Leakage of intracellular 60)
chloride and bromide Inhibition of respiratory enzymes? compounds?

Cetrimide
Cetylpyridinium chloride
Cetyltrimethylammonium
bromide

Dissipation of proton motive force and
oxidative stress!

Lysis of the cell wall?

1 = low concentration (bacteriostatic activity), 2 = higher concentration (bactericidal activity)
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1.3 Bacterial tolerance to biocides

1.3.1 Definitions associated with biocide tolerance

Due to the indiscriminate use of biocides in different settings, the awareness of various hazards
such as bacterial adaptation, as well as cross- and co-resistance development, increased (7, 41,
61). This includes reduced susceptibility to used biocidal substances themselves, other biocides,
or antibiotics. Furthermore, it is assumed that subinhibitory concentrations of biocides may lead
to mutation propagation, horizontal gene transfer, or recombination events within bacterial
populations (57, 62, 63).

The term “tolerance” to biocides is associated with phenotypes able to survive biocidal stress.
According to the Scientific Committee on Emerging and Newly Identified Health Risks
(SCENIHR), tolerance is defined as “reduced susceptibility to an antimicrobial molecule
characterized by a raised minimal inhibitory concentration (MIC), or a situation in which a
preservative system no longer prevents microbial growth” (7). Such situations are often linked
to reversible physiological alterations, including biofilm formation, expression of small colony
variants, or slow growth.

In contrast to tolerance, resistance describes a situation where a strain is not killed or inhibited
by in-use concentrations (7). The ability to resist such in-use concentration is often linked to
genetic mutations. Co-selection describes the selection pressure exerted by one antimicrobial
agent on a single organism to different antimicrobial compounds. To survive, the co-selected
organism uses strategies of cross- or co-resistance (64). In cross-resistant organisms, resistance
to the biocide itself is accompanied by resistance to other biocides or antibiotics due to the same
resistance mechanism (40). Co-resistant bacteria display resistance to the biocide itself and
unrelated antimicrobial substances due to physical linkage of the genetic resistance

determinants or their coordinated expression (65).
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1.3.2 Mechanisms leading to biocide tolerance
So far, mechanisms contributing to biocide tolerance are not fully understood. An overview of
already described tolerance mechanisms to different biocide classes used in the described

settings is given in Figure 2 (adapted from Merchel Piovesan Pereira et al. (36)) and Table 2.

Membrane/ cell wall modification:
Alcohols

Biguanides Biofilm formation:

Chlorine releasing compounds Alcohols
Phenol derivatives Aldehydes
QACs Biguanides
) Chlorine releasing compounds
Cell surface charge \ / Peroxides
Biguanides ‘ 5 Phenol derivatives
QACs

e o/ QACs

Enzymatic degradation
Aldehydes

Phenol derivatives
QACs

Unspecific cell response
Peroxides

Mobile genetic elements
Aldehydes
QACs

@@

Isoenzymes/ Target modification
Phenol derivatives

Cytoplasm
Plasma membrane

increased
efflux

Efflux pump modification Peptidoglycan
Aldchydes Periplasm
Biguanides Outer membrane
Chlorine releasing compounds decreased e
Peroxides infMlux
Phenol derivatives . A
QACs Porin modification
QACs

Figure 2: Tolerance mechanisms for relevant classes of biocides in gram-positive and gram-negative bacteria. The
figure was adapted from Merchel Piovesan Pereira et al. (36). QACs = quaternary ammonium compounds, OxyR =
bacterial peroxide sensor

Table 2: Tolerance mechanisms reported for relevant biocide classes

Compounds Tolerance mechanism Cellular response Reference
Alcohols
Ethanol Alteration of the fatty acid
composition
Enhanced biofilm formation (42, 66-
Isopropanol capacity Decreased uptake 7'1 )

Increased growth rates
accompanied by diverse

Propan-1-ol A
genotypic changes
Aldehydes
Biofilm formation
Formaldehyde Enzymatic degradation Decreased uptake
Increased expression of Destruction of biocidal (72-74)
multidrug-resistance efflux compounds
Glutaraldehyde pumps Increased efflux
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Compounds Tolerance mechanism Cellular response Reference
Alkylamines
N-(3-aminopropyl)-N-
dodecylpropane-1,3- No information available No information available
diamine
Biguanides
Alteration of the cell envelope
Biofilm formation
Chlorhexidine Changes of
Cell surface hydrophaobicity
Membrane rigidity Reduced uptake (74-79)
Lipopolysaccharide expression Increased efflux
Outer membrane profile
Polyhexamethylene including net negative charge
biguanide Upregulation of efflux pump
activity
Bipyridines
Octenidine No information available No information available
dihydrochloride
Chlorine-releasing compounds
Chlorine dioxide
Biofilm formation
Changed cell morphology and Reduced uptake
ultrastructure
Increased efflux (74, 80-
Increased cell surface 82)
hydrophobicity
Modification of efflux pumps
Sodium hypochlorite
Peroxides
Increased efflux
Hvdrogen peroxide Prevention of the formation of
ydrogen p Biofilm formation radicals
Unspecific cell responses (e.g., Deactivation of free radicals
induction of SOxRS system, before damage of biological (74, 83,
OxyR-regulon) molecules 84)
Peracetic acid Repairing of biomolecules
after damage
Reduced uptake
Phenol derivatives
Activation of efflux pumps
. . Increased efflux
Hexachlorophene Alteration of the bacterial cell (85)

wall and outer membrane
composition

Reduced uptake

P-chloro-m-cresol

No information available

No information available
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Compounds Tolerance mechanism Cellular response Reference

Biofilm formation
Enzymatic degradation

Increased fabl expression dueto ~ Destruction of the biocidal
mutation in the promoter region compound

Less affected isoenzymes like Further production of enoyl
_ FabK or FabV reductase for fatty acid (74, 85-
Triclosan Overexpression of efflux pumps biosynthesis 94)
(sigma factor mutations or Increased efflux
mutations in transcriptional Reduced uptake

regulators such as ramA, marA)

Point mutation in the triclosan
specific target encoding gene
fabl(enoyl-reductase)

Quaternary ammonium compound

Benzyl group containing  Acquisition of QAC specific
compound _ efflux pumps

Benzalkon!um chlor!de Biofilm formation
Benzethonium chloride

Change of
cell surface charge
Other QACs -
Didecyldimethy! hydrophobicity . . Increased efflux (36, 60,
ammonium chloride and structure and density of porins ~ Reduced uptake 90, 95-98)
bromide membrane compositions
Cetrimide Enzymatic degradation

Cetylpyridinium chloride
Cetyltrimethylammonium
bromide

Overexpression of innate efflux
pumps

1.3.3 Study types assessing biocide tolerance development

Different in vitro study types are used to investigate biocide tolerance development. The most
common experimental setup is based on multiple exposures of bacterial isolates to low or
moderately increasing concentrations of pure biocide substances until a significant increase of
the MIC of the tested substance is observed or for a predefined number of passages (85, 99,
100) . Based on in vitro studies, it is possible to assess the general bacterial ability to adapt to a
biocide of interest. These results need to be verified in field studies since in vitro experiments
do not cover the complex interplay between biocides and microbes in environmental settings.
Latest field studies investigated putative associations between biocide tolerance and antibiotic

cross-resistance by comparing susceptibility of bacterial isolates from different environments
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to certain antimicrobials. Especially statistical evaluation of biocide susceptibility and antibiotic
resistance data was used to identify associations between biocide tolerance and antibiotic
resistance (101-105). In contrast to antibiotic resistance, there are fundamental issues assessing
biocide tolerance because of the lack of epidemiological data that hampers the establishment of
appropriate breakpoints. Only a few studies defined and used epidemiological cut-offs
(ECOFFs) similar to antibiotic susceptibility evaluation for specific bacterial species and
selected biocides to differentiate between susceptible and tolerant isolates, enabling an
evaluation of biocide tolerance development (102, 104-107). In some studies, additional
molecular investigations were carried out to identify underlying mechanisms (104, 105, 108,

109).

1.4 Methods used for biocide susceptibility testing

Parameters such as the MIC and the minimum bactericidal concentration (MBC) are used to
assess biocide susceptibility. For antibiotic susceptibility testing, the MIC is used together with
pharmacokinetic and pharmacodynamic models to determine clinical breakpoints (S -
Susceptible, standard dosing regimen, | — Susceptible, increased exposure, R — Resistant) to
guide therapy (110). The MIC is defined as the lowest concentration (in mg/L) of an
antimicrobial compound that prevents visible growth of a microorganism under defined
conditions (111). Regarding biocide susceptibility, the MIC can be used as an indicator of
tolerance development as elevated MICs reflect concentrations that would otherwise lead to
inhibition of cell growth (7). However, it may provide limited information on the survival of
single bacterial cells towards in-use biocide concentrations. It may be helpful in combination
with other techniques such as the MBC used to measure biocide resistance (112). The MBC is
defined as the lowest concentration of an antimicrobial agent needed to kill 99.9% of the final
inoculum after incubation for 24 h under a standardized set of conditions described in CLSI

document M26-A (113). The determination of the MBC is considered a convenient method that

12



Introduction — Background

allows the comparison of lethality between wild-type (normal susceptibility) strain and
potentially resistant strains (112). Thus, MBC is deemed to be an indicator of biocide resistance
if compared to in-use concentration (7). While MIC and MBC testing of pure substances
provide information on biocide susceptibility in bacterial populations, efficacy tests of
disinfectants are carried out to prove the activity of disinfectants for specific conditions such as
concentration and contact time. Efficiency tests are mandatory for disinfectants and

prerequisites to register the product in the disinfectant lists of VAH, RKI, and DVG.

1.4.1 MIC determination

Techniques used to determine the MIC of biocides are based on antibiotic susceptibility test
procedures described in standard protocols such as 1SO 20776-1 or guidelines of the Clinical
and Laboratory Standards Institute MO7 (111, 114). Most frequently, the broth dilution test
system is used. Broth dilution uses liquid growth medium containing geometrically increasing
concentrations (typically two-fold dilution series) of the antimicrobial agent, which is
inoculated with a defined number of bacterial cells (approx. 5 x 10° CFU/mL) (114). The final
volume of the test defines whether the method is termed macrodilution (when a final volume
of > 2 mL is used) or microdilution (using microtiter plates with a final volume per well of
<500 pL). After incubation, increased turbidity or sediment indicates the growth of the
organisms. Dilution methods are contemplated as reference methods for in vitro susceptibility
testing and are also used to verify the performance of other susceptibility testing methods, such
as the agar diffusion method (115). The methods of antibiotic susceptibility testing have shown
that the main disadvantages of macrodilution are the effortful preparation of antimicrobial
solutions, which is error-prone due to manual agent solution preparation. Furthermore, it
requires a comparatively large amount of reagents and space (116). The advantage of the
microdilution method is thus the reproducibility due to standardized preparation

(mechanization) and the savings in reagents and space that result from the miniaturization of

13



Introduction — Background

the test system (116). Nevertheless, in any case, the final result is significantly influenced by

the approach, which must be carefully controlled if reproducible results shall be attained (114).

1.4.2 MBC determination

The MBC is identified after broth dilution (macro- or microdilution) by neutralizing and sub-
culturing of a sample from wells or tubes without visible microbial growth on non-selective
agar plates. When determining the MBC, the use of a neutralizing agent is vital to avoid an
overestimation of the lethal concentration (7). The number of surviving cells (CFU/mL) is
determined for each sample after 24h of incubation. MBC measurements by microdilution are
characterized as simple and straightforward. They permit many of strains/biocidal compounds

to be tested at the same time within 24 h, resulting in rapid data collection (112).

1.4.3 Test limitations

Besides a few attempts (117, 118), there are no standardized protocols and methods available
to evaluate bacterial susceptibility to biocides. Often the state of knowledge on the
methodological approach from antibiotic research is transferred to biocide susceptibility testing.
Numerous critical parameters that influence the results of MIC testing for biocides have been
reported, including the type of growth medium, plate material, and the inoculum preparation
method (112, 119). The lack of standardization impedes comparison of different biocide
susceptibility study results of field isolates and points towards the need for standard procedures
in the future that allow intra- and inter-laboratory comparability, and reproducibility (7, 120).
MBC suspension tests comprising neutralization and enumeration steps finally resulting in a
diluted bacterial suspension. Thus, in turn, affect the detection limit of surviving countable
organisms (112).

Furthermore, it needs to be considered that experimental conditions such as biocide
concentrations, exposure time, dilution, and bioavailability used for MIC and MBC testing do

not reflect in-use conditions (117). Nevertheless, the determined MIC and MBC values are

14



Introduction — Background

important first indicators of a changing biocide susceptibility development. Pursuing methods
like transcriptomic and whole genome sequence analysis can support these test results and

explore underlying mechanisms.
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2 Synopsis

2.1 Aims and hypotheses

According to EU BPR regulation (528/2012), biocides are supposed to deter, render harmless,
or destroy harmful organisms. Especially the use of microbicides as disinfectants is an essential
part to prevent the spread of multi-drug resistant human pathogenic bacteria. In vitro studies
indicate biocide use as a risk factor for the emergence of antibiotic resistance. Still, it remains
challenging to demonstrate a causal link between biocide usage and antibiotic resistance
development in environmental settings such as food production facilities, livestock industry,

and health care settings.

The first aim of this thesis was to analyze the controversial current knowledge on the potential
of bacteria to develop biocide tolerance or antibiotic resistance, or both, in response to biocide
exposure. The second aim was to examine biocide susceptibility profiles for specific bacteria
in chosen settings and to analyze potential associations between biocide tolerance and antibiotic
resistance as well as underlying genetic determinants. The third aim of this thesis was to develop
a ready-to-use test system enabling fast and accurate biocide susceptibility testing of bacteria

for setting-specific substances.

This thesis is finally dealing with the following hypotheses and biological questions.

Hypothesis 1: Bacterial exposure to biocides induces biocide tolerance and antibiotic resistance

In vitro adaptation studies were reviewed to answer the following questions:

I.  Which methods are currently described in the literature to investigate the adaptive
potential of bacteria to biocides?
ii.  Are gram-positive and gram-negative bacteria able to adapt similarly to biocides

during biocide exposure experiments?
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iii.  Are bacterial adaptations to biocides stable over time? What kind of differences can be
observed between gram-positive and gram-negative bacteria?
iv. Isit possible to draw general conclusions on the co-occurrence of antibiotic adaptation

triggered by in vitro biocide exposure experiments?

Hypothesis 2: Biocide tolerance is interlinked with antibiotic resistance in environments with

regular disinfection regimes

To gain more knowledge of biocide and antibiotic susceptibility profiles in environmental
settings in Germany, field isolates collected from German food (L. monocytogenes), livestock
(E. coli), and clinical environments (E. faecium) were investigated with focus to the following
questions (2.3.2 Publication 1-3 Biocide tolerance and antibiotic resistance in environments

with regular disinfection regimes)

i.  Are field isolates collected from environments with regular disinfection regimes less
susceptible to relevant biocides and antibiotics in comparison with reported data?
ii.  Can reduced susceptibilities to biocides and antibiotics be associated with
characteristic genetic determinants?
iii. Do reduced biocide susceptibilities (increased MIC/MBC values) of field isolates

correlate with reduced antibiotic susceptibilities (increased MIC values)?
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Hypothesis 3: A vacuum-dried microtiter plate system enables fast, accurate, and reproducible

routine biocide susceptibility testing

To promote the harmonization of standardized biocide susceptibility testing, a new ready-to-
use test system for the identification of cationic biocide susceptibility profiles was developed
and tested for gram-positive and gram-negative bacteria. The following questions were
addressed (2.3.3 Publication 3, Part 1 The need for reproducible routine biocide susceptibility

testing):

I.  Are biocide susceptibility profiles obtained with the newly developed vacuum-dried
microtiter plate system comparable to results from broth microdilution method with
freshly prepared biocide solutions?

ii. Isitpossible to interlink biocide susceptibility datasets obtained with the vacuum-
dried microtiter plate system with antibiotic susceptibility profiles to determine
possible co-occurrence of biocide tolerance and antibiotic co- or cross-resistance in
human pathogenic bacteria?

iii.  How can such test systems contribute to improve hygiene management regimes?
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2.2 Study design

To address the hypotheses and related questions, the thesis was designed as presented in Figure

3.

1. Review of in vitro biocide exposure studies

Analysis of current knowledge on biocide tolerance and antibiotic resistance development

2. Field studies from three different environments

Environment

Food
L. monocytogenes
n=93

Livestock

E. coli

n=93

(29 ESBL-/AmpC-

Phenotypic characterization Genotypic characterization

Broth microdilution with freshly prepared
biocide solutions

Whole genome Sequencing

- Biocide susceptibility
ECOFFs

- Genetic diversity

- Resistance genes
Antibiotic susceptibility tests according to .
ISO 20776-1 - Virulence genes

- Antibiotic resistance

producing E. coli,
64 NON-ESBL-/AmpC-
producing E. coli)

3. Development of a vacuum dried biocide microtiter plate-system

Method validation according to ISO 20776-2,
5 E.coli,5 Enterococcus spp.

Hospital Broth microdilution with vacuum dried
E. faecium biocide microtiter plates
n=90 - Biocide susceptibility

(42 VRE, 48 VSE) ECOFFs

Figure 3: Schematic structure of the study design

The study is divided into three parts. One to review the current state of research (1) and two with own
laboratory work and their evaluation (2/3).

ESBL= extended-spectrum B-lactamase, AmpC = AmpC R-lactamase, VRE vancomycin-resistant
enterococci, VSE= vancomycin-susceptible enterococci

First, the controversial current knowledge on the potential of bacteria to develop biocide
tolerance or antibiotic resistance, or both during biocide exposure were analyzed. For this
purpose, publications investigating bacterial in vitro exposure to biocides were reviewed. In
this review 78 biocide adaptation studies providing data of 1369 individual tests for planktonic
cells (see Appendix I) were included. All studies were evaluated regarding adaptation capability
of gram-positive and gram-negative bacteria to biocides, stability of the adaptation, and

adaptation to antibiotics. Analyzed publications investigated exposure to various biocides,
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including alcohols, aldehydes, alkylamines, biguanides, chlorine-releasing compounds,
peroxides, phenol derivatives, and QACs.

In a second step, potential associations between biocide and antibiotic susceptibility in field
isolates collected from German environments following a regular disinfection regime, including
food processing plants (L. monocytogenes, n=93, Publication 1), animal husbandry (E. coli,
n=93, Publication 2) and clinical environments (E. faecium, n= 90, Publication 3, Part 2) were
analyzed. Study populations of E. coli and E. faecium contained proportions of extended-
spectrum B-lactamase (ESBL, n=16) and AmpC B-lactamases producing (n=13) E. coli as well
as vancomycin-resistant E. faecium (n=42). Phenotypic biocide and antibiotic susceptibility
testing were performed for all isolate sets using broth microdilution assays according to 1SO
20776-1. Based on these data, tentative ECOFFs according to the procedures for antibiotics in
the EUCAST guidelines (121) for each dataset were defined, because there are currently no
criteria available to distinguish between biocide tolerant and susceptible isolates. Substance-
specific ECOFFs represented 95% of the tested bacterial population (MICgs or MBCgs).
Genotypic characterization was carried out for L. monocytogenes and E. coli using whole
genome sequence data. It included the analysis of phylogenetic relationships as well as the
determination of virulence, biocide, and antibiotic resistance-associated genes. Furthermore,
data gained by the phenotypic and genotypic analysis were statistically analyzed for
associations between reduced biocide susceptibility and antibiotic resistance in the different
environments.

In the third part of this thesis, a newly developed biocide susceptibility test based on microtiter
plates containing vacuum-dried cationic biocides was evaluated. This customized microtiter
plate was developed by MERLIN Diagnostika GmbH according to my specifications. During
the evaluation, results obtained with the new assay and the standard method (use of freshly
prepared biocide solutions in microdilution) under consideration of reproducibility and

essential agreement (EA) according to ISO 20776-2 for a set of E. coli (n=5) and enterococci
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(n=5) (Publication 3, Part 1) were compared. Subsequently, biocide susceptibility for 90
E. faecium from clinical environments using the herewith published test method was
determined. Obtained data served as the basis for the third epidemiological study (Publication
3, Part 2). The application of the developed ready-to-use test system enables the routine

surveillance of bacterial tolerance towards disinfectants in hospitals.
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2.3 Publications and extended discussions

2.3.1 Literature review: Impact of in vitro biocide exposure to bacterial tolerance and
antibiotic resistance

An extensive literature search was conducted to obtain the current status on biocide and

antibiotic resistance development. The focus was particularly on the ability of bacteria to adapt

to biocides, the stability of the adaptation and the adaptability to antibiotics during in vitro

biocide exposure assays.

2.3.1.1 Bacterial adaptation to biocides and adaptation stability
Data availability differed essentially between study types. However, the investigated datasets
indicate that biocide adaptation events and adaptation stability seem to be dependent on several

factors such as (i) experimental settings, (ii) tested substances, and (iii) bacterial properties.

(i) Experimental settings

In general, in vitro experiments could be classified as follows: a) multiple exposures to pure
substances; b) multiple exposures to biocidal products, c) single exposure to pure substances,
and d) single exposure to biocidal products (Hypothesis 1-i). Whereas multiple long-term
exposure studies intend to induce de novo tolerance development due to mutations, single
exposure experiments mainly interrogate the potential of an active substance or biocidal product
to select for tolerant geno- and phenotypes pre-existing in a bacterial population. Adaptation to
biocides during multiple exposures was slightly more frequently reported (33%; n=411) than
single exposure experiments (25%; n=31, Appendix 1)). However, stable adaptation was
substantially more often reported for single exposure (85%, n=23) than multiple exposure
experiments (43%, n=158). Interpretation of this observation remains difficult. It needs to be
noticed that this outcome may be primarily linked to the tested substances instead of the
experimental setting. A high proportion of single exposure experiments tested adaptation to

specific biocides such as triclosan, for which stable adaptations are frequently reported (93, 94,
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118, 122, 123). Nonetheless, the results might partially reflect the different approaches of both
methods as well. Single exposure experiments aim for the selection of pre-existing
subpopulations with reduced susceptibility to the tested substance. Thus, it seems explainable
that pre-existing subpopulations remain stable in their susceptibility profiles. In contrast,
multiple exposure experiments lead to gradual biocide adaptations due to mutations or
phenotypic adaptation, or both. As mutational adaptations are frequently accompanied by
fitness costs (40) and transient adaptation is often the result of a temporary cellular stress
response (124, 125), the lower proportion of stable mutants after multiple exposures compared
to single exposure is not astonishing. The stability of the adaptation events is an essential factor
for biocide tolerance development. Nevertheless, only a small number of studies investigated
this parameter (n=395 out of 1,369 individual tests).

(ii) Tested substances

Exposure to active ingredients of biocidal products helps to understand the effect of the active
compound on emerging resistance, whereas the use of biocidal product formulations reflects
actual use (126). Thus, the composition of the substance (pure substance vs. biocidal products)
is another vital factor to consider in biocide adaptation experiments. In most experiments,
bacteria were challenged via exposure to pure substances (82%, 1119 individual tests). This
data creates an imbalance with regard to comparison of adaptation outcomes after exposure to
pure substances and biocidal products. Overall, exposure to pure substances resulted more
frequently in bacterial adaptations (38%, n=423) compared to biocidal products (8%; n=19).
Stable adaptations after exposure to pure substances were reported for 174 individual tests
(45%). Only a few studies investigated the stability of adapted isolates obtained after exposure
to biocidal products (n= 9). Hence, trends cannot be observed. It is assumed that additional
ingredients of biocidal products may act synergistically, leading to reduced bacterial viability
and adaptation capacity (126). Stable adaptations to pure substances were frequently reported

for biguanides, phenolic compounds, and QACs, while they were less often described for
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aldehydes, alcohols, oxidizing agents, and chlorine-releasing compounds. Cationic biocides
like QACs and biguanides are membrane active agents interacting with the cell surface and
integrating into the cytoplasmic membrane (49). In low concentrations, they are bacteriostatic
and bacteria may adapt more easily due to cell membrane modifications like alterations of the
net negative charge (79), changes in cell membrane permeability (75), or the upregulation of
efflux pump activity (76, 127-129). In contrast, biocides with strong oxidizing effects like
peroxides act highly nonspecific in intracellular compartments. They are very effective due to
the production of free hydroxyl radicals interacting with intracellular DNA, proteins, and lipids
leading rapidly to cell death (35). Thus, chances to adapt due to unspecific stress responses may
be meager. The number of studies investigating adaptation to highly reactive substances has
been comparatively rare yet. This could create a bias concerning data interpretation and
assessment of biocide tolerance development.

(iii) Bacterial properties

A total of 756 individual tests of gram-negative and 613 individual tests of gram-positive
organisms were considered. While similar biocide adaptation frequencies in gram-positive and
gram-negative bacteria (33%; n=202 vs. 32%; n=240 respectively) were observed (Hypothesis
1-ii), the proportion of stability varied remarkably.

Stable adaptations were generally more frequently observed in gram-negative bacteria
(Hypothesis 1-iii). While 60% (n=127) of the stability tested gram-negative bacteria remained
stable, only 29% (n=54) stable adaptations could be recorded for gram-positive bacteria. Stable
adaptations may be attributable to the selection of mutants (130) containing genetic changes
without or with a minor impact on fitness costs. Elevated mutation frequencies have been
recently reported in natural and pathogenic gram-negative species like E. coli, S. enterica, and
P. aeruginosa. They were associated with greater antibiotic resistance levels compared to non-
mutators (131). If biocides may be similarly involved establishing mutator populations with

reduced antimicrobial susceptibility needs to be elucidated.
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Structural differences between gram-positive and gram-negative bacteria influence the
sensitivity to most antimicrobials. The outer membrane of gram-negative bacteria that is lacking
in gram-positive bacteria contributes to reduced susceptibility to biocidal compounds and
antibiotics (38, 39).

Mutations of various regions can contribute to tolerance in bacteria and lead to reduced
susceptibility. Prominent examples of biocide tolerance mechanisms in gram-negative bacteria
include (over)expression of efflux pumps, reduction of porins, or alterations of the net negative
charge of the bacterial cell wall as well as membrane composition (79, 129, 132-135). Often
described mechanisms in gram-positive bacteria include transient alterations of thickness and
degree of cross-linking of the peptidoglycan or glycocalyx formation, enzyme-mediated
inactivation or increased efflux (39).

In gram-positive and gram-negative bacteria, interspecies- as well as intraspecies-specific
differences were observed regularly. The gram-positive Staphylococcus spp., for example, were
frequently described to adapt to benzyl group containing QACs (71%) while they adapted less
often to chlorhexidine (CHX, 24%) and triclosan (43%) during multiple exposure experiments
with pure substances. In contrast, Enterococcus spp. could easily adapt to QACs (92%) and
CHX (68%) but not to triclosan (17%).

For the gram-negative Pseudomonas spp. adaptation during multiple exposure experiments
with pure substances was often described for CHX (79%) but less frequently observed for
QACs (21%) and triclosan (33%). In opposition to the findings for Pseudomonas spp., approx.
50% of the investigated Salmonella spp. adapted to the respective substances. These examples
demonstrate the difficulties arising from general statements to adaptive behavior of gram-
positive and gram-negative species. As the number of isolates per species varies widely (e.g.,
Staphylococcus spp. 14 isolates investigated for benzyl group containing QACSs, and 38 isolates
for CHX, 63 isolates for triclosan), species-specific adaptation frequencies could bias the

comparison of adaptive capacities for gram-positive and gram-negative species. Ultimately, due
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to the diversity of the applied methods and low level of comparability, no general statement

whether gram-positive or gram-negative bacteria adapt more easily to specific biocides is

possible. More specifically, adaptations might be species and strain-dependent.

2.3.1.2 Antibiotic adaptation

Subsequent antibiotic adaptation following in vitro exposure to biocides was investigated for

490 individual tests of gram-positive and gram-negative bacteria. While contact with some

substances like aldehydes, chlorine-releasing compounds, or peroxides seems to pose a lower

risk, altered antibiotic susceptibility profiles were reported as a result of exposure to biguanides,

phenolic derivatives, and QACs. Detailed information is provided in Figure 4.

Substance | fold change Substance / fold change

Substance / fold change

Figure 4: Adaptation of bacteria to at least one antibiotic after exposure to the biguanides chlorhexidine
(CHX) and polyhexamethylene biguanide (PHMB), phenol derivatives triclosan and hexachlorophene as
well as the quaternary ammonium compounds (QACs) benzylgroup containing (BCC) QACs and other
QACs. Results are shown separately for biocide adapted mutants (fold change, FC > 4) and isolates without
adaptation to the biocide of interest after exposure to the respective substance (FC < 4). Colors display
observed antibiotic adaptation.
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Even antibiotic resistance development due to biocide exposure is recognizable, the overall
limited number of individual biocide tests and investigated isolates does not allow a predictive,
general conclusion on the development of antibiotic resistance in biocide-adapted bacteria and
may rather be strain-specific (Hypothesis 1-iv). As one example, Braoudaki was able to show
that cross-resistance in triclosan adapted E. coli K-12 (n=1) and E. coli O55 (n=1) was observed
to a lesser extent compared to E. coli O157:H7 (n=2). E. coli K-12 developed cross-resistance
to chloramphenicol, while E. coli O55 exhibited resistance to trimethoprim. In comparison,
E.coli 0O157:H7 was resistant to chloramphenicol, tetracycline, amoxicillin,
amoxicillin/clavulanic acid, trimethoprim, benzalkonium chloride (BAC), and CHX after
exposure to triclosan. The authors suggested that genetic variability in E. coli 0157 and E.coli
K12 may facilitate differences in cross-resistance profiles (136).

It is important to highlight that observed changes in antibiotic susceptibility following in vitro
biocide exposure were mainly moderate and seldom defined as clinical resistance according to
CLSI and EUCAST guidelines. Nonetheless, even small changes may provide growth
advantages under selective pressure and trigger the development of high-level resistance.

In conclusion, the results of the literature review support hypothesis 1 that bacterial exposure

to biocides can induce biocide tolerance and antibiotic resistance.

2.3.1.3 Transferability of results obtained from in vitro exposure experiments to
workaday environments

In situ, bacteria might face selection pressure due to contact with sub inhibitory biocide

concentrations for various reasons in different environments. This might occur due to

application errors, dilution in the environment, interfering materials, degradation of biocidal

products, or wash-off events. In general, in-use concentrations of disinfectants are much higher

than the MICs of the microbial species of concern. Still, inevitably the use of concentrations

well above the MIC values results in gradients over time and space which will finally overlap
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with the sub-MIC levels (62). One example is the relative environmental persistence of many
biocides like QACs and triclosan. Their tendency to bind to organic matter and soil provides a
potential long-lasting low-level exposure to microorganisms (137, 138). Biocide residues found
in different environments like surface water, wastewater, or sediments may force the selection
of permanently adapted microorganisms. As a kind of chain reaction, elevated concentrations
of biocides are needed to inhibit the growth of adapted bacterial populations, as was shown in
an outbreak of Serratia marcescens on a neonatology ICU. Isolates exhibited resistance to 0.5%
Mikrobac forte® consisting of benzyl-C12-18-alkyl dimethyl ammonium chloride 199 mg/g
and N-(3-aminopropyl)-N-dodecylpropane-1,3-diamine 50 mg/g, which was regularly used for
disinfection of surfaces before the outbreak. One of the measures to contain the outbreak
included increasing the concentration of used Mikrobac forte® to 2% (139). Conceivably, the
elevated concentration of disinfection may lead again to the disposition of higher remaining
concentrations in the environment.

Due to elevated biocidal selection pressure following risks may arise in situ:

(i) Bacterial adaptation to the substance:

Biocides may induce transient adaptation reactions by biofilm formation, expression of small
colony variants, or slow growth, selecting for phenotypes with the ability to temporarily survive
biocidal stress (40, 61, 140). A prominent example was reported by Sheridan et al. who found
triclosan tolerance caused by mingled mechanisms, including growth inhibition, increased
biofilm formation, and change in outer membrane proteins in triclosan tolerant E. coli

0157:H19 (141).

(i) Propagation of mutation
Sub-MIC levels of biocides may act as mutagens and increase mutation rates which may
influence the rate of de novo biocide, respectively, antibiotic resistance development (57, 142,

143). Mutational antibiotic resistance caused by biocides, or byproducts could even explain
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multidrug-resistance in areas lacking antibiotic selection pressure (57, 143). For example, Lv
et al. demonstrated mutagenic activities of disinfection byproducts in disinfected drinking
water, where antibiotic concentrations are too low to select antibiotic resistant strains
effectively. After exposure to disinfection byproducts, resistance to individual antibiotics and
multidrug-resistance were both raised in P. aeruginosa PAO1 by various levels. Norfloxacin

and polymycin B resistances were 10-fold enhanced compared to a control (143).

(i) Influence on horizontal gene transfer

Sublethal concentrations of biocides can increase or decrease transfer frequencies of MGEs
such as plasmids and phages (41, 144, 145). Jutkina et al. were able to show that subinhibitory
concentrations of CHX and triclosan (200 times and 20 times below the MIC, respectively)
increased the frequency of antibiotic resistance gene transfer for the recipient E. coli strain by

influencing the exchange rates of mobile genetic elements (62).

(iv) Cross-resistance:

Due to similar resistance mechanisms, biocides can select for bacteria expressing resistance not
only to the used biocide but additionally to other biocides or antibiotics. An illustrative example
for cross-resistance in clinical environments was described by Stein et al. (146). They have
recently described a clonal cluster of carbapenem-resistant Klebsiella pneumoniae isolates
showing diminished susceptibility to CHX. These isolates were detected on a ward that has
implemented routine washing with CHX to reduce the rate of catheter-related infections.
Strikingly, CHX tolerance was associated with resistance to colistin, likely caused by increased

efflux of both substances via the same route.

(v) Co-resistance:
Due to the presence of physically linked genetic resistance mechanisms or their coordinated
expression, biocides can select bacteria resistant to unrelated antimicrobial substances. In a

large-scale bioinformatics approach based on analyzing completely sequenced bacterial
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genomes and plasmids available in the NCBI repository, Pal et al. identified a higher proportion
of plasmids carrying both biocide/metal resistance genes (BMRGSs) and antibiotic resistance
genes (ARGSs) hosted by Escherichia, Staphylococcus, Salmonella, and Klebsiella compared to
other bacterial genera (147). The BMRGs that commonly co-occurred with ARGs on plasmids
were mercury resistance genes and the qacEA1 gene supposed to induce low-level resistance to
quaternary ammonium compounds. A previous study has shown that gac resistance genes
located on class 1 integrons are often present in bacteria exposed to detergents, biocides, or
antibiotics (148). Thus, QACs may act as a major driver for the selection of class 1 integrons
(149). This evidence and the findings of Pal et al. led to the author’s hypothesis that transposons
and integrons are involved in the process of biocide/metal-driven co-selection of antibiotic

resistance (147).

In conclusion, in vitro studies support the hypothesis 1 that bacterial exposure to biocides can
induce biocide tolerance and antibiotic resistance. However, this knowledge needs to be verified
in field studies to explore and understand the possible risks arising in complex environments

with regular hygiene measures using biocides as chemical disinfectants.
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2.3.2 Publication 1-3: Biocide tolerance and antibiotic resistance in environments with
regular disinfection regimes

As shown in 2.3.1, the results of biocide exposure experiments tend to be highly variable.
Outcomes are heavily influenced by the chosen experimental setting and by choice of biocides
and microorganisms being examined. While being a useful tool to investigate possible
outcomes to adaptation or co-selection, the transferability to real-world interactions of such
controlled experiments remain questionable (40).

In order to gain more knowledge on bacterial susceptibility to biocides and putative associations
with antibiotic resistance in natural settings, | investigated field isolates collected from
environments following a regular disinfection regime. According to the literature, carriage of
ESBL in E. coli and vancomycin resistance in E. faecium has been associated with reduced
susceptibility to certain biocides (108, 150, 151). To examine published associations, antibiotic
resistant and susceptible isolates (ESBL/AmpC R-lactamases (AmpC)-producing E. coli
(n=29), and Non-ESBL-/AmpC-producing E. coli (n=64) in publication 2 of animal husbandry
as well as VSE (n=48) and VRE (n=42) in publication 3 of clinical environments were included.
Whole genome sequencing was performed for all L. monocytogenes and E. coli isolates to
analyze phylogenetic relationships and resistance determinants (details are deposited at the
National Center for Biotechnology Information database https://www.nchi.nlm.nih.gov/, under
accession numbers MK944275 to MK944277, and JAFMWT000000000-JAFMVF000000000,
respectively).

The study population of L. monocytogenes showed a broad heterogeneity of MLST clonal
complexes (CC). Most CCs isolated from technical equipment and surfaces of German food
production facilities included CC2, CC8, and CC9 as predominant genotypes (figure 2 in
publication 1). In Germany, CC8 and CC2 isolates are frequently reported as causative agents

of human listeriosis (152, 153). The detection of clinically relevant genetic lineages highlights
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the importance of contaminated food production environments as transmission routes for
virulent L. monocytogenes.

The study population of E. coli also showed a broad heterogeneity of multilocus sequence types
(STs). Most STs isolated from surfaces of grounds, walls, and equipment included ST117 and
ST297 belonging to phylogroup F and B1, respectively. While phylogroup B1 comprises
commensals or intestinal pathogens (154), phylogroup F is highly associated with
extraintestinal pathogenic E. coli (EXPEC) (155-157). EXPEC can cause urinary tract
infections, meningitis, or sepsis (158). ST 117 is also linked to avian pathogenic E. coli (APEC),
the avian pathotype of EXPEC, causing colibacillosis. APECs were also isolated from human
patients (159). These findings emphasize a zoonotic risk originating from farm environments.
Overall, the datasets revealed a low proportion of biocide tolerant strains (L. monocytogenes:
22%, E. coli: 10%, E. faecium: 0%) based on our definition of tentative ECOFFs (Hypothesis
2-1). In general, susceptibilities to tested substances and proportions of biocide tolerant isolates
were comparable to data already published in the literature (for detailed comparisons, see
publications (104, 105, 107)) (Hypothesis 2-i). Several reduced phenotypic susceptibilities
could be interlinked with genetic determinants (Hypothesis 2-ii). | identified 15
L. monocytogenes isolates with reduced susceptibility to BAC. In 13 out of them, genetic
determinants coding for efflux pumps of the small multidrug resistance family (SMR) were
detected. These included gacH (n=10), bcrABC (n=1), and emrC (n=2). These efflux pumps
have been previously associated with increased efflux of BAC in L. monocytogenes (160-163).
Thus, it is very likely that they were responsible for the observed phenotypes. Interestingly,
QAC tolerance was predominantly identified in isolates belonging to genetic lineages without
known clinical relevance. Reduced susceptibility to sodium hypochlorite, peroxyacetic acid
(PAA), and isopropanol was not associated with specific genetic determinants (104).
Furthermore, | identified three E. coli isolates with reduced susceptibility to formaldehyde

(increased MIC value). These isolates carried a gene coding for a glutathione-and NAD-
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dependent formaldehyde dehydrogenase located on a plasmid, which has been previously
described to cause formaldehyde tolerance by enzymatic degradation of the biocide (72).
Specific determinants associated with reduced susceptibility to p-chloro-m-cresol (identified in
one isolate), BAC (four isolates), or PAA (one isolate) could not be found. Importantly,
phenotypic biocide tolerance for FA, PAA, and BAC was found in isolates with and without
clinical relevance.

Intriguingly, gacEA1 and sugE(p) were identified in 10% and 8% of the isolates, respectively.
Both genes encode efflux pumps of the SMR family and have been reported to be involved in
QAC tolerance (164-166). However, reduced susceptibility to the investigated QACS,
benzalkonium chloride and didecyldimethylammonium chloride, compared to isolates lacking
the efflux pump encoding genes could not be observed in my study (105). This might be due to
the substrate specificity of the efflux pumps themselves (164, 165) or the applied susceptibility
test method influencing the mode of bacterial growth and expression of SMR efflux pumps
(165). Interestingly, the QAC tolerance efflux pump determinants gacEA1, and sugE(p) were
both located on mobile genetic elements close to antibiotic resistance genes sull and blacmy-2,
respectively. As qacEAI and sugE(p) have been linked to phenotypes with reduced
susceptibility to QACs in the past (164-166), co-location with antibiotic resistance genes on
mobile genetic elements support the hypothesis of Pal et al. that mobile genetic elements such
as integrons play an important role in biocide driven co-selection of antibiotic resistance (147).
For L. monocytogenes and E. coli, antibiotic susceptibility testing was performed to compare
with biocide susceptibility results. In addition, genetic determinants responsible for identified
phenotypes were characterized. Detailed information on susceptibility profiles and underlying
mechanisms are given in the corresponding publications (104, 105). In general, a low level of
antibiotic resistance in L. monocytogenes isolated from food production environments in
Germany was observed. Only five isolates (5%) were resistant to at least one antibiotic in three

or more classes and therefore defined as multidrug-resistant (MDR). In contrast, antibiotic
33



Synopsis

susceptibility profiles were highly diverse in the tested E. coli population. In this study, 34
isolates (37 %) were defined as MDR.

With very few exceptions, antibiotic resistance could be traced back to known underlying
genetic determinants (Hypothesis 2-ii). Correlation analyses of biocide susceptibility data and
corresponding antibiotic resistance profiles did not reveal any correlation between reduced
susceptibility (increased MIC or MBC) to biocides and antibiotics. Furthermore, biocide
susceptibility was not significantly influenced by the expression of extended-spectrum (-
lactamases in E. coli or vancomycin resistance in E. faecium as indicated in the literature (108,
150, 151). This might be due to geographic variability or depend on the frequency at which
isolates were previously exposed to biocides. For example, E. faecium originated from a clinical
ward with low CHX usage, whereas Alotaibi et al. conducted an investigation with Danish VRE
and VSE isolated from a hospital ward with heavy use of CHX (150).

In summary, susceptibility profiles to various biocides did not differ between antibiotic
susceptible or resistant isolates (Hypothesis 2-iii). Even though | could not generally support
hypothesis 2 that biocide tolerance is interlinked with antibiotic resistance in environments with
regular disinfection regimes, there is one epidemiological study describing antibiotic cross-
resistance. As mentioned before, Stein et al. reported a clonal cluster of carbapenem-resistant
Klebsiella pneumoniae isolates with reduced susceptibility to CHX. These isolates originated
from intensive care unit (ICU) patients on a ward using CHX for routine washing to decrease
the rate of catheter-related infections. Alarmingly, reduced CHX susceptibility was associated
with colistin resistance, likely caused by increased efflux of both substances via the same route
(146).

Given the identified low number of biocide-tolerant isolates in our studies, it is likely that
additional factors contribute to the persistence of bacteria in different niches.

Successful adaptation depends on various aspects, including the structure (sessile vs.

planktonic), and composition (pure vs. mixed culture) of the bacterial community, temperature,
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oxygen, and nutrient access, pH, detergents, or exposure times as these factors influence the
growth, metabolism/physiology of the bacterial cells and the division cycle which are critical
points for bacterial susceptibility (7, 35). Furthermore, these factors are involved in quorum
sensing (transduction of cell-cell signals) and the formation of biofilms (7). Biofilm formation
is an intrinsic survival strategy enabling bacteria to withstand harsh conditions like disinfection.
The extracellular matrix provides a diffusion barrier protecting both gram-positive as well as
gram-negative bacteria. It provides an enhanced medium for bacterial signaling (e.g., quorum
sensing), genetic exchange as well as a potential site for neutralization or binding of chemical
agents (40). Ten to 1000-fold elevated MIC values have been reported for different biocides
such as BAC or oxidizing agents during comparison of biocidal activity against sessile vs.
planktonic bacteria, including Listeria spp. or E. coli (167-169). Thus, biofilms provide a
microenvironment in which pathogens might withstand disinfectant concentrations that
otherwise kill planktonic cells. Consequently, bacteria can survive regular cleaning and
sanitation procedures and persist in food-processing plants, animal husbandry, or clinical
environments. In many of these environments, conditions favor attachment and biofilm
formation, i.e., flowing water, suitable attachment surfaces, ample nutrients, and a sufficient
number of bacteria supplied by the environment (168). Another key factor for biofilm formation
is the promotion of microbial communication, also termed quorum sensing, and its role in
establishing of resistant phenotypes (7, 140). Microorganisms within the assembled mass
produce and receive small signal molecules (e.g., autoinducer-1, autoinducer-2, and peptides)
that regulate microbial communication. With increasing densities of microbial cells, the density
of different signal molecules increases. As a result, different autoinducers bind to specific
receptors to activate or inactivate gene cascades (170). As a prominent example, Hassett et al.
demonstrated that the expression of catalase and superoxide dismutase genes coding for
protective enzymes against oxidizing stress was under the control of quorum sensing in

P. aeruginosa biofilms (171).
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Efflux pumps are not only essential requisites to expel drugs and toxic metabolites. They may
also release other molecules necessary for cell communication, biofilm formation,
osmoregulation, or cell protection (172, 173), increasing the ability to persist in food production
environments. Furthermore, in each bacterial population, there is a small subset of the
population, called persisters, showing phenotypically resistant dormant variants without
genotypic features (174). Bacteria may survive in different niches because they are located in
areas difficult to reach for disinfectants. For E. coli isolates from animal husbandry, for
example, it could be demonstrated that biocide tolerant strains isolated from transitions between
floor and wall or cracks and crevices were able to survive hygiene measures (105). These are
well-known critical locations in husbandry environments. As they are difficult to clean and
disinfect (175, 176), exposure to subinhibitory concentrations of biocides due to improper
disinfection practice and the exertion of sub-MIC selection pressure on biocide tolerant bacteria
in such niches is very likely.

In summary, the results of our susceptibility studies have shown, that indeed bacteria with
reduced susceptibility to biocides (albeit few examples) are present in environments supposed
to exert a high selection pressure due to the widespread use of disinfectants. This indicates that
biocide tolerance might present one bacterial feature to survive disinfection processes. With the
acquisition and, or the expression of tolerance determinants, bacteria might be able to persist in
different environments for long periods. Theoretically, the increased prevalence of tolerant
isolates might furthermore increase the chance of mutation or plasmid accumulation producing
a higher level of stable antibiotic resistance (41). Later on, these determinants might be spread
through bacterial populations and be detectable in the genomes of these bacteria.

As most of the analyzed isolates were susceptible to investigated biocides, bacteria have to use
additional strategies to survive in environments with regular disinfection regimes. Furthermore,
the results do not yet support hypothesis 2 that biocide tolerance is per se interlinked with

antibiotic resistance. Nonetheless, biocide tolerance determinants adjacent to antibiotic
36



Synopsis

resistance genes on mobile genetic elements could be identified, indicating that co-selection of

biocide tolerant and antibiotic-resistant bacteria might be principally possible.
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2.3.3 Publication 3-Part 1: The need for reproducible routine biocide susceptibility tests
Chemical disinfection is a key factor in reducing the spread of resistant bacterial pathogens.
However, laboratory settings have extensively demonstrated the possibility of biocide and
antibiotic resistance development in bacteria due to exposure to low biocide concentrations.
Albeit scarce, in vitro findings are supported by epidemiological studies reporting this causality
(146). Furthermore, some reports link the introduction of biocides in clinical settings with the
identification of bacteria showing reduced biocide susceptibility (146, 177, 178). Hardy et al.,
for example, have shown significantly decreased CHX and octenidine dihydrochloride (OCT)
MIC and MBC values for Staphylococcus aureus from a major hospital trust in the UK after
the introduction of CHX and OCT for decolonization regimes. Reduced susceptibility to OCT
occurred right after the use of the substance in practice between 2013 and 2014 (177). My field
studies provide the support that bacteria with reduced biocide susceptibility are detectable in
environments with extensive use of disinfectants (104, 105). Within the investigated E. coli
population, | could identify genetic determinants that have been reported to confer biocide
tolerance co-localized with antibiotic resistance genes on mobile genetic elements, indicating
the possibility of co-selection of antimicrobial resistance. Taken together, these results imply
that antimicrobial resistance development and, or spread might be additionally driven by
bacterial exposure to biocides and thus, point towards the need for regular monitoring not only
for antibiotic resistance but also for biocide tolerance development. Screening of bacterial
isolates for reduced biocide susceptibility becomes more and more important, especially in the
light of drastically limited options of efficient antimicrobial therapy of infections caused by
multidrug-resistant bacteria (179). Reliable and standardized screening methods, comparable
between laboratories, would also be of value during authorization processes of biocides, as the
EU BPR regulation requires information on the tendencies of microbicidal products to select

for resistant bacteria (8).
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In contrast to antibiotic susceptibility testing, generally accepted, standardized methods for
biocide susceptibility testing are missing, even though there have been attempts to introduce
respective protocols (117, 118, 179). As highlighted in the study by Bock et al., harmonization
is of most importance as slight modifications in the choice of nutrient broth or assay plate
material influence the outcome of biocide susceptibility profiles (119). Most procedures include
broth macro- and microdilution methods to determine MIC and MBC values. These values are
also the basis for establishing ECOFFs urgently needed to distinguish between biocide
susceptible and tolerant bacteria. MIC values allow for the detection of bacterial isolates with
reduced susceptibility to biocides and help to determine tolerance development at an early stage.
MBC values, however are of matter where the lethal rather than the inhibitory concentration of
the agent is of primary importance. So far, available epidemiological data are limited for this
purpose (102, 106).

As part of this thesis, a reliable high-throughput screening system using vacuum dried biocide
microtiter plates for rapid biocide susceptibility testing applicable to gram-positive and gram-
negative bacteria was established (Publication 3, Part 1 (107)). The method resembles the
standardized procedure for antibiotic resistance testing according to I1SO standard 20776-1
(111). While conventional methods depend on the time-consuming fresh preparation of biocide
stock solutions, which are diluted to a range of concentrations covering MICs and MBCs
(applied for the susceptibility studies to L. monocytogenes and E. coli), the newly developed
system contains predefined concentrations of vacuum dried biocidal substances. In this study,
the cationic biocides BAC, CHX, cetylpyridinium chloride (CTP), didecyldimethylammonium
chloride (DDAC), and OCT were included since they are highly relevant for hospital settings.
All substances can be easily de- and rehydrated. CHX and OCT, for example, are frequently
used as antiseptics. The conventional microdilution method and the newly developed test
system (reference wet plate and dried plate described on page 3 of publication 3 (107)) were

used to characterize biocide susceptibility of a collection of E. coli and Enterococcus spp.
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strains. Results were compared under consideration of reproducibility and essential agreement
(EA). Whereas the reproducibility reflects the comparability of test results after repetition of
applied test methods, the EA is a measure of comparability between the reference method and
the method to be evaluated. The overall results have shown that vacuum dried biocide microtiter
plates provide a performance level comparable to the reference broth microdilution method
using freshly prepared biocide solutions (reference Method 1SO 20776-2) (180) (hypothesis 3-
i). The EA amounted to 100% for all isolate/substance combinations while the reproducibility
varied. For enterococci, reproducibility reached 100% for all measurements. For E. coli,
reproducibility reached 100% for CTP and DDAC. It was lower for BAC (98%), CHX (96%),
and OCT (96%) but still within an acceptable range (>95%) according to ISO 20776-2 (180).
The broad concentration ranges allowed MIC and MBC determination of an exemplarily chosen
gram-positive and gram-negative species with the same plate design. Hence, the evaluated
microtiter plates are suitable for quick and standardized biocide susceptibility testing of various
bacterial species.

The advantages of such a test system are that it is easy to handle, time-saving, and applicable
for different purposes. On the one hand, it is valuable for biocide susceptibility monitoring over
time to identify trends in biocide tolerance development as early as possible. Thus, bacteria
isolated from clinical or processing environments with repeated exposure to biocides could be
monitored using this assay. Susceptibility data of routine monitoring, for example, could help
to select the most effective and economically suitable antimicrobial agents for decontamination
of a particular environment. Furthermore, standardized processes might serve as a basis to
collect epidemiological data in order to establish ECOFFs for diverse species/substance
combinations similar to the collection of antibiotic ECOFF data accumulated by EUCAST
(181). On the other hand, monitoring could also be useful to detect the development of antibiotic
cross-resistance at an early stage. Simultaneous testing of antibiotic resistant and susceptible

isolates like VRE and VSE enables rapid assessment of differences in biocide susceptibility
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profiles for both groups. | have shown that the vacuum dried biocide microtiter plate generates
fast, reliable, and accurate results comparable with standardized antibiotic test systems
according to EUCAST or CLSI. In general, MIC values of biocide and antibiotic susceptibility
tests can be evaluated regarding putative correlations. In this way, early occurrence of cross-
resistance might be reliably discovered (hypothesis 3-ii).

Notably, such a test system is precious to standardize testing procedures and hereafter to
improve hygiene management regimes. It can be used as a tool for the surveillance of bacterial
tolerance in different environments. Based on biocide susceptibility profiles effective
disinfectants can be chosen to control the spread of infections. Especially in animal husbandry
or clinical environments this could help to reduce the frequency of antibiotic treatment
(hypothesis 3-iii).

In conclusion, our results support hypothesis 3 that vacuum-dried plate systems enable fast,
accurate, and reproducible routine biocide susceptibility testing urgently needed to produce
harmonized, reliable and comparable results. Such test systems are applicable in research and
for surveillance programs.

In each of my studies, biocide susceptibility profiles for planktonic cells were characterized.
However, additional parameters could also be of valuable importance to determine and
understand biocide tolerance development. As subinhibitory biocide concentrations can
improve the biofilm formation capacity, like reported for E. coli, Salmonella (S.) enterica,
methicillin-resistant Staphylococcus aureus (MRSA), or L. monocytogenes (81, 182-184),
parameters such as the minimum biofilm inhibitory concentration (MBIC) or the minimum
biofilm eradication concentration (MBEC) might help to understand the effects of biocides to
bacterial populations and their possibilities to persist in different niches. Other assays such as
the “biofilm biocide survival assay” and the “surface-dried cell biocide survival assay” can be
used for detailed investigation of activities against surface-dried and biofilm communities

(185). In addition, Maillard and the SCENIHR (7, 126) recommend further tests to understand
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the underlying mechanisms of reproducible changes in biocide susceptibility. This might
include molecular techniques to investigate transcriptomic and proteomic changes resulting
from microbicide exposure (95, 142). Genotypic alterations due to biocide exposure might serve
as potential resistance markers. Molecular techniques such as WGS, PCR, and microarray
technology have been successfully used to identify microbicide resistance mechanisms (88,

105, 186).

3 Conclusion

According to concerns arising from in vitro studies that bacteria are able to adapt to biocides,
our field studies have demonstrated that biocide tolerant isolates (albeit very few) can occur in
environments with regular disinfection regimes. As determined MICs and MBCs were still well
below in-use concentrations, reduced susceptibility did not result in resistance to biocides.
Although each biocide represents an individual case, so far, there is no conclusive evidence that
the use of biocides leads to an increase in antibiotic resistance in everyday life settings.
However, even small susceptibility changes may provide growth advantages and may trigger a
higher frequency of high-level resistance development over time. The detection of biocide
tolerance determinants adjacent to antibiotic resistance genes on mobile genetic elements
corroborates the conclusion that co-selection of biocide and antibiotic resistance can occur, and
respective susceptibility profiles need to be monitored. For this purpose, reliable and
standardized screening methods as our developed vacuum-dried biocide microtiter plate are
required. Large data sets will help to identify reliable ECOFFs and to interpret breakpoints.
Together with molecular approaches like WGS, underlying mechanisms of biocide tolerance
development, and associated antibiotic resistance mechanisms can be uncovered. This
knowledge might improve hygiene measures to prevent the spread and further emergence of

MDR-resistant pathogens.
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Biocide-Tolerant Listeria monocytogenes Isolates from German
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ABSTRACT Contamination of food during processing is recognized as a main trans-
mission route of Listeria monocytogenes. To prevent microbial contamination, bio-
cides are widely applied as disinfectants in food processing plants. However, there
are concerns about the development of antimicrobial resistance in foodborne patho-
gens due to widespread biocide usage. In our study, 93 L. monocytogenes isolates
from German food production facilities were (i) tested for biocide and antibiotic sus-
ceptibility using broth microdilution assays, (ii) analyzed for links between reduced
biocide susceptibility and antibiotic resistance, and (iii) characterized by whole-
genome sequencing, including the detection of genes coding for biocide tolerance,
antibiotic resistance, and other virulence factors. Fifteen L. monocytogenes isolates
were tolerant to benzalkonium chloride (BAC), and genes conferring BAC tolerance
were found in 13 of them. Antibiotic resistance was not associated with biocide tol-
erance. BAC-tolerant isolates were assigned to 6 multilocus sequence type (MLST)
clonal complexes, and most of them harbored internalin A pseudogenes with pre-
mature stop codons or deletions (n = 9). Our study demonstrated a high genetic di-
versity among the investigated isolates including genotypes that are frequently in-
volved in human infections. Although in vitro adaptation studies to biocides have
raised concerns about increasing cross-resistance to antibiotics, our results do not
provide evidence for this phenomenon in field isolates.

IMPORTANCE Foodborne pathogens such as L. monocytogenes can persist in food
production environments for a long time, causing perennial outbreaks. Hence, bacte-
rial pathogens are able to survive cleaning and disinfection procedures. Accordingly,
they may be repeatedly exposed to sublethal concentrations of disinfectants, which
might result in bacterial adaptation to these biocides. Furthermore, antibiotic core-
sistance and cross-resistance are known to evolve under biocide selection pressure
in vitro. Hence, antimicrobial tolerance seems to play a crucial role in the resilience
and persistence of foodborne pathogens in the food chain and might reduce thera-
peutic options in infectious diseases.

KEYWORDS Listeria monocytogenes, antibiotic resistance, biocide susceptibility,
virulence factors

isteriosis is one of the most serious foodborne diseases. Despite the low incidence

.of listeriosis (0.47 cases per 100,000 population, 2016, European Union), the high
hospitalization (98%) and case fatality rate (16.2%) compared to other zoonotic agents
render it a serious public health concern (1). The causative agent, Listeria monocyto-
genes, is a Gram-positive, facultative intracellular opportunistic pathogen. Human
infections with L. monocytogenes predominantly occur after the consumption of con-
taminated ready-to-eat food products (2). The ubiquitous microorganism may contam-
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inate a wide range of foodstuffs during the various steps of food production and
distribution (2). To fulfill hygiene requirements according to EC regulation no. 852/2004
on the hygiene of foodstuffs (3), biocides are widely applied as disinfectants to prevent
bacterial contamination. In Germany, the Industrial Hygiene and Surface Protection
Association (Industrieverband Hygiene & Oberflaichenschutz [IHO]) maintains a list of
disinfectants that have been tested according to German (DIN; German Institute for
Standardization) and European (EN) standards for use in the health care sector, in
animal husbandry, and in food production (https://www.iho.de/). They include quater-
nary ammonium compounds (QACs), aldehydes, alcohols, chlorine-releasing com-
pounds, or peracids. The awareness of risks related to subinhibitory biocide concen-
trations triggering antimicrobial resistance in bacteria has substantially increased in the
last years (4, 5). In in vitro experiments, links between reduced biocidal susceptibility
and antibiotic resistance have been described for various substances and bacterial
species (6-11), including L. monocytogenes (12, 13). Biocide tolerance may be based on
similar resistance mechanisms toward different antimicrobial agents {cross-resistance).
In the case of coresistance, the mechanisms conferring reduced susceptibility are
unrelated but genetically linked, e.g., located on the same genetic element (14).
However, the relevance of co- and cross-resistance has not yet been validated in the
environment and therefore needs to be verified in field studies.

So far, standardized laboratory methods to investigate biocide susceptibility are
not available, and harmonized breakpoints defining biocide tolerance are also
lacking. Tolerance is defined as reduced susceptibility of bacteria toward a biocide
characterized by a raised MIC (5). Determining epidemiological cutoffs (ECOFFs) for
MICs and minimum bactericidal concentrations (MBCs) help interpret susceptibility
profiles in a bacterial population. Currently, ECOFF data for biocides are limited to
a few bacterial species (15, 16) but do not include L. monocytogenes. Epidemiolog-
ical studies on biocide susceptibility mainly focused on the determination of MICs
of QACs (17-19). MIC values provide only limited information on tolerance to in-use
concentrations of disinfectants. Hence, MICs can only be interpreted as trend
indicators for reduced biocide susceptibility. In addition, MBC values should be
determined to evaluate lethality of the in-use concentration of a biocide (5).

Increased tolerance against antimicrobial stress triggered by the application of
disinfectants may be an important factor for the persistence of L. monocytogenes in
food production environments (20, 21). Particularly, members of the small multidrug
resistance (SMR) protein family are associated with reduced susceptibility to quaternary
ammonium compounds like benzalkonium chloride (BAC). The SMR transporter genes
identified in L. monocytogenes are qacH (22), emrE (23), emrC (24), and the bcrABC
cassette (25). The bcrABC cassette consists of a transcriptional regulator gene, bcrA, and
two SMR genes (bcrB and ber(). In addition, enhanced expression of efflux pump genes
belonging to the major facilitator superfamily (MFS), such as mdrlL, can contribute to
BAC tolerance (26).

To the best of our knowledge, data on the biocide susceptibilities of L. mono-
cytogenes isolates originating from Germany are not available, and a link between
biocide tolerance and antibiotic resistance in L. monocytogenes has not yet been
proven. We assume that the selection pressure in food processing plants is high
because of the widespread use of disinfectants in hygiene processes. The aim of our
study was to examine the biocide susceptibilities of L. monocytogenes isolates from
food production plants in Germany and to look for potential relationships between
biocide tolerance and antibiotic resistance. We therefore tested the susceptibilities
to six antimicrobial biocides frequently used in the food industry and to antibiotics
relevant for human listeriosis therapy. Further, we analyzed the genetic diversity of
the L. monocytogenes strains under study and investigated the prevalence of
putative biocide tolerance and antibiotic resistance genes as well as virulence
genes.
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FIG 1 MIC (black bars) and MBC (white bars) distributions of 93 L. monocytogenes isolates. Arrows mark MIC, (black) and MBC, (white) values
representing tentative ECOFFs. conc., concentration; ECOFF, epidemiological cutoff; BAC, benzalkonium chloride; GDA, glutaraldehyde; IPA,
isopropanol; NaClO, sodium hypochlorite; PAA, peracetic acid; APD, biocidal product containing bis(3-aminopropyl)dodecylamine.

RESULTS

Phenotypic analysis. (i) Susceptibility to biocides. In pretests, the neutralizer used
for MBC evaluation proved to be effective for all six biocides under investigation and
revealed no toxicity (data not shown). An overview on the results of biocide susceptibility
testing (MIC and MBC) is given in Fig. 1. MIC and MBC data were not normally distributed.
Narrow unimodal MIC and MBC distributions ranging between one and three dilution steps
were observed for all biocides. The only exception was bis(3-aminopropyl)dodecylamine
(APD), showing a broader MBC distribution of five dilution steps.
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FIG 2 Minimum-spanning tree based on core genome MLST (cgMLST) allelic profiles of 93 L. monocytogenes isolates from food production environments in
Germany. Each circle represents an allelic profile derived from sequence analysis of 1,701 cgMLST target genes. The size of each circle corresponds to the
number of isolates. Numbers on the connecting lines illustrate numbers of target genes with differing alleles in a pairwise comparison. Isolates with reduced
biocide susceptibility are color-coded as specified in the legend. Allelic patterns belonging to identical MLST clonal complexes (CC) are shaded in gray. BAC,
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bis(3-aminopropyl)dodecylamine.

Tentative ECOFFs were empirically set, and isolates with reduced susceptibility
toward the tested biocides revealed MIC and/or MBC values above the ECOFFs.
Elevated MICs were found for isopropanol (IPA; n = 1) and sodium hypochlorite (NaCIO;
n = 2) (Fig. 1). Increased MBCs were detected for glutaraldehyde (GDA; n = 1} and APD
(n = 3). One isolate showed both MIC and MBC values above the ECOFFs for peroxy-
acetic acid (PAA).

Applying the predefined MIC breakpoint for BAC (=4 mg/liter) published previously
(26, 27), 16% of the isolates (n = 15) were classified as BAC tolerant.

(ii) Antibiotic susceptibility testing. All isolates were daptomycin (DPT) resistant
but ampicillin (AMP), penicillin G (PEN), vancomycin (VAN), erythromycin (ERY), genta-
micin (GEN), linezolid (LIZ}, tetracycline (TET), and trimethoprim-sulfamethoxazole (T/S)
sensitive. Variable susceptibility patterns were observed for tigecycline (TGC; resistance
[R], 76%), meropenem (MER; R, 8%), ciprofloxacin (CIP; susceptible, increased exposure
[I, 5%), and rifampin (RAM; |, 1%) (see Table S1 in the supplemental material).

Five isolates (5%) were resistant to three different classes of antibiotics and therefore
defined as multidrug resistant. Antibiotic resistance profiles did not differ significantly
between biocide-tolerant and -susceptible isolates (P> 0.05). Spearman correlation
coefficients revealed no association between biocide tolerance and antibiotic resistance
(data not shown).

Genotypic characterization. (i) Genetic diversity of L. monocytogenes. Core
genome multilocus sequence typing (cgMLST) revealed a broad genetic diversity
among L. monocytogenes isolates from food production environments (Fig. 2). Accord-
ing to classical multilocus sequence typing (MLST), 23 sequence types (STs) belonging
to 23 distinct clonal complexes {CCs) were identified. CC2 (23% [n = 21]), CC8 (11%
[n=10]), CC9 (11% [n = 10]), CC3 (9% [ = 8]), and CC121 (8% [n = 7]) were the most
prevalent clonal complexes within this study.

Phenotypically, all isolates belonging to CC121 (n = 7), CC6 (n = 2),and CC11 (n = 1)
were BAC tolerant. CC2, CC3, and CC9 isolates were either BAC susceptible or tolerant.
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Three out of 15 BAC-tolerant isolates also showed reduced susceptibility to NaClO
(CC6), GDA (CC11), or APD (CC121).

{(ii) Detection of genes conferring biocide tolerance. In order to detect major
determinants of reduced susceptibility or tolerance to biocides in the study population,
we screened the translated amino acid sequences against the BacMet database. Five
amino acid sequence motifs were exclusively present in BAC-tolerant isolates, whereas
isolates tolerant to other biocides did not reveal unique determinants (Table 1). Four of
the identified motifs belonged to SMR efflux transporters. Subsequently, the genomes
of all isolates were screened for the presence of genes corresponding to the five amino
acid sequence motifs, including gacH, bcrABC, and emrC (Fig. 3). gacH encoding an SMR
efflux transporter was present in 10 out of 15 BAC-tolerant isolates. Single-nucleotide
polymorphism (SNP) analysis revealed high similarities between nine of these genes
and previously described gacH on the nucleotide level (GenBank accession no.
HF565366.1) (22). In these cases, gacH was located on transposon Tn6188 (Fig. 3). One
isolate, however, carried a gene with 92% similarity to gacH but lacked the transposon.
According to blastn analysis, the gene was identical to a sequence of an uncultured
organism (GenBank accession no. KJ792090).

Both BAC-tolerant CC6 isolates carried emrC, a gene encoding another SMR efflux
transporter. The bcrABC cassette, encoding BerA, BerB, and BerC, was detected in one
BAC-tolerant isolate belonging to CC9. The BcrA regulator was found in 10 more
isolates lacking BcrBC. The detection of the complete bcrA gene sequence was limited
to the berABC cassette carrying a CC9 isolate. The regulator sequences of the remaining
10 isolates revealed only small segments (sequence query coverages, 16 to 33%) with
high similarities (=80%) compared to bcrA. The regulator was located upstream of gacH
in all 10 genomes and showed 85 to 100% similarity to tetR family transcriptional
regulator genes.

We also screened for other genes that are known to convey BAC tolerance. The emrE
gene, coding for an SMR efflux pump, could not be detected in our study population.
However, the nonspecific efflux pump gene mdrl was present in all isolates tested.

(iii) Detection of antimicrobial resistance genes. In whole-genome sequencing
(WGS) data, only the fosfomycin resistance gene fosX was detected, which was present
in all isolates. Analysis of genes that can confer resistance to carbapenems (genes
coding for penicillin-binding proteins [PBPs]) or to TGC (rpsJ) due to point mutations
did not reveal any alterations in the sequence structure that have been previously
linked to resistance.

(iv) Detection of virulence genes. We looked for various Listeria-specific virulence
factors in the tested study population (Fig. 3). The stress survival islets 1 (SSI-1) and
SSI-2 were identified in 43% (n = 40) and 9% (n = 8) of the isolates, respectively. SSI-2
was significantly more often identified in BAC-tolerant isolates than in susceptible
isolates (P << 0.001). None of the L. monocytogenes isolates harbored the Listeria
genomic island 1 (LG1). In contrast, LG2 was identified in 19 isolates of CC2.

Genes coding for Listeria pathogenicity island 1 (LIPI-1) were highly conserved in the
study population. While none of the isolates harbored LIPI-2, which is a species-specific
pathogenicity island of Listeria ivanovii, LIPI-3 was detected in 15% (n = 14) of the
isolates belonging to CC1, CC3, CC4, CC6, and CC288. LIPI-4 was found in one isolate
of CC4.

A full-length internalin A (in/A) gene was detected in 85% of the isolates. Most of the
BAC-tolerant isolates (n =9) harbored inl/A genes with premature stop codons or
deletions. While all isolates of CC121, four CC9 isolates, and one CC2 isolate harbored
inlA genes with premature stop codons, both CC6 BAC-tolerant isolates showed a 9-bp
deletion.

DISCUSSION

The consumption of contaminated food is the primary source of human listeriosis.
Listeria monocytogenes can survive harsh conditions in food production facilities, such
as low temperature, acidic environments, and disinfection procedures. Thus, contami-
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nation of food in the production process is recognized as a major transmission pathway
(2). To obtain deeper insight into the properties of L. monocytogenes from German food
production facilities, we investigated (i) biocide susceptibilities for frequently used
substances in food processing plants, (i) putative associations between reduced sus-
ceptibility to biocides and antibiotic resistance, and (iii) the genetic diversity, with a
special focus on virulence factors, antibiotic resistance, and biocide tolerance.

Biocide susceptibility. Increased tolerance of L. monocytogenes to biocides used in
disinfection measures appears to contribute to pathogen persistence, as previously
shown for BAC (17, 21). Beside BAC, we examined five additional substances relevant
for food hygiene with the aim to broaden the knowledge on the biocide susceptibility
of L. monocytogenes. Although some isolates showed slightly increased MIC and/or
MBC values to several biocides {Fig. 1), the resistance of these isolates under in-use
concentrations is unlikely, because the MBC values measured were below the concen-
trations applied during disinfection (https://www.iho.de/). We determined tentative
ECOFFs for all investigated substances to distinguish between susceptible isolates and
isolates with reduced susceptibility. In our study, MIC and MBC values were not
normally distributed, indicating the need for an increased number and diversity of
isolates to be investigated in order to define more reliable ECOFFs. The tentative
ECOFFs we defined reveal various limitations because of the lack of standardized
biocide susceptibility testing methods, the small sample size investigated, and the fact
that ECOFFs typically refer to normally distributed populations (28).

Previous studies applied a MIC breakpoint of =4 mg/liter to differentiate BAC-
susceptible from -tolerant L. monocytogenes (26, 27). According to this definition, a high
percentage of the isolates under study (16%) would be considered tolerant. Epidemi-
ological studies from Switzerland and Norway reported similar prevalences of BAC-
tolerant L. monocytogenes (29, 30). Higher rates ranging from 46% to 79% were
observed in Turkey and Spain (31, 32). These data highlight the need for regular
surveillance of biocide susceptibility, especially in the case of disinfectants widely used
in food production facilities. Since November 2016, BAC has been listed as an unap-
proved disinfectant and preservative in the European Union (implementation decision
2016/1950). In the future, the reduced BAC application may lead to a decrease in the
prevalence of BAC-tolerant L. monocytogenes isolates.

It proves difficult to compare epidemiological studies because of the variety of
breakpoints defined for BAC tolerance (=4 mg/liter up to 20 mg/liter) {17, 18, 21). In our
study, we were able to show that 13 out of 15 (87%) L. monocytogenes isolates with MIC
values of =5 mg/liter harbor genes which are known to contribute to BAC tolerance,
such as gacH, emrC, and bcrABC.

The majority of BAC-tolerant isolates harbored the gacH gene located on the
transposon Tn6188. In previous studies, gacH on Tn6188 was predominantly found in
isolates belonging to CC121 and CC9 (18, 21, 32) but was also reported in CC2 (21),
which is in line with our results. Interestingly, one CC9 isolate carried a gacH gene that
was not located on Tn6788. Alignment of the sequences revealed 92% similarity to
Tn6188-carried gacH genes. This study reports L. monocytogenes harboring gacH in the
absence of Tn6788.

The efflux transporter gene emrC was just recently identified in L. monocytogenes
isolates belonging to CC6 (24). Kremer and colleagues further proved an association
between reduced BAC susceptibility due to emrC and increased MICs for amoxicillin and
gentamicin. In our study, emrC was detected in two CC6 isolates, but reduced antibiotic
susceptibility was not observed, suggesting that the presence of emrC is not necessarily
associated with antibiotic resistance. One BAC-tolerant CC9 isolate carried the bcrABC
cassette (Fig. 2), which has been described before (21). In the two isolates which did not
carry unique biocide tolerance genes, reduced susceptibility might have been induced
by the overexpression of endogenous efflux pump genes, like mdrL, belonging to the
MFS family (26).
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Besides the known BAC tolerance genes, mechanisms have been described that
might contribute to reduced susceptibility to NaClO, QACs, and PAA (27, 33, 34). In this
context, biofilm formation or modifications of cell surface properties by alteration of
membrane fatty acids and phospholipids that inhibit biocides to enter the cell have
been discussed (27). Further, the glutamate decarboxylase system is well known as an
acid tolerance system in L. monocytogenes (33). To what extent these mechanisms
contribute to reduced susceptibility to NaClO, PAA, and other substances tested in our
study needs to be elucidated.

Antibiotic susceptibility and cross-resistance. The fact that biocides like disinfec-
tants can be a driver for antibiotic resistance becomes more and more a concern in the
scientific community (5). in vitro studies demonstrated an association between biocide
tolerance and reduced susceptibility to antibiotics in L. monocytogenes (12, 13). In our
study, biocide tolerance and antibiotic resistance did not correlate, indicating that the
mechanisms responsible for the determined BAC tolerance do not necessarily lead to
cross-resistance to the tested antibiotics. Overall, antibiotic susceptibility profiles re-
vealed a low level of resistance in L. monocytogenes isolated from food production
environments in Germany. However, it is alarming that 8% of the isolates in our study
were resistant to meropenem because this carbapenem may be used as alternative
therapy for bacterial meningitis (35). In an epidemiological study from Poland, the
prevalence of meropenem resistance (40%) in L. monocytogenes isolates from fish
processing plants was even higher (36). In contrast, other studies did not detect
meropenem resistance at all among isolates from meat processing plants or human
patients (37, 38). In Gram-positive bacteria, carbapenem resistance can be associated
with mutation-derived changes in their PBPs {39) which we could not detect in the
meropenem-resistant isolates of our study.

Allisolates tested were resistant to daptomycin, which is in line with the results from
a previous study in our National Reference Laboratory focusing on food isolates (40).
However, there are reports that described a lower prevalence of daptomycin resistance
in L. monocytogenes (41, 42). Nevertheless, daptomycin cannot be recommended for
the treatment of human listeriosis because of the reduced susceptibility of L. monocy-
togenes (42).

So far, daptomycin resistance mechanisms of Listeria spp. are not fully understood.
Other Gram-positive bacteria like Staphylococcus aureus, Enterococcus spp., and Strep-
tococcus spp., developed various strategies to counteract daptomycin, which mainly
involve adaptive changes in the cell wall and cell membrane homeostasis (reviewed by
Tran et al. [43]).

Resistance to tigecycline was very common in our study population, which was
associated neither with the presence of tetl and tetM genes nor with mutations in rpsJ,
resistance determinants that have been described for other Gram-positive bacteria (44,
45). The overexpression of unspecific efflux pumps can also be responsible for tigecy-
cline resistance (46). In previous studies, tigecycline-resistant L. monocytogenes isolates
were found in lower numbers (40, 41).

Genotypic diversity. Molecular typing of L. monocytogenes is essential in order to
detect disease clusters and to identify food-related sources of infection as early as
possible. Pulsed-field gel electrophoresis, the former gold standard for isolate differ-
entiation in outbreak investigations, is increasingly replaced by WGS-based typing
methods (47). In this way, the spatial and temporal distribution of L. monocytogenes
genotypes can be compared. Our data revealed a broad heterogeneity of L. monocy-
togenes MLST clonal complexes in the food production environment, with CC2, CC8,
and CC9 as predominant genotypes. In Germany, CC8 and CC2 isolates are frequently
reported as causative agents of human listeriosis (48, 49). However, we also identified
many isolates that belonged to genotypes of minor clinical importance in Germany,
e.g., CC9 and CC121, which were defined as food-associated genotypes (50, 51). Due to
limited sample access, our strain collection does not provide comprehensive informa-
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tion on the nationwide prevalence of L. monocytogenes genotypes in German food
production facilities.

Identification of virulence and stress response genes. Listeria monocytogenes is
a heterogeneous species displaying various degrees of virulence (51). The ability of
L. monocytogenes to survive harsh environmental conditions is enhanced in isolates
carrying SSIs (52, 53). SSI-1 supports survival under acidic conditions and high salt
concentrations (53) and can be found equally in isolates from humans, food, and food
processing environments (52). Accordingly, we identified isolates of various clonal
complexes that carried SSI-1. SSI-2 contributes to the survival of L. monocytogenes
under alkaline and oxidative stress (52) and is predominantly found in ST121 isolates
(belonging to CC121) (52, 54), which is in line with our results. Even though SSI-2 was
significantly more frequently identified in BAC-tolerant isolates, Harter and colleagues
were able to show that this gene cluster does not mediate tolerance to QACs (52).

LGIs have been associated with increased virulence, heavy metal resistance, and BAC
tolerance (23, 55, 56). In our study, isolates only carried LGI2. LGI2 codes for genes
involved in pathogenicity and arsenic resistance and seems to be widely present in
clinical isolates belonging to CC1, CC2, and CC4 (56). We consistently detected LGI2 in
most CC2 isolates {90%).

Carriage of LIPIs promotes virulence. LIPI-1, a pathogenicity island modulating host
cell functions, is highly conserved in L. monocytogenes (57), and parts of this gene
cluster were omnipresent in our isolate collection. LIPI-3 codes for a hemolytic and
cytotoxic factor that impacts virulence and is associated with several clonal complexes,
including CC1, CC4, and CC6 (58-60). We detected LIPI-3 in all isolates belonging to CC1
and in the single CC4 isolate. In addition, this pathogenicity island was present in all
CC3, CC6, and CC288 isolates. We found LIPI-4 only in the single CC4 isolate of our
study. LIPI-4 was recently identified in clinical L. monocytogenes isolates of CC4 and is
linked to hypervirulence (51).

The iniA gene codes for a protein that is involved in the invasion of human intestinal
epithelial cells and is considered an important virulence factor of L. monocytogenes.
Premature stop codons resulting in the truncation of in/A are associated with attenu-
ated virulence. They are predominantly detected in nonhuman isolates (61). Consistent
with previous findings (51), all CC121 and several CC9 isolates (40%) from our study
harbored truncated inlA genes. Franciosa et al. showed that isolates with a truncated
infA gene displayed increased capacity for biofilm formation (62), which may be
associated with biocide tolerance and persistence properties.

Listeria monocytogenes from German food production facilities obviously carried
virulence factors contributing to human infection. While some of the genes known to
be involved in virulence were present in all or most of the isolates under study, others
only occurred in specific clonal complexes.

Conclusion. Our study revealed a high genetic diversity among L. monocytogenes
isolates from technical equipment and surfaces of German food production facilities.
The detection of genotypes that are frequently involved in human listeriosis highlights
the importance of contaminated food production environments as transmission routes
for virulent L. monocytogenes. Phenotypic tolerance to BAC was observed in 15 isolates
(16%), and efflux pump genes conferring BAC tolerance were identified in 13 of them.
Exposure to low concentrations of quaternary ammonium compounds can occur as a
result of improper disinfection practices and may enhance the ability of selected
isolates to persist in niches within food production environments. However, given the
low overall prevalence of biocide-tolerant isolates, it is likely that additional factors
contribute to the persistence of L. monocytogenes, including the ability to form biofilms.

BAC tolerance and the presence of BAC tolerance genes were not associated with
antibiotic resistance, indicating that the mechanisms responsible for reduced BAC
susceptibility in the investigated isolates do not confer antibiotic resistance. Moreover,
most of the BAC-tolerant isolates harbored internalin A pseudogenes which are known
to occur inisolates that exhibit reduced virulence and enhanced biofilm-forming ability.
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Altogether, our study does not support significant associations between biocidal selective
pressure in food production and antimicrobial tolerance of L. monocytogenes. However,
from in vitro studies, we know that links between biocide tolerance and antibiotic
resistance do exist in bacteria. The widespread use of disinfectants might therefore lead
to a selection of antibiotic-resistant isolates and needs regular monitoring. Last but not
least, a better understanding of the phenotypic traits that contribute to the survival and
persistence of L. monocytogenes in food processing plants and their underlying genetic
determinants is required and a prerequisite for infection control of listeriosis.

MATERIALS AND METHODS

Listeria monocytogenes isolates. Ninety-three L. monocytogenes isolates, collected by official food
control authorities from 2008 through 2016 in German food production plants and archived at the
National Reference Laboratory for L. monocytogenes (Germany), were characterized (Table S1). The isolates
originated from various surfaces of food processing facilities and equipment, such as slicers, cutting
boards, handles, sinks, grinders, cutting tables, derinders, gutters, tubes, and floor drains. Species
identification was carried out by biochemical and molecular typing, as previously described (40). Isolates
were stored at —80°C until use. Isolates were chosen under consideration of the source and year of
isolation, with the main aim of including a highly diverse study population.

Biocides. Susceptibility of the L. monocytogenes isolates was tested to six biocides commonly used
to sanitize food contact surfaces, namely, the quaternary ammonium compound BAC (=95%; Sigma-
Aldrich, Steinheim, Germany), GDA (50%; Carl Roth, Karlsruhe, Germany), IPA (=99.9%; Carl Roth), the
chlorine-releasing compound NaClO (12% Cl, techn.; Carl Roth), the oxidizing agent PAA (36 to 40%
[wt/vol]; Sigma-Aldrich), and a biocidal product (Budenat Intense D443; Buzil-Werk Wagner, Memmingen,
Germany) containing APD (7.5% [wt/wt]} as an active ingredient. The biocides were serially diluted in
2-fold steps just before the experiment using standardized hard water as defined in EN 1276, as follows:
10 to 0.08 mg/liter BAC, 5,650 to 44 myg/liter GDA, 249,600 to 3,900 myg/liter IPA, 8,000 to 62.5 my/liter
free chlorine {(NaClO), 2,875 to 22 mg/liter PAA, and 48 to 0.7 mg/liter APD in Budenat.

Biocide susceptibility testing. (i) MICs. The MICs of the biocides under study were determined by
broth microdilution assays. An overnight culture of each isolate grown on tryptic soy agar (TSA; Merck,
Darmstadt, Germany) was adjusted to about 10° CFU/ml 2-fold concentrated tryptic soy broth (TSB;
Merck). In a 96-well microtiter plate (Greiner Bio-One, Frickenhausen, Germany), 50 ul of the bacterial
solution was added to 50 ul of the double-concentrated biocide. The plate was incubated at 37°C for
20 = 2 h. Optical density at 595 nm (OD,,;) was measured after 5 s of shaking using the Mithras?
multimode reader (Berthold Technologies, Bad Wildbad, Germany; Software MikroWin 2010 v5.18,
German Ul). Bacterial growth was compared to a negative control (microtiter well containing biocide
solution and TSB), and a AODs,s of 0.1 was considered the cutoff value. The MIC was defined as the
lowest concentration of a biocide at which no growth was observed. Biological replicates derived from
two independent experiments were conducted on different dates. A MIC variation of one dilution step
between the two experiments was accepted. The lower value was defined as the MIC. In case of higher
variation, the test was repeated once more, and the median was considered the final MIC.

{ii) Minimum bactericidal concentration. The MBC of each strain and biocide was determined by
broth microdilution according to Knapp et al.,, with minor modifications (63). Dey-Engley neutralizing
broth (Sigma-Aldrich) was used to quench biocidal effects for MBC testing. The neutralizer efficacy and
toxicity were tested before according to Knapp et al. (64). The MBC was defined as the lowest
concentration of the biocide which revealed no visible colonies on TSA.

Determination of tentative ECOFFs. According to EUCAST guidelines (28) tentative ECOFFs can be
defined to distinguish between susceptible isolates and isolates with reduced antibiotic susceptibility.
Following this approach, tentative ECOFFs of unimodal MIC or MBC distributions were defined for tested
biocides at concentrations representing 95% of the bacterial population (MIC;5 and MBC,, respectively).

Antibiotic susceptibility testing. Antibiotic susceptibilities (S} to AMP (S, =2 mg/liter),
CIP (S, =1 my/liter; R, =4 mg/liter), DPT (S, =1mg/liter), ERY (S, =0.5mg/liter; R, =8 mg/liter),
GEN (S, =4 myg/liter; R, =16 myg/liter), LIZ (S, =4 mg/liter; R, =8 mg/liter), MER (S, =0.25 mg/liter), PEN
(S, =2 mg/liter), RAM (S, =1 mg/liter; R, =4 mg/liter), TET (S, =4 mg/liter; R, =16 mg/liter), TGC
(S, =0.5 mg/liter; R, 0.5 mg/liter), T/S (51,5, =0.05/9.5 mg/liter), and VAN (S, =2 mg/liter; R, =16 mg/liter)
were determined using the commercial test system Micronaut S Listeria MHK-2 (Merlin Gesellschaft fiir
Mikrobiologische Diagnostika mbH, Bornheim, Germany), as previously described (40). Resistance was
assessed using clinical breakpoint guidelines of the Clinical and Laboratory Standards Institute (CLSI) (65,
66). If no breakpoints for L. monocytogenes were available, those recommended for Staphyfococcus spp.
were applied. Since CLSI breakpoints for tigecycline were missing, cutoffs defined by the European
Committee on Antimicrobial Susceptibility Testing (EUCAST) were used (67).

Statistical analysis. Spearman rank coefficients (Rho) were calculated to investigate the correlation
of MICs or MBCs between tested biocides and antibiotics using SPSS (IBM SPSS Statistics, v21; IBM Corp.,
Armonk, NY, USA). Data were tested for normal distribution by the Kolmogorov-Smirnov test. For
comparative analysis between two groups of isolates (biocide sensitive versus biocide tolerant), the
Mann-Whitney test was applied. P values of <0.05 were considered to be significant.

Next-generation sequencing. Listeria monocytogenes isolates were cultivated on sheep blood agar
(SBA). A single colony was transferred into brain heart infusion (BHI) bouillon and incubated at 37°C for
18 to 20 h while shaking (150 rpm). DNA was extracted from bacterial cells using the PureLink genomic
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DNA minikit (Invitrogen, Carlsbad, CA, USA). WGS libraries were prepared with the Nextera XT DNA
sample preparation kit (lllumina, San Diego, CA, USA), according to the manufacturer’s protocol.
Paired-end sequencing (2 X 301 cycles) was performed with the MiSeq reagent v3 600-cycle kit (Illumina)
on an lllumina MiSeq benchtop sequencer.

First, sequence read quality was analyzed with FastQC v0.11.5 (Babraham Bioinformatics, Cambridge,
United Kingdom). Second, sequence reads were assembled using SPAdes v3.10.0 with the options
BayesHammer read error correction, postprocessing mismatch corrector with BWA, and an automatic
coverage filter (68). Third, assembly quality was analyzed using Quast v4.5 by comparison to the
L. monocytogenes type strain EGD-e (NCBI:txid169963, NCBI RefSeq accession no. NC_003210.1).

Classical MLST and cgMLST. For phylogenetic comparison of the L. monocytogenes isolates, classical
MLST and cgMLST were performed on the basis of WGS data. Classical MLST and corresponding clonal
complexes were determined according to the scheme of the Institut Pasteur (https://bigsdhb.pasteur.fr/
listeria/). cgMLST analysis was carried out using the Ridom SeqSphere+ software {v4.0.1; Ridom GmbH,
Miinster, Germany), according to Ruppitsch et al. (69). The cgMLST scheme relies on a set of 1,701 target
genes that are present in =>99% of the known genomes of the species. The combination of all alleles in
a strain forms a profile that can be used to characterize the phylogenetic relationships among isolates.

in silico screening for biocide resistance determinants on protein level. WGS data of the
L. monocytogenes isolates under study were screened for the presence of experimentally confirmed
resistance proteins recorded in the BacMet database (70) (Antibacterial Biocide and Metal Resistance
Genes database, http://bacmet.biomedicine.gu.se/, BacMet v2, last updated 9 December 2017).

The rapid prokaryotic genome annotation software Prokka v1.12 (71) was used to delimit open
reading frames (ORFs) in the draft genomes and to annotate protein-coding genes by hierarchical feature
prediction at the amino acid sequence level with BLAST+ v2.6.0 and HMMER v3.1b2.

The BacMet database of “experimentally confirmed resistance genes” included 753 amino acid
sequences which were uploaded into Prokka as a user-provided set of annotated proteins for the initial
round of feature prediction. The annotation of the most significant match (E value, =31} within the
BacMet database was transferred to an ORF. BacMet-flagged Listeria ORFs were counted and summarized
in a genome/feature table for subsequent correlation with phenotypic data (Table S1).

Analysis of biocide tolerance determinants and virulence factors on nucleotide level. Compar-
ative analyses of genes conferring biocide tolerance were carried out using the BioNumerics software
v7.6.2 (Applied Maths, Sint-Martens-Latem, Belgium).

We analyzed genes coding for SMR efflux transporters, i.e., gacH on the transposon Tn6788 (GenBank
accession no. HF565366), emrC (GenBank accession no. LT732640.1), emrE (GenBank accession no.
CP001602), berABC (GenBank accession no. JX023284.1), and mdrl (GenBank accession no. AJ012115.1)
coding for an efflux pump belonging to the MFS.

Furthermore, we looked for the following virulence factors: SSI-1 (GenBank accession no. NC_003210)
and S$SI-2 (NC_003212.1), LGI1 {CP001602) and LGI2 (CM001159.1), and the Listeria pathogenicity islands
(LIPI-1, AL591974.1; LIPI-2, AJ0O04808.1; LIPI-3, AE017262.2; and LIPI-4, CYWW02000024.1). Additionally,
the coding sequence for infA (NC_003210) was investigated to determine whether isolates possess a
full-length gene, deletions, or truncated sequences indicated by a premature stop codon. A minimum %
sequence identity (%ID) threshold of 80% and a minimum length of 80% of the target gene were used
for sequence identification.

Investigation of antibiotic resistance genes. Acquired antibiotic resistance determinants were
identified by ResFinder 3.0 (Center for Genomic Epidemiology; http://www.genomicepidemiology.org/)
(72). Listeria monocytogenes penicillin binding protein genes Imo1892, Imo2039, Imo1438, Imo2229,
Imo0441, Imo2754, Imo0540, Imo1916, Imo1855, and Imo2812 (NCBI RefSeq accession no. NC_003210)
were analyzed for single-nucleotide polymorphisms which might contribute to meropenem resistance
(73, 74). Furthermore, the rps/ gene (NCBI RefSeq accession no. NC_003210) was analyzed for point
mutations, which have been previously associated with TGC resistance in Enterococcus faecium (44).

Data availability. The sequences of three representative gacH genes of 16-L100597-0, 13-L100147-0,
and 16-L100532-0 were deposited in the National Center for Biotechnology Information database
(https://www.ncbi.nlm.nih.gov/) under accession numbers MK944275 to MK944277, respectively.
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Supplemental material for this article may be found at https://doi.org/10.1128/AEM
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Abstract: Biocides are frequently applied as disinfectants in animal husbandry to prevent the trans-
mission of drug-resistant bacteria and to control zoonotic diseases. Concerns have been raised,
that their use may contribute to the selection and persistence of antimicrobial-resistant bacteria.
Especially, extended-spectrum B-lactamase- and AmpC B-lactamase-producing Escherichia coli have
become a global health threat. In our study, 29 ESBL-/ AmpC-producing and 64 NON-ESBL-/ AmpC-
producing E. coli isolates from three German broiler fattening farms collected in 2016 following
regular cleaning and disinfection were phylogenetically characterized by whole genome sequencing,
analyzed for phylogenetic distribution of virulence-associated genes, and screened for determinants
of and associations between biocide tolerance and antibiotic resistance. Of the 30 known and two
unknown sequence types detected, ST117 and ST297 were the most common genotypes. These STs are
recognized worldwide as pandemic lineages causing disease in humans and poultry. Virulence deter-
minants associated with extraintestinal pathogenic E. coli showed variable phylogenetic distribution
patterns. Isolates with reduced biocide susceptibility were rarely found on the tested farms. Nine isolates
displayed elevated MICs and/or MBCs of formaldehyde, chlorocresol, peroxyacetic acid, or benza-
Ikonium chloride. Antibiotic resistance to ampicillin, trimethoprim, and sulfamethoxazole was most
prevalent. The majority of ESBL-/AmpC-producing isolates carried blacyx-nm (55%) or blacay-o (24%)
genes. Phenotypic biocide tolerance and antibiotic resistance were not interlinked. However, biocide and
metal resistance determinants were found on mobile genetic elements together with antibiotic resistance
genes raising concerns that biocides used in the food industry may lead to selection pressure for strains
carrying acquired resistance determinants to different antimicrobials.

Keywords: Escherichia coli; biocide tolerance; antibiotic resistance; biocide determinants; virulence;
food safety

1. Introduction

Escherichia coli is a gram-negative, non-sporulating facultative anaerobe, a widespread
gut commensal of vertebrates, and a versatile pathogen [1]. Pathogenic E. coli are cate-
gorized as intestinal pathogenic (InNPEC) or extraintestinal pathogenic E. coli (EXPEC) [2].
The latter colonize the gut of healthy hosts without causing disease but by entering ex-
traintestinal sites EXPEC can lead to urinary tract infections, meningitis, skin infections,
or sepsis [3]. In addition to affecting humans, avian pathogenic E. coli (APEC), the avian
pathotype of ExPEC, causes severe economic losses to the poultry industry and may
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represent a zoonotic risk [4]. Multidrug-resistant bacteria (particularly those producing
extended-spectrum B-lactamases (ESBL) and/or AmpC B-lactamases (AmpC)) are a grow-
ing threat to food safety [5,6]. ESBL-/AmpC-producing E. coli from healthy hosts were
classified as commensal strains but recent investigations indicated that they also show char-
acteristics of EXPEC or ExPEC-like strains [3,7]. Humans can be exposed to ESBL-/AmpC-
producing pathogens via human-to-human transmission, food, animal, and environmental
sources [8]. A high prevalence of ESBL-/ AmpC-producing Enterobacteriaceae was previ-
ously demonstrated on broiler farms [9-11]. Recent studies suggested that contaminated
broiler chicken farms might play an important role in the transmission of ESBL-/ AmpC-
producing Enterobacteriaceae into the environment [12,13]. Luyckx et al. detected E. coli
in broiler houses following hygiene measures, highlighting drain holes or floor cracks
as critical locations for cleaning and disinfection (C&D) [14,15]. Biocides like quaternary
ammonium compounds (QACs), aldehydes, oxidizing agents, organic acids, and cresols are
widely used in animal husbandry and food processing plants to prevent microbial growth.
However, concerns have been raised that the continued exposure to biocides in industrial
settings including food production environments may trigger mechanisms that alter both
biocide and antibiotic susceptibility and select for antimicrobial-resistant strains [16,17].
E. coli uses multiple pathways to overcome environmental stresses. Acid stress, for in-
stance, is counteracted by a range of physiological, metabolic, and proton-consuming acid
resistance mechanisms [18]. Biocide tolerance is a multifactorial process and can include
several mechanisms such as target modification [19], biofilm formation [20], changes of
cell envelope permeability [21], or the activity of efflux pumps [22]. Proteins involved in
tolerance to quaternary ammonium compounds (QACs) include members of the small
multidrug resistance (SMR) efflux family such as SugE(c), SugE(p), EmrE, YdgE/YdgF,
QacE, QacEA1, QacF, QacG, QacH, and Qacl as well as members of the major facilitator
superfamily (MFS) such as MdfA [23-26].

So far, laboratory methods to investigate biocide susceptibility are not standard-
ized [27,28] and to the best of our knowledge, only one study evaluated epidemiological
cutoffs (ECOFFs) for E. coli to a limited set of biocidal compounds [29]. As little is known
about the link between biocide selection pressure and antibiotic resistance in E. coli field
isolates in Germany we aimed to characterize a commensal E. coli study population in-
cluding ESBL-/AmpC-producing and NON-ESBL-/AmpC-producing E. coli from broiler
fattening farms following cleaning and disinfection. Because of the widespread use of
disinfectants in hygiene processes, we assumed a high selective pressure in the investi-
gated farm environment. We tested susceptibilities to seven biocides frequently used in
farm hygiene and to antibiotics relevant for human and veterinary medicine. In addition,
we characterized the genetic diversity of the E. coli strains including ExPEC associated
virulence genes, and looked for associations between biocide tolerance, antibiotic resistance,
and the presence of putative genetic determinants of antimicrobial resistance.

2. Materials and Methods
2.1. E. coli Isolates

A panel of 93 E. coli isolates collected in 2016 from three broiler fattening farms after
cleaning and disinfection measures were investigated (Table S1). The isolates originated
from surfaces of grounds, walls, and equipment such as air inlets, drains, door handles,
tractors (for food and litter), electric cables, feeding and drinking troughs from four barns.
E. coli were isolated from swab samples on MacConkey agar with and without cefotaxime.
Species identification and differentiation of ESBL-/AmpC-producing E. coli were per-
formed as previously described [30]. In brief, MALDI-TOF MS (Bruker Daltonics, Bremen,
Germany) was applied to suspicious isolates for species identification. Beta-lactamase
genes blactx-m, blaspy, blatpm, and CIT-type pAmpC genes were identified using a mul-
tiplex real-time PCR [31] as well as Sanger sequencing [30]. Isolates were selected from
different sources to obtain a highly diverse study population including ESBL-/AmpC- and
NON-ESBL-/ AmpC-producing E. coli (farm 1: barn 1, n = 27 including 13 AmpC-producing
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E. coli; barn 2, n = 15 including five ESBL-producing E. coli; farm 2: barn 3, n = 21 including
three ESBL-producing E. coli; farm 3: barn 4, n = 30 including eight ESBL-producing E. coli).
C&D protocols applied in the barns comprised dry cleaning, wet cleaning, and two dis-
infection steps. During dry cleaning, bedding and feed were removed. For wet cleaning
all-purpose cleaners were used. Disinfection was carried out using formaldehyde-based
disinfectants followed by either chlorocresol-based disinfectants (barns 1 and 4) or lime
solutions (barns 2 and 3).

2.2. Whole Genome Sequencing

E. coli isolates were cultivated on sheep blood agar. A single colony was transferred
into Miller’s lysogeny broth (LB) (Merck KGaA, Darmstadt, Germany) and incubated
at 37 °C for 19 &= 1 h with shaking at 150 rpm. DNA was extracted using the PureLink
Genomic DNA Mini Kit (Invitrogen, Carlsbad, CA, USA). Whole-genome sequencing
(WGS,) libraries were prepared with the Nextera XT DNA Sample Preparation Kit (Illumina,
San Diego, CA, USA) according to the manufacturer’s protocol. Paired-end sequenc-
ing (2 x 301 cycles) was performed using the MiSeq Reagent v3 600-cycle Kit (1llumina)
on an Illumina MiSeq benchtop sequencer. Raw fastq data were trimmed and assem-
bled using the AQUAMIS pipeline (https://gitlab.com /bfr_bioinformatics/ AQUAMIS
(accessed on 9 July 2018)) based on trimmomatic (version 0.36.), fastp (version 0.19.5),
unicycler (version 0.4.4), spades (version 3.11.1), pilon (version 1.22), mash (version 2.1),
and quast (version 4.6.3).

2.3. Phylogenetic Analysis

For phylogenetic analysis, multilocus-sequence typing (MLST) was performed using
WGS data. The classical MLST scheme defined by alleles of seven housekeeping genes
(adk, fumC, gyrB, icd, mdh, purA, and recA, database hosted at the University of Warwick)
was applied. MLST types were determined using the MLST 2.0 webtool of the Center for
Genomic Epidemiology (http://www.genomicepidemiology.org (accessed on 6 October
2018)) [32]. For phylogroup assignment, a multiplex PCR was conducted as described
previously [33] with minor modifications. The total reaction mixture of 25 pL contained
0.2 uM of each primer (except for TspE4C2.1b (0.4 M) and TspE4C2.2b (0.4 uM)), 12.5 uL.
of DreamTaq Green PCR Mastermix (Thermo Fisher Scientific, Schwerte, Germany), 5 uL of
PCR Water and 2.5 uL of the template DNA. An initial denaturation step of 3 min at 94 °C
was followed by 33 PCR cycles with 30 s of denaturation at 94 °C, primer binding for 30 s at
57 °C, and 1 min of elongation at 72 °C, as well as a final elongation step of 5 min at 72 °C.
Isolates belonging to phylogroups A and C or E and D were not further differentiated and
assigned to phylogroup A/C or E/D, respectively. Furthermore, we determined genetic
relatedness between E.coli isolates with ParSNP v1.0 [34]. The maximum-likelihood tree
was calculated by FastTree2 [35] and visualized with EMBL interactive tree of life, iTOL v4
(https:/ /itol.embl.de/, accessed on 20 September 2019).

2.4. Biocide Susceptibility Testing
2.4.1. Biocides

Susceptibility of the E. coli isolates was tested against the two biocides formalde-
hyde (FA, Carl Roth, Karlsruhe, Germany) and chlorocresol (p-chloro-m-cresol, PCMC,
Merck KGaA) used for C&D on the farms under study and five biocides commonly applied
in farm hygiene, namely the quaternary ammonium compounds benzalkonium chloride
(BAC, Sigma Aldrich, Steinheim, Germany) and didecyldimethylammonium chloride
(DDAC, Merck KGaA), hydrogen peroxide (HP, Carl Roth), peroxyacetic acid (PAA, VWR,
Dresden, Germany), and acetic acid (AA, Carl Roth). Biocides were serially diluted in
2-fold steps just before the experiment using standardized hard water as defined in EN
1276. The following final concentration ranges were tested: 320 to 5 mg/L BAC, 40 to
0.3 mg/L DDAC, 640 to 5 mg/L FA, 1024 to 8 mg/L HP, 2000 to 16 mg/L PAA, 16,384 to
128 mg/L AA, and 4000 to 63 mg/L PCMC.
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2.4.2. Minimum Inhibitory Concentration (MIC)

Biocide MICs were determined using broth microdilution. Overnight cultures grown
on tryptic soy agar (TSA; Merck KGaA) were adjusted to about 10° CFU/mL in 2-fold
concentrated tryptic soy broth (TSB; Merck KGaA). In 96-well microtiter plates (Greiner
Bio-One, Frickenhausen, Germany), 50 uL of the bacterial suspension was added to 50 pL.
of the double-concentrated biocide solution. Plates were incubated at 37 °C for 20 + 2 h.
Optical density at 595 nm (OD595) was measured after 5 s of shaking using the Mithras2
multimode reader (Berthold Technologies, Bad Wildbad, Germany; Software MikroWin 2010
v5.18, German Ul). Bacterial growth was compared to a negative control (microtiter well
containing biocide solution and tryptic soy broth, Thermo Fisher Scientific) and a AODsg5 nm
of 0.08 was applied as the cut-off value. The MIC was defined as the lowest concentration of a
biocide at which no growth was observed. Three independent experiments were performed
on different days and the median was considered as the final MIC.

2.4.3. Minimum Bactericidal Concentration (MBC)

The MBC of each strain and biocide was determined by broth microdilution according
to Knapp et al., with minor modifications [28]. Dey-Engley neutralizing broth (Sigma-
Aldrich) was used to quench biocidal effects for MBC testing. Neutralizer efficacy and
toxicity were tested before [36]. The MBC was defined as the lowest concentration of
a biocide, which revealed no visible colonies after subculture on tryptic soy agar (TSA,
Thermo Fisher Scientific). The reference strain E. coli ATCC 25922 was used as internal
quality control in both MIC and MBC tests and showed comparable results throughout
the experiments.

2.4.4. Determination of MICgy5/MBCgs

To distinguish between biocide susceptible isolates and isolates with reduced sus-
ceptibility, the MIC (or MBC) that encompassed 95% of all MIC (or MBC) values in the
distribution was designated as MICg5; (or MBCos).

2.5. Antibiotic Susceptibility Testing

Antibiotic susceptibility was determined by broth microdilution using the Sensititre
system with EUVSEC/EUVSEC2 plates (Thermo Fisher Scientific) in concordance with the
decision 2013/652/EU of the European Union. The following antimicrobial substances were
used: Ampicillin, AMP; Azithromycin, AZI; Cefepime, FEP; Cefoxitin, FOX; Ceftazidime,
TAZ; Cefotaxime, FOT; Cefotaxime/Clavulanic acid, F/C; Ceftazidime/Clavulanic acid, T/C;
Chloramphenicol, CHL; Ciprofloxacin, CIP; Colistin, COL; Ertapenem, ETP; Gentamicin,
GEN; Imipenem, IMI; Meropenem, MERO; Nalidixic acid, NAL; Sulfamethoxazole, SMX;
Temocillin, TRM; Tetracycline, TET; Tigecycline, TGC; Trimethoprim, TMP. We followed CLSI
guidelines and defined resistance using epidemiological cut-offs according to EUCAST.

2.6. Statistical Analysis

Spearman rank coefficients (Rho) were calculated to investigate the correlation of
MICs or MBCs between tested biocides and antibiotics using SPSS (IBM SPSS Statistics,
Version 21, IBM corp., Armonk, NY, USA). Data were tested for normal distribution by
the Kolmogorov-Smirnov test. For comparative analysis between two groups of isolates
(e.g., ESBL-/ AmpC- versus NON-ESBL-/ AmpC-producing isolates) the Mann-Whitney-
test was applied. Statistically significant differences between antimicrobial resistance or
distribution of virulence determinants in different genetic lineages were tested using the
chi2 test and Fisher’s exact test. p-values < 0.05 were considered to be significant.

2.7. In Silico Screening for Biocide and Metal Tolerance Determinants at Protein Level

WGS data of the E. coli isolates under study were screened for the presence of 753
experimentally confirmed biocide- and metal-resistance proteins recorded in the BacMet
database [37] (Antibacterial Biocide and Metal Resistance Genes database; http:/ /bacmet.
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biomedicine.gu.se/, BacMet version 2, last updated on 9 December 2017, accessed on
5 December 2018) as described before [38].

2.8. Detection of Biocide Tolerance and Virulence Determinants at Nucleotide Level

The presence of genes conferring biocide tolerance was determined as previously
described [38]. The genomes of all isolates were screened for genes encoding for small
multidrug resistance (SMR) transporters, i.e., gacEA1, qacE, gacF, gqacH, qacl, gacG, emrE,
sugLE(c), sugE(p), ydgE, ydgF, and for the multidrug efflux pump gene mdfA of the major
facilitator superfamily (MFS). In addition, we screened for genes involved in formaldehyde
and acid tolerance. An overview of the investigated genes and corresponding accession
numbers is given in Table 52. A minimum sequence identity (%ID) threshold of 80% and
a minimum length of 80% of the target gene were defined for the detection of biocide
determinants except for gacEA1 and gacE (100%ID and 100% minimum length).

In addition, we screened for the presence of 49 virulence genes typically associated
with ExPEC including fitness factors that are found in pathogenic and commensal strains
(Table 52). Virulence-associated genes (VAGs) were chosen from public databases contained
in the E. coli functional genotyping plugin (version 1.01) of Bionumerics or from previously
published reports [7,39,40]. A minimum sequence identity (%ID) threshold of 90% and a
minimum length of 60% of the target gene were used for the identification of VAGs.

2.9. dentification of Antibiotic Resistance Genes

Acquired antibiotic resistance determinants and chromosomal mutations leading to
antibiotic resistance were identified using ResFinder 3.0 (Center for Genomic Epidemiology,
http://www.genomicepidemiology.org, accessed on 11 January 2019 [41]).

2.10. Accession Numbers of Whole-Genome Sequences

Genome sequence data of the strains under study have been deposited at the Na-
tional Center for Biotechnology Information database (https://www.ncbinlm.nih.gov/,
accessed on 9 March 2021)) under accession numbers JAFMWT000000000-JAFMVF000000000
(see Table S1).

3. Results
3.1. Phylogenetic Diversity and Virulence-Associated Genes

PCR-based phylotyping of the 93 E. coli isolates revealed seven different banding
patterns associated with phylogroups A (n = 8), A/C (n = 13), Bl (n = 34), B2 (n = 5),
E(n=2),E/Dn=7),andF (n = 24). E. coli isolates belonged to 30 known and two
unknown multilocus sequence types (STs). The most prevalent STs were ST117 (n = 21;
two NON-ESBL-/ AmpC-producing E. coli from barns 2 and 3, 19 ESBL-/ AmpC-producing
E. coli from all barns) and §T297 (1 = 10; six AmpC-producing E. coli from barn 1, and four
NON-ESBL-/ AmpC-producing E. coli from barn 4) (Figure 1).
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Figure 1. Phylogenetic tree of 93 E. coli isolates from broiler fattening farms including their phenotypic biocide tolerance and
antibiotic resistance as well as the distribution of biocide tolerance and antibiotic resistance-conferring genes. An asterisk
marks biocide tolerant strains. Reduced susceptibility to biocides and antibiotic resistance are indicated for each isolate as
blue squares, tolerance, and resistance-conferring genes as black squares. Further information on ESBL-/AmpC-producing
E. coli phenotype (grey shaded strain ID) and multilocus sequence type (ST) are provided. The affiliation to different
barns are highlighted in yellow (barn 1), orange (barn 2), green (barn 3), and blue (barn 4). BAC = Benzalkonium chloride,
FA = Formaldehyde, PCMC = Chlorocresol (p-chloro-m-cresol).
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Up to 27 ExVAGs (VAGs associated with ExPEC) (55%) were detected in ST117 strains
(phylogroup F), up to 23 ExVAGs (47%) in ST429 (phylogroup B2), and up to 20 ExVAGs
(41%) in ST69 (phylogroup E/D) (Table S1). All isolates were positive for fimH (type 1
fimbriae), feoB (ferrous iron transporter, protein B), and ompA (outer membrane protein A).
The iss (increased serum survival protein) and fimA (type 1 fimbriae) genes were present in
77 (83%) and 74 (80%) isolates, respectively. Twenty-one VAGs were significantly associ-
ated with phylogroup F. Certain genetic determinants such as papC, papEF, papG-allele II
(P fimbriae formation), ireA (iron-responsive element), and hlyE (hemolysin E) exclusively
occurred in isolates belonging to ST117 of phylogroup F, whereas vat (vacuolating auto-
transporter toxin) was present in ST429 (phylogroup B2) and some ST117 (phylogroup F)
isolates. Iron capture systems were frequently represented in the genomes, but the number
of encoding genes varied considerably among isolates from 1 to 11. Iron uptake systems
were most prevalent in ST117 and ST429 isolates.

3.2. Susceptibility to Biocides

MIC and MBC data showed non-normal, unimodal distributions ranging between
one and three dilution steps for all biocides (Figure 2). MIC and/or MBC values above
MICy5/MBCys indicated isolates with reduced susceptibility to the tested biocides.
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Figure 2. MIC and MBC distributions of ESBL-/ AmpC-producing and NON-ESBL-/ AmpC-producing E. coli isolates
for common biocides used in farm hygiene. Black bars = MIC ESBL-/AmpC-producing E. coli, black striped = MIC
NON-ESBL-/ AmpC-producing E. coli, blue bars = MBC ESBL-/ AmpC-producing E. coli, blue striped = MBC NON-ESBL-
/AmpC-producing E. coli. Arrows mark MICy5 and MBCys representing cut-off values for isolates with reduced suscep-
tibility. (A) BAC = Benzalkonium chloride, (B) DDAC = Didecyldimethylammonium chloride, (C) FA = Formaldehyde,
(D) HP = Hydrogen peroxide, (E) PAA = Peracetic acid, (F) AA = Acetic acid, (G) PCMC = Chlorocresol (p-chloro-m-cresol).

These biocide-tolerant isolates were found in all barns (barn 1: n=2; barn 2: n =1,
barn 3: n = 2, barn 4, n = 4), and mostly originated from transitions between wall and floor

91



Publications and declaration of contribution

Microorganisms 2021, 9, 651 8of17

as well as from cracks and crevices in the ground (Table 51). An individual NON-ESBL-
/AmpC-producing E. coli isolate (ST351) displayed elevated MIC (160 mg/L) and MBC (320
mg/L) values of FA and an elevated MIC of PCMC (1000 mg/L). Furthermore, three NON-
ESBL-/ AmpC-producing E. coli showed either an elevated MIC (160 mg/L, n = 2, ST10,
ST351) or MBC value (320 mg/L, n =1, ST1818) of FA. Increased MBCs were also detected
for PAA (1000 mg/L, n = 1, ESBL-producing E. coli, ST117) and BAC (80 mg/L, n = 4,
three NON-ESBL-/ AmpC-producing E. coli, ST10, ST162, ST429, and one ESBL-producing
L. coli, ST117) (Figure 1).

3.3. Susceptibility to Antibiotics

All isolates were sensitive to carbapenems (ETP, IMI, MERO, COL and TGC). Antibi-
otic resistance to AMP (100% ESBL-/ AmpC-producing E. coli, 63% NON-ESBL-/ AmpC-
producing E. coli), SMX (52% ESBL-/ AmpC-producing E. coli, 36% NON-ESBL-/ AmpC-
producing E. coli), and TMP (28% ESBL-/AmpC-producing E. coli, 39% NON-ESBL-
/AmpC-producing E. coli) were most common in both groups (Figure 1). Thirty-four
isolates (37%) were resistant to at least one antibiotic in three or more classes and therefore
defined as multidrug-resistant (MDR). Two isolates from barn 2 were resistant to antibi-
otics in five substance classes including aminoglycosides, -lactams, fluoroquinolones,
sulfonamides, and tetracyclines.

3.4. In Silico Analysis of Determinants Conferring Biocide and Metal Tolerance

Out of 753 proteins potentially conferring biocide or metal tolerance 249 were iden-
tified in our study population (Table S3). Four tolerance determinants were exclusively
present in three isolates with increased MIC values of FA (18-47-16 (ST351), 18-47-17 (ST351),
and 18-47-57 (ST10). Three of these determinants belonged to an arsenic resistance operon
whereas the other one was annotated as nickel/cobalt efflux transporter NcrC that is in-
volved in nickel and cobalt resistance. All isolates under study harbored glutathione- and
NAD-dependent formaldehyde dehydrogenase with >80% nucleotide identity to the refer-
ence (Genbank Acc. No. X73835) found in the formaldehyde-tolerant strain Escherichia coli
VU3695 [19]. The three isolates with reduced susceptibility to formaldehyde harbored an
additional formaldehyde dehydrogenase with 99.6% identity to X73835. Sequence analysis
revealed only synonymous mutations compared to the reference (Figure 3).

Transcription Lactoglutathione
regulator 5" Hydroxymethyl- lyase
Isolate ST  Contig glutathione dehydrogenase

E. ool (X73835) A s

18-47-16 351 C51
18-47-17 351 C48
18-47-57 MON C39

NT555 NT780 NT870 NT873
(CAG>CAA)  (ACA ~ACG) (GCT>GCG) (GGC+GGT)
Barn 1 AS185 AS260 AS290 AS291
I Barn 3 (GIn+>Gln) (Thr>Thr) (Ala—~Ala) (Gly-~Gly)

Figure 3. Glutathione-dependent formaldehyde dehydrogenases of E. coli isolates compared to the plasmid-encoded
reference X73835. The alignment was created using Bionumerics and adjusted by CorelDraw Graphic Suite 3.0 (version 17)
for better interpretation. Relevant CDS (arrows) were labeled by protein function based on RAST annotation.

Genes of the E. coli acid fitness island were found in all but one isolate of the study
population. SMR efflux pump genes sugE(c), ydgE, and ydgF and the MFS efflux pump gene
mdfA were always present. We could not detect genes encoding the QAC-specific efflux
determinants QacE, QacG, QacF, Qacl, and QacH. Seventy-nine isolates (85%) carried emrE.
The SMR efflux pump gene gacEAT was detected in nine NON-ESBL-/ AmpC-producing E.
coli isolates (10%) of ST93 (n = 2), ST1011 (n = 1), ST1157 (n = 3), and ST1818 (n = 3) taken at

92



Publications and declaration of contribution

Microorganisms 2021, 9, 651

90f17

A

Isolate

18-47-25
18-47-36
18-47-45
18-47-47
18-47-48
18-47-83
18-47-88
18-47-89

18-47-90

ST

157
157
1011
93
93

different sampling sites in the barns 1, 2 and 4 (Figure 4A). SugE(p) was detected in seven
plasmid-mediated AmpC @-lactamase-(pAmpC-)producing E. coli isolates (8%) from barn 1
(ST117 (n = 3), ST10 (n = 1), ST48 (n = 1), ST69 (n = 1), ST1844 (n = 1)) (Figure 4B). However,
the presence of efflux determinants was not associated with reduced susceptibility to

tested biocides.
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Figure 4. Colocalization of biocide tolerance determinants and antibiotic resistance genes. (A) SMR efflux pump encoding
gene gacEAT located between aminoglycoside (aadA1) and sulfonamide (su/1) resistance genes on the same contig. (B) SMR
efflux pump encoding gene sugE(p) located downstream of class C beta-lactamase. The alignment was created using
Bionumerics and adjusted by CorelDraw Graphic Suite 3.0 (version 17) for better interpretation. Relevant CDS (arrows)
were labeled by protein function based on RAST annotation.

3.5. In Silico Analysis of Antibiotic Resistance Gene Profiles

Phenotypic antibiotic resistance could be attributed to known genetic resistance de-
terminants except for gentamicin (Figure 1). Identified determinants responsible for beta-
lactam antibiotic resistance were blatppr14 (n =1, ST1157, barn 4), blatpp.ip (n = 52,25 STs
from all barns), blargpm.1c (n =1, ST10, barn 4), blacrx.pma (n =16, ST117, barns 2, 3, and 4)
and blacpry.; (n =7, ST10, ST48, ST69, ST117, ST1844, barn 1) as well as ampC promotor
mutations (n = 6, ST297, barn 1). Target mutations of gyrA (1 = 20, 10 STs from all barns),
parC (n =6, 5T93, ST162, ST1431,ST1771, ST8132, from all barns) and/or parE (n =1, ST1431,
barn 4) as well as the resistance genes qnrB19 (n = 3, ST10, ST1011, ST2320, barns 2, 3, and 4)
and gnrS1 (n = 3, ST1485, unknown ST, barn 1) were found in quinolone resistant isolates.
Chloramphenicol resistance could be attributed to the presence of catl (n = 1, ST10, barn 4).
All tetracycline resistant isolates were positive for fef(A) (n = 20, 10 STs from all barns)
or tet(B) (n =9, ST117, 5T162, ST1771, barns 1 and 4). In sulfonamide and trimethoprim
resistant isolates the resistance genes sull (n =9, ST93, ST1011, ST1157, ST1818, barns 1,
2, and 4) and sul2 (n = 38, 16 STs from all barns) as well as drfAl (n = 27, 12 STs from all
barns), drfA5 (n = 6, ST58, ST117, ST1431, ST1844, barns 1, 3, and 4), drfA14 (n = 1, ST2320,
barn 4) and/or drfA17 (n = 1, ST162, barn 4) were present.

3.6. Association Between Reduced Biocide Susceptibility and Antibiotic Resistance and
Co-occurrence of Antimicrobial Resistance Genes

Antibiotic resistance was not significantly associated with reduced susceptibility to
biocides. There was also no significant difference between isolates from different barns.
In addition, ESBL-/ AmpC-producing isolates were in general not less susceptible to bio-
cides than NON-ESBL-/ AmpC-producing isolates. On the contrary, a higher proportion of
NON-ESBL-/ AmpC-producing E. coli showed reduced susceptibility in terms of MBCs
of FA and PCMC compared to ESBL-/ AmpC-producing E. coli (Figure 2). Interestingly,
several isolates carried biocide and metal tolerance genes on mobile genetic elements
closely linked to antibiotic resistance genes. For example, eight gacEAI-positive isolates
carried gacEA1, sull, and aadA1 on the same contig (Figure 4A). These determinants could
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be found downstream of an integron-integrase (int[1) gene in four out of nine isolates veri-
fying their localization on a class 1 integron. The same element carried a mercury-resistance
operon. Similarly, all sugE(p)-positive isolates (1 = 7) carried sugE(p) and blacay.2 on the
same contig (Figure 4B). Sequence data revealed genes associated with conjugal transfer
and transcription in close proximity indicating plasmid localization of sugE(p) and blacyy.».

4. Discussion

Our study aimed at investigating (i) the phylogenetic diversity and virulence determi-
nants, (ii) potential relationships between susceptibilities to biocides and antibiotics, and
(iii) genetic determinants of biocide tolerance and antibiotic resistance of E. coli isolates from
German broiler fattening farms. The study population consisted of 93 isolates sampled after
C&D. Most of the field isolates belonged to phylogroup B1 and E. While phylogroup B1 and
A mainly comprise commensals or intestinal pathogens [42], phylogroup F are frequently
associated with EXPECs in humans, companion animals, and birds [43-45]. Furthermore,
ExPEC strains are closely related to avian pathogenic E. coli suggesting poultry as a reser-
voir of zoonotic APEC strains [39,46]. APEC can cause avian colibacillosis, which threatens
poultry flocks worldwide. Three of the STs detected in our study, ST10, ST48, and ST117
have been previously linked to APEC strains [47-49] and were also isolated from human
patients [50-52], emphasizing a zoonotic risk. 5T297, which is known to be highly prevalent
in environmental and food samples, and ST69 were also found in our study population
and can be pathogenic for poultry and humans [53]. In general, our data revealed a broad
heterogeneity of E. coli isolates on German broiler fattening farms with variable numbers
of virulence-associated genes involved in adhesion, iron uptake, and cytotoxic activity.
ST117 (phylogroup F) and ST429 (phylogroup B2) carried the highest number of iron
uptake-related genes. Similarly, Projahn et al. observed a high prevalence of determinants
involved in iron acquisition in ST117 isolates collected during the years 2014 and 2015 from
German broiler meat production chains [7]. E. coli can survive extreme acid stress [54]
making use of amino acid-dependent and independent resistance mechanisms [55]. One of
the amino acid-dependent systems, encoded by 12 genes of the acid fitness island, is highly
conserved in E. coli and was found in virtually all isolates of our study population.

Escherichia coli can survive hygiene measures, persist over a long period of time, and
spread throughout the barns of broiler chicken farms [14,15,56,57]. Overall, phenotypic
biocide susceptibility testing did not prove tolerance to disinfectants within our study
population since MIC and MBC values of the biocides tested were well below in-use
concentrations. Modal MIC values of E. coli determined for BAC [58-62], DDAC [63,64],
FA [58,60,61], AA [58,65], PAA [66] and PCMC [67,68] in previous studies were similar to
our results. In contrast, modal MIC and MBC values of HP reported for avian pathogenic
E. coli differed by two dilution steps (64 versus 256 mg/L) [61]. So far, breakpoints to dis-
tinguish between biocide susceptible and tolerant isolates are missing. Morrissey et al. [29]
suggested ECOFFs for the most commonly applied biocides such as BAC, chlorhexidine,
triclosan, and sodium hypochlorite considering various species including E. coli. According
to published MICs (>64 mg/L) and MBCs (>128 mg/L) of BAC, none of our E. coli isolates
could be defined as tolerant. However, MIC values of biocides are difficult to compare
across studies because experimental conditions have not yet been harmonized. In this
context, Slipski et al. compared different antimicrobial susceptibility test methods (broth,
agar spot colony, and pegged lid biofilms) and showed that the mode of bacterial growth
significantly influenced QAC tolerant phenotypes related to SMR over-expression [69].
Thus, standardized methods are urgently needed.

Based on the MICy5/MBCgs values determined, nine isolates from our study pop-
ulation showed reduced susceptibility to at least one biocide (Figures 1 and 2). Six of
these isolates were taken from transitions between floor and wall or cracks and crevices.
These are well-known critical locations in broiler houses because they are difficult to clean
and disinfect [14,15], and exposure to subinhibitory concentrations of biocides in such
niches is very likely. Three out of the nine isolates showed elevated MICs of formaldehyde
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and one isolate additionally had an elevated MIC of chlorocresol. The most widespread
bacterial pathway for formaldehyde detoxification involves a glutathione-dependent de-
hydrogenase catalyzing the reversible formation of S-formylglutathione and NADH from
formaldehyde, glutathione, and NAD [70]. Enzymatic degradation of formaldehyde by a
plasmid-encoded variant of the enzyme has been previously described as a formaldehyde
resistance mechanism in E. coli [19,71-73]. In our study, the plasmid-encoded variant of the
formaldehyde dehydrogenase was exclusively present in isolates displaying elevated MICs
of formaldehyde (160 mg/L) indicating that this enzyme may contribute to the observed
phenotype. Interestingly, genes involved in arsenic and nickel/cobalt resistance were also
uniquely detected in these formaldehyde tolerant isolates.

SMR efflux pumps are known to confer resistance to a variety of substances, includ-
ing QACs and antibiotics [23,24,26,74-77], and are commonly found in E. coli [59,64,78,79].
Since QACs are frequently used for cleaning and disinfection in the food industry, strains armed
with appropriate biocide tolerance mechanisms have an increased ability to persist in food
processing environments. Not only drugs and toxic metabolites are expelled from bacterial
cells by multidrug efflux pumps, molecules that may be important for cell communication,
biofilm formation, and osmoregulation or protection of the cell are also released [76,80].

In our study, all isolates harbored the putative QAC tolerance conferring genes sugE(c),
ydgE, ydgF, and mdfA, while gacE, qacF, gacG, qacH, and gacl were absent. These results
are in line with previous findings on the prevalence of ydgE/ydgF (87-100%), mdfA (86—
100%), and gac genes (0-18%) in E. coli isolates from different sources [64,79]. The SMR
transporters emrE, gacEA1, and sugE(p) were detected in varying frequencies within our
study population. Nevertheless, our data were similar to those obtained from other epi-
demiological studies on E. coli isolated from poultry meat, meat products, and farms in
Germany [81], the United States [79], and China [64]. The contribution of gacEAT as a par-
tially functional derivative of gacE [82] on QAC tolerance is controversially discussed [83].
As described before [81,84], we were not able to show an association between the presence
of gacEA1 and reduced QAC susceptibility. The SMR efflux pump SugE has its role in
QAC tolerance [26,64] with a rather narrow substrate specificity, including cetyltrimethyl
ammonium, cetyldimethyl ammonium, cetylpyridinium, and cetrimide cations [69,74],
which may explain the phenotypic susceptibility to BAC and DDAC of isolates carrying
sugE(p) in our study.

Antibiotic resistance profiles were generally consistent with zoonoses monitoring data
of commensal E. coli from broiler fattening farms in Germany, 2016 [85]. However, 8.3%
colistin-resistant isolates were reported in the national monitoring program, whereas col-
istin resistance was not found in our study population. A significant number of isolates
showed resistance to three or more classes of antibiotics including critically important
antimicrobials as classified by the World Health Organization such as quinolones and 3rd
generation cephalosporins [86]. With the exception of gentamicin, all phenotypic resis-
tances could be traced back to genetic determinants. Different mechanisms are known to
confer gentamicin resistance. Most common are enzymes modifying the drug by acety-
lation (aminoglycoside acetyltransferase, AAC), adenylation (adenylate aminoglycoside
nucleotidyltransferase, ANT) or phosphorylation (aminoglycoside phosphotransferase,
APH) [87,88]. Mutations in the ribosomal target have also been described [89], but could not
be confirmed in our isolates. According to clinical breakpoints of CLSI, E. coli is supposed
to be resistant to gentamicin if MIC > 16 mg/L [90]. As our isolates had MIC values below
the clinical but above epidemiological cut-off (ECOFF 2 mg/L), these isolates may have
developed resistance. Within the EU, gentamicin is not authorized for use in poultry [91]
and resistance is rarely found in conventional broiler stocks in Germany (1.3% in 2016) [85].

In vitro studies showed that antibiotic cross-resistance can occur during bacterial
exposure to subinhibitory concentrations of biocides like QACs [92], biguanides [93],
and phenolic compounds [94]. The E. coli isolates in our study revealed no association
between phenotypic biocide tolerance and antibiotic resistance as described before [60,95].
On the contrary, FA and PCMC killed ESBL-/ AmpC-producing E. coli at slightly lower
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concentrations than NON-ESBL-/ AmpC-producing E. coli. Similarly, lower MICs of DDAC
were reported for ESBL-/ AmpC-producing E. coli in another study [81].

The biocide tolerance determinants gacEA1 and sugE(p) were located on mobile genetic
elements in close proximity to the antibiotic resistance genes sull and blacpsy.», respectively.
QacEA1 is common in enteric bacteria and is typically associated with the presence of
class 1 integrons that carry the sulfonamide resistance determinant su/1 explaining why all
gacEA1 positive isolates showed co-resistance to sulfamethoxazole [96]. On the same ge-
netic element, several mercury resistance genes were observed, which frequently occur on
plasmids together with antibiotic resistance genes and the gacEA1 gene [97]. Furthermore,
multiple gene cassettes can be arranged in tandem within these elements conferring addi-
tional resistance to f-lactams, tetracycline, gentamicin as well as aminoglycosides [59,64,79].
Worldwide, blacpmy-» is associated with pAmpC-producing E. coli from poultry [98]. The ge-
netic element, blacyy-2-blc-sugE, has already been found in IncK plasmids of E. coli isolated
from humans in Spain and poultry in Norway and Switzerland [99-101]. Plasmids car-
rying sugE(p) and blacpy.> antibiotic resistance genes have been detected in various STs
of E. coli [99,101,102] and may be spread by conjugative transfer to different reservoirs.
Even though isolates carrying qacEA1 or sugE(p) did not show reduced susceptibility to the
QACs investigated in our study, the use of QACs in broiler fattening farms may provide
selection pressure to strains that carry genes encoding resistance to clinically important
antibiotics [64].

5. Conclusions

Our study revealed a high genetic diversity of E. coli isolates from German broiler
fattening farms including genotypes characteristic of EXPEC strains. Our findings support
the hypothesis that poultry farm environments may act as a reservoir of human ExPEC and
could play a role in the spread of facultative pathogenic E. coli. While the overall prevalence
of biocide tolerant strains was low, the detection of isolates carrying formaldehyde tolerance
determinants and at the same time showing a reduced MIC to the compound indicates
that the use of disinfectants could have provided selection pressure. The QAC tolerance
determinants gacEA1 and sugE(p) were both located on mobile genetic elements in close
proximity to antibiotic resistance genes. In this case, disinfectants may simultaneously
select strains with acquired resistance to other antimicrobials. Whether disinfectants can be
a driver of antibiotic resistance in zoonotic pathogens from stable to table has to be clarified
to assess the consumer risks related to hygiene measures.
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Supplementary Table S2

Biocide tolerance genes screened in this study

Fitness Island)

Gene Gene description Accession no.  Source
qacEAl quaternary ammonium compound efflux SMR transporter JN596280 (D)
gacE quaternary ammonium compound-resistance protein X68232 (D)
gacF quaternary ammonium compound efflux SMR transporter JN596279 (D)
gacH quaternary ammonium compound resistance protein FJ160769 (D)
gacl quaternary ammonium compound resistance protein HQ875011 (D)
gacG quaternary ammonium compound resistance protein FJ950725 (D)
emrE efflux-multidrug resistance protein AIGY01000024 (1)
mdfa multidrug efflux pump/Na(+):H(+) antiporter/K(+):H(+) Y08743 )
antiporter
suge(c) SMR family transporter X69949 (8]
Suge(p) SMR family transporter HQ023864 (8]
ydgE multidrug transporter subunit NC_ 011745 (D)
ydgF multidrug transporter subunit NC_011745 (D)
BW690 25775 S-(hydroxymethyl)glutathione dehydrogenase X73835.1 (2)
i?a%p(‘;;'d Fitness starvation lipoprotein NC_000913 3)
m::né?md Fitness putative DNA-binding transcriptional regulator NC_000913 3)
m:e\?]d(f cid Fitness inner membrane protein NC_000913 3)
E?t?] Bes(sAlcs 'g nd) periplasmic acid stress chaperone NC_000913 3)
hdeA (Acid acid stress chaperone NC 000913 3)
Fitness Island) -
:l?ten ngp;z:gn d) acid-resistance membrane protein NC_000913 3)
gadE (Acid I o .
Fitness Island) DNA-binding transcriptional activator NC_000913 3)
?’g;ﬂéfc'd Fitness multidrug efflux pump membrane fusion protein NC_000913 3)
mgﬁlg‘ud Fitness multidrug efflux pump RND permease NC_000913 3)
gadW (Acid
Fitness Island) DNA-binding transcriptional dual regulator NC_000913 @)
g?t‘::gs(fgg ng  smallregulatory RNA NC_000913  (3)
gadX (Acid hindi o
Fitness Island) DNA-binding transcriptional dual regulator NC_000913 3)
gadA (Acid glutamate decarboxylase A NC_000913 3)
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Virulence associated genes (VAGS) screened in this study

protein

Gene Gene description Accession no. Source  Group
afaB/afaC  afimbrial-adhesin-encoding gene X76688.1 (4) adhesion
afak afimbrial-adhesin-encoding gene M12868 (5) adhesion
bmaE M-agglutinin subunit M15677 4) adhesion
fimA type-1 fimbrial protein, A chain NC_000913.3 (6) adhesion
fimC periplasm fimbrial chaperone protein CP004009.1 (7) adhesion
fimH mannose-specific adhesin of type 1 fimbriae AJ225176 (4) adhesion
focG F1C fimbriae subunit S68237 4) adhesion
gafD G-fimbrial lectin protein L33969 4) adhesion
iha bifunctional enterobactin receptor/adhesin protein GU725392 (8) adhesion
papA fimbrial major pilin protein X61239 (4) adhesion
papC fimbrial major pilin protein X61239 4) adhesion
papEF fimbrial major pilin protein X61239 (4) adhesion
IpapG allele fimbrial major pilin protein X61239 4) adhesion
Ip'apG allele fimbrial major pilin protein X61239 4 adhesion
Zﬁzi:“ fimbrial major pilin protein M20181 4) adhesion
sfa/foc S and F1C fimbriae subunits DQ301498 4) adhesion
sfaS S fimbriae minor subunit SfaS CP000243 (4) adhesion
- - AY545598/ :
tsh temperature-sensitive hemagglutinin AF218073 (9), (10) adhesion
chuA outer membrane hemin receptor U67920.1 (11) iron
uptake
feoB ferrous iron transporter, protein B GU361604.1 (12) iron
uptake
fyuA yersiniabactin/pesticin outer membrane receptor 238064 (13) Lrp?t?a ke
ireA iron-responsive element AEQ014075 (8) ron
uptake
iroD salmochelin siderophore system, ferric enterochelin DQ381420.1 (14) iron
esterase uptake
iroN iron outer membrane receptor AF449498 (14) ron
uptake
. L S . . iron
irp-2 yersiniabactin biosynthetic protein L18881.1 (15) uptake
iucA N(2)-citryl-N(6)-acetyl-N(6)-hydroxylysine synthase X76100.1 - :er?tr;l ke
. . iron
iucD Iron uptake chelate protein D M18968.1 (16) uptake
. . iron
iutA aerobactin receptor X05874 4 uptake
SitA structural injection transglycosylase AY126440.1 a7 Lrgtr; ke
flicC (H7)  H7 variant of the Escherichia coli flagellin gene  NC002695 ®) miscellan
ibeA invasion of brain endothelium AF289032 4 Er?c)lls]gellan
ompT Protease 7 41044 (8) miscellan
eous
PAl(malX) pathogenicity islands (PAISs) AF00372 4 (r;)llsjgellan
cvi-ovac colicin V' immunity protein-colicin V synthesis X57595 (18) protectins
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Gene Gene description Accession no. Source  Group
iss increased serum survival protein CP001855 (8) protectins
l((lgi';ﬂ Kl capsular polysaccharide M57382.1 4 protectins
kpsMT 11 group 2 capsular polysaccharide units X53819.1 (4) protectins
kpsMT Il Group Il capsular polysaccharides AF007777.1 4) protectins
neuC UDP-N-acetylglucosamine (GICNACc) 2-epimerase  ~ M84026.1 (19) protectins
ompA outer membrane protein A CP004009.1 (7) protectins
rfc Escherichia coli O antigen polymerase gene U39042 (4) protectins
astA arginine succinyltransferase AY545598 (10) toxins
cdtB cytolethal distending toxin protein AJ508930 (20) toxins
cnf-1 cytotoxic necrotizing factor U42629 4) toxins
hlyA hemolysin A M10133 (21) toxins
hlyD hemolysin D 2128 (8) toxins
hlyE hemolysin E AF052225 (22) toxins
hlyF hemolysin F 14615 - toxins
vat vacuolating autotransporter toxin X16664 (23) toxins
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The separate Excel file for Table S1 and Table S3 containing the isolate information,
phenotypic raw data on biocide and antibiotic susceptibility, virulence determinants, accession
numbers of whole genome sequences, and in silico screening for biocide resistance

determinants can be accessed under:

https://www.mdpi.com/2076-2607/9/3/651/s1
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Abstract: We investigated the suitability of a newly developed biocide susceptibility test system
based on microtiter plates containing vacuum dried biocides as a fast and reliable screening
method. The evaluated substances included the cationic biocides benzalkonium chloride (BAC),
chlorhexidine dihydrochloride (CHX), cetylpyridinium chloride, didecyldimethylammonium chloride,
and octenidine dihydrochloride. Testing a selection of Escherichia coli and enterococci, the biocide
microtiter plates provided results comparable to those obtained from broth microdilution according to
150 20776-1. Broad MIC ranges allowed for testing gram-positive and gram-negative species with the
same plate design. In the second part of our study, we applied the established method to analyze the
susceptibility of 90 clinical Enterococcus faecium isolates from a German university hospital, as previous
studies have indicated a link between reduced susceptibility to substances such as CHX and BAC
and vancomycin resistance. We therefore determined MIC and minimum bactericidal concentrations
(MBC) for 48 non-clonal vancomycin susceptible and 42 non-clonal vancomycin resistant isolates,
but MICy5 and MBCos were quite similar in both groups. Our easy to handle and ready to use test
system enables the routine surveillance of bacterial tolerance towards disinfectants in hospitals. As a
result, hygiene measures can be adapted and nosocomial infections controlled despite increasing
prevalence of antibiotic-resistant bacteria.

Keywords: biocide susceptibility; Enterococcus faecium; vancomycin-resistant; VRE

1. Introduction

In the era of multidrug resistance with a rising number of infections unresponsive to antibiotic
treatment, the relevance of hygiene measures to reduce bacterial burden and transmission in clinical
settings has significantly increased [1]. Most disinfection strategies make use of a mixture of biocides
with bacteriostatic and/or bactericidal activities simultaneously affecting different bacterial target
sites [2]. The multifactorial mode of action led to the assumption that tolerance development in
bacteria is rather unlikely. Nonetheless, numerous in vitro studies demonstrated the adaptation
capability of various bacterial species when exposed to different biocidal substances in sublethal
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concentrations [3,4]. In addition, recent epidemiological studies provide support that decreasing

biocide susceptibility can be caused by the introduction of biocides into the clinical environment.

Pidot et al., for example, showed that Enterococcus faccium isolates obtained from two major hospitals
in Melbourne, Australia after 2010 were 10-fold more tolerant to isopropanol compared to former
isolates [5]. Decreasing susceptibility of Staphylococcus aureus to biocides such as chlorhexidine
(CHX) and octenidine (OCT) over time was observed after increased usage of both substances in
hospitals [6]. In several outbreak investigations, we observed reduced susceptibility to biocides of the
predominantly used substances in outbreak isolates. We have recently described a clonal cluster of
carbapenem-resistant Klebsiella pneumoniae isolates with decreased susceptibility to CHX [7]. These
isolates were detected by regular screening of intensive care unit (ICU) patients on a ward that has
implemented routine washing with CHX to decrease the rate of catheter-related infections. As a matter
of concern, reduced CHX susceptibility was associated with resistance to colistin, likely caused by
increased efflux of both substances via the same route. Furthermore, we have reported a polyclonal
outbreak with Serratia marcescens on a neonatology ICU [8]. These isolates exhibited resistance to
0.5% Mikrobac forte® consisting of benzyl-C12-18-alkyl dimethyl ammonium chloride 199 mg/g
and N-(3-aminopropyl)-N-dodecylpropane-1,3-diamine 50 mg/g, which was used for disinfection of
surfaces before the outbreak. One of the measures in the bundle that finally successfully contained
this outbreak consisted of increasing the concentration of used Mikrobac forte® to 2%. Outcomes
of these studies point towards the need for regular monitoring of bacterial biocide susceptibility
profiles. For this purpose, reliable high-throughput screening methods are needed that can be easily
compared across studies. In contrast to antibiotic susceptibility testing, standardized procedures are
missing for biocide susceptibility testing although attempts have been made to introduce respective
protocols [9,10]. The need to harmonize biocide susceptibility testing methods was emphasized
by a study highlighting the effect of slight modifications in the test procedure, such as choice of
nutrient broth or assay plate material, on the results obtained [11]. Currently, biocide susceptibility
is frequently tested by broth microdilution as it resembles the standardized procedure for antibiotic
resistance testing according to ISO standard 20776-1 [12]. The method includes the fresh preparation
of biocide stock solutions, which are diluted to a range of concentrations covering MICs and minimum
bactericidal concentrations (MBCs). A defined number of bacterial cells (2 x 10° — 8 x 10° cfu/mL) is
subsequently exposed to biocides for 18 + 2 h at 34-37 °C. Concentration ranges for each substance are
covered in doubling dilutions. The MIC is defined as the lowest concentration leading to inhibition of
bacterial growth, which is determined visually or by measuring optical density. The aforementioned
method is time-consuming and error-prone as ranges of biocidal substances need to be prepared prior
to each investigation. Hence, a test plate system containing predefined concentrations of biocidal
substances would be preferable for routine screening of bacterial susceptibility profiles to biocides
of interest. Thus, the first aim of our study was to evaluate the comparability of susceptibility
profiles for chosen biocides obtained with broth microdilution method according to ISO 20776-1 and a
newly developed microtiter-plate containing vacuum dried cationic biocides (MERLIN Diagnostika
GmbH, Bornheim-Hersel, Germany). Subsequently, we used the novel test system to determine
biocide susceptibility of vancomycin-resistant (VRE) and susceptible enterococci (VSE) as vancomycin
resistance has been linked to reduced susceptibility to cationic biocides such as CHX and benzalkonium
chloride (BAC) in the past [13,14].

2. Materials and Methods

2.1. Bacterial Strains and Culture Conditions

In total, 95 field isolates and two reference strains were analyzed comprising of Enferococcus spp.

and Escherichia coli. All enterococci field isolates were sampled at the Jena University Hospital. To verify
the suitability of the newly developed test system, an initial strain panel was tested, consisting of four
E. coli isolates from stable surfaces of broiler fattening farms and the E. coli reference strain ATCC 25922,
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as well as three clinical isolates of E. faecium, one of Enterococcus faecalis, and the E. faecalis reference
strain ATCC 29212. The actual strain panel studied included 42 non-clonal VRE and 48 non-clonal VSE
isolates (among them the three pretested E. faecium) from blood cultures (1 = 73), swabs (n = 7), urine
(n = 6), and fecal samples (n = 4; Table S1). Isolates were stored in glycerol stocks. Prior to use they
were grown on Mueller-Hinton (MH) agar (Thermo Fisher Diagnostics GmbH Microbiology, Wesel,
Germany) overnight at 37 °C.

2.2. Biocides

The cationic biocides BAC (Sigma Aldrich, Steinheim, Germany), chlorhexidine dihydrochloride (CHX;
Sigma Aldrich), cetylpyridinium chloride (CTP; TClI, Eschborn, Germany), didecyldimethylammonium
chloride (DDAC; Sigma Aldrich), and octenidine dihydrochloride (OCT; Alfa Aesar by Thermo Fisher,
Kandel, Germany) were tested including the following concentrations in doubling dilution steps: 256
to 0.5 mg/L (BAC), 128 to 0.25 mg/L (CHX), 256 to 1 mg/L (CTP), 128 to 0.5 mg/L (DDAC), and 32 to
0.125 mg/L (OCT).

2.3. Biocide Susceptibility Testing

2.3.1. MIC Determination by Wet Plate Procedure

MIC values were determined for the initial strain panel using a broth microdilution method
in accordance with the Clinical and Laboratory Standards Institute (CLSI) guidelines [15] and ISO
20776-1 [12]. Testing was carried out as previously published [16] except for MH broth (Thermo Fisher
Diagnostics GmbH Microbiology) used instead of tryptic soy broth. In compliance with EN 1276,
standardized hard water was used to freshly prepare all stock solutions and to subsequently adjust
the desired concentrations. The MIC was defined as the lowest biocide concentration completely
inhibiting bacterial growth, which was determined after additional visual inspection (data not shown).
Optical density was measured with a Mithras? Multimode Reader (Berthold Technologies, Bad Wildbad,
Germany). ODsg5 = 0.04 and 0.08 were considered as cut-off values for enterococci and E. coli, respectively.
Experiments were repeated on three different days in three technical replicates per day.

2.3.2. MIC and MBC Determination by Dried Plate Procedure

In parallel, susceptibility testing was performed using a broth microdilution method with
customized microtiter plates containing vacuum dried biocides (MERLIN Diagnostika GmbH). Briefly,
100 wl MH broth containing approximately 5 x 10° cfu/mL were added to each well and plates were
incubated for 20 + 2 h at 37 °C. ODgj¢ was measured with a Multiscan EX microplate photometer
(Thermo Scientific, Vantaa, Finland). MIC values were defined after additional visual inspection
(data not shown). ODgpp = 0.08 was considered as the cut-off value for both enterococci and E. coli.
MICs of the initial strain panel were tested on three different days in three technical replicates per day.
Subsequently, MIC testing was conducted for the second strain panel in three biological replicates
on three different days using the customized biocide microtiter plate. In addition, MBC tests were
performed as previously described [16]. Dey-Engley neutralizing broth (Sigma Aldrich) was used
to quench biocidal effects for MBC testing. The MBC was defined as the lowest concentration of the
biocide that revealed no visible colonies on MH agar.
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2.4. Comparative Analysis of Both MIC Testing Methods

Comparability of results obtained with both methods was assessed by applying two criteria of
ISO 20776-2, essential agreement (EA), and reproducibility [17]. According to ISO 20776-2, alternative
antimicrobial susceptibility testing methods need to be compared to the reference method for antibiotic
resistance testing based on ISO 20776-1. So far, no reference method is available for biocide susceptibility
testing. Hence, we compared the results of the MIC testing conducted with customized microtiter
plates (dried plate procedure) with data obtained with broth microdilution according to ISO 20776-1
(wet plate procedure). The EA was calculated using the following formula:

EA = Ngpp X 100/N

where Npp = Number of isolates showing a modal value comparable to the modal value obtained with
the ISO 20776-1 method (+ one doubling dilution step), and N = Total number of tested isolates.

According to ISO 20776-2, the modal MIC value determined with the test system may differ + one
doubling dilution step from the modal value obtained with the ISO 20776-1 method. At least 90% of
the data obtained with the test system of interest need to be within this acceptable range (EA > 90%).
With these preconditions, at least 95% of the measured data must be reproducible.

3. Results and Discussion

3.1. MIC Values Determined with Vacuum Dried Biocide Microtiter Plates Are in Agreement with Results
Obtained with Broth Microdilution According to ISO 20776-1

In our study, MIC values were determined using two independent methods for an initial panel of
three E. faecium, two E. faecalis (Figure 1), and five E. coli strains (Figure 2). The MIC values determined
with the customized vacuum dried biocide microtiter plate were within the acceptable range of
= one doubling dilution step compared to the modal values obtained with a broth microdilution
method according to ISO 20776-1 (EA = 100% for all isolate-substance combinations). For enterococci,
data obtained from all replicates were within the acceptable range of + one doubling dilution step
(reproducibility = 100% for all measurements). For E. coli, reproducibility reached 100% in CTP and
DDAC. It was lower in BAC (98%), CHX (96%) and OCT (96%) but was still within an acceptable range
(>95%) according to 1SO 20776-2.

Taken together, vacuum dried biocide microtiter plates provide a performance level comparable
with broth microdilution (the ISO 20776-1 reference method). Hence, the evaluated microtiter plates
are suitable for quick and standardized MIC testing of cationic biocides. Broad MIC ranges allowed
for susceptibility testing of gram-positive and gram-negative species with the same plate design.
However, it needs to be noted that this method is restricted to biocidal substances that can be easily
de- and rehydrated such as the cationic biocides tested in our study. Customized vacuum dried
biocide microtiter plates have been used for biocide susceptibility testing in three independent studies
before [18-20]. The microtiter plates were also manufactured by MERLIN Diagnostika GmbH and all
contained acriflavine, alkyldiaminoethyl glycin hydrochloride, benzethonium chloride, BAC, and CHX
as heavy metal salts. However, none of these studies reported on the comparability of results with
data obtained by broth microdilution according to ISO 20776-1.
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Figure 1. Susceptibility of three Enterococcus faecium (18-47-254, 18-47-279, 18-47-280) and two
E. faecalis (19-47-23, ATCC 29212) strains to cationic biocides. Minimum inhibitory concentrations of
benzalkonium chloride (BAC), chlorhexidine dihydrochloride (CHX), cetylpyridinium chloride (CTP),
didecyldimethylammonium chloride (DDAC), and octenidine dihydrochloride (OCT) determined by
wet plate procedure (WP; filled dots) and dried plates (DP; empty dots) are shown. Lines represent the
respective modal values.
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Figure 2. Susceptibility of five Escherichia coli strains to cationic biocides. Minimum inhibitory
concentrations of benzalkonium chloride (BAC), chlorhexidine dihydrochloride (CHX), cetylpyridinium
chloride (CTP), didecyldimethylammonium chloride (DDAC), and octenidine dihydrochloride (OCT)
determined by wet plate procedure (WP; filled dots) and dried plates (DP; empty dots) are shown.

Lines represent the respective modal values.
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3.2. Cationic Biocide Susceptibility Profiles of Vancomycin Resistant and Susceptible E. faecium Are Similar

The vacuum dried biocide microtiter plate system was used to determine the susceptibility of 90
E. faecium strains to cationic biocides (Table 1). Reproducibility reached 100% for each substance by
accepting a variability of + one doubling dilution step. The high reproducibility points towards the
reliable description of susceptibility patterns for cationic biocides by applying a test system based on
vacuum dried plates. Overall, MIC and MBC values of BAC, DDAC, and CHX were in accordance
with previously reported data on E. faecium, which were generated by broth microdilution according
to ISO 20776-1 [13,21], modified broth microdilution and subsequent macrodilution [22,23], or agar
dilution [14]. Interestingly, compared to data published by Morrissey et al. [21], MIC values of CHX
were quite low (2-4 mg/L vs. 16 mg/L) in our subpopulation of E. faecium isolates, which might display
geographic variability. Unfortunately, data on susceptibility to CTP and OCT are not available so far.
MICg5; and MBCos values of OCT, CTP, and DDAC in VRE and VSE were concordant. The MBCos
of BAC and the MICys; of CHX were twice as high in VSE compared to VRE. This observation is in
contrast to previous findings, where vancomycin resistance was associated with reduced susceptibility
to cationic biocides, such as BAC and CHX [13,14]. While our study focused on clinical E. faecium isolates
from wards with low CHX usage, the study conducted by Alotaibi et al. investigated isolates from
Danish hospital wards, where CHX is heavily used [13], which might be one reason for the observed
difference in study outcomes. Last but not least, BAC and CHX susceptibility of VRE and VSE differed
only in one doubling dilution step, which is within the acceptable range in terms of comparability of
results according to ISO 20776-2. Mechanisms mediating reduced biocide susceptibility in enterococci
are still not well understood. However, in some studies reduced susceptibility to substances such as
CHX and BAC was linked to increased efflux pump activities [13,24,25], which is in line with common
biocide tolerance mechanisms described for various bacterial species [26]. Although increased efflux
pump activity can be associated with resistance to certain antibiotics in enterococci, e.g., streptogramins,
tetracyclines and quinolones [27], there is no evidence that efflux pumps contribute to vancomycin
resistance. In enterococci, identified vancomycin resistance mechanisms include target modification and
removal of high affinity precursors that are usually synthesized in the cell. Both mechanisms result in
reduced binding of vancomycin to the bacterial cell [27,28]. It has been shown that adaptation to biocides
can result in modification of bacterial cells. The adaptation of K. preumoniae to CHX, for example, was
linked to the upregulation of genes involved in modification of the outer membrane [29]. Whether
adaptation to cationic biocides like CHX leads to an alteration of the enterococcal cell wall, which might
consequently affect the binding of vancomycin, needs to be investigated in future studies. Results of our
study do not provide evidence of an association between reduced susceptibility to cationic biocides and
vancomycin resistance.
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Table 1. Susceptibility of Enterococcus faecium to cationic biocides tested by a customized microtiter plate (MERLIN Diagnostika GmbH).
Biocilf{i: n(;?eo;;eé:;ltion Species Number of Isolates with MIC Value (mg/L) of MICos Number of Isolates with MBC Value (mg/L) of MBCos
025 05 1 2 4 8 16 025 05 1 2 4 8 16

BAC (0.5-256 mg/L) \\,/Eg ! -11; :;g g j; ’ 186

CHX (0.25-128 mg/L) x;g ! ? Z? & ; i } 3 gg }(67

CTP (1-256 mg/L) \\,I;E: 3 K ;? i jg 3

s ¥
DDAC (0.5-128 mg/L) ://;E: ' ;2 ?é ; 2 ig ;
OCT (0.125-32 mg/L) \\//;E ' i gg g g; gg :11

Biocide concentrations which have not been tested are shaded in gray. BAC = benzalkonium chloride, CTTX = chlorhexidine dihydrochloride, CTP = cetylpyridinium chloride, DDAC =
didecyldimethylammonium chloride, OCT = octenidine dihydrochloride, VRE = vancomyein resistant Enterococcus faecium, VSE = vancomycin susceptible Enterococcus faecium, ¥ MIC < 0.5,

*MIC < 1.
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4, Conclusions

In our study, we explored the suitability of a newly developed biocide susceptibility test system
based on microtiter plates containing vacuum dried biocides as a screening method to identify bacteria
resistant to cationic substances frequently used in hospital settings. We were able to show that this test
system provides reliable results similar to the broth microdilution method according to CLSI guidelines
and ISO 20776-1. Based on the data collected, the test system is appropriate for both, gram-positive
and gram-negative species and may, therefore, serve as a fast and easy-to-handle surveillance tool
for biocide-tolerant bacterial isolates. In a clinical application trial, we determined the susceptibility
of 90 clinical E. faecium isolates to cationic biocides. Our results revealed no association of biocide
tolerance with vancomycin resistance in the strain collection under study. In summary, monitoring
and early identification of clinical isolates tolerant towards disinfectants applied in hospitals will
help to adjust hygiene measures and to control nosocomial infections while simultaneously reducing
antibiotic consumption.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/4/551/s1,
Table S1: E. faecium study population.
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Table S1: E. faecium study population

Isolate 1D species Var!comycin Isolation
resistance source

18-47-214 E. faecium VSE urine
18-47-215 E. faecium VSE swab
18-47-216 E. faecium VSE swab
18-47-217 E. faecium VSE swab
18-47-218 E. faecium VSE swab
18-47-219 E. faecium VSE swab
18-47-220 E. faecium VSE blood culture
18-47-221 E. faecium VSE blood culture
18-47-222 E. faecium VSE blood culture
18-47-223 E. faecium VSE blood culture
18-47-254 E. faecium VRE blood culture
18-47-255 E. faecium VRE blood culture
18-47-256 E. faecium VRE blood culture
18-47-257 E. faecium VRE blood culture
18-47-258 E. faecium VRE blood culture
18-47-259 E. faecium VRE blood culture
18-47-260 E. faecium VRE blood culture
18-47-261 E. faecium VSE blood culture
18-47-262 E. faecium VRE blood culture
18-47-263 E. faecium VSE blood culture
18-47-264 E. faecium VSE blood culture
18-47-265 E. faecium VSE blood culture
18-47-266 E. faecium VRE blood culture
18-47-267 E. faecium VSE blood culture
18-47-268 E. faecium VRE blood culture
18-47-269 E. faecium VSE blood culture
18-47-270 E. faecium VSE blood culture
18-47-271 E. faecium VSE blood culture
18-47-272 E. faecium VSE blood culture
18-47-273 E. faecium VSE blood culture
18-47-274 E. faecium VSE blood culture
18-47-275 E. faecium VSE blood culture
18-47-276 E. faecium VSE blood culture
18-47-277 E. faecium VSE blood culture
18-47-278 E. faecium VSE blood culture
18-47-279 E. faecium VSE blood culture
18-47-280 E. faecium VRE blood culture
18-47-281 E. faecium VRE blood culture
18-47-282 E. faecium VRE urine
18-47-283 E. faecium VRE fecal samples
18-47-284 E. faecium VRE blood culture
18-47-285 E. faecium VRE blood culture
18-47-286 E. faecium VRE blood culture
18-47-287 E. faecium VRE blood culture
18-47-288 E. faecium VRE blood culture
18-47-289 E. faecium VRE blood culture
18-47-290 E. faecium VRE blood culture
18-47-291 E. faecium VRE blood culture
18-47-292 E. faecium VRE blood culture
18-47-293 E. faecium VRE blood culture
18-47-294 E. faecium VSE blood culture
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. Vancomycin Isolation
Isolate ID species .
resistance source

18-47-295 E. faecium VSE blood culture
18-47-296 E. faecium VSE blood culture
18-47-297 E. faecium VSE blood culture
18-47-298 E. faecium VSE blood culture
18-47-299 E. faecium VSE blood culture
18-47-300 E. faecium VSE urine
18-47-301 E. faecium VSE urine
18-47-302 E. faecium VSE urine
18-47-303 E. faecium VSE fecal samples
18-47-304 E. faecium VRE swab
18-47-305 E. faecium VRE fecal samples
18-47-306 E. faecium VSE blood culture
18-47-307 E. faecium VSE blood culture
18-47-308 E. faecium VSE blood culture
18-47-309 E. faecium VSE blood culture
18-47-310 E. faecium VRE blood culture
18-47-311 E. faecium VRE blood culture
18-47-312 E. faecium VRE blood culture
18-47-313 E. faecium VRE blood culture
18-47-314 E. faecium VRE blood culture
18-47-315 E. faecium VRE blood culture
18-47-316 E. faecium VRE blood culture
18-47-317 E. faecium VRE blood culture
18-47-318 E. faecium VRE blood culture
18-47-319 E. faecium VRE blood culture
18-47-320 E. faecium VSE blood culture
18-47-321 E. faecium VSE blood culture
18-47-322 E. faecium VSE blood culture
18-47-323 E. faecium VSE blood culture
18-47-324 E. faecium VSE blood culture
18-47-325 E. faecium VSE blood culture
18-47-326 E. faecium VRE urine
18-47-327 E. faecium VRE fecal samples
18-47-328 E. faecium VRE swab
18-47-329 E. faecium VRE blood culture
18-47-330 E. faecium VSE blood culture
18-47-331 E. faecium VSE blood culture
18-47-332 E. faecium VRE blood culture
18-47-333 E. faecium VRE blood culture

Abbreviations: E. = Enterococcus, VRE = vancomycin resistant E. faecium, VSE =

vancomycin susceptible E. faecium

122



Appendix |

7 Appendix |
7.1  Table 1: Overview on reviewed individual tests for each substance according to exposure frequency and use of pure substance / biocidal product
Biguanides Phenol derivatives QACs Chlorine-
Number (n) CHX PHMB Triclosan ;I;;(r?echloro- fjrr;zg’i;g;g‘slp ofher QACs Aldehydes | Alkylamines Alcohols ;egleejts;ng Peroxides 5
A: Multiple exposure to pure substances
Individual tests 216 59 233 76 186 202 n.t. 16 n.t. 23 8 1019
Adapted isolates (FC > 4) 110 14 81 25 86 76 n.t. 0 n.t. 0 392
Stable adaptations 44 49 6 26 23 n.t. 0 n.t. 0 151
Unstable adaptations 53 19 19 59 49 n.t. 0 n.t. 0 208
B: Multiple exposure to biocidal products
Individual tests 4 16 n.t. n.t. 57 33 16 19 27 21 34 227
Adapted isolates (FC > 4) 4 n.t. n.t. 6 4 5 0 19
Stable adaptations 4 n.t. n.t. 0 0 3
Unstable adaptations 0 n.t. n.t. 0 0 2
C: Single exposure to pure substances
Individual tests 18 n.t. 20 n.t. 37 n.t. n.t. 4 n.t. 15 100
Adapted isolates (FC > 4) 6 n.t. 19 n.t. 6 n.t. n.t. 0 n.t. 0 31
Stable adaptations n.t. 19 n.t. 0 n.t. n.t. 0 n.t. n.a. n.a. 23
Unstable adaptations n.t. 0 n.t. 2 n.t. n.t. 0 n.t. n.a. n.a 4
D: Single exposure to biocidal products
Individual tests n.t. n.t. n.t. n.t. n.t. n.t. 8 6 n.t. n.t. 9 23
Adapted isolates (FC > 4) n.t. n.t. n.t. n.t. n.t. n.t. 0 0 n.t. n.t. 0
Stable adaptations n.t. n.t. n.t. n.t. n.t. n.t. 0 0 n.t. n.t. 0
Unstable adaptations n.t. n.t. n.t. n.t. n.t. n.t. 0 0 n.t. n.t. 0
Summary: Total number of individual tests (n) per substance class
Individual tests 238 75 253 76 280 235 24 45 27 59 57 1369
Adapted isolates (FC > 4) 120 14 100 25 98 80 0 5 0 442
Stable adaptations 52 68 6 26 23 3 0 181
Unstable adaptations 55 19 19 61 49 2 0 214
1- 8,16,22,38

References (see 7.2) 1-25  1,3,4,6,19,26 3’4’6’8’1_228'22’27 30 4,8,16,17,20,21,23,24,  1,3-7,11,14,45,60-63 | 8,38,64-67 2'51’62565'68' 8,46,70,71 8'2;15;;368’ ’2;’551,'7666/'

30,38,45-59 78

FC=fold change, n.t. = not tested
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