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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der nichtlinearen theoretischen Analyse der Ro-
sensweig Instabilität in isotropen magnetischen Gelen. Die Rosensweig Instabilität wurde
erstmals im Jahr 1967 entdeckt und bezeichnet den Übergang einer zunächst flachen
Grenzfläche zwischen einer magnetischen Flüssigkeit und einem nicht-magnetischen Me-
dium zu einer hexagonal geordneten Stacheloberfläche, sobald ein senkrecht zur flachen
Oberfläche angelegtes homogenes Magnetfeld einen bestimmten kritischen Wert über-
schreitet. Magnetische Flüssigkeiten, auch Ferrofluide genannt, sind kolloidale Suspensio-
nen ferromagnetischer Nanoteilchen in einer gewöhnlichen, dem Anwendungszweck ent-
sprechenden Trägerflüssigkeit, wie Wasser oder Benzol. Einem angelegten Magnetfeld aus-
gesetzt, verhalten sich Ferrofluide wie gewöhnliche paramagnetische Stoffe, jedoch ist ihre
Permeabilität bis zu einer Größenordnung höher als in üblichen paramagnetischen Stoffen,
weshalb man sie auch als superparamagnetisch bezeichnet.

Mit der Entdeckung der Rosensweig Instabilität wurde auch eine erste theoretische
Beschreibung des Phänomens vorgestellt. An der freien Grenzfläche zwischen der Fer-
roflüssigkeit und dem darüber liegenden Vakuum überwiegen für niedrige Magnetfelder
die stabilisierenden Kräfte der Gravitation und der Oberflächenspannung die destabilisie-
rende Kraft des Magnetfeldes. Zwar besitzt ein homogenes Magnetfeld keine Kraftwirkung
auf die Oberfläche, jedoch unterliegt die Grenzfläche den immer vorhandenen thermischen
Fluktuationen, die das Magnetfeld lokal stören und so eine resultierende Kraft erzeugen.
Bei genügend hohen Magnetfeldstärken übertrifft diese Kraft die Gravitation und die
Oberflächenspannung und das Rosensweigmuster bildet sich aus.

Startet man den Vernetzungsprozess in einer Mischung aus Polymeren, Vernetzungs-
reagenzien und einem Ferrofluid, so erhält man ein isotropes Ferrogel, ein elastisches Me-
dium, welches zusätzlich superparamagnetisches Verhalten aufweist. Ferrogele bilden eine
neue Materialklasse, von der man sich Anwendungen in vielen technischen und medizini-
schen Bereichen erhofft. So gelten sie zum Beispiel als vielversprechende Kandidaten zur
Herstellung künstlicher Muskeln oder von außen regelbarer Medien zur gezielten Wirk-
stofffreisetzung im Körper. Theoretisch lässt sich zeigen, dass auch die Oberfläche dieser
Medien in einem angelegten Magnetfeld instabil wird, wobei die typische Wellenlänge
im Vergleich zu gewöhnlichen Ferrofluiden unverändert bleibt, während die kritische Ma-
gnetfeldstärke mit wachsendem elastischen Schermodul steigt. Experimentell konnte dies
bereits qualitativ bestätigt werden. Allerdings ist man in Experimenten auf sehr schwach
vernetzte Gele angewiesen, da die kritische Magnetisierung anderenfalls größer als die
Sätigungsmagnetisierung des elastischen Mediums ist.

Nach dem einführenden Kapitel und der Diskussion der grundlegenden hydrodynami-
schen Gleichungen zur Beschreibung isotroper magnetischer Gele in Kapitel 2, werden im
dritten Kapitel die linearen Eigenschaften der Rosensweig Instabilität in isotropen Fer-
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rogelen beleuchtet. Im Vergleich zu früheren Arbeiten beschränkt sich die Analyse nicht
mehr allein auf rein elastische Medien, sondern schließt rein viskose Medien und die Kom-
bination aus beiden mit ein. Besondere Aufmerksamkeit kommt in der Diskussion dem
stationären Charakter der Rosensweig Instabilität zu. Dieser ist, wie sich herausstellt, als
ein Grenzprozess zu interpretieren, bei welchem die Dynamik der charakteristischen Mode,
die unterhalb der Schwelle zur Instabilität durch thermische Fluktuationen angeregt wird,
mit Annäherung an die Schwelle immer stärker verlangsamt wird und schließlich zu einem
statischen Oberflächenmuster führt. Als Konsequenz zeigt sich, dass man zur Berechnung
der linearen Eigenvektoren ebenfalls gezwungen ist, diese zunächst für den dynamischen
Fall zu berechnen und erst am Ende die entsprechenden stationären Grenzfälle zu bilden.
Der Grund für dieses Grenzverhalten ist in der deformierbaren Oberfläche und im Be-
sonderen in der daraus resultierenden kinematischen Randbedingung zu sehen. Letztere
verknüpft die zeitliche Änderung der Position der Oberfläche mit der lokalen Geschwin-
digkeit normal zur Oberfläche. Würde man die Eigenschaft der stationären Instabilität
von Beginn an verwenden, so bliebe die Oberfläche immer flach.

Kapitel 4 befasst sich schließlich mit der nichtlinearen Analyse der Rosensweig In-
stabilität in Ferrogelen mit Hilfe der Energiemethode. Im Jahr 1977 von Gailitis erst-
mals für Ferroflüssigkeiten vorgestellt, beruht die Energiemethode auf der Minimierung
eines Oberflächenenergiefunktionals für verschiedene reguläre Oberflächenmuster. Die von
Gailitis vorgestellte Oberflächenenergiedichte für Ferrofluide wird um die entsprechenden
elastischen Energiebeiträge erweitert zu deren Berechnung die statischen Grenzwerte der
linearen Eigenvektoren aus dem vorangegangenen Kapitel verwendet werden. Die resultie-
rende Oberflächenenergiedichte wird bezüglich regulärer Streifen, Quadrate und Hexagone
minimiert. Es zeigt sich, dass am Einsatz der Instabilität Hexagone das energetisch favori-
sierte Oberflächenmuster sind. Für hohe Magnetfeldstärken hingegen bilden Quadrate die
bevorzugte Anordnung der Oberflächenstacheln. Beide Übergänge, von der flachen Ober-
fläche zu Hexagonen und von den Hexagonen zu Quadraten, werden von hysteretischen
Regionen begleitet. Als ein wichtiger Kritikpunkt an dieser Methode wird aufgeführt,
dass sie rigoros nur im Limes verschwindender magnetischer Suszeptibilitäten gültig ist,
eine Voraussetzung, die für superparamagnetische Medien nicht erfüllt ist. Friedrichs und
Engel erweiterten die Energiemethode für Geometrien mit endlicher Schichtdicke und
diskutierten eine Abschätzung bis zu welchen magnetischen Suszeptibilitäten sinnvolle
Resultate zu erwarten sind. Eine ähnliche Abschätzung wird in Kapitel 4 für magnetische
Gele diskutiert. Es stellt sich heraus, dass der Gültigkeitsbereich der Energiemethode
mit wachsendem Schermodul zu höheren magnetischen Suszeptibilitäten erweitert wird.
Des weiteren bietet diese Methode lediglich einen energetischen Vergleich statischer Ober-
flächenmuster, wobei die Dynamik der Oberfläche zur Ausbildung dieser Muster und die
darin involvierten dissipativen Prozesse völlig außer Acht gelassen werden. Die angespro-
chenen Nachteile der Energiemethode dienen schließlich als Motivation für eine schwach
nichtlineare Analyse der fundamentalen hydrodynamischen Gleichungen und der Herlei-
tung einer Amplitudengleichung.

Diesem Vorhaben ist Kapitel 5 gewidmet. Ganz besondere Beachtung verdient da-
bei die Bestimmung des adjungierten Systems für die Rosensweig Instabilität. Dieses ist
zur Befriedigung der Fredholmschen Alternative, die wiederum die Amplitudengleichun-
gen liefert, von zentraler Bedeutung. Frühere nichtlineare Diskussionen der Rosensweig
Instabilität beschränkten sich entweder auf rein statische Gleichungen, die selbstadjun-
giert sind, oder auf reine Potentialströmungen, für die die Lösbarkeitsbedingung leicht
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zu erfüllen ist, die aber keine spannungsfreie Oberfläche garantieren. Zur Herleitung der
adjungierten Gleichungen und der dazugehörigen Randbedingungen wird zum einen die
Erkenntnis aus der Diskussion der linearen Instabilität, dass das System als dynamisch
zu betrachten und der statische Grenzfall erst am Ende zu vollziehen ist, benutzt. Des
weiteren stellt es sich als wichtig heraus, die Gleichungen zunächst für ein kompressi-
bles Medium zu adjungieren und ebenfalls erst am Ende die Näherung für inkompressi-
ble Medien zu bestimmen. Letztere Annahme garantiert während des Adjungierens einen
symmetrischen Spannungstensor. Die physikalischen Lösungen der adjungierten Gleichun-
gen und ihrer Randbedingungen besitzen die Eigenschaft, dass sich rechtslaufende Wellen
im Originalsystem zu linkslaufenden Wellen im adjungierten System transformieren und
umgekehrt.

Mit Hilfe der Lösungen des adjungierten Systems lassen sich nun die Lösbarkeitsbedin-
gungen in der zweiten und dritten Störungsordnung erfüllen. Allerdings führen diese Be-
dingungen allein nicht zu den Amplitudengleichungen. Eine weitere besondere Eigenschaft
der Rosensweig Instabilität ist, dass die treibende Kraft, das Magnetfeld, allein durch die
Oberfläche vermittelt wird. In den hydrodynamischen Volumengleichungen äußert sich
dies dadurch, dass die Magnetfeldgrößen nicht mehr auftreten und die Volumengleichun-
gen somit von den Bestimmungsgleichungen der Magnetfeldgrößen entkoppeln. Dies ist
eine direkte Konsequenz sowohl der Näherung, dass keine magnetostriktiven Effekte eine
Rolle spielen, als auch der Annahme, dass das Magnetfeld auf der Zeitskala des Wachs-
tums der Oberflächenstacheln bereits auf seinen Gleichgewichtswert relaxiert ist. Demnach
enthält weder die Fredholmsche Alternative für die Volumengleichung noch die aus ihr
abgeleiteten Beiträge zur Amplitudengleichung den Kontrollparameter, im vorliegenden
Fall das angelegte Magnetfeld. Die Randbedingungen nehmen für die Rosensweig Instabi-
lität eine wichtige Rolle ein. Für die Bestimmung des Kontrollparameters im Besonderen
liefert die normale Randbedingung den gesuchten Zusammenhang zwischen dem Wachs-
tum der Oberflächenstacheln und dem Kontrollparameter. Ein besonderes Merkmal der
Rosensweig Instabilität besteht darin, dass nach der Ausbildung des Musters das Medium
wieder vollständig zur Ruhe kommt und keine Strömungen mehr vorhanden sind. Das
dynamische Verhalten wird demnach vollständig von der kinematischen Randbedingung
bestimmt, die zeitliche Änderungen der Position der Oberfläche mit dem Geschwindig-
keitsfeld verknüpft. Dies führt, wie gezeigt wird, zu einem unterschiedlichen zeitlichen Ska-
lenverhalten der Lösbarkeitsbedingungen im Volumen und an der Oberfläche, welchem bei
der Vereinigung der beiden Lösbarkeitsbedingungen zu einer Amplitudengleichung Rech-
nung getragen werden muss.

Zwei Punkte der abgeleiteten Amplitudengleichung sind besonders hervor zu heben:
Zum einen ist es zum ersten Mal möglich den quadratischen Koeffizienten, dessen Existenz
aus der gegebenen Symmetrie folgt, aus den fundamentalen hydrodynamischen Gleichun-
gen abzuleiten. Dieser garantiert am Einsatz der Instabilität zum einen die Existenz von
Hexagonen, zum anderen das Auftreten einer transkritischen Bifurkation. Beides sind ex-
perimentell bestätigte Eigenschaften der Rosensweig Instabilität. Zum anderen enthält
die Amplitudengleichung für Ferrogele eine zweifache Zeitableitung. Diese ist proportio-
nal zum elastischen Schermodul und trägt somit der Volumenelastizität im Medium Rech-
nung. Die linearisierte Amplitudengleichung nimmt im Fall der Ferrogele die Gestalt eines
gedämpften harmonischen Oszillators an und Störungen des ausgebildeten Oberflächen-
musters zerfallen in Form einer gedämpften Schwingung. Im Fall der Rosensweig Insta-
bilität in Ferroflüssigkeiten, deren zugehörige Amplitudengleichung ebenfalls bestimmt
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wird, tritt diese zweifache Zeitableitung nicht auf.
Kapitel 6 befasst sich mit der Frage, inwieweit magnetische Membranen oder dünne

Filme in einem äußeren Magnetfeld instabil werden können. Motiviert wird diese Fra-
gestellung durch die vorangegangen Diskussionen, in denen gezeigt werden konnte, dass
die treibende Kraft der Rosensweig Instabilität im Rahmen der in dieser Arbeit benutz-
ten Näherungen allein durch die Grenzfläche vermittelt wird. Im Gegensatz zu früheren
Diskussionen, in denen Filme mit variabler Dicke, insbesondere peristaltische Moden,
analysiert wurden, werden hier unendlich dünne Schichten, deren beide Grenzflächen nur
in Phase ausgelenkt werden können, betrachtet. Für die Behandlung unendlich dünner
Schichten erweist es sich als sinnvoll so genannte Oberflächeneigenschaften der entspre-
chenden Medien zu definieren, wie der Oberflächenviskosität oder der Filmkompressibi-
lität. Diese sind auf die Fläche bezogene Materialeigenschaften, die man aus den Volu-
meneigenschaften des entsprechenden Mediums im Grenzfall unendlich dünner Schichten
berechnet. Ähnlich der Methode zur Bestimmung der viskosen und elastischen Flächenmo-
dule wird die magnetische Flächenpermeabilität bestimmt. Dies ermöglicht es, die bereits
bekannte Dispersionsrelation von Wellen in dünnen Filmen und Membranen um die ent-
sprechenden magnetischen Beiträge zu erweitern.

Beschränkt man sich in einer linearen Stabilitätsanalyse auf den symmetrischen Fall,
das heißt der isotrope Ferrogelfilm ist auf beiden Seiten vom gleichen Medium umgeben,
so findet man, dass der Film linear nicht instabil werden kann. Eine intuitive Erklärung
für dieses Verhalten erhält man, wenn man die Geometrie der magnetischen Feldlinien
betrachtet. Diese werden an beiden Grenzflächen entgegengesetzt gebrochen. Im Grenz-
fall unendlich dünner Schichten verschwinden die Störfelder und mit ihnen die treibenden
Feldgradienten. Eine Instabilität zeigt sich nur im Fall von anisotropen magnetischen Ge-
len oder im Fall eines magnetischen Kontrastes zwischen den beiden umgebenden Medien.
Anisotrope Ferrogele besitzen eine interne Magnetisierung, die erzeugt wird, indem man
den Vernetzungsprozess zu einem Gel in einem äußeren Magnetfeld vollzieht.

Neben der Rosensweig Instabilität besitzt auch die Marangoni Instabilität die Ei-
genschaft rein durch die Oberfläche getrieben zu sein. Temperaturfluktuationen auf der
Oberfläche führen dort zu Fluktuationen der Oberflächenspannung, die dann wiederum
Konvektion bedingen. Für die Marangoni Instabilität war ebenfalls kein adjungiertes Sy-
stem bekannt, das eine deformierbare Oberfläche berücksichtigt. Mit dem für das Adjun-
gieren der Bestimmungsgleichungen der Rosensweig Instabilität entwickelten Formalismus
werden im Kapitel 7 die entsprechenden adjungierten Gleichungen für die Marangoni In-
stabilität abgeleitet. Besondere Beachtung verdient die Marangoni Instabilität deswegen,
weil die treibende Kraft tangential zur Oberfläche wirkt und somit das Komplement zur
Rosensweig Instabilität bildet. Erschwert wird das Lösen der adjungierten Gleichungen
jedoch durch eine Kopplung zwischen der Temperatur und dem Geschwindigkeitsfeld in
den Volumengleichungen. Diese Kopplung stellt zwar nicht die treibende Kraft für die
Konvektion dar, führt aber zu einer Abhängigkeit der adjungierten Eigenvektoren von
den ursprünglichen Eigenvektoren. Ein ähnlich einfacher Zusammenhang zwischen den
Oberflächenwellen im originalen und adjungierten System, wie im Fall der Rosensweig
Instabilität, ist demnach nicht gegeben.



Chapter 1

Introduction

In this thesis we address the nonlinear description of the Rosensweig instability in isotropic
magnetic gels. This introductory chapter provides the reader with the basic knowledge
of the physical system under consideration and the phenomenology of the Rosensweig
instability. To embed the present theoretical work in the context of nonlinear theory for
the Rosensweig instability, an overview of previous investigations is presented.

1.1 Ferrofluids

One of the main constituents of magnetic gels are magnetic fluids, also referred to as
ferrofluids. Ferrofluids do not exist in nature and were first produced in the 1930’s as
a tool to achieve a better understanding of ferromagnetism. Bitter [1] and Elmore [2]
experimented with dispersed magnetic particles in a carrier liquid to visualize the magnetic
field in the vicinity of the domain walls. The particle size was about 1µm and the method
was based on the enhanced sedimentation process of the magnetic particles in regions with
high field gradients. The development of modern ferrofluids for industrial and medical
application was pioneered in the 1960’s by Rosensweig [3].

These modern ferrofluids are colloidal suspensions of nanometer sized (the diameter is
about 10nm) ferromagnetic monodomain particles in a suitable carrier liquid. Due to the
magnetic dipole-dipole interaction the particles tend to coagulate to form large aggregates
that in turn are subject to sedimentation. To prevent them from coagulation the particles
are either coated by polymers or they are charged. In the former case the steric hindrance
due to the polymer tails prevents them from approaching each other close enough so that
thermal fluctuations are still stronger than the attractive dipole-dipole interaction. In
the latter case the repulsive Coulomb interaction overcomes the attractive dipole-dipole
interaction. A schematic cartoon of a ferrofluid stabilized by a polymer coating can be
viewed on the left hand side of fig. 1.1.

If a magnetic field is applied, the initially randomly oriented magnetic dipoles align
parallel to the magnetic field on average and give a paramagnetic response analogous to
usual paramagnetic materials. The measured permeability is of the order of 1 to 10 and
therefore much higher than for usual substances showing paramagnetism. The behavior in
external fields is therefore also referred to as superparamagnetism. On a microscopic level,
the magnetic particles are thought to form structured aggregates such as columns (cf. the
right hand side of fig. 1.1) or drops [4, 5, 6]. If the applied magnetic field is switched
off again, the magnetization can relax in two different ways [3]. Either the relaxation is
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Figure 1.1: On the left: A sketch of a ferrofluid. The magnetic particles of
nanometer size are coated by polymers to prevent coagulation. Without an exter-
nal magnetic field, the direction of the intrinsic magnetic moments is distributed
randomly. On the right: If a magnetic field is applied, the magnetic moments
align preferentially to the field direction and columns are likely formed.

due to the reorientation of the magnetic particle itself with fixed particle magnetization,
or the reorientation is achieved without a rotation of the particle but is solely due to an
intrinsic reorientation of the dipole moment. The former case is referred to as the Brown
relaxation and the latter case as Néel relaxation [3], but in real ferrofluids typically a
combination of both relaxation modes is realized.

Modern ferrofluids find applications in technical as well as in medical areas. In com-
puter hard drives, for example, ferrofluids are used as lubricants that are kept in place by
magnetic forces which compensate for the gravitational field. In dampers they act as a
damping agent, tunable in strength by varying an applied magnetic field. In medical ap-
plications they are good candidates for cancer therapy in the context of hyperthermia [7]
or in the context of controlled drug release [8], as contrast agents for magnetic resonance
spectroscopy or as tracers for relaxational measurements [9].

1.2 Ferrogels

Starting a cross-linking process in a mixture of a ferrofluid and a polymer solution with
cross-linking agents, a superparamagnetic elastic medium, called ferrogel, is obtained.
Magnetic gels combine the properties of usual ferrofluids with those of gels, known for
example from [10, 11]. It is important to stress, that typically the surfactant polymers
that stabilize the colloidal suspension do not contribute to the elastic network. The
development of magnetic gels was pioneered by Zŕınyi starting in 1996 [12] and they
are now known as promising candidates for artificial muscles in technical and biomedical
applications. As in standard ferrofluids, the magnetic moments of the nanoparticles are
oriented randomly if no external field is applied. This situation is depicted on the right
hand side of fig. 1.2. Exposed to an external magnetic field, a similar superparamagnetic
response is measured as known from ferrofluids. In both cases, the magnetization in the
medium can be described by a Langevin function in terms of the applied magnetic field.
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Figure 1.2: On the left: A sketch of an isotropic magnetic gel (the polymer coat-
ing is not drawn here). The magnetic nanoparticles are embedded in a polymer
network. The directions of the magnetic moments are distributed randomly. On
the right: If a magnetic field is applied during the crosslinking process, the aligned
magnetic particles remain fixed in the polymer network and a permanent magne-
tization results.

Recently, magnetic gels have been produced, where the elastic network was not obtained
by covalently cross-linked polymers but rather by physically linked ones. The resulting
thermoreversible magnetic gel [13] shows a similar superparamagnetic response but has a
temperature dependent shear modulus.

Instead of crosslinking the ferrogel in the absence of an externally given magnetic field,
one could also start the cross-linking process with a magnetic field applied. The result is
an elastic medium that stores a net magnetization even if the magnetic field is switched
off again. Schematically the situation can be interpreted as depicted on the right hand
side of fig. 1.2, where the addressed columns of magnetic particles are fixed within the
elastic network. The detailed mechanism of how the average direction of the magnetic
moments can be maintained is, however, not yet fully understood. The first anisotropic
magnetic gels based on ferrofluids were synthesized independently by the Zŕınyi group in
Budapest [14] and by Collin et al. in Strasbourg [15]1. The former group used a ferrofluid
with a very high content of magnetic particles and were thus able to observe qualitatively
an anisotropic magnetic, an anisotropic mechanical as well as an anisotropic swelling
behavior. The Strasbourg group used a commercial ferrofluid with a smaller content of
magnetic particles but was able to analyze carefully the quantitative anisotropic properties
of the magnetic gel using piezo-rheometry (the experimental setup is described in [17, 18]).
In their case anisotropic magnetic as well as anisotropic optical properties were observed,
but no mechanical anisotropy could be measured. The described anisotropic ferrogels will
be of particular interest in chapter 6, where we will discuss the stability of thin films and
membranes.

1Actually, a first attempt to obtain elastic media showing a frozen-in magnetization has been under-
taken earlier by Mitsumata et al. in 2002 [16]. However, the magnetic particle size in their case was in the
order of 1 mm and therefore in the range of typical magnetorheological fluids rather than of ferrofluids.
As a consequence the resulting medium was extremely inhomogeneous and sometimes showed a preferred
direction even without applying a magnetic field during the preparation process.
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Figure 1.3: The experimental realization of the Rosensweig instability. On the
left hand side the applied magnetic field (applied normal to the surface) is below
the critical value whereas the picture on the right hand side is taken beyond the
critical value. The containers diameter is of the order of 20 cm and the height as
well as the diameter of the spikes is in the order of 1 cm.

1.3 The Rosensweig instability

The Rosensweig or normal field instability describes the phenomenon of a flat ferrofluid
surface becoming unstable in an external magnetic field. The experimental setup consists
of a Petri-dish filled with a ferrofluid which develops a flat surface in earth’s gravitational
field (as given in the photograph on the left of fig. 1.3). If one applies a homogeneous
magnetic field oriented parallel to the surface normal, this flat surface becomes unstable
beyond a certain critical magnetic field strength and a regular pattern of surface spikes
arises (as seen on the right of fig. 1.3). Experimentally one observes a hexagonal arrange-
ment of these surface spikes at the linear threshold [19].

With its discovery in 1967 [19] a first theoretical description for the normal field
instability was given which allowed the determination of the critical magnetic field and
the most unstable mode at onset in terms of the fluid properties. The model considered
the force balance at the free surface between the stabilizing forces of surface tension and
gravitation and the destabilizing magnetic force. Although the homogeneous magnetic
field does not generate a force in the first place, the occurrence of surface perturbations
render the local magnetic field inhomogeneous resulting in a local Kelvin force that drives
the instability.

For a magnetic gel rather than a ferrofluid, the surface was also predicted to become
unstable [20]. Additionally, however, the stabilizing elastic force has to be overcome by
the magnetic field, which is why its critical value is shifted towards higher field strengths.
The characteristic mode at onset, however, remains the same compared to usual ferrofluids
and is given by the capillary mode. Recently the threshold shift has qualitatively been
shown experimentally for a thermoreversible magnetic gel at the University of Bayreuth
[21]. Since, however, the threshold magnetic field increases with increasing shear modulus,
one is restricted to very weak gels, otherwise the threshold magnetization is higher than
the saturation magnetization of the medium. To maintain a finite and constant shear
modulus of the thermoreversible gel and to avoid creep flow, a time dependent magnetic
field was applied which complicates the comparison between the experiments and theory.

At the moment more accurate experimental results can be obtained using inverse
ferrofluids [22, 23, 24]. One calls a ferrofluid inverse, if non-magnetic particles are also
dispersed in the ferrofluid. Usually the particles’ diameter is of the order of micrometers
and they are typically made of polystyrene. The onset of the Rosensweig instability in
these fluids is shifted to higher magnetical field strengths, which cannot be solely explained
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by dilution effects [25], but probably requires the assumption of a finite effective shear
modulus, which may be responsible for the threshold shift.

Fig. 1.3 shows that a ferrofluid is a darkish brown, non-transparent medium and for
this reason quantitative experimental results of nonlinear patterns are difficult to obtain
optically. For supercritical magnetic field strengths the properties of the most unstable
mode and its growth rate have been discussed theoretically as well as experimentally in
[26, 27]. In 1984 Bacri and Salin [28] discovered the hysteretic nature of the transition
between the flat surface and surface spikes. They used a very thin container (≈ 200 µm)
where the arising pattern was quasi one dimensional. This allowed the observation of the
instability from the side exploiting the optical contrast between the magnetic fluid and
the medium above. Using radioscopic methods [29], the hysteretic region between the
flat surface and hexagons was accurately measured [30]. If the magnetic field is increased
further, the hexagonal pattern is found to be unstable with respect to regular squares.
Also this transition is accompanied by a hysteretic region and is experimentally discussed
in [31, 32].

Experiments on the nonlinear regime for the Rosensweig instability in ferrogels have
recently been started, but up to now no publications are available.

1.4 Nonlinear theoretical descriptions for the

Rosensweig instability

Since its discovery, the Rosensweig instability has attracted the attention of experimen-
talists and theoreticians, alike. The work of the experimental scientists together with an
intuitive linear description has been introduced in the previous section. A linear analysis,
however, gives us no information about the amplitude and the spatial structure of the
arising pattern nor on the nonlinear dynamic behavior. This is why nonlinear discussions
of the governing basic equations are needed which will be the aim of this thesis. In the fol-
lowing the reader will find an introduction to previous nonlinear discussion of the normal
field instability in ferrofluids.

1.4.1 The energy method

The energy method was the first attempt to theoretically access the nonlinear regime of
the Rosensweig instability and was published in 1977 by Gailitis [33]. Gailitis discussed
laterally unbounded ferrofluid layers of infinite depth. The application of this method to
systems with a finite depth was later done by Friedrichs and Engel in [34]. The general
idea of this energy-based approach is to find the dependence of the surface energy density
of the fluid as a function of the surface deflection, the applied magnetic field, and the
material parameters of the ferrofluid except for the viscosity, which has to be neglected
completely in this approach. This energy density functional can then be minimized with
respect to prescribed surface patterns. The patterns considered by Gailitis were regular
stripes, squares and hexagons. The relative stability of which can then be given as a
function of the applied magnetic field.

Gailitis found, that stripe patterns are always unstable with respect to one of the other
two patterns. Below the linear threshold the flat surface is always a stable configuration
whereas at the linear onset hexagons turn out to be energetically favored. Upon further
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increase of the magnetic field, however, the hexagons become unstable with respect to
squares and the previous hexagonal pattern transforms into a square pattern. Both tran-
sitions are found to be accompanied by hysteretic regions. In that respect the theoretical
results qualitatively match the experimental findings. For finite fluid layer depths, the
critical values for the magnetic field are shifted to higher strengths and the hysteretic
behavior of both transitions becomes more pronounced [34].

In chapter 4 we will apply the energy method to the Rosensweig instability in isotropic
magnetic gels to obtain a first estimate of the nonlinear patterns arising in ferrogels.
However, there are severe drawbacks to this method. Therefore one has to use more
fundamental methods to discuss the nonlinear regime.

1.4.2 Functional analysis approaches

The first approaches considering the basic hydrodynamic equations have been discussed
by Twombly and Thomas [35, 36] and later on by Silber and Knobloch [37]. Both groups
considered only static hydrodynamic equations under the condition that the velocity van-
ishes, reducing the Navier-Stokes equation to the hydrostatic pressure contribution. In
this approximation the stress free surface is governed by the normal stress boundary con-
dition whereas the tangential boundary conditions are trivially satisfied. Additionally, the
static Maxwell equations were considered with the corresponding boundary conditions.
This set of fundamental equations and boundary conditions is then expanded in terms
of ǫ (the normalized difference between the applied magnetic field and the critical one)
following the ideas of [38]. Since no time derivative is involved in the set of equations,
it turns out to be self-adjoint and the solvability conditions in the higher orders of the
expansion can be fulfilled. As stated by Silber and Knobloch [37], no stable pattern was
found at the linear onset for realistic magnetic permeabilities. Another drawback of this
method is, since it rests on the static assumption, that it cannot give predictions for the
nonlinear dynamics in terms of an amplitude equation and that it neglects the possibility
of oscillatory instabilities.

A different approach, using again the static approximation for the macroscopic set of
equations, was presented by Friedrichs and Engel in 2003 [39]. In their discussion they
focused on the normal stress boundary condition only. Inspired by [40], where it is shown
that for a strong enough tangential component of the magnetic field two dimensional
patterns can be suppressed and only stripes are the stable solution, they focused on the
nonlinear discussion of stripes only.

Malik and Singh [41, 42, 43] were the first to discuss an ǫ−expansion of the fundamen-
tal hydrodynamic equations allowing for dynamic processes. To circumvent the general
solvability condition for the higher orders of the expansion, where one needs to know the
adjoint system of equations, they restricted their discussion to potential flow only. This
is an unphysical approximation, as we will see later on in our discussion, since only the
vorticity contributions to the flow can guarantee that the tangential boundary conditions
at the free surface are satisfied.

1.4.3 The Swift-Hohenberg approach

To compensate for the lack of dynamic descriptions, Kubstrup, Herrero and Pérez-Garćıa
discussed the normal field instability in terms of a phenomenological Swift-Hohenberg
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equation [44, 45]. In particular, they discussed the dynamics of stable fronts between
hexagons and squares. A general ansatz for the surface deflection, which is not so different
from the one used in the energy method approach, is substituted into a generalized Swift-
Hohenberg equation and a set of amplitude equations is obtained. These amplitude
equations are then solved numerically. This approach nicely reveals the stability dynamics
between hexagons and squares in the nonlinear regime, but only on a phenomenological
basis. The main disadvantage of this study is, that the coefficients in the amplitude
equation have no relation whatsoever to real material properties. Nevertheless, a good
qualitative agreement can be obtained fitting the phenomenological coefficients to the
experimental results [31].

1.4.4 Numerical results

The methods discussed so far describe the dynamics of the Rosensweig instability in the
weakly nonlinear regime. These methods allow one to discuss the dynamics and the arising
pattern close to the threshold as long as the amplitudes stay small. A prediction of the
final shape of a single surface spike cannot be obtained by these methods. Using a finite
element method, Lavrova et al. determined the shape of one of the surface spikes [46] by
integration of the basic hydrodynamic equations. In [30] the experimental and numerical
results were compared and a very good agreement was observed.

1.5 The adjoint system and deformable surfaces

At a closer inspection of section 1.4.2 and the nonlinear approaches discussed therein, it is
clear that there is still a crucial piece missing in the description of the nonlinear regime of
the Rosensweig instability in the spirit of [38, 47, 48], namely the knowledge of the adjoint
system of equations together with its boundary conditions. A first attempt to derive this
was made by Lange in [49] who used a particular form of a scalar product known from
discussions of the Marangoni instability. The attempt failed since this scalar product
rests on the assumption of an undeformable surface; an assumption not appropriate for
the case of the Rosensweig instability. In the presence of a deformable surface and for
a dynamic system, the adjoint system with its boundary conditions was unknown. A
detailed discussion and the derivation is given in this thesis in section 5.2.

As indicated already in the previous paragraph, the Rosensweig problem is not the
only instability that involves a deformable surface. Another very prominent phenomenon,
the Marangoni convection, sensitively depends on the deformability of the surface [50, 51].
In the Marangoni convection, small temperature fluctuations at the interface between the
underlying fluid and the medium above induce fluctuations of the local surface tension
that in turn cause the surface to deform. An analytical weakly nonlinear description for
the Marangoni convection accounting for the deformability of the surface is still missing.
Many authors [52, 53, 54, 55, 56] treated the nonlinear system assuming a flat undeformed
boundary between two fluids. The reason is mainly due to the missing solution of the
adjoint system in the presence of a deformable surface. The case of the Marangoni in-
stability is of particular interest to us, since in contrast to the Rosensweig instability, the
driving force of the instability acts purely tangentially to the surface. The method we
used to derive the adjoint system for the Rosensweig instability can therefore be used for
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Figure 1.4: A qualitative sketch of the geometry appropriate for the Kelvin-
Helmholtz instability. Two fluids move at different velocities with respect to each
other. The initially flat interface becomes unstable against deformation beyond a
critical velocity difference.

any arbitrary direction of the driving force.
A further situation where a deformed boundary becomes important for the nonlinear

regime and more precisely, where the actual position of the boundary depends on the
dynamics of the system as a whole, is the Faraday instability. Certain modes become
unstable upon periodic normal vibrations of the medium. The weakly nonlinear analysis
of this problem also crucially depends on the knowledge of the adjoint system. We will
not deal with this phenomenon since a comprehensive nonlinear study of this problem has
been given recently by Skeldon and Guidoboni in [57].

Two further examples where the deformability of the boundary is essential in the
nonlinear regime are given by the Rayleigh-Taylor instability and the Kelvin-Helmholtz
instability. In the Rayleigh-Taylor problem the stability of a denser liquid on top of a
lighter liquid, both subject to a gravitational field, is analyzed. In the Kelvin-Helmholtz
problem the stability of the interface between two fluids that move with different velocities
with respect to each other is discussed (cf. fig. 1.4). The latter problem is of particular
interest for the creation of low pressure systems in the global weather system as it occurs
in the atmosphere at the boundary between the air at the cold polar caps and the west
wind zone. The method we applied in finding the adjoint system for the Rosensweig and
the Marangoni case can also be applied to these systems.

1.6 The scope of this thesis

The nonlinear behavior of the Rosensweig instability either in ferrofluids or in magnetic
gels still contains many unsolved questions. In this thesis I will focus on the nonlinear
analytic description of these phenomena in ferrogels putting particular attention on the
derivation of the amplitude equation. A crucial step for this derivation will be the de-
termination of the adjoint system with its boundary conditions. To set the stage for
the special properties of the Rosensweig instability, we will extensively discuss the lin-
ear behavior and the possible patterns arising in the nonlinear regime using the energy
method. In addition we will discuss the obtained amplitude equation for the special case
of ferrofluids, because also in this case the amplitude equation derived from the basic hy-
drodynamic equations is still unknown. Since the boundary conditions play an important
role in the discussion, we will also deal with thin films and membranes and discuss their
linear stability properties in external magnetic fields. To conclude, our considerations are
applied to derive the adjoint system of equations for the Marangoni instability.



Chapter 2

Macroscopic mathematical

framework

In order to give a comprehensive theoretical description of the Rosensweig instability
in isotropic ferrogels, we first have to define the physical and mathematical framework.
We know, from experimental results, that the typical length scale of the instability is of
the order of centimeters and the typical growth of the surface spikes takes place on a
rather long time scale, say seconds (the growth can be followed by the naked eye). This
suggests a viewpoint where we consider the medium continuous and macroscopic. The
most suitable theory we can use is thus the generalized hydrodynamic theory [58, 59]. In
this chapter the hydrodynamic approach will be introduced and we discuss the basic set of
hydrodynamic equations one obtains for isotropic magnetic gels. This part is mainly based
on, and summarizes, the results of the work of Jarkova et al. [60] and will be the basis
for the nonlinear discussion. Additionally we specify the simplifications and extensions of
this general set of equations that are appropriate for the Rosensweig instability.

2.1 The basic hydrodynamic equations

The generalized hydrodynamic approach utilizes simple symmetry and thermodynamic
arguments to derive a general set of dynamic equations for certain macroscopic variables.
These variables have to be identified for the particular system under consideration and
this particular choice dramatically reduces the number of degrees of freedom one takes
into account. In a microscopic description, for instance, one might model atoms of a
certain species as point masses interacting with each other via specified potentials. To
consider systems of macroscopic size like a glass of water, however, the number of point
masses needed to model this system is of the order of Avogadro’s constant. In fact, too
many degrees of freedom to be handled. In a macroscopic theory one considers the mass
density field instead, which reduces the number of free variables drastically. Calculating
macroscopic properties of the system becomes feasible.

One big advantage of the hydrodynamic method is given by its generality, which
allows its application to a vast number of systems as long as we are able to treat these
systems macroscopically. However, since we average over very many degrees of freedom,
phenomenological coefficients have to be introduced that are specific for the particular
system. One of these phenomenological coefficients is, for example, the well known heat

9



10 Macroscopic mathematical framework

conductivity. These coefficients contain the information of all the microscopic processes
taking place in the medium, and they could theoretically be determined via Green-Kubo
relations if all microscopic processes were known, but practically this is only possible
in some limiting cases, as, for example, small densities. Therefore these coefficients are
usually taken from experimental measurements.

2.1.1 Different classes of macroscopic variables

One can distinguish three different classes of macroscopic variables. The first class includes
variables associated with global conservation laws. Assume a system with a conserved
quantity, which by definition cannot decay or grow locally but which is allowed to be
transported. The equilibration of this conserved quantity at different positions in space
takes the longer, the farther these two positions are separated from one another. In recip-
rocal space this statement can be expressed as: the frequency of a process tends to vanish
(ω → 0) if its wavenumber vanishes (k → 0). This is exactly the mathematical formula-
tion of the hydrodynamic limit which rests on the fact, that historically hydrodynamics
dealt with conserved quantities.

The second class of variables, as a first generalization of hydrodynamics, includes vari-
ables that are connected to spontaneously broken continuous symmetries. What we refer
to as a broken symmetry is the possibility that the Hamiltonian of a system is of higher
symmetry than its eigenstates. One of the best known examples for this phenomenon is
ferromagnetism, where the Hamiltonian is indeed invariant under rotation although there
is an easy axis assigned to the system which is reflected in the eigenstates. In general
there is no conserved quantity connected to this kind of variables (ferromagnetism is an
exceptional case where the magnetization is a conserved quantity) [59], but they allow
for excitations with infinite lifetime in the long wavelength limit, the so called Goldstone
modes [59]. Therefore it seems reasonable to additionally include these variables into a
macroscopic description.

The third and final class accounts for variables connected to microscopic degrees of
freedom whose dynamics takes place on a timescale large enough that it enters the macro-
scopic regime. Consequently one can include these specific microscopic degrees of freedom
into the macroscopic description. Otherwise the validity of the description would be re-
stricted to time scales even larger to guarantee that this specific variable has relaxed to its
equilibrium value. But it is worth mentioning, that these variables do not show the hydro-
dynamic limit, ω 6→ 0 if k → 0, and long wavelength excitations with a finite frequency
may be retained. While the identification of the variables of the first two classes is com-
pletely systematic, the identification of variables of this last class is not straightforward
and involves a deeper knowledge of the system.

2.1.2 Continuity and balance equations

If the macroscopic variables of a particular system are specified, one can turn to the
derivation of equations that describe the dynamics of these variables. Assume first a
macroscopic system in global thermodynamic equilibrium. The state of the system is then
completely given by the numerical values of the macroscopic variables and one can define
a thermodynamic potential that is a function of these macroscopic variables. Changes
of the potential as a function of the macroscopic variables are related by the first law of
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thermodynamics. In the following formulation E represents the internal energy, T the
temperature, S the entropy, p the pressure, V the volume, µ the chemical potential and
N the number of particles

dE = TdS − pdV + µdN (2.1)

The conjugated fields T , p and µ can be obtained by partial differentiation of the energy
density with respect to the associated variable while the other variables are kept constant.
With the help of Euler’s relation we can take the thermodynamic limit V → ∞ and
eliminate the volume from (2.1) which gives the local manifestation of the first law of
thermodynamics [58]

dε = Tdσ + µdρ (2.2)

where ε and σ denote the energy density and the entropy density, respectively.
In the scope of a generalized hydrodynamic approach where we additionally account for

variables associated with broken continuous symmetries and slowly relaxing variables, the
Gibbs relation (2.2) also has to be generalized. This can be done by exploiting the fact that
(2.2) is a total differential which allows one to introduce conjugated fields associated to the
additional macroscopic variables. However, we then need the functional dependence of the
energy density on the additional macroscopic variables. In our discussion we will always
assume, that the system is close to thermodynamic equilibrium. This allows us to expand
the energy density in terms of the macroscopic variables and their gradients. In order to
do so, we have to consider the characteristics of the energy density. The equilibrium state
is a stable state so that we have to provide a convex functional dependence. Furthermore
the energy density should be invariant under inversion of space and time, under rigid
translation and rigid rotation and it should be covariant upon Galilean transformation.

If the system is close to thermal equilibrium, it will try to achieve the equilibrated
state by dynamical processes. For the first class of variables the corresponding expressions
can be derived easily exploiting the fact, that they represent conserved quantities in the
system. Let us assume a scalar field α which is the volume density of a conserved quantity
with its corresponding flux density jα. Since the amount of this particular quantity in an
arbitrary volume V is conserved, temporal changes of this amount have to be balanced
by a flux through the closed bounding surface of that volume. Mathematically speaking
one observes

d

dt

∫

V

αdV = −
∮

∂V

jα · df (2.3)

where df represents the surface area element of the closed surface1. Using Gauss’ theorem
one can transform the last expression into its local form and obtain the continuity equation
for the macroscopic variable α

∂

∂t
α +∇ · jα = 0 (2.4)

1Throughout this thesis vectors are displayed in bold and their components using latin letters as
indices, ∇ denotes the vector ∇ = (∂x, ∂y, ∂z) and we will imply summation over repeated indices except
otherwise stated. In the latter context δij is the Kronecker symbol and ǫijk the Levi-Cevità tensor.
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What we are left with is to find an explicit expression for the flux density jα which can be
constructed as a power series in terms of the thermodynamic forces (usually the gradients
of the conjugated fields), where the same symmetry arguments have to be applied as in the
case of the energy density. Usually one can distinguish two different types of contributions
to the currents: One contribution that accounts for reversible processes preserving the
entropy density and one contribution due to the irreversible processes that lead to an
increase of entropy. For a set of macroscopic variables usually cross-coupling contributions
are allowed, for example in a binary fluid mixture an applied temperature gradient not
only causes a heat flux but also a concentration flux. Onsager stated [61, 62, 63], that in
these cases the corresponding symmetric contributions have to be present as well. Picking
up the last example, this corresponds to a heat flux caused by an applied concentration
gradient.

For the other two kind of variables a straightforward derivation of the dynamic equa-
tions is not possible. However one can assume a similar dynamical behavior balancing
the temporal change of the variable with a so called quasi current

∂tβ + Xβ = 0 (2.5)

The quasi current itself can be constructed in the same way as the currents for the
conserved macroscopic variables.

2.1.3 The case of isotropic ferrogels

We can now apply the hydrodynamic method discussed in the previous section to the spe-
cial case of isotropic magnetic gels. The first derivation of the generalized hydrodynamic
equations was given by Jarkova et al. [60]. We will follow their work and give their results
needed for the discussion of the Rosensweig instability.

The energy functional and the Gibbs relation

We start with the identification of the macroscopic variables. In the case of isotropic
magnetic gels, the first class of variables consists of the mass density ρ, the momentum
density g, the energy density ε and the concentration of the magnetic particles c. To
account for the elastic degrees of freedom we introduce the elastic strain field ǫij which
belongs to the second class of variables. The strain field in amorphous solids is derived
from crystals, where the long ranged positional order gives rise to the displacement vector
field u as a hydrodynamic symmetry variable. In our description we will restrict ourselves
to linear elasticity ǫij = 1

2
(∂iuj+∂jui). In usual ferrofluids the magnetization relaxes to the

equilibrium value set by the external magnetic field. The appropriate relaxation time is
much larger than all the other microscopic time scales. The same is true in magnetic gels.
Therefore the magnetization M is taken as an additional macroscopic variable belonging
to the third class of macroscopic variables2. The transformation behavior under time ǫT

and spatial ǫP inversion is summarized in table 2.1.
In thermodynamic equilibrium all macroscopic variables are relaxed to their equilib-

rium values and one finds the Gibbs relation that relates infinitesimal changes of the

2The dynamics of the Rosensweig instability takes place on a time scale larger than the time scale of
the dynamics of the magnetization. In that special case it is sufficient to exclude the magnetization again
from the macroscopic dynamics as will be done in section 2.2.1.
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macroscopic variable time inversion ǫT spatial inversion ǫP

ρ +1 +1

ε +1 +1

c +1 +1

gi −1 −1

ǫij +1 +1

Mi −1 +1

Table 2.1: Table of the macroscopic variables important for the description of
isotropic magnetic gels with their transformation behavior under time and spatial
inversion

macroscopic variables to infinitesimal changes of the entropy density σ

dε = Tdσ + µdρ + µcdc + vidgi + HidBi + hM
i dMi + Ψijdǫij (2.6)

The corresponding thermodynamic conjugated fields are the temperature T , the chemical
potential µ, the relative chemical potential µc, the velocity v, the magnetic molecular field
hM

i and the elastic stress Ψij and are defined as partial derivatives of the energy density
with respect to the appropriate variable whilst the others are kept constant. The magnetic
flux density B together with the magnetic field H have been introduced to account for
the static Maxwell equations in our discussion.

In order to give explicit expressions for the thermodynamic conjugated variables in-
troduced above and to determine the thermodynamic forces we have to give an explicit
expression for the energy density. Assuming an expansion around the equilibrium value
one finds

ε = ε0 +
1

2
B2 −B ·M +

1

2
µijklǫijǫkl −

1

2
γijklMiMjǫkl +

1

2
αM2

i

+ǫii(χ
ρδρ + χσδσ + χcδc) (2.7)

where ε0 represents the energy density of a binary fluid mixture. The coefficient α ac-
counts for the dependence of the induced magnetization on the state of the medium, for
example its temperature. Additionally α is a function of the applied magnetic field mod-
eling the nonlinear magnetization behavior. In eq. (2.7) one can clearly distinguish the
contributions due to the magnetic energy, the elastic energy, the cross coupling of the lat-
ter and the coupling between compression and the scalar field variables. Truncated at the
quadratic order, this expansion is only valid for small elastic deformations of the medium.
For large deformations one should extend the expansion to higher orders of ǫij accounting
for nonlinear elastic deformations. The elasticity tensor µijkl and the magnetostrictive
tensor γijkl take the isotropic form where we give, as an example, the elasticity tensor

µijkl = µ1δijδkl + µ2

(

δikδkl + δilδjk −
2

3
δijδkl

)

(2.8)

with its two invariants given by the elastic compressibility µ1 and the elastic shear modulus
µ2.
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With the help of equations (2.6) and (2.7) one can give explicit expressions for the
thermodynamic conjugated variables. The determination of the magnetic field H then
provides the usual relation

Hi =

(

∂ε

∂Bi

)

M,ǫij ,...

= Bi −Mi (2.9)

whereas one finds for the magnetic molecular field hM

hM
i =

(

∂ε

∂Mi

)

B,ǫij,...

= −Bi − γijklMjǫkl + αMi (2.10)

In the same manner one can give the elastic stress tensor Ψij as

Ψij =

(

∂ε

∂ǫij

)

M,B,...

= µijklǫkl −
1

2
γijklMkMl + δij(χ

ρδρ + χσδσ + χcδc) (2.11)

As already discussed in the previous section, the dynamic equations for the macro-
scopic variables of the first class can be derived in a straightforward manner from the fact
that they are related to conserved quantities of the system. The dynamic equations for
the macroscopic variables of the other two classes are chosen such that they resemble the
structure of the previous ones. For the system of isotropic magnetic gels one deduces a
set of dynamic equations

∂tρ + ∂igi = 0 (2.12)

∂tσ + ∂i(σvi) + ∂ij
σ
i =

R

T
(2.13)

ρ∂tc + (ρvi∂i)c + ∂ij
c
i = 0 (2.14)

∂tgi + ∂j{vjgi + δij [p + B ·H] + σth
ij + σij} = 0 (2.15)

∂tMi + (vj∂j)Mi + (M× ω)i + Xi = 0 (2.16)

∂tǫij + (vk∂k)ǫij + Yij = 0 (2.17)

where jσ denotes the entropy current, jc the concentration current of magnetic particles,
σij is the stress tensor and X and Yij denote the quasicurrents for the magnetization and
the strain field, respectively. The vorticity ~ω is given by ωi = 1

2
ǫijk∂jvk while σth

ij is given
by

σth
ij = −1

2
(BiHj + BjHi) +

1

2
(Ψjkǫki + Ψikǫkj) (2.18)

In eq. (2.17) the assumption of a linear elastic medium has already been made. For
a comprehensive description on nonlinear elastic properties of soft matter systems, the
reader is referred to [64, 65, 66, 67, 68].

The Gibbs-Duhem relation, relating the thermodynamic pressure to the conserved
quantities is given as

p = −ε + Tσ + µρ + g · v (2.19)
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Equation (2.13) contains a source term R/T accounting for the entropy production
needed for the dissipative processes. The second law of thermodynamics requires the
dissipation functional R (a Lyapunov functional) either to vanish for reversible processes
or to be positive for irreversible processes. The explicit expression for R can be obtained
as a series expansion in terms of the thermodynamic forces applying the same symmetry
arguments as for the energy density.

One is left with the determination of explicit expressions for the currents and quasi-
currents which is done in the subsequent sections.

Irreversible dynamics

In the case of isotropic magnetic gels the Lyapunov functional R is given, up to second
order, by

R =
1

2
κ(∂iT )2 +

1

2
νijklAijAkl +

1

2
D(∂iµc)

2 +
1

2
b(hM

i )2

+
1

2
ξ(Ψi)

2 + DT (∂jT )(∂jµc) + Ψi

(

ξT∂iT + ξc∂iµc

)

(2.20)

where the coefficients κ, D and DT denote the heat conduction, diffusion and thermodif-
fusion, respectively. The tensor νijkl represents the viscosity tensor which again takes the
isotropic form

νijkl = ν1δijδkl + ν2

(

δikδkl + δilδjk −
2

3
δijδkl

)

(2.21)

with ν1 being the compressional viscosity and ν2 the shear viscosity. The dissipative
contributions to the currents and quasicurrents are derived by taking the partial derivative
of the dissipation function R with respect to the appropriate thermodynamic force. Finally
one obtains

jσD
i = −κ∂iT −DT ∂iµc −

1

2
ξT Ψi (2.22)

jcD
i = −D∂iµc −DT ∂iT −

1

2
ξcΨi (2.23)

σD
ij = −νijklAkl (2.24)

Y D
ij = −1

2

(

∂i(ξΨj + ξT ∂jT + ξc∂jµc) + (i←→ j)
)

(2.25)

XD
i = bhM

i (2.26)

where the abbreviations Aij = 1
2
(∂ivj + ∂jvi) and Ψi = ∂jΨij = ∂jΨji have been used.

Reversible dynamics

The reversible contributions to the currents and quasicurrents cannot be derived from
a functional as the irreversible contributions. Instead one directly expands the currents
and quasicurrents in terms of the thermodynamic forces using the general symmetry and
invariance arguments. From all these possible contributions one only retains those, that
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conserve energy or entropy upon substitution into the Gibbs relation (2.6). One finally
obtains

jσR
i = −κR

ij(M)∂jT −DTR
ij (M)∂jµc + ξTR

ij (M)∂lΨjl (2.27)

jcR
i = −DR

ij(M)∂jµc + DTR
ij (M)∂jT + ξcR

ij (M)∂lΨlj (2.28)

σR
ij = −Ψij − cR

kij(M)hM
k − νR

ijkl(M)Akl (2.29)

Y R
ij = −Aij +

1

2
λM
[

∂i(∇× hM)j + ∂j(∇× hM )i

]

−1

2

[

∂i

{

ξR
jk(M)∂lΨkl + ξTR

jk (M)∂kT + ξcR
jk (M)∂kµc

}

+ (i←→ j)
]

(2.30)

XR
i = bR

ij(M)hM
j + λM(∇×Ψ)i − cR

ijk(M)Ajk . (2.31)

where the transport coefficients are all odd functions of the magnetization M and are given
up to linear order in M in [60]. The transport coefficient λM is new for isotropic ferrogels
and describes the reversible dynamic coupling between the magnetization and the stress
tensor. One realizes, that the reversible contributions to the currents and quasicurrents
show the opposite behavior under time inversion as their irreversible counterparts.

2.2 Assumptions for the Rosensweig instability

In order to give a nonlinear description of the Rosensweig instability in isotropic magnetic
gels it is worth simplifying the complete set of hydrodynamic equations as discussed in the
previous section to focus on the basic mechanism driving the instability. Additionally,
since we are about to discuss a surface phenomenon, we have to specify the boundary
conditions that have to be fulfilled at the free boundary between the magnetic gel and
the vacuum above.

2.2.1 The simplified bulk equations

To start, we can safely assume a constant temperature and a constant concentration of
magnetic particles. This discards all contributions to the hydrodynamic currents and
quasicurrents proportional to the temperature and concentration gradients. The corre-
sponding symmetric contributions proportional to the gradient of the elastic stress in the
currents associated with the concentration and the entropy density are assumed to be
small enough so that we can neglect them (ξT , ξTR ≪ 1 and ξc, ξcR ≪ 1). Furthermore
we assume no elastic stress diffusion in the medium (ξ, ξR ≪ 1).

Another very important assumption for our discussion is, that even though the mag-
netic field is considered a slowly relaxing variable in the general hydrodynamic theory for
isotropic magnetic gels, we assume that it relaxes fast enough on the time scale consid-
ered in our discussion of the Rosensweig instability. In that respect the magnetization
is no longer a slowly relaxing variable and the corresponding dynamic equation (2.16) is
adiabatically eliminated together with all crosscouplings in the hydrodynamic currents
and quasicurrents that are proportional to the thermodynamic force associated to the
magnetization. This assumption is justified by the fact that the growth of surface spikes
takes place on a time scale long compared to the temporal variations of the magnetic
field. The magnetic field is then defined by the static Maxwell equations and the cor-
responding boundary conditions at the surface. We also assume that the macroscopic
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material parameters like the shear modulus and the shear viscosity are independent of
the magnetization in the medium. This also implies that we will neglect magnetostriction
in our discussions. Furthermore we assume a very small “reversible viscosity” (νR

ijkl ≪ 1)
and will neglect the corresponding contributions in our analysis.

The gravitational force plays an important role in the phenomenon of the Rosensweig
instability since it stabilizes the surface in the long wavelength limit, thus we have to
account for this externally given force in our discussion. This can be easily done by
adding the appropriate term to the generalized Navier-Stokes equation, where we will
denote the acceleration due to gravity by G. Eventually we end up with the following set
of nonlinear dynamic equations

∂tρ + ∂k(ρvk) = 0 (2.32)

∂tgi + ∂jTij = ρGi (2.33)
(

∂t + vk∂k

)

ǫij −
1

2

(

∂ivj + ∂jvi

)

= 0 (2.34)

with the stress tensor Tij given by

Tij = givj + pδij −
(

BiHj −
1

2
BkHk δij

)

− µ2(ǫjkǫki + ǫikǫkj)− µ̂ǫkkǫij

−2µ2ǫij − µ̂δijǫkk − ν2(∂jvi + ∂ivj)− ν̂δij∂kvk (2.35)

In the simplified set of hydrodynamic equations (2.32) to (2.34) we still account for a
compressible medium. The reason for that becomes clear in section 5.2 where the corre-
sponding adjoint system is derived. Except for the derivation of the adjoint system, how-
ever, we can safely assume an incompressible medium. The coefficients µ̂ = µ1 − 2/3 µ2

and ν̂ = ν1 − 2/3 ν2 abbreviate the contributions vanishing for this incompressible limit.
Since we have assumed that the magnetic field and the magnetization in the medium

relax fast, the bulk equations governing the magnetic field are given by the static Maxwell
equations

∇ ·B = 0 and ∇ ·Bvac = 0 (2.36)

∇×H = 0 and ∇×Hvac = 0 (2.37)

where the superscript vac denotes the corresponding observables in vacuum.
The simplifications we have discussed so far have an important consequence on the

character of the instability. Since the magnetic field can be expressed as the gradient
of a scalar magnetic potential, the magnetic contributions to the bulk equations for the
elastic medium cancel. One obtains a completely decoupled set of bulk equations for the
elastic medium and the magnetic field. The derivation is straightforward but due to its
importance, the detailed derivation is added as appendix A. The boundary conditions
at the free surface are now the only link between the magnetic field and the magnetic
medium as we will see in the following section.

2.2.2 The boundary conditions

As seen in the discussion so far, the boundary conditions play an important role in the
Rosensweig problem. We therefore have to spend some time specifying and discussing
them.
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Figure 2.1: Qualitative sketch of the geometry under consideration for the de-
scription of the Rosensweig instability. The magnetic medium is occupying the
negative half-space. The deflection of the deformable surface with respect to the
flat surface at z = 0 is denoted by ξ with its unit normal vector n pointing
upwards. The applied magnetic field is always parallel to the z axis, while the
acceleration due to gravity G is acting in the opposite direction.

The geometry we have in mind for the theoretical discussion is inspired by the ex-
perimental setup [19]. However, we assume a horizontally infinitely extended boundary
between the magnetic medium (below) and vacuum (above). We choose the coordinate
system such that the initially flat boundary is located in the z = 0 plane. The deflection
of the deformable surface from this initial state will be denoted as ξ(x, y) in the following.
Furthermore we assume both subsystems to be infinitely extended in positive and nega-
tive z−direction. Figure 2.1 sketches the geometry discussed so far. The externally given
forces are additionally depicted. The gravitational force always acts along the negative
z−axis whereas the applied magnetic field is directed in the opposite direction.

The assumptions mentioned above allow us to focus our attention on the boundary
between vacuum and the magnetic medium situated at z = ξ. For the boundaries at
z =∞ and z = −∞ we only require that the perturbations of the observables caused by
the deformed surface are relaxed.

The boundary conditions at the free surface for the magnetic field and the magnetic
flux density are straightforwardly given by Maxwell’s theory [69], but are repeated here
for completeness. One requires the normal component of the magnetic flux density and
the tangential component of the magnetic field to be continuous at the boundary

n×H = n×Hvac (2.38)

n ·B = n ·Bvac (2.39)

where the normal vector n is given by

n =
∇(z − ξ)

|∇(z − ξ) | (2.40)

Another important ingredient for the Rosensweig instability is the deformability of
the boundary between the magnetic medium and the vacuum. It is reasonable to assume
a stress free boundary condition at the surface. Since as long as there is a remaining
stress acting on the surface, the surface will deform until all stresses are compensated.
For the tangential stress boundary condition, these conditions result in a continuous
internal tangential stress of the medium at the boundary. For the normal stress boundary
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condition, however, we additionally have to consider the surface tension (denoted as σT in
our discussion) and gravity which have to be compensated by the normal stress difference.
Finally we end up with

n× T · n = n× Tvac · n (2.41)

n · T · n− n · Tvac · n = σT∇ · n− ρGξ (2.42)

In eq. (2.42) the contribution due to gravity has been written explicitly. In general, the
corresponding force in the Navier-Stokes equation (2.33) can be incorporated into the
stress tensor Tij by considering the gravitation potential according to

ρGi = −ρGδiz = −∂j(ρGzδij) (2.43)

The potential is isotropic in space and can therefore be assigned as an additional pressure
contribution. As a consequence, the gravitation will only enter the normal stress boundary
condition.

The deformability of the surface is not yet completely implemented in our description.
We can do this by giving a dynamic equation for the actual position of the surface. This
condition is inherently valid only at the surface itself and can therefore be considered as
an additional boundary condition. Since any temporal change of the interface is related
to the movement of matter, we have

d

dt
ξ = vz (2.44)

which can be viewed as a macroscopic definition of the interface in a continuum descrip-
tion. This boundary condition is often referred to as the kinematic boundary condition.
As we will discuss next, this condition leads to an eigenvalue problem and to the dispersion
relation between the frequency and the wavelength of a surface mode.
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Chapter 3

Recalling the linear problem

In this chapter we will focus on the linear aspects of the Rosensweig instability in isotropic
magnetic gels. Parts of this chapter can be understood as a summary of previous works
[70, 20], however it will also provide an easy introduction to the rather special nature of
the kinematic boundary condition and the possible mathematical problems in the presence
of dynamical deformable surfaces. This will help us in understanding the nonlinear regime
and especially the way we treat it mathematically.

3.1 The ground state

The system of equations and boundary conditions (2.32-2.34) and (2.41-2.42) always has
the trivial ground state solution, where the surface is flat (ξ(x, y, t) ≡ 0,n0 = ez), flow
and deformations are absent (v = 0, ǫij = 0), and the fields are constant (M0 = M0ez

with M0 = (1 − 1/µ)B0). The continuity equation (2.32) and the dynamic equation for
the strain field (2.34) are then satisfied identically whereas the Navier-Stokes equation
reads

∂j

(

p0δij − B0iH0j +
1

2
B0kH0kδij

)

= −ρGδiz (3.1)

For the lateral dimensions in x− and y−direction these equations are easily satisfied by
any pressure p0 = p0(z), which is obtained by using i = z as

p0(z) = −ρGz + p0(z = 0) (3.2)

Furthermore we have to guarantee a stress free surface. The tangential stress boundary
conditions are identically satisfied for this ground state solution, whereas the normal
boundary condition reads

p0(z = 0) = −1

2

(

1− 1

µ

)

B2
0 (3.3)

which results upon substituting into (3.2) the final ground state pressure

p0(z) = −ρGz − 1

2

(

1− 1

µ

)

B2
0 (3.4)

21
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The system of equations therefore requires a non-zero, constant stress contribution due
to the magnetic field, −(1/2)(1− 1/µ)B2

0, to the hydrostatic pressure, which is of minor
relevance, since in an incompressible1 system the pressure has no physical meaning any-
more and merely serves as an auxiliary quantity that guarantees ∇·v = 0 for all times, if
flow is present.

It is worth mentioning here, that the ground state is the only state where the gravita-
tional force contributes via the bulk equations. For the perturbed states, the gravitation
only enters the analysis via the boundary conditions.

3.2 Linear deviations from the ground state

For finite temperatures the system will be subject to thermal fluctuations which cause
the surface to undulate randomly. These fluctuations can be viewed as a spectrum of
propagating and damped surface waves (cf. fig. 2.1, p. 18) with a wave vector k =
(kx, ky, 0) and with the frequency consisting of a real ω and an imaginary part −σ

ξ(x, y, t) = ξ̂e−ikxx−ikyy+iωt+σt (3.5)

and where ξ̂ denotes the amplitude which is undetermined in the linear theory. In case
of ω = 0, a stationary spatially periodic pattern is obtained. Generally ω is a complex
function of k. Fourier modes of the type (3.5) can be superimposed as appropriate,
and deviations from the ground state of all the other variables have to be proportional to
ξ(x, y, t). Linear deviations of the surface normal from the ground state due to undulations
are given by2 n(1) ≡ n− n0 = (−∂xξ,−∂yξ, 0).

The fact that the systems of hydrodynamic bulk equations decouples from the mag-
netic bulk equations enables us to solve the two bulk systems separately. A detailed
derivation of the magnetic fields can be found in appendix B whereas here we just re-
peat the final results. The linear deviations of the magnetic field and induction from the
ground state value, b(1) ≡ B(1) −B0 and h(1) = H(1) −H0, both for the ferrogel and the
vacuum, still obey the linear electrostatic equations, b(1) = µh(1), divb(1) = 0 = curlh(1).
This allows for the introduction of a magnetic scalar potential [69] h(1) = −∇Φ(1) that is
determined by the Laplace equation with the appropriate solutions

Φ(1) = − M0

1 + µ
ξ(x, y, t)ekz (3.6)

Φ(1)vac =
µM0

1 + µ
ξ(x, y, t)e−kz . (3.7)

for the lower (ferrogel) and upper (vacuum) half plane, respectively and k2 = k2
x + k2

y.

1In section 2.2.1 we still allowed for a compressible superparamagnetic medium. This assumption is
necessary to derive the set of adjoint linear equations with its corresponding boundary conditions as we
will see in section 5.2. For the discussion of the Rosensweig instability, however, we can safely assume an
incompressible medium.

2The superscript (1) is just added for a consistent notation with chapter 5 and describes the deviations
from the ground state in linear order.
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The system of hydrodynamic bulk equations reads in linearized form

ρ∂tv
(1)
i + ∂ip

(1) − ν2∂j(∂iv
(1)
j + ∂jv

(1)
i )− 2µ2∂jǫ

(1)
ij = 0 (3.8)

∂tǫ
(1)
ij −

1

2
(∂iv

(1)
j + ∂jv

(1)
i ) = 0 (3.9)

∂iv
(1)
i = 0 (3.10)

The usual way to solve this system is to distinguish the irrotational flow contributions
from the rotational ones, v(1) = v(1)pot + v(1)rot, where both parts can be deduced from a
scalar potential ϕ(1) and a vector potential Ψ(1), respectively

v(1)pot = ∇ϕ(1) and v(1)rot = ∇×Ψ(1). (3.11)

The incompressibility of the medium requires ∆ϕ(1) = 0 and leads to the ansatz

ϕ(1) = ϕ̂(1) ξ(x, y, t)ekz (3.12)

for the scalar velocity potential. The vector velocity potential can be written as

Ψ(1) = Ψ̂(1) ξ(x, y, t)eqz (3.13)

where the amplitudes ϕ̂(1) and Ψ̂(1) and the decay length q−1 are still undetermined. Since
only two of the three amplitudes Ψ̂(1) can be independent, we set Ψ̂

(1)
z = 0 without loss

of generality resulting in v(1)rot = (−qΨ
(1)
y , qΨ

(1)
x , −ikxΨ

(1)
y + ikyΨ

(1)
x ).

The strain ǫ
(1)
ij can be expressed by the velocity via eq. (3.9) and the linear pressure

deviation, p(1) ≡ p− p0 is determined by eq. (3.8). With the help of eq. (3.9), iω∂jǫ
(1)
ij =

(1/2)∆v
(1)
i , eq. (3.8) takes the linear form

iωρv
(1)
i + ∂ip

(1) −
(

ν2 +
µ2

iω

)

∆v
(1)
i = 0 (3.14)

Taking div and curl of eq. (3.14) we get [71]

p(1) = −iωρϕ(1) + const. (3.15)

and q2 = k2 − ρω2

µ2 + iων2
(3.16)

respectively, where the unimportant constant in the pressure can be ignored.

3.3 Surface wave dispersion relation

We are left with three amplitudes, ϕ̂(1), Ψ̂
(1)
x , Ψ̂

(1)
y , that have to be related to the undulation

amplitude, ξ̂, by the stress boundary conditions (2.41) and (2.42) and the kinematic
boundary condition (2.44). For the linear analysis we could, without loss of generality,
choose the in-plane wave vector k to be parallel to the x−axis, as done in [20]. With
the nonlinear analysis in mind, it is worth considering an arbitrary direction of the wave
vector. For linear deviations from the ground state and with the solutions obtained for
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ω ∝ ik2
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ω ∝ k3/2
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Figure 3.1: Schematic plots of the different surface wave regimes described by
eq. (3.20) as in [71]. One encounters gravitational waves with ω ∝ k1/2, Rayleigh
elastic waves with ω ∝ k and capillary waves with ω ∝ k3/2 as depicted on the
left. On the right an unstable region develops for strong magnetic fields.

the magnetic fields, the stress boundary conditions can be written in terms of the flow
potentials as (cf. appendix C)

µ̃2(∂
2
z − ∂2

y)Ψ
(1)
x + µ̃2(∂y∂x)Ψ

(1)
y + 2µ̃2∂y∂zϕ

(1) = 0 (3.17)

µ̃2(∂x∂y)Ψ
(1)
x + µ̃2(∂

2
z − ∂2

x)Ψ
(1)
y − 2µ̃2∂x∂zϕ

(1) = 0 (3.18)

−(2µ̃2∂z∂y + Gρ∂y + σT k2∂y −
µ

1 + µ
M2

0 ∂z∂y)Ψ
(1)
x

+(2µ̃2∂z∂x + Gρ∂x + σT k2∂x −
µ

1 + µ
M2

0 ∂z∂x)Ψ
(1)
y

+(2µ̃2∂
2
z + Gρ∂z + σT k2∂z − ρω2 − µ

1 + µ
M2

0 ∂2
z )ϕ

(1) = 0 (3.19)

all taken at z = 0 and with the frequency dependent µ̃2(ω) ≡ µ2 + iων2 describing
(kinematic) elasticity and viscosity.

To have a nontrivial solution for equations (3.17-3.19) the determinant of coefficients
must vanish. This leads to the dispersion relation of surface waves for ferrogels

ρω2
(

2µ̃2(ω)k2 − ρω2
)

+ ρω2

(

σT k3 + ρGk + 2µ̃2(ω)k2 − µ

1 + µ
M2

0 k2

)

−4µ̃2
2(ω) k4

[

1−
(

1− ρω2

µ̃2(ω)k2

)1/2
]

= 0 (3.20)

In the absence of an external magnetic field (M0 = 0) eq. (3.20) reduces to the dispersion
relation for non-magnetic gels [71]. It also contains, as a special case, the surface wave
dispersion relation for ferrofluids (in an external field) by choosing µ̃2 = iων2. It can
be generalized to viscoelastic ferrofluids, whose elasticity relaxes on a time scale τ−1, by
replacing µ2 with iωτµ2/(1 + iωτ) [71].

The dispersion relation (3.20) is very complicated and it is impossible to solve it
analytically for ω(k). For non-magnetic gels it is known that there are basically three
wave regimes (neglecting dissipation or damping) (cf. fig. 3.1): ρω2 = σT k3 (capillary
waves), ρω2 = α̃µ2k

2 (Rayleigh elastic waves), and ω2 = Gk (gravity water waves) for
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small wavelengths (k ≫ µ2/σT ,
√

ρG/σT ), intermediate ones (ρG/µ2 ≪ k ≪ µ2/σT ),

and large ones (k ≪ ρG/µ2,
√

ρG/σT ), respectively, where α̃ is a number of order unity.
For typical material values (µ2 ≈ 1 kPa, σT ≈ 0.02 kg/sec2) waves at wavelengths of
10−4 m and below (with frequencies of 50 kHz and above) are of purely capillary type,
while for wavelengths above 1 m (and frequencies below 10 Hz) the gravity character
dominates; this regime is, thus, irrelevant for usual ferrogel samples. In between, for
typical wavelengths of 10−2 m and frequencies of 100 - 1000 Hz the elastic nature of the
wave is prevailing. This scenario also applies to isotropic ferrogels in the absence of a
field. The effect of a normal external magnetic field on the surface is a destabilizing one
[3]. From eq. (3.20) it is evident that an external field leads to an effective reduction of
the surface stiffness (provided by surface tension, gravity or elasticity) and decreases the
frequency (squared) of the propagating waves in all regimes by ∼ M2

0 k2. If the field is
large enough, this reduction is the dominating effect and can lead to ω = 0 and thus, to
the breakdown of propagating waves. In the next section it is shown that this is indeed
related to the Rosensweig instability.

3.4 Rosensweig instability

As mentioned already, eq. (3.20) is a complicated relation between the frequency of a
surface wave implicitly given as a function of its wave vector. For a better understanding
of the Rosensweig instability it is worth considering the simplification of eq. (3.20) to the
case of an inviscid (ν2 = 0) magnetic fluid

ρω2 = ρGk − µ

1 + µ
M2

0 k2 + σT k3 (3.21)

as has been done in [3, 19]. This is not a physical assumptions which we will have to
correct later on, but it already reveals the static nature of the Rosensweig instability
and the resulting dispersion relation (3.21) can be treated analytically. Upon minimizing
(3.21) with respect to the frequency ω and the wave vector k one straightforwardly obtains
the linear threshold of a static instability (ω ≡ 0)

M2
c = 2

1 + µ

µ

√

ρGσT (3.22)

beyond which the flat surface is unstable with respect to periodic patterns with a char-
acteristic wave vector (cf. fig. 3.1)

kc =

√

ρG

σT
(3.23)

The fact that the instability is static is, however, rather singular. This can be observed
by plotting (3.21) as is shown in fig. 3.2 (with the material properties taken from the
commercial ferrofluid EMG 901 as given for example in [72]). Without a magnetic field
one obtains the behavior of an ideal fluid where the gravitational wave regime can be dis-
tinguished very clearly as well as the transition to the capillary regime. Upon increasing
the magnetic field, the contribution due to the magnetization becomes more and more
dominant and at a magnetization of about 6600A/m a branch of anomalous dispersion
arises. More interesting for the Rosensweig instability is the necessary minimum that
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Figure 3.2: The dispersion relation of surface waves in a usual magnetic fluid for
different values of the externally applied magnetic field. The numerical parameter
values are taken from the ferrofluid EMG 901 (ρ = 1.53 ·103 kg

m3 , σT = 29.5 ·10−3 N
m

and µ = 28.0 · 10−7 T
m

).

comes along with it. This relative minimum is shifted to lower ω values as the external
magnetic field is increased and eventually it becomes the absolute one touching the ab-
scissa at the characteristic wave vector for the critical magnetic field. In physical terms we
can interpret this in a slightly different way. Below the critical magnetic field all modes
show a finite oscillation in time. As soon as we approach the critical magnetic field the
oscillation of the characteristic mode dies out resulting in the growth of a static pattern.
The interpretation of the Rosensweig instability as the limiting case of surface waves with
a vanishing frequency will be of importance for the nonlinear regime as we will see later.

With the same procedure we can discuss the dispersion relation for magnetic gels
(3.20). The characteristic mode turns out to be the same as for the case of ferrofluids,
given by the capillary mode (3.23). This can be understood recalling the fact that the
elastic contributions enter the dispersion relation with the same k−order as the magnetic
contributions. The critical magnetic field is instead shifted towards higher magnetic fields
[20] according to

M2
c = 2

1 + µ

µ

(

√

ρGσT + µ2

)

(3.24)

which is less surprising, since elasticity increases the surface stiffness. In the special cases
of realistic ferrofluids with a finite viscosity (µ2 = 0 and ν2 6= 0) and of ferrorubbers
(ν2 = 0 and µ2 6= 0) it can be shown analytically that only a static instability ω = 0 is
possible at the linear onset [70, 20]. For the general case (3.20) of realistic magnetic gels
with a finite viscosity and a finite shear modulus numerical calculations show the absence
of an oscillatory instability at onset.

Also in the general case of ferrogels, the static character of the instability is the limiting
case of dynamical processes at the surface. To illustrate this, we can plot the dispersion
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Figure 3.3: The dispersion relation of surface waves on an isotropic magnetic
gel at a fixed external magnetic field of 0.98M crit. and for different values of the
elastic shear modulus. The numerical parameters for the other material properties
are taken from the ferrofluid EMG 901 (ρ = 1.53 · 103 kg

m3 , σT = 29.5 · 10−3 N
m

,

µ = 28.0 · 10−7 T
m

and ν2 = 6.5 · 10−6 m2

s
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relation in the general viscoelastic case (fig. 3.3). The different graphs have been obtained
as numerical solutions of (3.20) where the material parameters are again taken from the
ferrofluid EMG 901 with a varying value for the elastic shear modulus µ2 and where the
magnetic field is kept constant at about 98% of the critical magnetic field. Due to the
numerical resolution we only had access to elastic moduli up to 2 Pa. However, it remains
illustrative that the elastic contributions act opposite to the magnetic field and that the
limiting case of a static instability is approached either for increasing magnetic fields or
for decreasing shear moduli. An elastic shear modulus of 2Pa is extremely weak, but
fig. 3.3 additionally illustrates that already a low shear modulus influences the dynamic
behavior of the surface drastically close to the linear threshold.

3.5 The linear eigenvectors

The condition to find a solution of the linearized set of hydrodynamic equations has
been discussed in the previous two sections. A solution can be found by first considering
the two tangential stress boundary conditions (3.17,3.18) which allow one to express the
amplitudes for the vector potential Ψ(1) in terms of the amplitude of the scalar potential

Ψ̂(1)
x = −2k(−iky)

q2 + k2
ϕ̂(1) and Ψ̂(1)

y = +
2k(−ikx)

q2 + k2
ϕ̂(1) (3.25)

The kinematic boundary condition can then be used to find the explicit expression for
the amplitude of the scalar potential

ϕ̂(1) = iω
q2 + k2

k(q2 − k2)
. (3.26)
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In the limiting case of ω → 0, which corresponds to the approach of the onset of the
Rosensweig instability if k = kc, the amplitudes of the potentials diverge with 1/ω. Since,
however, the potentials are a mathematical tool to solve the system of equations, we need
not worry about that, yet.

Substituting the expression for the potentials into eq. (3.11), we eventually obtain the
three components of the velocity field

v(1)
x =

∑

i

(−ikix)

(

ekiz − 2
qiki

q2
i + k2

i

eqiz

)

iω(q2
i + k2

i )

ki(q
2
i − k2

i )
ξi (3.27)

v(1)
y =

∑

i

(−ikiy)

(

ekiz − 2
qiki

q2
i + k2

i

eqiz

)

iω(q2
i + k2

i )

ki(q2
i − k2

i )
ξi (3.28)

v(1)
z =

∑

i

ki

(

ekiz − 2
k2

i

q2
i + k2

i

eqiz

)

iω(q2
i + k2

i )

ki(q2
i − k2

i )
ξi , (3.29)

where the index i accounts for the fact that in a linear analysis of the instability the
direction of the unstable mode remains degenerate and a whole set of characteristic modes
with different directions may grow.

We can exploit eq. (3.9) and eventually find the expressions for the components of
the strain tensor, where again the index i accounts for the different possible modes of the
same modulus

ǫ(1)
zz =

∑

i

(q2
i + k2

i )e
kiz − 2qikie

qiz

q2
i − k2

i

kiξi (3.30)

ǫ(1)
xz =

∑

i

(−ikix)
(

ekiz − eqiz
) q2

i + k2
i

q2
i − k2

i

ξi (3.31)

ǫ(1)
yz =

∑

i

(−ikiy)
(

ekiz − eqiz
) q2

i + k2
i

q2
i − k2

i

ξi (3.32)

ǫ(1)
xy = −

∑

i

kixkiy
q2
i + k2

i

ki(q2
i − k2

i )

(

ekiz − 2
qiki

q2
i + k2

i

eqiz

)

ξi (3.33)

ǫ(1)
xx = −

∑

i

k2
ix

q2
i + k2

i

ki(q2
i − k2

i )

(

ekiz − 2
qiki

q2
i + k2

i

eqiz

)

ξi (3.34)

ǫ(1)
yy = −

∑

i

k2
iy

q2
i + k2

i

ki(q2
i − k2

i )

(

ekiz − 2
qiki

q2
i + k2

i

eqiz

)

ξi. (3.35)

We realized previously, that the introduced potentials diverge when approaching the linear
onset. The velocity and strain field, as the observables of the system, should instead
acquire a physical solution in the limit of a stationary instability. Taking the limit ω → 0,
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Figure 3.4: The absolute value of the zz−component of the strain field for two
particular modes, k = 1 and k = 2 respectively, according to (3.37) as a function
of depth and for an arbitrary infinitesimal deflection of the surface at a given
point (x, y). The surface modes are measured in units of the characteristic wave
vector kc, lengths in units of its inverse, k−1

c .

we obtain the following eigenvectors at the linear onset

v
(1)
i = 0 (3.36)

ǫ(1)
zz = −

∑

i

k2
i ze

kizξi(ω = 0) (3.37)

ǫ(1)
xz = −

∑

i

(−ikix)kize
kizξi(ω = 0) (3.38)

ǫ(1)
yz = −

∑

i

(−ikiy)kize
kizξi(ω = 0) (3.39)

ǫ(1)
xy =

∑

i

kixkiyze
kizξi(ω = 0) (3.40)

ǫ(1)
xx =

∑

i

k2
ixze

kizξi(ω = 0) (3.41)

ǫ(1)
yy =

∑

i

k2
iyze

kizξi(ω = 0) (3.42)

The velocity field vanishes identically whereas the strain field acquires a finite stationary
value. Fig. 3.4 gives the strain (and correspondingly the stress) distribution in the medium
for two different surface modes as a function of the depth starting from the surface. The
wave vectors are measured in units of the characteristic wave vector kc (3.23) and the
depth is measured in units of the inverse characteristic wave vector k−1

c .
At this point, the crucial difference between the Rosensweig instability and other

commonly discussed instabilities becomes obvious. Mediated by the kinematic boundary
condition, the velocity field vanishes. What one observes is not a stationary finite flow field
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as, for example, in the case of the Rayleigh-Bénard convection, but the static deformation
of the surface with no flow in the medium. As we will see in our nonlinear discussion, this
vanishing of the flow field will force us to treat the system dynamically.

3.6 On the normal stress boundary condition

In the previous discussion we showed, that the character of the Rosensweig instability
and the dynamical behavior of the bulk solutions of the hydrodynamic equations are cru-
cially dependent on the kinematic boundary condition. In finding the eigenvectors, we
did not use the normal stress boundary condition, which rather must be satisfied ad-
ditionally. To check whether it is fulfilled one can substitute the obtained eigenvectors
into eq. (3.19). One realizes then that the dispersion relation (3.20) is regained which
is typical for eigenvalue problems. In the linear discussion, the system of equations is
therefore solved completely. As we will see in chapter 5, the normal stress boundary con-
dition in higher orders is not satisfied automatically but provides an additional solvability
condition.



Chapter 4

Nonlinear discussion using the

energy method

A very first nonlinear description of the Rosensweig instability was given by Gailitis
in 1977. The general idea is to express the surface energy density of the free deformable
surface in terms of the deformation ξ(x, y, t) and minimize this energy density with respect
to different regular surface patterns. Although this method does not provide us with any
dynamic properties of the instability, we will take this method as a starting point to get
an impression on how the elasticity influences the energetically static patterns1.

4.1 Surface energy density

Describing usual ferrofluids within the framework of the energy minimization method, the
expression for the energy density at the surface was first given by Gailitis [33]. Assuming
an incompressible ferrofluid occupying the negative half-space, the surface energy density
has three contributions. A gravitational term accounting for the hydrostatic energy, a
contribution due to surface tension and the energetic contribution of the magnetic field
that is applied perpendicular to the initially flat surface. Averaging the entire surface one
obtains [33] as the difference in energy density with respect to the flat configuration

U(ξ) =
1

2
ρG
〈

ξ2(x, y)
〉

+ σT

〈
√

1 + (∇ξ(x, y))2
〉

+
1

2

〈 +∞
∫

−∞

B2(x, y, z)

µ
dz

〉

(4.1)

In our notation the surface deflection from its unperturbed flat state is described by
ξ(x, y) and the magnetic induction by B. The surface energy density depends on the
mass density ρ, the gravitational acceleration G, the surface tension σT and the magnetic
permeability of the medium µ. Averaging with respect to the surface S is understood in
the following usual way

〈F (x, y)〉 = lim
S→∞

1

S

∫∫

S

F (x, y) dxdy (4.2)

1The results of this chapter have been published in [73].

31
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For the surface deflection itself we take a superposition of different wave vectors that
can be divided into two groups. The first group will contain all those vectors whose
wavelength corresponds to the critical one. The second group accounts for all the possible
higher harmonic wave vectors, constructed from the main modes via superposition with
Fourier modes in space (k) and time (ω)

ξ(x, y, t) =

M
∑

i=1

Aki
cos(ki · r)eiωt +

N
∑

i,j=1

ki±kj 6=0

Aki±kj
cos((ki ± kj) · r)eiωt. (4.3)

In that ansatz we already assume regular 2−dimensional patterns.

Starting to describe elastic media with this method, we have to account for the elastic
degrees of freedom. This may be done by just adding an additional energetic contribution
due to elastic deformations (described by the strain field ǫij) to the surface energy density
(4.1) as given in chapter 2 by eq. (2.7)

〈 ξ
∫

−∞

1

2
µijklǫijǫkl dz

〉

(4.4)

It is sufficient to take the integral with respect to z just from the bottom (−∞) to the
top (ξ) of the ferrogel, since we assume vacuum in the positive half-space (cf. chapter 2).
The explicit form of the elastic tensor µijkl is given by eq. (2.8) and takes the following
form in an incompressible medium with µ2 being the elastic shear modulus

µijkl = µ2 (δikδjl + δilδjk) (4.5)

In total we therefore get the following expression for the surface energy density in an in-
compressible, isotropic ferrofluid that is now left for minimization with respect to different
regular patterns arising at the gel-vacuum interface beyond the linear threshold

U(ξ) =

〈

ρG

2
ξ2 + σT

√

1 + (∂xξ)2 + (∂yξ)2 +
1

2µ0µ

+∞
∫

−∞

B2(x, y, z)dz

+ 2µ2

ξ
∫

−∞

(ǫ2
xy + ǫ2

yz + ǫ2
xz) dz + µ2

ξ
∫

−∞

(ǫ2
xx + ǫ2

yy + ǫ2
zz) dz

〉

(4.6)

For the rest of our discussions in this chapter we will introduce dimensionless units.
These are chosen such, that lengths are measured in units of the inverse characteristic
wave vector k−1

c =
√

σT /ρG, energy densities in terms of σT , the magnetic field in units
of the critical magnetic field, and the elastic shear modulus µ2 in terms of

√
σT ρG.

Substituting the solutions of the strain field that we obtained in the linear order (3.37-
3.42) we can formulate the final expression for the surface energy density in terms of the
surface deflection ξ(x, y, t). The non-elastic parts – represented by the first three terms
in eq. (4.6) – are taken from the discussions of Gailitis [33], because they do not change
in the presence of elasticity. The fourth and fifth contribution in eq. (4.6) are integrated
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and lead to the expression for the energy density up to fourth order of the amplitude A
of the surface deflection ξ(x, y)

U = −1

2
E(B0, 1)

N
∑

i=1

A2
ki

+
µ2

2

N
∑

i=1

C(ki)A
2
ki
−Q(2π/3)

∑

i,j,l≤N
ki±kj±kl

Aki
Akj

Akl

+
1

4
K(0)

N
∑

i=1

A4
ki

+
∑

i,j≤N

K(θij)A
2
ki

A2
kj

−1

2

N
∑

i=1

(

Q(0)A2
ki

A2ki
+ (E(B0, 2)− µ2C(2ki))A

2
2ki

)

−
∑

±

∑

i<j≤N
|ki±kj|6=1

(

Q(π/4± θij ∓ π/4)Aki
Akj

Aki±kj

+
1

2
(E(B0, |ki ± kj|)− µ2C(ki ± kj))A2

ki±kj

)

+O(A5) (4.7)

where θij denotes the angle between the i-th and the j-th mode under consideration. The
analytical coefficients of the non-elastic contributions in eq. (4.7) have been given already
by Gailitis [33]. For completeness they are repeated here. The elastic coefficients follow
from averaging eq. (4.6) and are given here as functions of the components of the different
wave vectors

E(B0, k) = ǫ̃k − 1

2
(1− k)2 (4.8)

K(θij) = sin3(θij/2) + cos3(θij/2)− 9

16
− 1

8
cos(θij)

+ η2
(

2− sin(θij/2)− cos(θij/2)− sin3(θij/2)− cos3(θij/2)
)

(4.9)

Q(θij) = η
(

2 cos(θij/2)− cos2(θij/2)
)

(4.10)

C(ki) =
k2

ixk
2
iy

2k3
i

+
k2

ix

2ki
+

k2
iy

2ki
+

k4
ix

4k3
i

+
k4

iy

4k3
i

+
k4

i

4k3
i

(4.11)

where ǫ̃ = B2
0/B

2
c − 1 is the control parameter with respect to the threshold Bc of usual

ferrofluids and with η = χ/(2 + χ) where χ denotes the magnetic susceptibility.

As a first step to minimize expression (4.7) we note, that all contributions with higher
harmonics are – similar to the case of usual ferrofluids – of the form

Q(π/4± θij ∓ π/4)Aki±kj
− 1

2
(E(B0, |ki ± kj |)− µ2C(ki ± kj))A2

ki±kj
(4.12)

Minimizing separately with respect to these higher harmonic amplitudes, we find

Aki±kj
=

Q(π/4± θij ∓ π/4)

E(B0, |ki ± kj |)− µ2C(ki ± kj)
(4.13)

Substitution into eq. (4.7) leads to the final form of the surface energy density as a function
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of the basic mode amplitudes

U = −1

2

N
∑

i=1

(E(B0, |ki |)− µ2C(ki)) A2
ki
−Q(2π/3)

∑

i,j,l≤N

ki±kj±kl=0

Aki
Akj

Akl

+
1

4

N
∑

i=1

(

K(0) +
1

2

Q2(0)

E(B0, |2ki |)− µ2C(2ki)

)

A4
ki

+
∑

i<j≤N

(

K(θij) +
1

2

Q2(θij)

E(B0, |ki + kj |)− µ2C(ki + kj)

+
1

2

Q2(π − θij)

E(B0, |ki − kj |)− µ2C(ki − kj)

)

A2
ki

A2
kj

(4.14)

4.2 Linear stability

Being an expansion up to fourth order in the amplitudes, eq. (4.14) contains the results
we know already from the linear stability analysis of chapter 3. Discussing the linear order
in the dynamic equations corresponds to a discussion of the second order in an energy
functional description. We therefore have to minimize

E(B0, k)− µ2C(ki) = ǫ̃k − 1

2
(1− k)2 − µ2k (4.15)

Determining the minimum of this expression with respect to k leads to

∂

∂k

(

ǫ̃k − 1

2
(1− k)2 − µ2k

)

= ǫ̃− µ2 + (1− k) = 0 (4.16)

ǫ̃k − 1

2
(1− k)2 − µ2k = 0 (4.17)

The first equation represents the definition of a minimum itself, while the second condition
represents the exchange of stability at onset. Below threshold the flat surface is stable
with respect to a deformed one, and the energy density difference (4.14) is therefore
negative. If the deformed surface is stable, its energy density is positive. As the solution
of eqs. (4.16,4.17) we find in dimensionless units

k = 1 and ǫ̃ = µ2 (4.18)

These solutions agree with the findings of chapter 3 and [20], where we could show that
the characteristic wavelength at onset is not changed compared to usual ferrofluids while
the threshold itself is enhanced by the shear modulus of the medium.

4.3 Stability of different Geometries

We discuss the stability of one of the regular patterns against the other ones. The specific
geometries used to calculate C(ki) in eq. (4.11) are illustrated in fig. 4.1. We also assume
the magnetic field close to the critical one permitting us to take the wave vector identical
to the characteristic wave vector at onset, k = 1.
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Figure 4.1: The sketch depicts the orientation of the main modes with respect
to an arbitrarily chosen coordinate system (light grey) on the surface. In the
discussion we consider stripes, squares and hexagons.

4.3.1 Stripe solutions

Starting with the simplest case, we discuss the stability of stripe patterns on the surface.
For convenience we take the only wave vector appearing parallel to the x−axis, ki = δix

and obtain

U = −1

2
(ǫ̃− µ2)A

2 +
1

4

(

5

16
+

η2

4(ǫ̃− µ2)− 1

)

A4 (4.19)

For simplicity we follow [33, 34] and neglect ǫ̃ in the denominator of the fourth order
term without any noticeable change of the results. Minimizing (4.19) with respect to the
amplitude we get

AR =

√

ǫ̃− µ2

5
16
− η2

1+4µ2

(4.20)

and

∂2U
∂A2







A=AR

= 2(ǫ̃− µ2) = 0 (4.21)

Thus, from this discussion we cannot draw any conclusion for the stability of stripes (as
was the case for µ2 = 0 [33]).

4.3.2 Squares

We now start to discuss two main modes perpendicular to each other yielding a square
lattice (cf. fig. 4.1). To calculate the coefficient C, eq. (4.11), we take without loss of
generality the two wave vectors to be k1 = (1, 0) and k2 = (0, 1) and obtain

U = −1

2
(ǫ̃− µ2)(A

2
1 + A2

2)−
1

2

−5 + 16η2 − 20µ2

32(1 + 4µ2)
(A4

1 + A4
2)

+

(

− 9

16
+

1√
2

+ η215− 13
√

2 + 4
(

−3 + 2
√

2
)

µ2

6− 4
√

2 + 4
√

2µ2

)

A2
1A

2
2 (4.22)
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Figure 4.2: Graphs separating regions in the χ− ǫ̃−plane in which the amplitudes
of squares are smaller or higher than 0.25 for different values of the elastic shear
modulus µ2. The critical magnetic susceptibility is enhanced with higher shear
modulus.

where we have again neglected ǫ̃ in the denominator of the fourth order terms. Minimizing
eq. (4.22) leads to the amplitude AS = AS(ǫ̃, µ2, η)

AS =

√

4(ǫ̃− µ2)(1 + 4µ2)
[

3− 2
√

2(1− µ2)
]

NS
(4.23)

with the denominator NS given by

NS = (1 + 4µ2)
[

74
√

2− 103 + (26
√

2− 64)µ2

]

+16η2
[

12− 11
√

2 + (48− 46
√

2)µ2 + 16(2
√

2− 3)µ2
2

]

(4.24)

Obviously ǫ̃− µ2 > 0 is a necessary condition for the stability of square solutions.
In fig. 4.2 the value of the control parameter ǫ̃ is plotted as a function of the magnetic

susceptibility χ for AS = 0.25 and different values of the shear modulus µ2. The graphs
separate configurations in the parameter space with amplitudes smaller (below the curve)
and higher (above the curve) than AS = 0.25 and the divergence for finite magnetic
susceptibilities indicates that for a infinitesimal small control parameter ǫ̃ the amplitudes
are already infinitely large. In [34], for µ2 = 0, the plot has been used to estimate
the maximum magnetic susceptibility at which the method diverges. As can be seen in
fig. 4.2, for finite shear modulus the validity range of the method is increased to larger
magnetic susceptibilities. For hexagons (cf. sec. 4.3.3) a similar result is obtained. The
plot additionally illustrates the fact already stated by Gailitis himself that this energy
method is rigorously valid only in the limit of a vanishing magnetic susceptibility.

Following the method of Gailitis [33] i.e. starting with a more general ansatz for the
wave vectors that include stripes as a special case, we find that even for µ2 > 0 stripes
are always unstable with respect to squares.
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Figure 4.3: Graphs separating regions in the χ− ǫ̃−plane in which the amplitudes
of hexagons are smaller or higher than 0.25 for different values of the elastic
shear modulus µ2. The critical magnetic susceptibility is enhanced with higher
shear modulus.

4.3.3 Hexagons

We now discuss a regular hexagonal pattern generated by the three main wave vectors
with angles of 2π/3 (cf. fig. 4.1). The difference in surface energy density with respect to
the flat surface, eq. (4.14), becomes

U = −1

2
(ǫ̃− µ2)(A

2
1 + A2

2 + A2
3)−

3

4
ηA1A2A3 +

1

4

[

5

16
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1 + 4µ2
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(A4
1+A4
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3)
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(

3
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√

3
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√

3
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2
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2
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2
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(4.25)

In the following we will refer to the expressions written in the first and second square
bracket as β(0, µ2) and β(2π/3, µ2), respectively, since in the limit of vanishing elasticity
they are identical to the ones given by Gailitis [33]. For the same reason we will also refer
to 3/4η as γ.

For the regular hexagonal pattern we obtain from (4.25) by minimization

AH = A1 = A2 = A3 =
γ ±

√

γ2 + 4(ǫ̃− µ2)[β(0, µ2) + 4β(2π/3, µ2)]

2[β(0, µ2) + 4β(2π/3, µ2)]
(4.26)

The hexagonal solutions exist only if the square root in eq. (4.26) is real, and they are
stable, if the second derivative of eq. (4.25) with respect to the amplitudes is negative,
leading to the conditions

−1

4[β(0, µ2) + 4β(2π/3, µ2)]
<

ǫ̃− µ2

γ2
< 2

β(2π/3, µ2) + β(0, µ2)

[2β(2π/3, µ2)− β(0, µ2)]2
(4.27)
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ǫ̃ − µ2

AH , AS

AS

AS

AH

AH

Figure 4.4: Qualitative sketch (not to scale) of the evolution of the amplitudes
for squares (AS) and hexagons (AH). The dashed lines correspond to the case of
a ferrofluid while the solid lines qualitatively describe the behavior for ferrogels
with finite shear modulus µ2. The dotted lines represent the energetically unstable
branches.

Since the β-values are positive (at least for χ ≤ 1), hexagons can exist already below the
linear threshold ǫ̃ = µ2. This existence range shrinks, however, for ferrogels compared to
ferrofluids, since β(θij, µ2) > β(θij, 0) for both θij = 2π/3 and 0. For the same reason
the amplitude of the hexagonal pattern (4.26) decreases with increasing elastic modulus.
Clearly, elasticity stabilizes a system against the Rosensweig instability, which is manifest
not only in an increase of the (linear) threshold, but also in a decrease of the spike height.
One can discuss the magnitude of the amplitudes as a function of the parameters ǫ̃ and
χ for the hexagonal solution in the same way as done for the square solution in section
4.3.2. Fig. 4.3 presents the corresponding plot for hexagons with the same qualitative
result, that with increasing shear modulus the validity range of this method is extended
towards higher magnetic susceptibilities.

Following the method of Gailitis superposing hexagons and squares, we investigate the
relative stability of hexagons and squares. We find that squares are unstable with respect
to hexagons under the condition

ǫ̃− µ2

γ2
<

β(0, µ2) + 2β(π/2, µ2)

[2β(2π/3, µ2) + 2β(π/6, µ2)− 2β(π/2, µ2)− β(0, µ2)]2
, (4.28)

which is just Gailitis’ expression, but with µ2 dependent β-abbreviations

β(π/2, µ2) = − 9
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+

1√
2

+
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√
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√
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√
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√

2µ2

η2 (4.29)

β(π/6, µ2) =
3

32
(4
√

6− 7) +
116− 41

√
6− (64− 28

√
6)µ2

16(2−
√

6− 2µ2)
η2 (4.30)

Figure 4.4 shows the magnitude of the amplitudes as a function of the control pa-
rameter for a finite and a vanishing shear modulus, respectively. We note a decrease in
size of the hysteretic region (for negative ǫ̃ − µ2) with increasing shear modulus. While
in the case of no elasticity the lower boundary is at −0.25, it is shifted to −0.24 for a
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shear modulus of µ2 = 0.1 (both values taken for a magnetic susceptibility of χ = 0.1)2.
The second hysteretic region for the transition between squares and hexagons also shrinks
with increasing µ2. For instance, the lower boundary of the hysteresis loop at 5.7 (for the
right hand side of eq. (4.28)) for µ2 = 0 increases to 6.9 for µ2 = 0.1, while the upper
boundary of the hysteresis loop at 540 for µ2 = 0 is reduced to 480 for µ2 = 0.1 (χ = 0.1).
This result should be experimentally detectable, at least qualitatively.

4.4 Some drawbacks of the energy method

One of the major drawbacks of this method is, that it is only valid in the asymptotic
limit of a vanishing magnetic susceptibility χ. This can be easily realized by inspection of
fig. 4.2. For high enough magnetic susceptibilities the amplitude diverges for arbitrarily
small control parameters ǫ̃. This is why we had to scale the stability boundaries given in
eqs. (4.27,4.28) with γ in order to compensate the divergence. For a nonlinear theory for
magnetic fluids this validity limit is not satisfying.

The method relies on the static energetic comparison of different surface deformations
with respect to each other. It allows the determination of possible surface patterns but
it does not tell us which pattern will be finally achieved. The selection process of a
real pattern is additionally governed by dissipative processes. The Rosensweig instability,
however, differs from other instabilities in that its final state is static and no dissipation
occurs. But during the growth of the surface spikes energy is dissipated and this may
play a role in the selection process. Additionally we realized in the discussions so far, that
the occurrence of static surface spikes is the limit of a previously dynamic surface mode
that freezes in its dynamics. Furthermore, as soon as the control parameter is beyond its
critical value and as long as the final state is not achieved, the system is out of equilibrium
and the definition of the potential (as is the energy) is not straightforward.

As mentioned already, the energy method gives us first hints to become familiar with
the Rosensweig phenomenon. What we would like to have instead is a full weakly nonlinear
analysis of the basic hydrodynamic equations that also captures the dynamical processes
during growth and that additionally considers dissipation. The derivation of a dynamic
amplitude equation that may solve the addressed problems will be the subject of the
following chapter 5.

2Recall that we introduced dimensionless units on page 32.



40 Nonlinear discussion using the energy method



Chapter 5

The amplitude equation

The physical, chemical, and biological systems [. . . ] are often quite
complicated and the equations and boundary conditions describing
them are not always known precisely. Even when they are known,
as is the case for many hydrodynamic instabilities, a linear anal-
ysis already requires numerical evaluation and a direct analytical
approach is impossible beyond threshold. The perturbation meth-
ods described below are a partial response to this situation, though
calculation of the appropriate coefficients can be difficult even if
the starting equations are known precisely.

M. C. Cross and P. C. Hohenberg [48]

The discussion from the previous chapters provides us with a first understanding of the
Rosensweig instability. Chapter 3 taught us, that we should interpret the stationarity
of the normal field instability rather as a limiting process where the frequency of the
characteristic mode vanishes. In chapter 4 we discussed the energetically favored surface
patterns, but we realized some problems with the energy method. In this chapter we will
discuss the nonlinear regime starting from the fundamental hydrodynamic equations and
use an ǫ−expansion to access the weakly nonlinear regime1. In this context ǫ denotes the
normalized difference between the actually applied magnetic field and its critical value.
The information we obtained so far will be of great importance on how we finally access
this regime.

5.1 Introduction

We will perform a weakly nonlinear analysis of the basic set of hydrodynamic equa-
tions as pioneered by Schlüter, Lortz and Busse [38] and Newell and Whitehead [47]
for the Rayleigh-Bénard system to obtain a set of amplitude equations in the case of the
Rosensweig instability. The weakly nonlinear analysis is a perturbative approach and rests
on the assumption that close to the linear threshold the nonlinear state can be expressed
by a small perturbation from the ground state which is expanded in terms of the control
parameter ǫ. The lowest order in ǫ determines the linear stability as already discussed
in chapter 3. The amplitudes of these disturbances, which are still undetermined in the

1Parts of this chapter have been published in [74], others are prepared for publication [75].
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linear perturbative order (cf. chapter 3), have to fulfill certain equations in the higher
perturbative orders to guarantee the solvability of the nonlinear hydrodynamic equations.
These amplitude equations in turn are nonlinear dynamic differential equations describing
the cooperative dynamics of a set of critical modes subject to nonlinear interactions. In
this introductory section we will introduce this method and will focus on key problems
one encounters when applying this method to the Rosensweig instability. For a compre-
hensive introduction to the weakly nonlinear analysis and on amplitude equations, the
reader is referred to [48, 76, 77].

5.1.1 Nonlinear expansion

Performing a weakly nonlinear analysis of the stationary state evolving slightly beyond
the linear threshold Mc, we have to expand the macroscopic variables in terms of ǫ, the
normalized difference between the actual applied magnetic field and the critical one

{p,B,H,M} = {p0,Bc,Hc,Mc}+ ǫ{p(1),B(1),H(1),M(1)}+ . . . (5.1)

{v, ǫij, ξ} = 0 + ǫ{v(1), ǫ
(1)
ij , ξ(1)}+ . . . (5.2)

The magnetic field, however, is an externally given parameter acting as the control pa-
rameter. The series expansion of H (5.1) can therefore be reinterpreted as the definition
of ǫ. Note, that this definition of ǫ is not the same definition as used in chapter 4, which
is supposed to be the appropriate definition in the case of the Rosensweig instability. We
will see later that the definition of ǫ used here leads consistently to the control parameter
as used in the previous sections.

In our linear discussion (chapter 3), we modeled the surface deflection ξ(x, y, t) us-
ing plane waves ξ(x, y, t) = ξ̂eiωt−ik·r, where the amplitude ξ̂ is a common factor in all
contributions of the linearized hydrodynamic equations and therefore remains undeter-
mined. In a nonlinear discussion, we have to extend this ansatz to address the possibility
of nonlinear interactions between a set of critical modes. The most general ansatz as
a starting point for a nonlinear discussion is to assume N of these characteristic modes
with different orientations. Each of these modes i consists of a right and a left traveling
contribution denoted by the subscripts R and L, respectively. Since the surface deflection
as an observable has to be real, we have to add the corresponding complex conjugate
which is denoted by an asterisk

ξ(1) =

N
∑

i

ξiR + ξiL + ξ∗iR + ξ∗iL

=
N
∑

i

ξ̂iReiωit−iki·r + ξ̂iLe−iωit−iki·r + ξ̂∗iRe−iωit+iki·r + ξ̂∗iLeiωit+iki·r (5.3)

Besides the expansion of the hydrodynamic variables, we can also consider to rescale
time and space in order to further separate the dynamics to capture the long wavelength
and the long time scale cooperative dynamics of the individual characteristic modes. One
can interprete this rescaling in the sense that we permit the amplitude ξ̂ to be slowly
dependent on time2 and space, respectively. In the present discussion we will discard the

2The time t as used in eq. (5.3) is then considered the “fast” time scale of the surface waves (or of
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possible rescaling of space and focus on surface patterns that arise homogeneously and
that do not show any long wavelength variation. As mentioned already, the rescaling of
time can be interpreted in the sense that the dynamics of the amplitudes ξ̂ itself takes
place on the slow timescales

t(1) = ǫt and t(2) = ǫ2t (5.4)

so that ξ̂iR → ξ̂iR(t(1), t(2), . . . ) and correspondingly for the left traveling contributions
and their corresponding complex conjugates. This rescaling of time will lead to the
substitution for the time derivative

∂t −→ ∂
(0)
t + ǫ∂

(1)
t + ǫ2∂

(2)
t + . . . (5.5)

These are, as we will see later, the time scales of the growth of the surface spikes.

5.1.2 The solvability condition for higher orders

Fredholm’s theorem and the adjoint system

With the rescaling of time and the expansion of the macroscopic variables in terms of ǫ,
the whole system of differential equations can be expanded in terms of ǫ. Let L0 be the
linear differential operator and |φ〉 =|φ(0)〉 + ǫ |φ(1)〉+ . . . the macroscopic state vector.
The basic hydrodynamic equations as given by eqs. (2.32-2.34) then read in general form

L0 |φ(1)〉 = 0 (5.6)

L0 |φ(2)〉 = |N (φ(1), φ(1))〉+ |T (∂
(1)
t φ(1))〉 (5.7)

... =
...

where every order in ǫ needs to be satisfied separately.
The first equation (5.6) represents the linearized set of equations as used in the linear

stability analysis of chapter 3, where the explicit translation of equation (5.6) is given by
eqs. (3.8-3.10). Furthermore, eq. (5.6) defines the kernel of the linear operator L0, given
by the linear eigenvectors | φ(1)〉. In the second perturbative order the set of equations
(5.7) becomes inhomogeneous due to the nonlinear nature of the basic set of equations
(represented by N (·, ·)) and due to the rescaling of time (represented by T (·)). In the
case that these inhomogeneities reproduce elements of the kernel of the linear operator
L0, equation (5.7) cannot be solved. The necessary condition that the inhomogeneities
need to be orthogonal to the subspace spanned by the linear eigenvectors | φ〉 provides
us with an additional solvability condition. This condition is named after Fredholm and
reads for the second order

〈φ | N (φ(1), φ(1))〉+ 〈φ | T (∂
(1)
t φ(1))〉 = 0 (5.8)

where 〈· | ·〉 denotes a suitable scalar product about which we will talk shortly.

general thermodynamic fluctuations in the case of other hydrodynamic instabilities) even though it is

already a macroscopic time scale. The dynamics of the amplitudes ξ̂ is in turn assumed to take place on
an even slower time scale. The same arguments hold if we rescale spatial coordinates.
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ǫ
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AH
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Figure 5.1: The general bifurcation scheme for amplitude equations of the form
(5.9) according to [78, 48]. The analytical expressions for the limits of stability
ǫA, ǫB and ǫS are given in the main text. The solid lines represent the stable
branches whereas the dotted lines correspond to the unstable ones.

Amplitude equations in general

The solvability condition (5.8) provides an additional equation and the still under-deter-
mined system of equations is closed to fix the amplitude ξ̂. If this condition, valid in
the second order, is combined with the corresponding condition in the third order, one
obtains the so called amplitude equations which define possible nonlinear solutions for
the amplitudes of the critical modes that are necessary to satisfy the basic hydrodynamic
equations. In the absence of the inversion symmetry ξ̂i −→ −ξ̂i (which is the case for
the Rosensweig instability), the usual structure of this amplitude equation is, written in
appropriate units, given by [48]

∂tξ̂1 = ǫξ̂1 − γ̂ξ̂∗2 ξ̂
∗
3 −

[

| ξ̂1 |2 +g1(θij)
(

| ξ̂2 |2 + | ξ̂3 |2
)]

ξ̂1 (5.9)

together with its cyclic permutations 1 → 2 → 3 → 1 and where θij denotes the angle
between two different critical modes that become unstable at the linear threshold. The
quadratic coefficient γ̂ in eq. (5.9) is nonzero only for the hexagonal pattern (θij = 2π/3).
In this case this contribution dominates close to the threshold and renders the bifurcation
transcritical.

In 1990 Ciliberto et al. [78] discussed the set of equations given by (5.9) using a linear
stability analysis to determine the stability regimes of a hexagonal pattern with respect
to a stripe pattern. Later, additionally the possibility of a square pattern was considered
[79, 80]. For a nonzero quadratic coefficient γ̂, the hexagon solution is the stable surface
pattern at the linear threshold. The bifurcation from the flat surface state is transcritical
and hexagons remain stable even below the linear threshold as long as

ǫ > ǫA = − γ̂2

4(1 + 2g1(θij = 2π/3))
(5.10)

The hexagon solution is stable for all control parameters ǫ > ǫA if g1(θij = 2π/3) < 1 and
1 + 2g1(θij = 2π/3) < g1(θij = π/2) + 2g1(θij = π/6). For g1(θij = 2π/3) > 1 they loose
stability with respect to either stripes or squares at

ǫB =
γ̂2(2 + g1(θij = 2π/3)

(1− g1(θij = π/2))2
(5.11)
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whereas if 1 + 2g1(θij = 2π/3) > g1(θij = π/2) + 2g1(θij = π/6) this happens at

ǫB =
γ̂2(g1(θij = π/2) + 2g1(θij = π/6))

(1 + 2g1(θij = 2π/3)− g1(θij = π/2)− 2g1(θij = π/6))2
(5.12)

Stripes and squares turn out to be mutually exclusive patterns. In the case that
g1(θij = π/2) < 1, g1(θij = π/6)+g1(θij = 2π/3) < 1+g1(θij = π/2) and for large enough
control parameters

ǫ > ǫS =
γ̂2(1 + g1(θij = π/2))

(1 + g1(θij = π/2)− g1(θij = 2π/3)− g1(θij = π/6))2
(5.13)

squares are the stable surface pattern. Otherwise the stripe pattern turns out to be stable
for control parameters larger than

ǫS =
γ̂2

(1− g1(θij = 2π/3))
(5.14)

A schematic bifurcation diagram according to these considerations is drawn in fig. 5.1,
where AH denotes the amplitude of hexagons and AS the amplitude of either squares or
stripes, depending on which of these patterns is the preferred one.

The scalar product

We have some freedom to choose a scalar product that is suitable for our discussion of the
nonlinear regime. In chapter 2 we found, that the bulk magnetic equations completely
decouple from the bulk hydrodynamic equations, leaving us with no control parameter in
the bulk for the nonlinear regime. At a first glance, this circumstance impedes the deriva-
tion of an amplitude equation as known for instance for the Rayleigh-Bénard convection,
if we used the usual scalar product given by

〈· | ·〉 = lim
L→∞

1

4L2

L
∫

−L

dx

L
∫

−L

dy

ξ
∫

−∞

dz

τ
∫

0

dt ·̄ · (5.15)

To circumvent this problem, an extended scalar product can be introduced that, ad-
ditionally to the bulk equations, is applied to certain boundary conditions, in particular
to those containing a control parameter [54]. With a scalar product like that, Lange [49]
tried to derive the adjoint system in the case of the Rosensweig instability. He failed in
doing so, since he could not translate the surface contributions at the deformable surface
into a set of adjoint boundary conditions.

The kind of scalar product used by Lange was previously introduced by Dauby et
al. [54] to describe the nonlinear regime of purely surface tension driven convection,
the Marangoni instability. The approach was successful, since the authors assumed a
flat, undeformable surface. In the case of the Marangoni instability this assumption is
comprehensible, since what one is after is the flow field that develops in the bulk and
not the deformation of the surface. An assumption instead, that is not appropriate for
the Rosensweig instability since the flow field for the static nonlinear regime vanishes
identically and the only observable is the deformed surface.
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In the present nonlinear analysis we hence return to the usual scalar product (5.15) but
explicitly expand all boundary values in terms of the surface deflection ξ. Additionally we
treat the system dynamically, to retain a non-trivial kinematic boundary condition. With
these assumptions we are able to derive the adjoint system inevitably needed to satisfy
(5.8). A detailed derivation of the necessary boundary conditions and the derivation of
the adjoint system is given in appendix C and in section 5.2, respectively. The problem
with the missing control parameter in the bulk equations is solved in section 5.3.4 by
realizing, that the boundary conditions for the higher orders still contain contributions
proportional to the main characteristic modes ξ(1). One of these contributions contains,
because the system is still treated as dynamic, a time derivative of the amplitude, whereas
the other contributions are proportional to the control parameter.

5.2 The adjoint system for the Rosensweig instability

5.2.1 Dynamic surfaces

The general idea of our approach is to treat the surface as dynamic with surface waves
propagating on the free surface, as long as the magnetic field is below its critical value.
As discussed in chapter 3 we can distinguish the limiting cases of capillary waves for very
short wavelengths, gravitational waves for rather long wavelengths and Rayleigh elastic
waves in the intermediate regime and only in the case of gels. Furthermore, below the
critical point of the instability, all of these waves are damped, but get excited again by
thermal agitation. When reaching the critical value of the control parameter, the damping
of one characteristic mode becomes weak and finally vanishes exactly at the critical point.
In the stationary case this coincides with the slowing down of this particular mode, so
that the initially traveling waves transform into a static pattern. This process can be
seen by inspection of the dispersion relation as plotted for example in fig. 3.2 (p. 26) for
ferrofluids or in fig. 3.3 (p. 27) for magnetic gels.

As a consequence of this, we assume the entire linear problem to be time dependent
from the beginning and in particular keep the time dependence for the derivation of the
adjoint system. We will recognize later, that also for the higher perturbative orders the
dynamic treatment is important. Only in the end of the discussion we will, based on the
discussion of the dispersion relation, take the static limit of the system.

5.2.2 Basic equations and ground state

The macroscopic equations appropriate for the discussion of the nonlinear Rosensweig
instability have already been discussed in chapter 2 and are given by (2.32-2.35). We
do not make at this stage the incompressibility approximation in order to maintain the
symmetric structure of the Navier-Stokes equation which turns out to be necessary for the
adjoining process. Only at the end we will simplify the formulas by assuming incompress-
ibility. As long as we consider the medium as compressible, we need an equation of state.
Due to the assumption that no magnetostrictive effects are important in our discussion,
this equation of state can be assumed to be the barotropic equation

δp = c2δρ (5.16)
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with the speed of sound c. As Jarkova et al. stated in [60], the modification of the speed
of sound and especially the anisotropy effect in the presence of an external magnetic field
is proportional to the magnetostrictive constants and therefore of no importance in our
discussion. The considered geometry is sketched in fig. 2.1 on page 18 and is briefly re-
peated here. The infinitely extended surface is initially situated at z = 0. For convenience
the magnetic medium is filling the negative half-space whereas the vacuum is assumed to
occupy the positive one. The gravitational force is assumed to point downwards and the
applied magnetic field is oriented parallel to the z−axis.

To find the adjoint system of equations with its corresponding boundary conditions to
the linear problem, we linearize eqs. (2.32) to (2.35) with respect to the initially flat surface
according to the scaling behavior of the individual variables as described in (5.1,5.2). We
finally obtain

ρ0∂tv
(1)
i + ∂ip

(1) − ν2∂j(∂iv
(1)
j +∂jv

(1)
i )− ν̂∂i∂kv

(1)
k − 2µ2∂jǫ

(1)
ij − µ̂∂iǫ

(1)
kk = 0 (5.17)

∂tǫ
(1)
ij −

1

2
(∂iv

(1)
j + ∂jv

(1)
i ) = 0 (5.18)

∂tρ
(1) + ∂i(ρ0v

(1)
i ) = 0 (5.19)

5.2.3 The linear equations and the adjoint system

If we use the general notation of chapter 5.1.2, the system of dynamic bulk equations for
the Rosensweig instability can be written in terms of an eleven dimensional state vector,
that we will define in the following way

|φ〉 =
(

vx, vy, vz, p, ǫxx, ǫyy, ǫzz, ǫxy, ǫxz, ǫyz, ρ
)

(5.20)

We will skip the discussion of the magnetic part of the system of equations. This part
completely decouples from the dynamic part of the medium as stated above and reduces
within our assumptions to the Laplace equation for the magnetic potential. The Laplace
equation is self-adjoint and a homogenous equation. Therefore Fredholm’s theorem is
satisfied automatically. The solutions for the magnetic field variables are discussed in
detail in appendix B.

Using the definition given above we can write the system of linear equations (5.17-5.19)
together with the equation of state of the medium (5.16) in the following form, which can
be taken to be the definition for the linear operator L0.

L0 |φ(1)〉 = 0 (5.21)

To find the adjoint operator L†
0, and especially the adjoint boundary conditions, we use

the following identity with φ̄ denoting the adjoint state

〈φ̄ | L0φ
(1)〉 = 〈L†

0φ̄ | φ(1)〉 (5.22)

The left hand side of this equation corresponds to the following integral using the standard
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scalar product (5.15), which we have to integrate by parts,

lim
L→∞

1

4L2

L
∫

−L

dx

L
∫

−L

dy

ξ
∫

−∞

dz

t
∫

0

dt
{

+v̄x

{

(

ρ0∂t−ν2∂
2
i −(ν̂ + ν2)∂

2
x

)

v(1)
x −ν̂∂x∂yv

(1)
y −ν2∂y∂xv

(1)
y −ν̂∂x∂zv

(1)
z −ν2∂z∂xv

(1)
z

+∂xp
(1) − 2µ2∂xǫ

(1)
xx − µ̂∂xǫ

(1)
xx − µ̂∂xǫ

(1)
yy − µ̂∂xǫ

(1)
zz − 2µ2∂yǫ

(1)
xy − 2µ2∂zǫ

(1)
xz

}

+v̄y

{

− ν̂∂z∂xv
(1)
x −ν2∂x∂zv

(1)
x +

(

ρ0∂t−ν2∂
2
i −(ν̂+ν2)∂

2
y

)

v(1)
y −ν̂∂y∂zv

(1)
z −ν2∂z∂yv

(1)
z

+∂yp
(1) − µ̂∂yǫ

(1)
xx − 2µ2∂yǫ

(1)
yy − µ̂∂yǫ

(1)
yy − µ̂∂yǫ

(1)
zz − 2µ2∂xǫ

(1)
xy − 2µ2∂zǫ

(1)
yz

}

+v̄z

{

− ν̂∂z∂xv
(1)
x −ν2∂x∂zv

(1)
x −ν̂∂z∂yv

(1)
y −ν2∂y∂zv

(1)
y +

(

ρ0∂t−ν2∂
2
i −(ν̂+ν2)∂

2
z

)

v(1)
z

+∂zp
(1) − µ̂∂zǫ

(1)
xx − µ̂∂zǫ

(1)
yy − 2µ2∂zǫ

(1)
zz − µ̂∂zǫ

(1)
zz − 2µ2∂xǫ

(1)
xz − 2µ2∂yǫ

(1)
yz

}

+p̄
{

∂xv
(1)
x + ∂yv

(1)
y + ∂zv

(1)
z +

∂tρ
(1)

ρ0

}

+ǭxx

{

− ∂xv
(1)
x + ∂tǫ

(1)
xx

}

+ ǭyy

{

− ∂yv
(1)
y + ∂tǫ

(1)
yy

}

+ ǭzz

{

− ∂zv
(1)
z + ∂tǫ

(1)
zz

}

+ǭxy

{

− ∂y

2
v(1)

x −
∂x

2
v(1)

y + ∂tǫ
(1)
xy

}

+ ǭxz

{

− ∂z

2
v(1)

x −
∂x

2
v(1)

z + ∂tǫ
(1)
xz

}

+ǭyz

{

− ∂z

2
v(1)

y −
∂y

2
v(1)

z + ∂tǫ
(1)
yz

}

+ ρ̄
{∂tp

(1)

ρ0
− c2∂tρ

(1)

ρ0

}}

(5.23)

This leads to the adjoint linear operator

L†
0 =

(

A C

B D

)

(5.24)

with the abbreviations

A =

















−ρ∂t−ν2∂
2
i −(ν̂+ν2)∂

2
x −ν̂∂x∂y−ν2∂y∂x −ν̂∂x∂z−ν2∂z∂x

−ν̂∂y∂x−ν2∂x∂y −ρ∂t−ν2∂
2
i −(ν̂+ν2)∂

2
y −ν̂∂y∂z−ν2∂z∂y

−ν̂∂z∂x−ν2∂x∂z −ν̂∂z∂y−ν2∂y∂z −ρ∂t−ν2∂
2
i −(ν̂+ν2)∂

2
z

−∂x −∂y −∂z

















(5.25)

B =



































2µ2∂x + µ̂∂x µ̂∂y µ̂∂z

µ̂∂x 2µ2∂y + µ̂∂y µ̂∂z

µ̂∂x µ̂∂y 2µ2∂z + µ̂∂z

2µ2∂y 2µ2∂x 0

2µ2∂z 0 2µ2∂x

0 2µ2∂z 2µ2∂y

0 0 0



































(5.26)
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C =

















−∂x + 1
ρ0

(∂xρ0) ∂x 0 0 1
2
∂y

1
2
∂z 0 0

−∂y + 1
ρ0

(∂yρ0) 0 ∂y 0 1
2
∂x 0 1

2
∂y 0

−∂z + 1
ρ0

(∂zρ0) 0 0 ∂z 0 1
2
∂x

1
2
∂y 0

0 0 0 0 0 0 0 − 1
ρ0

∂t

















(5.27)

D =



































0 −∂t 0 0 0 0 0 0

0 0 −∂t 0 0 0 0 0

0 0 0 −∂t 0 0 0 0

0 0 0 0 −∂t 0 0 0

0 0 0 0 0 −∂t 0 0

0 0 0 0 0 0 −∂t 0

− 1
ρ0

∂t 0 0 0 0 0 0 − c2

ρ0

∂t



































(5.28)

While integrating eq. (5.23) by parts, one also obtains surface contributions, which
have to vanish to fulfill eq. (5.22). The most important parts are the contributions due to
the z−integration. At the bottom (z = −∞) they are always 0, since the eigenvectors of
the linear system exponentially decay with increasing depth (3.27-3.35). The condition,
that they should also vanish at the surface, defines the adjoint boundary conditions at
the free surface. At this point we can just state that the following sum should vanish

0
!
= v̄x(−ν2∂zv

(1)
x − ν2∂xv

(1)
z − µ2ǫ

(1)
xz ) + v(1)

x (ν2∂z v̄x + ν2∂xv̄z −
1

2
ǭxz)

+v̄y(−ν2∂zv
(1)
y − ν2∂yv

(1)
z − µ2ǫ

(1)
yz ) + v(1)

y (ν2∂z v̄y + ν2∂y v̄z −
1

2
ǭyz)

+v̄z(−ν̂∂iv
(1)
i − 2ν2∂zv

(1)
z − µ̂ǫ

(1)
ii − 2µ2ǫ

(1)
zz + p(1)) + v(1)

z (ν̂∂iv̄i + 2ν2∂z v̄z + p̄− ǭzz)

(5.29)

Using the two tangential boundary conditions of the original system (C.3,C.4) those con-
tributions in (5.29) vanish that are proportional to v̄x or v̄y. Using the normal stress
boundary condition (C.5) in the second last term of (5.29), we implement the gravi-
tational, the surface tension and the magnetic contributions into the adjoint boundary
conditions. This also ensures the presence of the driving force in the boundary conditions
of the adjoint system. With the help of the kinematic boundary condition (eq. (2.44)) in

the original case, which reduces in the linear order to v
(1)
z = iωξ(1), we can then substitute

v
(1)
z ending up with the necessary condition at the surface

0 = v(1)
x

(

ν2∂z v̄x + ν2∂xv̄z −
1

2
ǭxz

)

+ v(1)
y

(

ν2∂z v̄y + ν2∂y v̄z −
1

2
ǭyz

)

+ξ(1)
(

Gρ0v̄z −
µM2

0

1 + µ
kv̄z + σT k2v̄z + iωp̄ + iων̂∂iv̄i + 2iων2∂z v̄z − iωǭzz

)

(5.30)

We can split this condition into three separate parts. This choice is suggested by the
fact, that within the scalar product we used, the velocities v

(1)
x and v

(1)
y are independent
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components. We therefore find as boundary conditions at the free surface in the adjoint
case

ν2∂z v̄x + ν2∂xv̄z − 1/2 ǭxz = 0 (5.31)

ν2∂z v̄y + ν2∂y v̄z − 1/2 ǭyz = 0 (5.32)

Gρ0v̄z −
µM2

0

1 + µ
kv̄z + σT k2v̄z + iωp̄ + iων̂∂kv̄k + 2iων2∂z v̄z − iωǭzz = 0 (5.33)

The horizontal boundary conditions originating from the horizontal integrations are sat-
isfied automatically, since we take the limit of an infinitely extended layer. The only
additional condition we get is due to the time integration, but this is not important in
the limit of a stationary instability we will discuss in the following, but it should be taken
into account if one handles oscillatory instabilities, e.g. the Faraday instability.

At this point we restrict our calculations to an incompressible medium assuming ∂iv̄i =
0 = ǭii (ρ0 ≡ ρ). The adjoint system of equations, L†

0φ̄ = 0, then reads

−ρ∂tv̄i − ∂ip̄− ν2∂j∂j v̄i +
1

2
(∂iǭii + ∂jǫij) = 0 (5.34)

−∂tǭij + 2µ2(∂iv̄j + ∂j v̄i)(1−
1

2
δij) = 0 (5.35)

∂iv̄i = 0 (5.36)

where underlined indices are not summed over. Their structure is similar to those of the
original equations (3.8-3.10).

Following the same approach as for the original linear system, namely using the dy-
namic equations for the strain field in the momentum conservation equation, we get as a
first step

ρω̄2v̄i − iω̄∂ip̄ + µ̃2(ω̄)∂j

(

∂j v̄i + ∂iv̄j

)

= 0 (5.37)

∂iv̄i = 0 (5.38)

where we used the abbreviation µ̃2(ω̄) = µ2 − iω̄ν2. We will separate the velocity field
into two parts. One due to potential flow and the second due to vorticity flow. Fulfilling
the dynamic bulk equations, we obtain the inverse decay length q̄2 = k2 − ρω̄2/µ̃2(ω̄) for
the vorticity flow with respect to the z−axis. The solvability condition for the adjoint
boundary conditions then leads to the dispersion relation for surface waves in the adjoint
system.

ω̄2ρ
(

2k2µ̃2(ω̄)− ω̄2ρ
)

+ ω̄2ρ

[

− ω̄

ω

(

Gρ− µM2
0

1 + µ
k + σT k2

)

k + 2µ̃2(ω̄)k2

]

−(2k2µ̃2(ω̄))2

(

1−
√

1− ω̄2ρ

µ̃2(ω̄)k2

)

= 0

(5.39)

Eq. (5.39) reduces to the original dispersion relation (eq. (3.20)) if ω̄ = −ω. This
is the physical solution, since the adjoint space acquires an easy and obvious physical
interpretation: Considering the surface in its general form with left and right traveling
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waves (eq. (5.3)) and the corresponding adjoint surface deflection using the solution given
above

ξ
(1)
i = ξ̂iReiωit−iki·r + ξ̂iLe−iωit−iki·r + c.c. (5.40)

ξ̄i ≡ ¯̂
ξiReiω̄it−iki·r +

¯̂
ξiLe−iω̄it−iki·r + c.c.

=
¯̂
ξiRe−iωit−iki·r +

¯̂
ξiLeiωit−iki·r + c.c. (5.41)

(c.c. is the complex conjugate) we recognize by comparing equations (5.40) and (5.41),
that a right traveling wave transforms into a left traveling wave in the adjoint system and
vice versa, leading to the conditions:

¯̂
ξR = ξ̂L

¯̂
ξL = ξ̂R (5.42)

5.2.4 Adjoint eigenvectors for the Rosensweig instability

Up to now all calculations have been performed without giving an explicit expression for
the kinematic boundary condition at the surface in the adjoint system. To calculate the
adjoint eigenvectors we have to specify that condition. However, it cannot be obtained by
integrating by parts, since it is of a completely different type compared to the boundary
conditions (C.3-C.5). While the former ones are derived using the stress balance at the
surface, the kinematic boundary condition is phenomenological in nature. For surface
waves in the adjoint space we therefore require a kinematic boundary condition of exactly
the same structure as in the original case.

v(1)
z (ω) = ∂tξ

(1)(ω) = iωξ(1)(ω) (5.43)

v̄z(ω̄) = ∂tξ̄(ω̄) = iω̄ξ̄(ω̄) (5.44)

Following the same way to calculate the eigenvectors as in the case of the original
system (cf. chapter 3), we get for the amplitudes of the vorticity flow potential (recall
q̄2 = k2 − ρω̄2/(µ2 − iω̄ν2))

¯̂
Ψx = iky

2k

q̄2 + k2
¯̂ϕ (5.45)

¯̂
Ψy = −ikx

2k

q̄2 + k2
¯̂ϕ (5.46)

and of the scalar potential

¯̂ϕ = iω̄
q̄2 + k2

k(q̄2 − k2)
(5.47)

where Ψ̄i denote the components of the vector potential of the velocity defined by the
rotational part of flow v̄rot = ∇× Ψ̄. The scalar potential ϕ̄ is connected to the potential
flow v̄pot = ∇ϕ̄.

The components of the adjoint velocities then become similar to the ones known from
the original system (cf. section 3.5), and – as in the original system – they vanish in the
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case of a stationary instability

v̄x = ω̄
kx

k

(

ekz − 2q̄k

q̄2 + k2
eq̄z
) q̄2 + k2

q̄2 − k2
ξ̄ (5.48)

v̄y = ω̄
ky

k

(

ekz − 2q̄k

q̄2 + k2
eq̄z
) q̄2 + k2

q̄2 − k2
ξ̄ (5.49)

v̄z = iω̄
(

ekz − 2k2

q̄2 + k2
eq̄z
) q̄2 + k2

q̄2 − k2
ξ̄ (5.50)

For the adjoint strain field we get

ǭzz = 2µ2k
(

ekz − 2q̄k

q̄2 + k2
eq̄z
) q̄2 + k2

q̄2 − k2
ξ̄ (5.51)

ǭxx = 2µ2
k2

x

k

(

ekz − 2q̄k

q̄2 + k2
eq̄z
) q̄2 + k2

q̄2 − k2
ξ̄ (5.52)

ǭyy = 2µ2

k2
y

k

(

ekz − 2q̄k

q̄2 + k2
eq̄z
) q̄2 + k2

q̄2 − k2
ξ̄ (5.53)

ǭxy = −4µ2
kxky

k

(

ekz − 2q̄k

q̄2 + k2
eq̄z
) q̄2 + k2

q̄2 − k2
ξ̄ (5.54)

ǭxz = −4iµ2kx

(

ekz − eq̄z
) q̄2 + k2

q̄2 − k2
ξ̄ (5.55)

ǭyz = −4iµ2ky

(

ekz − eq̄z
) q̄2 + k2

q̄2 − k2
ξ̄ (5.56)

Obviously the adjoint strain components have the same structure as the components in
the original case and they also show a finite static limit. However, they do not have the
same units. While the strain field in the original case is dimensionless, the adjoint strain
field is proportional to the shear modulus µ2. This is consistent with the scalar product
(5.23), where all contributions need to have the same dimension. One could avoid the
dimension of the adjoint strain field by defining a scalar product with a metric containing
units in the fifth to the tenth component.

The reasons why previous attempts to solve the adjoint problem have failed are, at
least, twofold. One crucial part in our discussion is to treat the medium as compressible.
This ensures e.g. the presence of the contribution ∼ ∂j∂iv

(1)
j in the Navier-Stokes equation.

During the process of adjoining, commutativity of gradients in this term requires that
the surface terms ∼ v̄i∂iv

(1)
j and ∼ v̄j∂iv

(1)
i are equivalent, which would be violated if

incompressibility is applied before. The assumption of an incompressible fluid is therefore
too strong a restriction. An even more important point is to treat the system as a dynamic
one. The subtle reason for that is manifest in the dynamic boundary condition of the
surface deflection. Assuming stationarity from the beginning would imply an always
undeformed surface because the vertical velocity at the surface would vanish in any case.
However, this velocity component needs to be finite to allow the surface to deform. The
marginal point where the spikes are about to develop (or the final point where the spikes
have fully developed) are then obtained as the static limit ω → 0 of the full dynamic
behavior.
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5.3 The second perturbative order

The fact that within our assumptions the magnetic bulk equations completely decouple
from the hydrodynamic bulk equations, has two important consequences. On the one
hand this allows us to discuss and solve these two systems subsequently, i.e. we first
solve the magnetic part in a given perturbative order for a given surface deflection ξ,
and feed back this solution into the respective order of the hydrodynamic system. The
detailed discussion of the magnetic field is given in appendix B. On the other hand,
however, we have to face the problem that the control parameter (the magnetization or
the magnetic field in our case) does not occur in the hydrodynamic bulk equations and
that the bulk equations for the magnetic system are homogeneous in all perturbative
orders, which makes it impossible to obtain the control parameter in the next order by
Fredholm’s theorem, only. The coupling between these two systems is, however, mediated
by the surface, and more precisely by the normal stress boundary condition. Satisfying the
normal stress boundary condition provides us with an additional condition supplementing
Fredholm’s theorem as we will see in section 5.3.4.

According to the general expression (5.7) the set of hydrodynamic bulk equations is
given in the second perturbative order by

ρ∂
(0)
t v

(2)
i + ∂ip

(2) − 2µ2∂jǫ
(2)
ij − ν2

(

∂j∂iv
(2)
j + ∂j∂jv

(2)
i

)

= −ρ∂
(1)
t v

(1)
i − ∂j

(

ρv
(1)
i v

(1)
j − 2µ2ǫ

(1)
jk ǫ

(1)
ki

)

(5.57)

∂
(0)
t ǫ

(2)
ij −

1

2

(

∂iv
(2)
j + ∂jv

(2)
i

)

= −∂
(1)
t ǫ

(1)
ij − v

(1)
k ∂kǫ

(1)
ij (5.58)

∂iv
(2)
i = 0 (5.59)

The structure of these equations suggests two kind of solutions. One contribution is
proportional to the main characteristic modes ξ(1) and a second one proportional to the
second harmonics ξ(2) given by

ξ(2) = kc

∑

i,j

(ξiξj + ξiξ
∗
j + c.c.) (5.60)

The corresponding boundary conditions at the surface z = ξ are expanded in the
same manner as the bulk hydrodynamic equations (for a detailed discussion cf. app. C).
Additionally, however, one has to consider that the linear eigenvectors are dependent on z
with contributions either ∼ ekcz or ∼ eqz (eqs. (3.27-3.35)). The boundary conditions have
to be evaluated at z = ξ and since ξ itself is expanded in terms of ǫ, one has to expand
the exponential functions ekcz and eqz first with respect to z to substitute afterwards the
series expansion of ξ (eq. (5.2)). As a result we obtain effective boundary conditions that
have to be evaluated at z = 0. For the tangential contributions these effective boundary
conditions read

2µ2ǫ
(2)
yz + ν2

(

∂zv
(2)
y + ∂yv

(2)
z

)

= Ω(2)
yz (5.61)

2µ2ǫ
(2)
xz + ν2

(

∂zv
(2)
x + ∂xv

(2)
z

)

= Ω(2)
xz (5.62)

where the inhomogeneities are abbreviated by Ω
(2)
ij and are listed in app. C, eqs. (C.11)

and (C.10). The inhomogeneities for the tangential stress boundary conditions are solely
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proportional to the second harmonics ξ(2) which is different for the normal stress boundary
condition

2µ2ǫ
(2)
zz + 2ν2∂zv

(2)
z − p(2) + Gρξ(2) − µHc∂zΦ

(2) + µ0H
vac
c ∂zΦ

(2)vac

= Ω(2)
zz − σT ∆ξ(2) +

µ

1 + µ
M (1)Mckcξ

(1) (5.63)

with Ω
(2)
zz given in eq. (C.12). Finally, the kinematic boundary condition describing ex-

plicitly the deformable surface reads in second order

∂
(0)
t ξ(2) + ∂

(1)
t ξ(1) + (v

(1)
i ∂i) ξ(1) = v(2)

z + ξ(1)∂zv
(1)
z (5.64)

The last contribution in eq. (5.64) is due to the fact, that in second order the surface, at
which the boundary conditions have to be evaluated, is already deflected.

5.3.1 The solvability condition in second order

The general solvability condition discussed in section 5.1.2 is applied to the set of second
order equations (5.57-5.59) and explicitly reads

〈v̄i |−∂
(1)
t (ρv

(1)
i )− ∂j(ρv

(1)
i v

(1)
j − 2µ2ǫ

(1)
jk ǫ

(1)
ki )〉+ 〈ǭij |−∂

(1)
t ǫ

(1)
ij − v

(1)
k ∂kǫ

(1)
ij 〉 = 0 (5.65)

At this point one might be tempted to use the fact that the Rosensweig instability is
a static one (in linear approximation) and substitute ω(0) = σ(0) = 0 as well as the
static limits of the adjoint and original eigenvectors into condition (5.65). The solvability
condition would then reduce to

〈ǭij |−∂
(1)
t ǫ

(1)
ij 〉 = (± iω(1) + σ(1))〈ǭij |ǫij〉 = 0 (5.66)

corresponding to the solution ω(1) = 0 = σ(1). Here, we have replaced ∂
(1)
t by ± iω(1) +

σ(1) (for right- and left-traveling waves, respectively) implying a normal mode ansatz for
the time dependence of the amplitudes. Of course, ω(0) = 0 is the correct solution in
the stationary limit. However, in that limit the connection between bulk equations and
boundary conditions is lost (cf. eqs. (2.34) and (2.44)) and an amplitude equation cannot
be derived. Therefore, one must still treat the system as fully dynamic at least at those
places related to the kinematic boundary condition and to the velocity/strain relation, and

satisfy Fredholm’s theorem with the time derivative ∂
(0)
t being finite. One can, however,

at non-crucial instances simplify the calculations by the fact that ω(0) is small, but only
at the very end one can take ω(0) ≡ 0.

The solvability condition (5.65) consists of two different parts. One containing spatial

derivatives and the other the (scaled) time derivative ∂
(1)
t . We first discuss the latter part.

The integration upon x and y is straightforwardly done and only retains contributions
that are proportional to δ(ki − kj). After integration with respect to z we end up with
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the following expression,

〈v̄i | ∂(1)
t (ρv

(1)
i )〉+ 〈ǭij |∂(1)

t ǫ
(1)
ij 〉

= iω(1)
{

8µ2
kc(k

2
c + q2)2

q(kc + q)3
− ρ([ω(0)]2−[σ(0)]2)

4k6
c + 6k5

cq + 6k4
cq

2 + 6k3
cq

3 + 2k2
cq

4

qk3
c (kc + q)3

}

×
(

ξ̂∗iLξ̂iRe2iωt − ξ̂iLξ̂∗iRe−2iωt
)

e2σt

+ σ(1)
{

8µ2
kc(k

2
c + q2)2

q(kc + q)3
− ρ([ω(0)]2−[σ(0)]2)

4k6
c + 6k5

cq + 6k4
cq

2 + 6k3
cq

3 + 2k2
cq

4

qk3
c (kc + q)3

}

×
(

ξ̂∗iLξ̂iRe2iωt + ξ̂iLξ̂∗iRe−2iωt + ξ̂iRξ̂∗iR + ξ̂iLξ̂∗iL

)

e2σt (5.67)

For the second order contributions we finally get

〈v̄i | ∂(1)
t (ρv

(1)
i )〉+ 〈ǭij |∂(1)

t ǫ
(1)
ij 〉

= iω(1)4µ2kc(ξ̂
∗
iLξ̂iR − ξ̂iLξ̂∗iR) + σ(1)4µ2kc(ξ̂

∗
iLξ̂iR + ξ̂iLξ̂∗iR + ξ̂iRξ̂∗iR + ξ̂iLξ̂∗iL) (5.68)

where the static limit has safely been performed.
Up to now it has been possible to do the calculations without specifying the actual

number of modes contributing to the nonlinear pattern and the results are applicable for
any value of N and in particular for any angle between these modes. This is changed
when the second part of eq. (5.65), containing the spatial derivatives, is considered. Two
of these terms turn out to be irrelevant for the second order solvability condition since
they are at least proportional to [∂

(0)
t ]2 and therefore vanish in the static limit. The only

relevant term, 2µ2〈v̄i | ∂(0)
j (ǫ

(1)
jk ǫ

(1)
ki )〉, generally vanishes, except when three linear modes

oriented at 2π/3 relative to each other are interacting. This hexagonal order is enforced
by the integration upon x and y. Integrating with respect to z yields in lowest order of
ω(0) and σ(0)

2µ2〈v̄i∂
(0)
j (ǫ

(1)
jk ǫ

(1)
ki )〉 = −3iω(0)µ2k

2
c

(

ξ̂1Rξ̂2Rξ̂3R − ξ̂1Lξ̂2Lξ̂3L + ξ̂1Rξ̂2Rξ̂3L + ξ̂1Rξ̂2Lξ̂3R

−ξ̂1Lξ̂2Rξ̂3R − ξ̂1Lξ̂2Lξ̂3R − ξ̂1Lξ̂2Rξ̂3L + ξ̂1Rξ̂2Lξ̂3L − c.c.
)

−3σ(0)µ2k
2
c

(

ξ̂1Rξ̂2Rξ̂3R + ξ̂1Lξ̂2Lξ̂3L + ξ̂1Rξ̂2Rξ̂3L + ξ̂1Rξ̂2Lξ̂3R

+ξ̂1Lξ̂2Rξ̂3R + ξ̂1Lξ̂2Lξ̂3R + ξ̂1Lξ̂2Rξ̂3L + ξ̂1Rξ̂2Lξ̂3L + c.c.
)

(5.69)

Eqs. (5.68) and (5.69) are the two parts that enter the solvability condition eq. (5.65),
which we are now going to solve. The imaginary part yields the condition

4iω(1)(ξ̂∗iLξ̂iR−ξ̂iLξ̂∗iR) = −3iω(0)kc(ξ̂1Rξ̂2Rξ̂3R−ξ̂1Lξ̂2Lξ̂3L+ξ̂1Rξ̂2Rξ̂3L+ξ̂1Rξ̂2Lξ̂3R

−ξ̂1Lξ̂2Rξ̂3R−ξ̂1Lξ̂2Lξ̂3R−ξ̂1Lξ̂2Rξ̂3L+ξ̂1Rξ̂2Lξ̂3L−c.c.) (5.70)

This condition is identically fulfilled by the ansatz

ξ̂iL = ξ̂iR = ξ̂i and ξ̂∗iL = ξ̂∗iR = ξ̂∗i (5.71)

which is the solution one expects for the stationary case, since in that limit one cannot
distinguish right from left traveling waves.

Using this result for evaluating the real part, we obtain

2σ(1)
∑

i

ξ̂iξ̂
∗
i = −3σ(0)kc(ξ̂1ξ̂2ξ̂3 + ξ̂∗1 ξ̂

∗
2 ξ̂

∗
3) (5.72)
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which obviously is solved by

σ(1)ξ̂1 = −σ(0)kcξ̂
∗
2 ξ̂

∗
3 and |ξ̂1|2 = |ξ̂2|2 = |ξ̂3|2 (5.73)

and all its cyclic permutations 1 → 2 → 3 → 1 and their complex conjugates. Equation
(5.73) tells us, that the slow variable σ(1) scales in the bulk with σ(0), indicating that
σ(1)/σ(0) stays finite in the static limit. This behavior is mediated by the the kinematic
boundary condition dtξ = vz (2.44). As a consequence, the velocity field as well as the
adjoint velocity field are proportional to the time derivative as we realized in eqs. (3.27-
3.29) and (5.48-5.50). This is physically reasonable, since in the case of the Rosensweig
instability the velocity field vanishes if the surface pattern has fully developed and the
hydrodynamic bulk equations are trivially fulfilled by v ≡ 0, the same solution as for
the initially undeformed ground state. This singular behavior, unique for the Rosensweig
instability, is scaled out by the choice of a dimensionless time derivative ∂̃

(1)
T = σ(1)/σ(0) for

the bulk hydrodynamic equations. Using this time derivative, eq. (5.73) can be rewritten
as

∂̃
(1)
T ξ̂1 = −kcξ̂

∗
2 ξ̂

∗
3 (5.74)

Equation (5.74) gives the relation among the three amplitudes of the second order
deflection, ξ(1), characteristic for hexagon patterns. For any other regular pattern the
right hand side of eq. (5.69) is zero implying, that there is no nonlinear interaction between
two different modes in the second order for those patterns.

What is missing in eq. (5.74), which in a sense can be viewed as a primitive form
of an amplitude equation, is a contribution proportional to the control parameter M(1).
This is due to the fact, that the two bulk systems of magnetic and hydrodynamic equation
decouple completely. The control parameter enters the amplitude equation via the normal
stress boundary condition, the only way magnetic and hydrodynamic subsystems are
interacting.

5.3.2 Solutions proportional to the characteristic modes ξ(1)

Before we can exploit the normal stress boundary condition in section 5.3.4, we have
to determine the solution of the hydrodynamic contributions, eqs. (5.57-5.62). From
Fredholm’s theorem we learned, under what conditions we can find a solution to the system
of equations in the second perturbative order. We distinguish solutions of the system of
equations that are either proportional to ξ(1) or proportional to ξ(2). In this subsection
we concentrate on the part proportional to ξ(1). Inspired by the linear discussion, we
use a scalar ϕ(2,1) and a vector potential Ψ(2,1) for the potential and the vorticity flow,
respectively. For the contributions proportional to the main characteristic modes ξ(1), the
governing equations read

∆ϕ(2,1) = 0 (5.75)

ρ∆∂
(0)
t ϕ(2,1) + ∆p(2,1) = −ρ∆∂

(1)
t ϕ(1) (5.76)

ρ(∂
(0)
t )3Ψ

(2,1)
i − µ̃2∆∂

(0)
t Ψ

(2,1)
i = −µ2∆∂

(1)
t Ψ

(1)
i − ρ(∂

(0)
t )2∂

(1)
t Ψ

(1)
i (5.77)

with the abbreviation µ̃2 = µ2 +ν2∂
(0)
t . On the right hand side of these equations the first

order (linear) potentials act as inhomogeneities.
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The appropriate boundary conditions for the flow potentials are derived in appendix
C.3 and read for tangential stress

µ̃2

(

∂2
z − ∂2

y

)

Ψ(2,1)
x + µ̃2∂y∂xΨ

(2,1)
y + 2µ̃2∂z∂yϕ

(2,1) = 0 (5.78)

µ̃2

(

∂2
z − ∂2

x

)

Ψ(2,1)
y + µ̃2∂x∂yΨ

(2,1)
x − 2µ̃2∂z∂xϕ

(2,1) = 0 (5.79)

The physical boundary conditions have to be taken at z = ξ(1) in the second order. This
leads to additional contributions in ξ(1), which have already been taken into account in
the effective boundary conditions eqs. (5.78) and (5.79). The latter therefore have to be
taken at z = 0.

The kinematic boundary condition now involves the slow timescale t(1) and reads

v(2,1)
z = ∂

(1)
t ξ(1) (5.80)

We start with the particular inhomogeneous solutions of eqs. (5.76) and (5.77) for the
vector potential Ψ and the pressure p, respectively. It can be checked that the following
fields satisfy the inhomogeneous bulk equations

Ψ
(2,1)
i = Ψ̂

(2,1)inhom
i ξ(1)zeqz and p(2,1)inhom = −ρ∂

(1)
t ϕ(1) (5.81)

with the amplitudes for the vector potential given by

Ψ̂(2,1)inhom
x = −µ2 + µ̃2

µ̃2q
∂

(1)
t ∂y and Ψ̂(2,1)inhom

y =
µ2 + µ̃2

µ̃2q
∂

(1)
t ∂x (5.82)

The inhomogeneous solutions do not yet satisfy the boundary conditions (5.78) and (5.79).
Substituting Ψinhom into eq. (5.78) results in an additional source of tangential stress at the
boundary due to the inhomogeneous solutions, which can be balanced by the homogeneous
ones

µ̃2

(

∂2
z−∂2

y

)

Ψ(2,1)hom
x +µ̃2∂y∂xΨ

(2,1)hom
y +2µ̃2∂z∂yϕ

(2,1) = ∂y

(

µ̃2
µ2+µ̃2

µ̃2
∂

(1)
t ξ(1)

)

(5.83)

If we use the following ansatz for the homogeneous solutions of the flow potentials Ψ(2,1)hom

and ϕ(2,1)

Ψ(2,1)hom
x = −∂yΨ̂

(2,1)eqzξ(1), Ψ(2,1)hom
y = ∂xΨ̂

(2,1)eqzξ(1) and ϕ(2,1) = ϕ̂(2,1)ekczξ(1)

(5.84)

the amplitudes Ψ̂(2,1) are given by

Ψ̂(2,1) =
2kc

q2 + k2
c

ϕ̂(2,1) − 2
µ2 + µ̃2

µ̃2(q2 + k2
c )

∂
(1)
t (5.85)

Note that q is the inverse decay length of the linear transverse modes with q2 = k2
c +

ρ[∂
(0)
t ]2/(µ2 + ν2∂

(0)
t ) (chapter 3) and ∂

(1)
t is a short hand notation for ± iω(1) + σ(1), as

before.
The homogeneous solution of the pressure p(2,1)hom is straightforwardly given by eq. (5.76)

p(2,1)hom = −ρ∂
(0)
t ϕ(2,1) (5.86)



58 The amplitude equation

and if we exploit the kinematic boundary condition (5.80), the solution of the scalar flow
potential ϕ(2,1) can be determined as

ϕ̂(2,1) =
q2 + k2

c

kc(q2 − k2
c )

(

∂
(1)
t − 2k2

c

µ2 + µ̃2

µ̃2(q2 + k2
c )

∂
(1)
t

)

(5.87)

With the help of the flow potentials the velocity fields are determined

v(2,1)
z =

1

q2−k2
c

{[

q2−2µ2+ µ̃2

µ̃2
k2

c

]

ekcz + 2
µ2

µ̃2
k2

ce
qz − µ2+µ̃2

µ̃2
k2

c (q
2−k2

c )
zeqz

q

}

∂
(1)
t ξ

(1)
i

(5.88)

v(2,1)
x =

iki,x

µ̃2(q2−k2
c )

L(z)∂
(1)
t ξ

(1)
i and v(2,1)

y =
iki,y

µ̃2(q2−k2
c )

L(z)∂
(1)
t ξ

(1)
i (5.89)

with the abbreviation

L(z) =
[

µ̃2(q
2 − k2

c )− 2µ2k
2
c

]ekcz

kc
+
[

2µ2q
2 − (µ2 − µ̃2)(q

2 − k2
c )(1 + qz)

] eqz

q
(5.90)

from which the strain fields follow

ǫ(2,1)
zz =−µ2+µ̃2

µ̃2
k2

cL+(z)
∂

(1)
t

∂
(0)
t

ξ
(1)
i (5.91)

ǫ
(2,1)
ab =

µ2+µ̃2

µ̃2
ki,aki,bL−(z)

∂
(1)
t

∂
(0)
t

ξ
(1)
i (5.92)

ǫ(2,1)
az = iki,a

µ2+µ̃2

2µ̃2

{

2

q2−k2
c

[

2k2
ce

kcz−(q2+k2
c )e

qz
]

+
(

1+qz+
k2

c

q
z
)

eqz

}

∂
(1)
t

∂
(0)
t

ξ
(1)
i (5.93)

for {a, b} ∈ {x, y} with

L± =
2

q2−k2
c

(

kce
kcz−qeqz

)

± 1 + qz

q
eqz (5.94)

This concludes the derivation of the second order eigenfunctions that are proportional
to ξ(1). These solutions satisfy every condition except the normal stress boundary con-
dition. The latter will be used to determine the still unknown first order correction to
the control parameter, M (1), which finally enters the amplitude equation as the linear
contribution. We postpone the actual derivation of these contributions to section 5.3.4.

5.3.3 Solutions proportional to the higher harmonics ξ(2)

We are left with solving the system of hydrodynamic equations in the second perturbative
order, eqs. (5.57-5.59), for the higher harmonic contributions proportional to ξ(2). The
appropriate set of bulk equations reads, if we use again the representation with a scalar
potential and a vector potential,

∆
[

ρ(∂
(0)
t )2ϕ(2,2)+∂

(0)
t p(2,2)

]

= ∂i

[

−2µ2∂j(v
(1)
k ∂kǫ

(1)
ij )−∂

(0)
t ∂j(ρv

(1)
i v

(1)
j −2µ2ǫ

(1)
jk ǫ

(1)
ki )
]

(5.95)
[

ρ(∂
(0)
t )2 − µ̃2∆

][

∂i∂mΨ(2,2)
m −∆Ψ

(2,2)
i

]

(5.96)

= ǫijk∂j

[

− 2µ2∂m(v
(1)
l ∂lǫ

(1)
km)−∂

(0)
t ∂l(ρv

(1)
k v

(1)
l −2µ2ǫ

(1)
lmǫ

(1)
km)
]

∆ϕ(2,2) = 0 (5.97)
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Figure 5.2: The sketch shows the relative orientation of the wave vectors under
consideration in the amplitude equations (5.150,5.152). It allows to discuss the
stability of hexagons and squares and their interaction.

The first equation determines the pressure contribution p(2,2). Since the pressure appears
only in the normal stress boundary condition, this is dealt with in section 5.3.4. Next we
construct a particular inhomogeneous solution of eq. (5.97) for the vector potential Ψ.
The most general ansatz necessary reads

Ψ
(2,2)inhom
k = −ǫzkl

∑

N,M

∑

i,j

∂l

(

Ψinhom
NMij(z) ξiNξjM + Ψ̃inhom

NMij(z) ξ∗iNξjM + c.c.
)

(5.98)

Here, summation over all relevant modes i, j is implied (e.g. {i, j} ∈ {1, 2, 3}, {i, j} ∈
{1, 5}, and i = j = 1 for hexagons, squares, and rolls, respectively, fig. 5.2) as well as
over right and left traveling waves {N, M} ∈ {R, L}, cf. eq. (5.3). Substituting this
ansatz into the dynamic equations and matching the coefficients with the inhomogeneous
contributions of the vorticity equation (5.96) yields the functions Ψinhom

NMij(z) and Ψ̃inhom
NMij(z).

Since their general form is extremely bulky, in appendix D only the coefficients Ψinhom
NMij(z)

and Ψ̃inhom
NMij(z) for hexagonal (ij = ji = 13 = 23 = 31) and square patterns (ij = ji = 15)

as well as for stripe solutions (ij = 11) are listed.

The general solution is the sum of the particular inhomogeneous and a general homo-
geneous solution, Ψ

(2,2)
k = Ψ

(2,2)inhom
k + Ψ

(2,2)hom
k . It has to satisfy the effective tangential

boundary conditions (cf. appendix C.3)

µ̃2(∂
2
z − ∂2

y)Ψ
(2,2)
x + µ̃2∂y∂xΨ

(2,2)
y + 2µ̃2∂z∂yϕ

(2,2) =

∂y

∑

N,M

∑

i,j

(F̂ ′
NMijξiNξjM +

˜̂
F ′

NMijξiNξ∗jm + c.c.) (5.99)

with suitably abbreviated amplitudes F̂ ′
NMij . The special form of the right hand side is

obtained, if in eq. (C.14) the first order expressions for the variables are explicitly put in.

Substituting the inhomogeneous solutions Ψ
(2,2)inhom
i into eq. (5.99) a modified boundary
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condition for the homogeneous solution results

µ̃2(∂
2
z − ∂2

y)Ψ
(2,2)hom
x + µ̃2∂y∂xΨ

(2,2)hom
y + 2µ̃2∂z∂yϕ

(2,2) =

∂y

∑

N,M

∑

i,j

(F̂NMijξiNξjM +
˜̂
FNMijξiNξ∗jm + c.c.) (5.100)

since the inhomogeneous solution does not satisfy the boundary condition. In particular,
on the right hand side the inhomogeneous part of the boundary conditions at z = 0 is
modified

F̂NMij = F̂ ′
NMij + F̂ inhom

NMij (5.101)

with F̂ inhom
NMij ξiNξjM = −µ̃2(2∂

2
x − ∂2

z )Ψ
inhom
NMij(z) |z=0 ξiNξjM (5.102)

Similarly one obtains the y component of the tangential boundary condition starting from
eq. (C.15).

Now the general homogeneous solutions of Ψ
(2,2)hom
k and ϕ(2,2) can be obtained by using

the ansaetze

ϕ(2,2) =
∑

N,M

∑

i,j

(ϕ̂NMij ek1ijzkcξiNξjM + ˜̂ϕNMij ek2ijzkcξ
∗
iNξjM + c.c.) (5.103)

Ψ
(2,2)hom
k = −ǫzkl

∑

N,M

∑

i,j

∂l(Ψ̂
hom
NMij eq1ijzkcξiNξjM +

˜̂
Ψhom

NMij eq2ijzkcξ
∗
iNξjM + c.c.) (5.104)

where the characteristic wave vector kc is just used to give the amplitudes ϕ̂NMij, ˜̂ϕNMij ,

Ψ̂hom
NMij and

˜̂
Ψhom

NMij the same physical units as the corresponding amplitudes in the linear
discussion and where, again, the first summation is over right and left traveling waves
and the second one over the fundamental modes involved. In order to satisfy the Laplace
equation (5.97), the inverse decay lengths k1ij and k2ij of the second order scalar potential
are given by

k1ij = kc

√

2 + 2 cos θij (5.105)

k2ij = kc

√

2− 2 cos θij (5.106)

and depend on the angle between the i-th and the j-th mode. The inverse decay length
for the rotational flow contributions read correspondingly

q2
1ij = k2

1ij +
ρ[D

(0)
t ]2

µ2 + ν2 D
(0)
t

(5.107)

and accordingly q2ij by substituting k2
2ij for k2

1ij in eq. (5.107). Here, D
(0)
t is an abbrevi-

ation for the Fourier transformed time derivative and takes the values iω(0) + σ(0), σ(0),
and −iω(0) + σ(0) when applied to RR, RL or LR, and LL modes, respectively. The bulk
equations and boundary conditions are fulfilled for the amplitudes

Ψ̂hom
RRij =

q2
1ij

µ̃2kc(q4
1ij + q2

1ijk
2
1ij)

(

F̂RRij − 2µ̃2k1ijkcϕ̂RRij

)

(5.108)
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and

ϕ̂RRijξiRξjR =
q2
1ij + k2

1ij

kck1ij(q
2
1ij − k2

1ij)

{

kcD
(0)
t ξiRξjR − k2

1ij

F̂RRij

µ̃2(q
2
1ij + k2

1ij)
ξiRξjR − 2ξ(1)∂zv

(1)
z

+
1

q2
1ij + k2

1ij

[

(k2
1ij∂

2
z + q2

1ij [∂
2
x + ∂2

y ])Ψ̂
inhom
RRij ξiRξjR

]

z=0

}

(5.109)

For the last expression we explicitly used the kinematic boundary condition for the second
perturbative order, eq. (5.64). In appendix D these solutions for the flow potentials are
specified for hexagons, eqs. (D.12) and (D.17), and squares, eqs. (D.13) and (D.18). The
amplitudes with a tilde are obtained from those without one by replacing k1ij or q1ij

by k2ij or q2ij , respectively. For ˜̂ϕRRijξiRξjR this leads to a denominator ∼ k2ij, which
vanishes for i = j according to eq. (5.106). Nevertheless, all physical quantities derived
from that potential, like velocities and strain components, stay finite. The amplitudes in
eqs. (5.108) and (5.109) for the RL and LL (instead of RR) components are obtained by

choosing the appropriate expressions for q1ij and D
(0)
t , according to the rules given above.

The only remaining condition not yet satisfied is the normal stress boundary condition,
which we will discuss in the next section.

5.3.4 The normal stress boundary condition

To find the solutions to the hydrodynamic bulk equations (5.57-5.59), it was not necessary
to use the normal stress boundary condition. The same situation appears in the derivation
of the linear eigenvectors. There, substituting the eigenvectors into the normal stress
boundary condition yields the dispersion relation restricting the linear solution to those
with a specific ω(k) relation. The second order normal stress boundary condition, as will
be shown below, leads to the determination of M (1), the first correction to the control
parameter entering the final amplitude equation in linear order.

The second order normal stress boundary condition has been derived in appendix C.3
and is given as eq. (C.12). It consists of two parts, one is proportional to ξ(1), eq. (5.110)
and the other to ξ(2). The latter equation can easily be fulfilled by splitting the pressure
p(2,2) = p(2,2)B + p(2,2)S into one part, p(2,2)B , that is determined by the bulk equation
eq. (5.95) and the other, p(2,2)S , by the ξ(2)-boundary condition. This ansatz works, if
∆p(2,2)S = 0 in the bulk. Indeed, p(2,2)S ∼ ξiξje

k1ijz or ∼ ξiξ
∗
j e

k2ijz leads to the required
result. This additional pressure contribution is due to the inhomogeneities arising in the
normal stress boundary condition, in particular the one due to surface tension. Since the
surface tension always acts normal to the surface, this is the only point, where it can enter
the nonlinear dynamics. It just contributes to the Laplace pressure, which is proportional
to the curvature of the surface, a quite intuitive result.

However, this additional pressure contribution is of no importance because of two
reasons. First the pressure always enters linearly the hydrodynamic bulk equations and
therefore it will never give rise to inhomogeneous contributions, which have to be ac-
counted for by Fredholm’s theorem. Second the pressure enters only the normal stress
boundary condition, which is actually the governing equation for the appropriate pressure
contribution in the next order. In addition, also p(2,2)B is not needed in the following and
is therefore not shown here.



62 The amplitude equation

The situation is different for the first part of the normal boundary condition

2µ2ǫ
(2,1)
zz +2ν2∂zv

(2,1)
z −p(2,1)−µHc∂zΦ

(2,1)+Hvac
c ∂zΦ

(2,1)vac =
kcµ

1+µ
M (1)Mcξ

(1) (5.110)

It serves to determine the yet unknown control parameter M (1), which defines the expan-
sion parameter ǫ, on which the amplitude equation concept is based on. In contrast to
bulk instabilities, where M (1) follows directly from Fredholm’s alternative, here we have
to employ the normal boundary condition, since the Rosensweig instability basically is a
surface instability. The same is true for the Marangoni instability, where again the driv-
ing force of the instability is not contained in the bulk equations, but acts purely at the
surface. In some previous discussions [54, 56] this problem was circumvented by using a
scalar product artificially implementing the driving force into Fredholm’s theorem. This
special scalar product made use of the fact, that the free boundary was treated as unde-
formable. In the presence of a deformable surface, however, this specific scalar product
seems to fail.

Satisfying the normal stress boundary condition (5.110) provides us with the necessary
relation between the control parameter M (1) and the scaled growth rate σ(1). Starting
from the general second order normal stress boundary condition eq. (C.16), its ξ(1) part,
corresponding to (5.110), is given by

−(2µ̃2∂y∂z + ρG∂y)Ψ
(2,1)
x + (2µ̃2∂z∂x + ρG∂x)Ψ

(2,1)
y + (2µ̃2∂

2
z + ρG∂z)ϕ

(2,1) − ∂
(0)
t p(2,1)

= ∂
(0)
t

(

Hcµ∂zΦ
(2,1) −Hvac

c ∂zΦ
(2,1)vac

)

+ M (1)Mckc
µ

1 + µ
∂

(0)
t ξ(1)

+ρG∂
(1)
t ξ(1) + 2µ2∂

(1)
t ǫ(1)

zz (5.111)

Using the expression for the linear eigenvector ǫ
(1)
zz (eq. (3.30)) and the expressions for

the solutions of the second perturbative order (eqs. (5.81,5.84-5.87)) we can rewrite this
equation as

2ν2k
2
c (q − kc)

2µ̃2
∂

(1)
t

[∂
(0)
t ]2

ξ̂(1) + 2ρ(q2 + k2
c )µ̃2

∂
(1)
t

∂
(0)
t

ξ̂(1) − 2ρk2
c (µ2 + µ̃2)

∂
(1)
t

∂
(0)
t

ξ̂(1)

+2k3
c

(q − kc)
2

q
µ̃2(µ2 + µ̃2)

∂
(1)
t

[∂
(0)
t ]3

ξ̂(1)

= 2ρk2
c

µ

1 + µ
M (1)Mcξ̂

(1) (5.112)

If we expand the last expression in terms of ∂
(0)
t and keep the lowest order, we find

(σ(1) ± iω(1))ξ̂(1) =
µM (1)Mc

ν2(1 + µ)
ξ̂(1) (5.113)

The real and the imaginary part have to be satisfied separately and provide the scaled
growth rate σ(1) and the scaled frequency ω(1) as a function of the control parameter

σ(1) =
µM (1)Mc

ν2(1+µ)
and ω(1) = 0 (5.114)
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The fact that ω(1) vanishes states, that the instability remains stationary and excludes
possible soft mode oscillatory branches beyond the linear threshold. For the slow growth
rate σ(1) we obtain the physical result that the growth is the faster the farther one is beyond
the linear threshold and it is the slower the more viscous the medium under consideration
is. We also observe that the elastic contributions in eq. (5.110) cancel upon substituting
the solutions of the eigenvectors. This, on the one hand, states that eq. (5.114) applies to
ferrofluids and ferrogels, alike, and on the other hand it states that the growth process is
solely given by the dissipative mechanisms in the system under consideration. Eq. (5.114)
additionally tells us, that the boundary behaves qualitatively different with respect to
the temporal properties if compared to the bulk (cf. eq. (5.73)), since it does not scale
with σ(0). This qualitative difference is manifest in the kinematic boundary condition
which always connects the velocity field to the temporal change of the amplitude, as we
discussed already. It is therefore reasonable to compare the scaled time derivative from
the bulk with the time derivative in eq. (5.114).

In order to combine the results from the surface with the solvability condition of the
bulk equations (5.73), we need to rewrite the growth rate σ(1) in dimensionless form. By
multiplying eq. (5.114) with the typical time scale3 τ0 = ν2kc(ρG+µ2kc)

−1 and by defining

τ0σ
(1) as ∂̃

(1)
T we obtain

∂̃
(1)
T ξ̂i =

kcµM (1)Mc

2(1+µ)(ρG + µ2kc)
ξ̂i (5.115)

and by adding the solvability condition from the bulk equations (5.73) with the one from
the surface (5.115), we finally end up with a rudimentary form of an amplitude equation
for the second order

∂̃
(1)
T ξ̂i =

kcµM (1)Mc

2(1+µ)(ρG + µ2kc)
ξ̂i −

kc

4

i6=j 6=k
∑

j,k

ξ̂∗j ξ̂
∗
k (5.116)

In the last step we explicitly assumed that the dimensionless time derivatives at the surface
and in the bulk are the same even though we scaled them differently. By adding the two
subsystems we therefore accounted for the singular behavior of the kinematic boundary
condition. Or to phrase it differently, we scaled out the singular property of the kinematic
boundary condition at the crucial places.

We obtain a corresponding equation for usual ferrofluids. The linear contributions
can be obtained, as we have seen already, upon taking the limit µ2 → 0. The nonlinear
contributions, however, have to be calculated separately which is done in appendix E.

By now we have solved the second order problem completely, with the amplitudes of
the critical modes satisfying eq. (5.116).

5.4 The third perturbative order

With the complete solution of the second order problem at hand we can now discuss the
third order, in order to obtain the desired amplitude equation. As in the second order,

3The choice of τ0 seems to be arbitrary at this stage. In section 5.5, however, we can a posteriori
derive that this particular choice is correct.
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the solvability condition consists of two parts. One due to Fredholm’s theorem and one
that guarantees the normal stress to be compensated at the boundary. However, we will
have to find solutions of the third order problem proportional to the main characteristic
modes, only.

The complete set of hydrodynamic bulk equations for the hydrodynamic variables
reads in third perturbative order

ρ∂
(0)
t v

(3)
i + ∂ip

(3) − 2µ2∂jǫ
(3)
ij − ν2

(

∂j∂iv
(3)
j + ∂j∂jv

(3)
i

)

= −ρ ∂
(2)
t v

(1)
i − ρ ∂

(1)
t v

(2)
i

− ∂j

(

ρ v
(1)
i v

(2)
j + ρ v

(2)
i v

(1)
j − 2µ2ǫ

(1)
jk ǫ

(2)
ki − 2µ2ǫ

(2)
jk ǫ

(1)
ki

)

(5.117)

∂
(0)
t ǫ

(3)
ij −

1

2

(

∂iv
(3)
j + ∂jv

(3)
i

)

= −∂
(2)
t ǫ

(1)
ij − ∂

(1)
t ǫ

(2)
ij − v

(1)
k ∂kǫ

(2)
ij − v

(2)
k ∂kǫ

(1)
ij (5.118)

∂
(0)
i v

(3)
i = 0 (5.119)

We restrict our attention now to the contributions proportional to ξ(1). The hydrody-
namic equations, written in terms of the flow potentials, then reduce to

∆ϕ(3) = 0 (5.120)

ρ ∆∂
(0)
t ϕ(3) + ∆p(3) = −∂

(1)
t ρ ∆ϕ(2,1) − ∂

(2)
t ρ ∆ϕ(1) (5.121)

ρ [∂
(0)
t ]3Ψ(3)

m − µ̃2∆∂
(0)
t Ψ(3)

m = −µ2∆∂
(1)
t Ψ(2,1)

m − ρ [∂
(0)
t ]2∂

(1)
t Ψ(2,1)

m

−µ2∆∂
(2)
t Ψ(1)

m − ρ [∂
(0)
t ]2∂

(2)
t Ψ(1)

m (5.122)

To find the solutions, we follow the same lines as in the previous order. The particular
inhomogeneous solutions for the vector potential read

Ψ(3,1)inhom
a = ǫzba

µ2+µ̃2

qµ̃2

[

∂
(2)
t −

[∂
(1)
t ]2

∂
(0)
t

−(1−qz)ρ
µ2+µ̃2

4q2µ̃2
2

∂
(0)
t [∂

(1)
t ]2

]

zeqz∂bξ
(1) (5.123)

for {a, b} ∈ {x, y} while the inhomogeneities in (5.121) are compensated by

p(3,1)inhom = −ρ∂
(1)
t ϕ(2,1) − ρ∂

(2)
t ϕ(1) (5.124)

The general homogeneous solutions take the form

Ψ(3,1)hom
x = −∂yΨ̂

(3,1)eqzξ(1), Ψ(3,1)hom
y = ∂xΨ̂

(3,1)eqzξ(1) and ϕ(3,1) = ϕ̂(3,1)ekczξ(1)

(5.125)

where the amplitude for the vector potential is given by

Ψ̂(3,1) =
2kc

q2 + k2
c

ϕ̂(3,1) − 2
µ2 + µ̃2

µ̃2(q2 + k2
c )

(

∂
(2)
t −

[∂
(1)
t ]2

∂
(0)
t

)

(5.126)

The homogeneous solution for the pressure reads

p(3,1)hom = −ρ∂
(0)
t ϕ(3,1) (5.127)

and upon exploiting the kinematic boundary condition we obtain the amplitude for the
scalar potential

ϕ̂(3,1) =
q2 + k2

c

kc(q2 − k2
c )

(

∂
(2)
t − 2k2

c

µ2 + µ̃2

µ̃2(q2 + k2
c )

(

∂
(2)
t +

[∂
(1)
t ]2

∂
(0)
t

))

(5.128)
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As in the second order, the normal stress boundary condition is not used when deriving
the solutions. Again, it allows to calculate the linear contributions to the amplitude
equations.

Taking into account only contributions proportional to ξ(1), eq. (C.22) reduces to

2µ2ǫ
(3,1)
zz + 2ν2∂zv

(3,1)
z − p(3,1)−µHc∂zΦ

(3,1)+Hvac
c ∂zΦ

(3,1)vac

= µH(2)∂zΦ
(1)−H(2)vac∂zΦ

(1)vac+µH(1)∂zΦ
(2,1)−H(1)vac∂zΦ

(2,1)vac (5.129)

With the help of the explicit expressions of the eigenfunctions, eq. (5.129) can be written
as
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∂

(2)
t

∂
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[∂
(0)
t ]2

)

ξ̂(1)

−4k4
c

(q−kc)
2

(q2+k2
c )

µ̃2(µ2+µ̃2)

(

∂
(2)
t

[∂
(0)
t ]3
− [∂

(1)
t ]2

[∂
(0)
t ]4

)

ξ̂(1)+4k3
cq

µ2+µ̃2

q2+k2
c

ρ

(

∂
(2)
t

∂
(0)
t

− [∂
(1)
t ]2

[∂
(0)
t ]2

)

ξ̂(1)

−2k3
cρ

µ2+µ̃2

q

∂
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)
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(1)
t ]2
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(0)
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(5.130)

If expanded in terms of ∂
(0)
t we find

(σ(2) ± iω(2))ξ̂(1) +
µ2

ν2

[σ(1)]2

[σ(0)]2
ξ̂(1) =

µ(2M (2)Mc + [M (1)]2)

2ν2(1 + µ)
ξ̂(1) (5.131)

from which ω(2) = 0 follows. In the last expression we made use of the results of the
previous order, namely that ω(1) = 0 in the static limit. For the second contribution
on the left hand side we can substitute the scaled time derivative ∂̃

(1)
T of the second

perturbative order and we obtain

ν2σ
(2)ξ̂(1) + µ2[∂̃

(1)
T ]2ξ̂(1) =

µ(2M (2)Mc + [M (1)]2)

2(1 + µ)
ξ̂(1) (5.132)

which results in a second order time derivative of the pattern amplitudes due to the
bulk elastic properties of the medium. This contribution is proportional to the elastic
shear modulus µ2 and therefore accounts for the reversible bulk processes in the medium
whereas the first order time derivative remains a purely dissipative process. Eq. (5.132)
additionally suggests the time scale ν2/µ2 as the typical time scale to compare oscillatory
processes with dissipative ones.

To combine the surface condition with the solvability condition from the bulk equa-
tions, we multiply by the typical time scale τ0 and finally obtain

∂̃
(2)
T ξ(1) +

µ2kc

ρG + µ2kc

[∂̃
(1)
T ]2ξ(1) =

kcµ(2M (2)Mc + [M (1)]2)

2(1+µ)(ρG + µ2kc)
ξ(1) (5.133)

Note, the second term is absent in a ferrofluid without elasticity.
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5.5 Amplitude equation

We are finally left with satisfying Fredholm’s theorem for the third order bulk hydrody-
namic equations. The general solvability condition for the equations (5.117-5.119) reads

〈v̄i |ρ∂
(2)
t v

(1)
i 〉 + 〈ǭij |∂(2)
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(1)
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t ǫ
(2,2)
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ki )〉

−ρ〈v̄i |∂j(v
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k ∂k)ǫ
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k ∂k)ǫ

(1)
ij 〉

−ρ〈v̄i |∂j(v
(1)
i v

(2,2)
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(2,2)
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(1)
j )〉+ 2µ2〈v̄i |∂j(ǫ

(1)
jk ǫ

(2,2)
ki + ǫ

(2,2)
jk ǫ

(1)
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−〈ǭij |(v(1)
k ∂k)ǫ

(2,2)
ij + (v

(2,2)
k ∂k)ǫ

(1)
ij 〉 (5.134)

where we already separated the contributions from the second order eigenvectors that are
proportional to ξ(1) from those proportional to ξ(2). The first two contributions on the
left hand side of eq. (5.134) can be discussed in the same way as the equivalent terms
in the second perturbative order by replacing in eq. (5.68) σ(1) and ω(1) with σ(2) and
ω(2), respectively. Thus these contributions yield the scaled dimensionless time derivative
∂̃

(2)
T = σ(2)/σ(0) for the bulk part. The third and the fourth contribution on the left hand

side of eq. (5.134) can in principle contribute to the second time derivative, since the

second order eigenvectors v
(2,1)
i and ǫ

(2,1)
ij are proportional to ∂

(1)
t (cf. eqs. (5.88-5.94)).

Discussing the last contribution first, we obtain upon exploiting the result of the second
order, ω(1) = 0,

〈ǭij |∂(1)
t ǫ

(2,1)
ij 〉 = 4

ρµ2

ν2kc
[σ(1)]2

N
∑

i=1

ξ̂iξ̂
∗
i +O([ω(0)]5) (5.135)

This contribution is at least of the order [σ(0)]2 and therefore vanishes in the limit of a

static instability. Similarly, the contribution due to 〈v̄i |∂(1)
t v

(2,1)
i 〉 is at least of the order

[σ(0)]3 and can also be neglected. Let us now focus on the right hand side of eq. (5.134)

and discuss those contributions first that are due to the eigenvectors ǫ
(2,1)
ij and v

(2,1)
i of

the second perturbative order, which are proportional to the main characteristic modes
ξ(1). These contributions involve the combinations of three amplitudes ξ(1) and due to
the lateral integration they therefore remain finite only in the case of hexagons. If we use
eq. (5.73) to substitute e.g. ξ̂1ξ̂2σ

(1)ξ̂3 by −kcσ
(0) | ξ̂1 |2| ξ̂2 |2, we finally obtain

〈ǭij |(v(1)
k ∂k)ǫ

(2,1)
ij 〉 =

64

9
µ2k

3
cσ

(0)
(

| ξ̂1 |2| ξ̂2 |2 + | ξ̂1 |2| ξ̂3 |2 + | ξ̂2 |2| ξ̂3 |2
)

+O([ω(0)]3)

(5.136)

Note, that this term only contributes to the cubic coefficient for the hexagonal pattern
and vanishes for any other pattern. All other contributions in (5.134) involving the

eigenvectors v
(2,1)
i or ǫ

(2,1)
ij are at least of the order [σ(0)]2 and vanish in the static limit.

The remaining contributions involve the eigenvectors of the second perturbative order
that are proportional to the higher harmonics ξ(2). Since their analytical expressions are
bulky, the corresponding contributions to the cubic coefficients have been calculated with
Mathematica. For the term 〈ǭij |∂(1)

t ǫ
(2,2)
ij 〉 one has to exploit eq. (5.73) in the same manner
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as done for eq. (5.136). The final results for the cubic coefficients A′ and B′(θij) are given,
for the different regular surface patterns under consideration, by

A′ = 184µ2k
3
c (5.137)

B′(θij =2π/3) = (1256315969/10368− 69828
√

3)µ2k
3
c (5.138)

B′(θij =π/2) = (31831/2− 11072
√

2)µ2k
3
c (5.139)

and the solvability condition in the third perturbative order which is due to the bulk
equations can be written for the hexagonal pattern as

∂̃
(2)
T ξ̂1 = − A′

16µ2kc
| ξ̂1 |2 ξ̂1 −

B′(θij =2π/3)

32µ2kc
(| ξ̂2 |2 + | ξ̂3 |2)ξ̂1 (5.140)

with all its cyclic permutations 1 → 2 → 3 → 1 and their complex conjugates. Corre-
spondingly one finds in the case of the square pattern

∂̃
(2)
T ξ̂1 = − A′

16µ2kc

| ξ̂1 |2 ξ̂1 −
B′(θij =π/2)

32µ2kc

| ξ̂5 |2 ξ̂1 (5.141)

From those equations (5.137-5.141) it becomes clear that the dependence of the cubic
coefficients on the material parameters is solely given by the characteristic wave vector kc.
Thus they are independent of the elastic shear modulus and the magnetic susceptibility.
The same is true for the quadratic coefficient as observed in eq. (5.74). This behavior
could have been anticipated by inspecting the general expressions for Fredholm’s theorem
(eqs. (5.65) and (5.134)). The lowest order in the expansion with respect to ∂

(0)
t is always

proportional to the shear modulus µ2 (since the adjoint strain field, eqs. (5.51-5.56), is
proportional to the shear modulus) which therefore cancels in eqs. (5.68) and (5.69).
This behavior is due to the assumption of linear elasticity (section 2.2.1). Similarly the
assumption of a linearly magnetizable medium and the negligence of magnetostrictive
effects results in cubic coefficients that are independent of the magnetic susceptibility.

Adding Fredholm’s theorem in the third order expansion (5.140) to the corresponding
solvability condition from the normal stress at the boundary (5.133), we obtain for the
hexagonal pattern

∂̃
(2)
T ξ̂1 +

µ2kc

2(ρG+µ2kc)
[∂̃

(1)
T ]2ξ̂1 =

kcµ
(

2M (2)Mc+[M (1)]2
)

4(1+µ)(ρG+µ2kc)
ξ̂1 (5.142)

− A′

32µ2kc
| ξ̂1 |2 ξ̂1−

B′(θij =2π/3)

64µ2kc
(| ξ̂2 |2 + | ξ̂3 |2)ξ̂1

where we assume, as done in the second order, that the scaled time derivatives at the
surface and in the bulk are the same, because of the kinematic boundary condition.

Recall now the results for the hexagonal pattern that we obtained from the solvability
condition in the second order, eq. (5.116)

∂̃
(1)
T ξ̂1 =

kcµMcM
(1)

2(1 + µ)(ρG+µ2kc)
ξ̂1 −

kc

2
ξ̂∗2 ξ̂

∗
3 (5.143)

If we follow the standard methods and multiply the third order equation (5.142) by ǫ3
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and the second order equation (5.143) by ǫ2, we obtain

(ǫ2∂̃
(2)
T +ǫ∂̃

(1)
T )ǫξ̂1+

µ2kc

2(ρG+µ2kc)
ǫ2[∂̃

(1)
T ]2ǫξ̂1 =

kcµ(2ǫ2McM
(2)+ǫ2[M (1)]2+2ǫMcM

(1))

4(1+µ)(ρG+µ2kc)
ǫξ̂1

−kc

2
ǫ2ξ̂∗2 ξ̂

∗
3 −

A′

32µ2kc

ǫ3 | ξ̂1 |2 ξ̂1

−B′(θij =2π/3)

64µ2kc

ǫ3(| ξ̂2 |2 + | ξ̂3 |2)ξ̂1 (5.144)

By the definition of ǫ and the series expansion of the magnetization

M2 −M2
c =

(

Mc + ǫM (1) + ǫ2M (2) + . . .
)2 −M2

c

= 2ǫMcM
(1) + 2ǫ2McM

(2) + ǫ2[M (1)]2 + . . . (5.145)

we define the control parameter ǫ̃ in the usual way

(M2 −M2
c ) = M2

c ǫ̃ (5.146)

Substituting the series expansion of the time derivative in terms of ǫ (cf. eq. 5.5)

ǫ∂̃
(1)
T + ǫ2∂̃

(2)
T −→ ∂T (5.147)

[ǫ1∂̃
(1)
T ]2 −→ ∂2

T (5.148)

and using the standard scaling

ǫkc

√
Aξ̂i −→ ξi (5.149)

the amplitude equation can be written as4

∂T ξ1+
δ

2
∂2

T ξ1 =
1

2
ǫ̃ξ1 −

1

2
√

A
ξ∗2ξ

∗
3− |ξ1 |2 ξ1 −

B120

A
(|ξ2 |2 + |ξ3 |2)ξ1 (5.150)

where we introduce the dimensionless parameter δ = µ2kc(ρG + µ2kc)
−1 and where the

abbreviations A and B120 are given by

A =
A′

32µ2k3
c

≈ 5.750 and B120 =
B′(θij =2π/3)

64µ2k3
c

≈ 3.544 (5.151)

Starting from eq. (5.141) instead of eq. (5.140) we obtain the corresponding amplitude
equation for the square pattern

∂T ξ1+
δ

2
∂2

T ξ1 =
1

2
ǫ̃ξ1− |ξ1 |2 ξ1 −

B90

A
|ξ5 |2 ξ1 (5.152)

where the cubic coefficient B90 is analogously given as

B90 =
B′(θij =π/2)

64µ2k3
c

≈ 4.021 (5.153)

4Recall that ρGk−1
c =

√
ρGσT
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The fact that the linear contribution on the right hand side of eqs. (5.150) and (5.152) is
only proportional to the control parameter ǫ̃ justifies a posteriori our choice of the typical
time scale τ0.

Let us first consider the static solutions of eq. (5.150). The quadratic contribution
gives rise to a transcritical bifurcation from the flat surface to a hexagonal pattern at
the linear threshold. As discussed for the phenomenological amplitude equation (5.9),
a bistable regime exists for negative control parameter values ǫ̃ with its lower boundary
given by

ǫ̃A = − 1

8(A + 2B120)
(5.154)

The solution for the hexagonal pattern takes the form ξi = − | ξi | eiΦi for i ∈ {1, 2, 3},
where the magnitude of the amplitudes reads

|ξi | =
1+
√

1+8(A+2B120)ǫ̃

4
√

A(1 + 2B120/A)
(5.155)

and where the phases have to fulfill the condition
∑

i Φi = 0.

Investigating the values of the cubic coefficients we realize, that B120/A < 1 indicating
that the hexagon solution is always stable with respect to stripe solutions at the linear
threshold. Stripes and squares are mutually exclusive pattern and since B90 + 2B30 <
A + 2B120 and B90/A < 1, the hexagons are loosing stability with respect to squares at
the critical control parameter ǫ̃B given by (cf. section 5.1.2)

ǫ̃B =
B90 + 2B30

2(A + 2B120 − B90 − 2B30)2
(5.156)

where the cubic coefficient B30 ≈ 4.188 describes the nonlinear interaction between the
hexagonal and the square pattern.

The square pattern is stable for control parameters larger than

ǫ̃S =
A + B90

2(A + B90 −B120 −B30)2
(5.157)

Since ǫ̃S < ǫ̃B, also a bistable regime between the hexagons and squares exists.

Let us now focus on the dynamical behavior of the patterns beyond the linear thresh-
old. We assume that the hexagonal pattern with the amplitude |ξi |, eq. (5.155), has devel-
oped and disturb it homogeneously in space by a small excess amplitude r, |ξi |→|ξi |+ r.
The linearized amplitude equation (5.150) for the disturbances r then reads

∂T r +
δ

2
∂2

T r =

[

1

2
ǫ̃− 1√

A
|ξi | −3

(

1 + 2
B120

A

)

|ξi |2
]

r (5.158)

Substituting the solution (5.155) in the right hand side of eq. (5.158) it can be simplified
to −(ǫ̃/2+ | ξi | /(2

√
A))r, which is always negative above the linear threshold. This

reflects the fact that the exponential growth of the infinitesimal disturbances of the flat
surface above the linear threshold gets nonlinearly saturated by the cubic coefficients and
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Figure 5.3: Qualitative time dependent behavior (not to scale) of the surface
spikes according to eq. (5.158). The time T as well as the amplitudes | ξi | are
dimensionless variables. If the control parameter ǫ̃ is slightly beyond the critical
threshold the plot may be considered as the qualitative dynamics from the flat
surface |ξi |= 0 to the spike surface |ξi |= 1.

a stable pattern develops. Eq. (5.158) therefore takes the form of a damped harmonic
oscillator which can be solved by using the ansatz r =|r | eλT with the eigenvalues

λ1/2 = −1

δ
±
√

1

δ2
− ǫ̃
√

A+ |ξi |√
Aδ

(5.159)

where the eigenfrequency Ω of the oscillator is given by Ω2 = ǫ̃
√

A+|ξi|√
Aδ

.

These last results are still in dimensionless units. If we choose the time scale ν2/µ2 to
compare dissipative and oscillatory processes as suggested by eq. (5.132), the eigenvalues
read

λ1/2 = −(
√

ρGσT + µ2)

ν2
±
√

(
√

ρGσT + µ2)2

ν2
2

−µ2(ǫ̃
√

A+ |ξi |)
√

ρGσT + µ2√
Aν2

2

(5.160)

This result is intuitive, since the damping rate is inversely proportional to the dissipative
processes, given by ν2, whereas the eigenfrequency increases with increasing shear modu-
lus. We also realize that the relaxation towards the equilibrium pattern becomes faster in
a stronger gravitational field as well as for larger surface tensions and elastic higher shear
moduli of the medium.

The bifurcation from the flat surface towards hexagons is transcritical and therefore
involves a non continuous transition. If the control parameter is slightly above its critical
value, the still flat surface (at T = 0) can be interpreted as a disturbance to the stable
stationary solution (5.155). The dynamics towards hexagons from the flat surface is then
described by equation (5.158) giving rise to an overshoot and a damped oscillation towards
the equilibrium value (cf. fig. 5.3).
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u(x, t)

~G

Figure 5.4: Sketch of a physical situation which is described by the sine-Gordon
equation (5.161). The line of pendulums connected by a torsion wire is exposed to
the gravitational field, which is directed downwards. The angle from the normal
is denoted by u(x, t).

5.6 On the Newell-Operator

In the previous discussion on the nonlinear properties of the Rosensweig instability we
assumed spatially homogeneous patterns with no long wavelength variations. By addi-
tionally rescaling the spatial coordinates in the same way as the time coordinate (5.4),
one could also implement these possible variations in space as we mentioned already in
section 5.1.1. As a consequence, the amplitude equation additionally contains derivatives
of the amplitudes with respect to the scaled spatial coordinates. For typical nonlinear
differential equations these linear contributions to the amplitude equation can be ob-
tained systematically by a standard method exploiting the linear properties of the system
[81, 82]. This method is described in [83] and we summarize some of the ideas before we
discuss a possible application to the Rosensweig instability.

We illustrate this standard method by assuming the following nonlinear model equa-
tion [83], the so-called sine-Gordon equation

∂2
t u− c2∂2

xu + ω2
p sin u = 0 (5.161)

A physical system that is described by this equation is e.g. a line of pendulums that are
connected by a horizontal torsion wire, where the twist angle is denoted by u(x, t) (cf.
fig. 5.4). The second contribution in eq. (5.161) is then given by the twist of the wire
while, the third contribution is due to gravity. Expanded in terms of u, the sine-Gordon
equation reads

∂2
t u− c2∂2

xu + ω2
pu =

1

6
ω2

pu
3 +O(u5) (5.162)

The linear parts can be solved by a sinusoidal ansatz u = ae−iωt+ikx + c.c., where the
frequency ω and the wave vector k are not independent from each other, but related by
the dispersion relation

ω2 = ω2
p + c2k2 (5.163)
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Note, that the dispersion relation is the Fourier transform of the linearized equation
(5.161) and therefore contains only the linear properties of the basic equation.

To account for the nonlinear contributions of the model equation (5.161) we can apply
the same ideas as in the case of the Rosensweig instability and expand the torsion angle
u in terms of a small parameter ǫ

u = ǫ(u0 + ǫu1 + ǫ2u2 + . . . ) (5.164)

where, however, ǫ has a different meaning as in the previous sections. In particular it is not
connected to a control parameter, but merely models an expansion for small amplitudes of
the pendulums. In addition we can also rescale time according to T1 = ǫt and T2 = ǫ2t and
obtain by solving the different orders in ǫ successively the following nonlinear solution5

u = ǫae
ikx−it

„

ω−ω2
p

4ω
ǫ2aa∗

«

− ǫ2 a3

48
e3(kx−ωt) + c.c. (5.165)

where the solvability conditions in the second and third order in ǫ read, respectively

∂T1
a = 0 (5.166)

∂T2
a =

iω2
p

4ω
|a |2 a (5.167)

Until now we followed the same approach as previously in our discussion of the
Rosensweig instability. Additionally we will now rescale space according to X1 = ǫx.
To avoid resonant growth in the second order in ǫ, the amplitudes have to fulfill

∂T1
a +

c2k

ω
∂Xa = 0 (5.168)

which states that the amplitude a has to travel with the group velocity

ω
′

= ∂kω(k) =
c2k

ω
(5.169)

where one uses the dispersion relation ω(k), eq. (5.163). In the third order the solvability
condition reads

∂a

∂T2
=

iω
′′

2

∂2a

∂ζ2
+

iω2
p

ω
|a |2 a (5.170)

with ζ = (X−ω
′
T1), which is also known as the nonlinear Schrödinger equation. The linear

contributions arising in eq. (5.170) have been calculated by using the linear properties of
the basic equation (5.161), in particular the dispersion relation (5.163). The structure of
these linear contributions is universal and can be collected into an operator

LN =
∂

∂T2
− iω

′′

2

∂2

∂ζ2
(5.171)

The question that arises is, whether we can similarly calculate the corresponding
coefficients for the scaled spatial derivatives in the case of the Rosensweig instability by

5Note, that eq. (5.165) is already the nonlinear solution where the second order correction to the
frequency (given by eq. (5.167)) has already been substituted.
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simply taking the derivative of the known dispersion relation (3.20) with respect to the
wave vector k. But there is a fundamental difference between the system of equations
we used to describe the Rosensweig instability (cf. section 2.2.1) and the sine-Gorden
equation (5.161). We realize, that for the latter case the dispersion relation is solely
determined by the sine-Gordon equation itself, in particular it is nothing but the Fourier
transform of the linearized sine-Gordon equation. In the case of the Rosensweig instability
we additionally have to satisfy boundary conditions. If these were only determined by the
stress balance at a fixed surface, the determination of corresponding contributions to the
amplitude equation could be done by just using the operator LN .

In the case of the Rosensweig instability, however, we additionally have to take into
account the deformability of the surface and along with it the kinematic boundary con-
dition. If the surface deforms, also its normal vector n changes in the course of time,
which we took into account in our previous discussions by explicitly expanding the latter
in terms of the surface deflection ξ. All the different orders of n involve gradients of the
surface deflection ξ as can be seen in eqs. (B.17-B.19). Upon rescaling the spatial coor-
dinates we also must expand the gradients appearing in n in terms of ǫ, which leads to
additional contributions to the higher order boundary conditions solely due to the large
scale variations of the normal vector. These contributions are not contained in the linear
dispersion relation and, of course, cannot be implemented into it by any means, since
the dispersion relation only considers the linear properties of the system of equations
and therefore assumes a still flat surface. One rather has to expand the set of boundary
conditions with the scaled spatial coordinates from the beginning. The contributions to
the second spatial derivative in the amplitude equation may then be separated into those
due to gradients in the stress tensor (for example ∂jvi), which are the ones that follow
directly from the dispersion relation, and those solely due to the deformability of the sur-
face. Furthermore we have to evaluate the boundary conditions at the physical boundary,
z = ξ. In our calculations we accounted for this fact by expanding the eigenvectors in
term of ξ around z = 0. This again involves gradients with respect to z, which have to
be rescaled as well and which are not contained in the dispersion relation. Additionally,
one has to expect contributions to the second order spatial derivatives in the amplitude
equation that are due to the bulk equations. In the case of the scaled time derivative we
showed that possible contributions due to the bulk scale out in the static limit, but it is
far from obvious that this is also the case for the spatial derivatives.

The previous discussion suggests that also in the case of a deformable surface the linear
contributions to the amplitude equation are of a common structure and can be collected
into an extended operator similar to LN . The determination of the latter is, however,
beyond the scope of this thesis and will be left for future work.

5.7 Discussion and comparison

In this chapter we succeeded in deriving an amplitude equation for the Rosensweig insta-
bility in isotropic magnetic gels based on the fundamental hydrodynamic equations. An
important step was to find the adjoint linear system of equations together with its corre-
sponding boundary conditions in the presence of a deformable surface. Two assumptions
turned out to be very important in order to find the adjoint system. Besides the dynamic
treatment of the Rosensweig instability, the medium has to be considered compressible for
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the adjoining process. The reason for the latter assumption is to maintain the symmetry
of the stress tensor during the adjoining process. While we can assume an incompressible
medium after the adjoining process, the dynamic treatment of the system of equations
turns out to be also important in the discussion of the higher perturbative orders.

With the help of the adjoint system we were able to satisfy Fredholm’s theorem and to
perform a weakly nonlinear analysis. It turned out that due to the decoupling of the mag-
netic bulk equations from the hydrodynamic ones, Fredholm’s theorem does not contain
a control parameter. We solved this problem by observing that the normal stress bound-
ary condition consists of two parts. One is proportional to the higher harmonics of the
characteristic wavelength and merely increases the hydrostatic pressure in the medium.
The other one is proportional to the main characteristic wave vector and serves as an
additional solvability condition providing the dependence between the scaled growth rate
and the control parameter. Both solvability conditions show qualitative different behav-
ior in the static limit. While the solvability condition obtained from the normal stress
boundary remains finite, the bulk contributions scale with the linear growth rate. The
latter behavior is mediated by the kinematic boundary condition and has been taken into
account while combining both solvability conditions into one. Furthermore it reveals the
fact that both states, the initial flat surface and the final spiked one, are motionless states
where the velocity field vanishes identically. While combining the bulk solvability condi-
tion with the normal stress boundary one has some freedom to choose the relative weight
of the boundary with respect to the bulk via the two differently scaled time derivatives.
It seems reasonable to weigh these single contributions equally with respect to each other,
which is implicitly also done, for example, in the nonlinear discussions using an extended
scalar product [54, 56].

Upon combining the second and the third order solvability condition following the
standard procedure, we obtained a set of amplitude equations for the special cases of
stripes, squares and hexagons. The latter contains a quadratic coefficient that renders the
bifurcation from the flat surface to the hexagonal pattern transcritical. The calculated
cubic coefficients additionally reveal that at the linear onset hexagons are the stable
surface pattern. For high magnetic field strengths instead, hexagons become unstable and
a square pattern develops. Both transitions, from the flat surface to hexagons and from
hexagons to squares, involve bistable regions. We obtained qualitatively the same results
in the case of ferrofluids, where the derivation of the corresponding amplitude equation
and the determination of the nonlinear coefficients has been discussed in appendix E.

The results for the static patterns in this chapter are in qualitative accordance with
the bifurcation scenario obtained with the energy method (chapter 4). The cubic coeffi-
cients in this chapter, however, are independent from the elastic shear modulus and the
magnetic susceptibility. This is due to the assumptions of chapter 2, where we modeled
the magnetic gel as a linear elastic and a linearly magnetizable medium and where we
neglected magnetostrictive effects. The results in this chapter are therefore valid for a
finite magnetic susceptibility and for finite shear moduli. As we realized in chapter 4,
this was different for the energy method even though the same approximations were used.
However, we minimized the energy density with respect to the higher harmonics and the
main characteristic modes independently. As a consequence, the forth order coefficients
of the energy method (these coefficients qualitatively correspond to the cubic coefficients
in an ǫ−expansion) showed an inverse proportionality on the control parameter ǫ̃. This
dependence is omitted in the subsequent discussions of the energy method for simplicity,
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which renders this approach valid in the asymptotic limit of a vanishing magnetic suscep-
tibility only. In retrospect this minimization procedure and the simplification afterwards
seems to be unsystematic.

In addition to the static properties of the surface patterns, the analysis in this chapter
provides us with nonlinear dynamical processes. We obtain the typical first order time
derivative that describes the growth of the surface spikes beyond the linear threshold but
that also accounts for the dissipative processes in the medium. The typical time scale
of the growth (or relaxation) processes increases for increasing viscosities and becomes
smaller for increasing surface tension and shear moduli. Additionally, however, we find a
second order time derivative in the case of magnetic gels.

The analysis in this chapter elucidated the main aspects of the underlying mechanism
that lead to the Rosensweig instability. But it also unraveled that for a better quantitative
understanding additional phenomena have to be taken into account. Two nonlinear prop-
erties have been neglected. The nonlinear magnetization behavior, that already effects
the linear threshold, and nonlinear elastic properties. Additionally, the magnetostrictive
effect might influence the bifurcation behavior in magnetic gels.
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Chapter 6

Rosensweig instability in films and

membranes

6.1 Motivation

In the previous chapters we have emphasized, that in the scope of our assumptions the
driving force of the Rosensweig instability is manifest in the boundary only, i.e. the
bulk equations for the hydrodynamic variables and for the magnetic field are decoupled.
On the one hand this enabled us to find the eigenvectors for the magnetic field and the
hydrodynamic variables separately, but on the other hand we had to find a solution on how
to implement the driving force into the amplitude equation. With the previous discussions
on the Rosensweig instability in mind the question arises, how the characteristics of the
Rosensweig instability will change if we reduce the elastic medium to be a boundary layer
only, namely if we deal with thin films or membranes made of a magnetic gel. Rannacher
and Engel focused in [84] on a thin but still finite film thickness allowing for peristaltic
perturbations of the initial state where both surfaces were parallel. Here, however, we
want to discuss the linear stability of the membrane in the limit of a macroscopically
vanishing film thickness treating a quasi-two dimensional elastic magnetic medium. This
restricts us to modes where both surfaces are distorted in phase keeping the film thickness
constant1.

Before we start with the Rosensweig instability in magnetic membranes, we elaborate
on the thin film limit in order to obtain the viscoelastic properties of the membrane. This
part briefly summarizes the work of Harden and Pleiner [86].

6.2 Film properties in viscoelastic media

If we discuss thin films or membranes sandwiched between two fluids, it is reasonable
to start with three media, the membrane m of thickness d, whose mid-plane is placed at
z = 0, the fluid a above the membrane (z > d/2) and the fluid b below the membrane (z <
−d/2) as depicted schematically in fig. 6.1. In our discussion of the Rosensweig instability,
we will allow the fluids a and b to be ferrofluids with the magnetic permeabilities µa and
µb, respectively. Besides their superparamagnetic property, we assume that they behave
as usual Newtonian liquids. We will first concentrate on the hydrodynamic degrees of

1The discussions in this chapter have been published in [85].
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Figure 6.1: Periodic lateral perturbations ξ(x, y, t) with wave vector k of a flat
ferrogel film around z = 0 between media of different magnetic permeabilities
µb = 1 + χb (below) and µa = 1 + χa (above) in the thin film limit kd ≪ 1. The
magnetic field B and gravity G = −Gez are along the z-axis.

freedom and discuss the necessary extensions for the magnetic properties in section 6.3.
In the framework of the generalized hydrodynamic theory as described in chapter 2, the
fluids a and b can be modeled by the following linearized set of equations

ρ(α)∂tv
(α)
i + ∂jT

(α)
ij = ρ(α)Gi (6.1)

∂iv
(α)
i = 0 (6.2)

for α ∈ {a, b} and where the stress tensor T α
ij is given for a Newtonian liquid by

T α
ij = p(α)δij − ν

(α)
2 (∂iv

(α)
j + ∂jv

(α)
i ) (6.3)

with ν
(α)
2 denoting the viscosity of liquid α.

For the membrane we assume a ferrogel that can be either isotropic with a magnetic
susceptibility µm or anisotropic. Within the scope of our assumptions, the elastic medium
can be modeled by

∂tρ
(m) + ∂ig

(m)
i = 0 (6.4)

ρ(m)∂tv
(m)
i + ∂jT

(m)
ij = ρ(m)Gi (6.5)

∂tǫ
(m)
ij + Y

(m)
ij = 0 (6.6)

where T
(m)
ij denotes the linearized stress tensor of the magnetic membrane and where

Y
(m)
ij is the quasi current associated with the strain field. Until now we discussed a

macroscopically thick elastic medium where all densities are taken with respect to the
volume and where the macroscopic properties like the shear modulus µ

(m)
2 or the shear

viscosity ν
(m)
2 are the usual bulk elastic and viscous properties as discussed in chapter

2. If we take the limit kd → 0, the membrane becomes quasi-two dimensional rendering
all densities areal ones rather than densities with respect to the volume. In turn also
the stress tensor T

(m)
ij and the quasi current Y

(m)
ij have to be taken with respect to the

area rather than with respect to the volume. This amounts to introduce effective in-plane
elastic and viscous properties of the medium. In this case the stress tensor T

(m)
ij is given

by [86]

T
(m)
ij = pδij − ν

‖
δij∂kv

(m)
k − νs

2
(∂iv

(m)
j + ∂jv

(m)
i )− (ν

⊥
− νb∆⊥

)δiz∂jv
(m)
z

−c
‖
ǫ
(m)
kk δij − 2csǫ

(m)
ij − (c

⊥
− cb∆⊥

)ǫ
(m)
iz δjz (6.7)
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with ∆
⊥

= ∂2
x + ∂2

y , the longitudinal elastic modulus c
‖

= (µ1 + µ2)d, the shear elastic
modulus cs = µ2d, the transverse elastic modulus c

⊥
∼ cs and the bending elastic coeffi-

cient cb = µ2d
3(3µ1 +µ2)/24(µ1 +µ2) and where the corresponding in-plane viscosities ν

‖
,

νs, ν
⊥

and νb acquire the same structure. These explicit expressions for the in-plane ma-
terial properties in terms of the bulk material properties can be derived by integrating the
energy density per unit volume across the film thickness [86, 87]. If one assumes only ho-
mogeneous deformations, no bending contributions are obtained in eq. (6.7) and one only
retains c

‖
, cs, c

⊥
and the corresponding viscosities. The bending moduli cb and νb are ob-

tained by assuming a deformation profile depending on z (ui(x, y, z) = ui(x, y)+f [∂jui]z)2.
The energy density is then expanded around the film midpoint z = 0 to second order in
z and the integration across the film thickness results in contributions proportional to d3.
It should be mentioned that in the latter case the order d3 is not accurate since one misses
contributions to c

‖
, cs and c

⊥
due to stretching that are proportional to d3 [87]. For very

thin films and in the long wavelength limit, however, these contributions are assumed to
be negligible.

The same arguments apply to the quasi current associated with the strain field Y
(m)
ij

and one obtains

Y
(m)
ij = −1

2
(∂iv

(m)
j + ∂jv

(m)
i ) +

1

2
T −1

ijkl(c‖
ǫ(m)
nn δkl + 2csǫ

(m)
kl + [c

⊥
− cb∆⊥

]ǫ
(m)
kz δlz)

(6.8)

where the tensor T −1
ijkl contains the relaxation coefficients if we consider a viscoelastic

material with a transient elastic network [86]. In the following discussion, however, we
will focus on gels with time independent elastic moduli for which T −1

ijkl vanishes.
Besides the bulk equations, the observables are subject to certain boundary conditions.

Since we restrict our discussion to very thin films only, where the thickness d of the film
is kept constant, we obtain for the kinematic boundary condition

v(a) = v(b) = v(m) = ∂tξ (6.9)

which implies that the upper boundary between the membrane and fluid a and the lower
boundary between the membrane and the fluid b are deflected in phase (cf. fig. 6.1). In
the limit kd ≪ 1, the set of boundary conditions that guarantees stress free boundaries
between fluid b and m at z = −d/2 and between the membrane m and fluid a at z = d/2,
can be substituted by effective boundary conditions between fluids a and b, evaluated at
z = 0. These effective boundary conditions involve an additional stress source P

(m)
i which

is due to the presence of the membrane

T
(a)
iz − T

(b)
iz = P

(m)
i (6.10)

The additional stress source P
(m)
i can either be postulated introducing phenomeno-

logical in-plane elastic moduli of shear, compression and of transverse displacement as
done in [88] or it can be derived from the effective in-plane elastic and viscous properties

that we obtained in the derivation of T
(m)
ij . In doing so, we consider a cylindrical volume

V that contains a small area ∆A of membrane as depicted in fig. 6.2 and whose axis is
parallel to the surface normal of the membrane. This is pretty much the same situation

2Recall that u has been introduced in chapter 2 and denotes the displacement field.



80 Rosensweig instability in films and membranes

∆A

Figure 6.2: This sketch qualitatively depicts the path to the surface properties of
the medium. The way we calculate the moduli does not differ from the way the
usual magnetic boundary conditions are obtained [69].

as in the derivation of the boundary conditions for the electric and magnetic field in
Maxwell’s theory [69]. Any temporal change of momentum within the volume V has to
be compensated by a momentum flux through the volume’s surface ∂V . After using the
divergence theorem of vector calculus, we obtain

∫

V

∂tg
(α)
i dV =

∫

∂V

T
(α)
ij dfj (6.11)

where dfj denotes the j-th component of the surface element and where α ∈ {a, b, m}.
The contribution to the right hand side of eq. (6.11) that is due to the integration of the
cylindrical mantle vanishes by symmetry for infinitesimally small volumes V , giving

∫

∂V

T
(α)
ij dfj = (T

(a)
iz − T

(b)
iz )∆A (6.12)

On the other hand, since V is infinitesimally small, the left hand side of eq. (6.11) is solely
governed by the magnetic membrane and we obtain, if we use the momentum conservation
equation for the membrane (6.5),

∫

V

∂tg
(α)
i dV = ∂jT

(m)
ij ∆A (6.13)

Altogether we find as an effective boundary condition between the media a and b

T
(a)
iz − T

(b)
iz = ∂jT

(m)
ij (6.14)

which has to be evaluated at z = 0 and which states, that the discontinuity of stress
between the fluids a and b is given by the gradient of the membrane stress tensor which
we have derived previously in eq. (6.7). We should state here, that in eq. (6.14) the

equality of units is satisfied, since in T
(m)
ij all material parameters are taken with respect

to the area rather than with respect to the volume.



6.3 Magnetic surface properties 81

6.3 Magnetic surface properties

For the discussion of the Rosensweig instability in thin films or membranes we have to
extend the approach of the previous section to account additionally for the superpara-
magnetic properties of the media. In the scope of our assumptions, as described in chapter
2, this can be done by adding the corresponding Maxwell stress tensor to (6.7) and (6.3).
What we are left with is the determination of the membrane magnetic properties and in
particular with the determination of the in-plane magnetic permeability.

In taking the limit towards infinitely thin membranes, we follow the lines of [86, 87]
and consider the magnetic energy density within the membrane. It is given by

w(m) =
1

2
B(m)H(m) =

1

2µm

B(m)B(m) (6.15)

where we express the energy density in terms of the flux density B(m) because of the
following reason: In the ground state when the membrane is not deformed and the applied
magnetic field is normal to the membrane, the magnetic boundary conditions demand the
flux density B to be the same in any of the three regions a, b or m. This remains true
even in the limit of infinitely thin membranes.

In that case we can integrate the energy density (6.15) across the membrane thickness
and obtain the magnetic energy density per area

w(m)area =

d/2
∫

−d/2

1

2µm
B(m)B(m) dz =

d

2µm
B(m)B(m) (6.16)

defining an effective in-plane magnetic permeability by

µ′ =
µm

d
(6.17)

It is then useful to take

H ′ =
1

µ′B
(m) (6.18)

with H ′ = H(m)d as the in-plane magnetic field. Thereby the in-plane magnetization
M ′ ≡ χH ′ becomes a density per area rather than per volume. It can intuitively be
interpreted as the number of magnetic dipoles per unit area.

6.4 Non-magnetic film modes

With the set of hydrodynamic equations on hand, the dispersion relation of surface waves
ξ = ξ0 exp i(ωt − kx) can be derived. For a non-magnetic, viscoelastic thin film on top
of a simple fluid, this has been done some time ago in [86]. The fluid above the film is
assumed to be vapor or air and is approximated as vacuum. In that case the dispersion
relation between the frequency of the surface wave and its wave vector k reads implicitly
D(k, ω) = 0 with

D(k, ω) =
[

C̃(z)(k, ω)k3 + iν
(b)
2 k(q + k)ω − ρ(b)ω2

] [

C(x)(k, ω)k3 + iν
(b)
2 k(q + k)ω

]

+ ν
(b)2
2 k2(q − k)2ω2 (6.19)
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where ρ(b) and ν
(b)
2 are the density and viscosity of the underlying simple fluid. The surface

disturbances decay exponentially inside the lower bulk fluid. For most of the variables
or excitations involved the wavelength 1/k also acts as the decay length, except for the

rotational part of the velocity field, whose decay length is 1/q with q2 = k2 + iρ(b)ω/ν
(b)
2 .

Equation (6.19) describes the well-known Lucassen mode spectrum [89, 88, 90]. In the

case of a viscoelastic bulk fluid (or elastic gel), eq. (6.19) remains valid [71], if ν
(b)
2 is

replaced by ν
(b)
2 + E0τ/(1 + iωτ) with τ the elastic relaxation time and E0 the elastic

plateau modulus (τ →∞ in the gel case).
This dispersion relation reflects the coupling of transverse elastic and longitudinal

sound bulk modes at the surface. It contains in-layer compressional and transverse (nor-
mal to the interface) deformations and flow of the gel layer. The in-layer shear mode is
decoupled and does not take part in the surface waves. The material properties of the gel
film are contained in the functions

C(x)(k, ω) = ε + iων
‖
+ c

‖
(6.20)

C(z)(k, ω) = σT + iω(ν
⊥

+ νbk
2) + c

⊥
+ cbk

2 (6.21)

which appear on the r.h.s. of the transverse and normal stress boundary conditions [86]

T
(a)
iz − T

(b)
iz = ∂jT

(m)
ij (6.22)

with {i, j} = {x, y, z} and the superscripts a, b referring to the media above and below
the film m, respectively. Here ε and σT are the film compressional (or Gibbs) modulus
and the surface tension, respectively. In contrast to ordinary 3D elastic moduli, the film
elastic moduli have the same dimension as the surface tension. Therefore, to simplify
notation, the combinations ε̃ = ε + c

‖
and γ̃ = σT + c

⊥
can be defined. Similarly, the

abbreviation C̃(z)(k, ω) = C(z)(k, ω) + ρ(b)G/k2 in eq. (6.19) already contains the gravity
effect on the film.

In the case of a viscoelastic (rather than elastic) gel, c
‖

and c
⊥

+ cbk
2 have to be

replaced by iωτ
‖
c
‖
/(1 + iωτ

‖
) and iωτ

⊥
(c

⊥
+ cbk

2)/(1 + iωτ
⊥
), respectively, with τ

‖
and

τ
⊥

being the longitudinal and transverse elastic relaxation times. For a liquid film, c
‖
, c

⊥
,

and cb are simply zero.
In the (hydrodynamically) symmetric case with fluids of the same density ρ(a) = ρ(b) =

ρ and viscosity below and above the elastic layer, the relevant dispersion relation [86] is
much simpler than eq. (6.19)

Dsym(k, ω) = k3(q − k)C(z)(k, ω)− 2ρqω2 (6.23)

In particular, there is no gravity force, as long as the inertia of the film itself can be
neglected.

6.5 Ferrogel film surface modes

As discussed in chapters 2 and 3 and shown in appendix A, the influence of an exter-
nal magnetic field on a ferrogel (and ferrofluid) surface deformation is manifest only in
the boundary conditions (magnetostriction neglected), in particular in the normal stress
boundary condition. Here, the stabilizing contributions of surface tension σT , gravity G,
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and elasticity µ2 are amended by a destabilizing addition due to the external magnetic
field B by the replacement

σT k2 + ρG + µ2k −→ σT k2 + ρG + µ2k − κB2k (6.24)

as can be seen from eq. (3.19) in chapter 3. Here κ = χ2(1 + χ)−1(2 + χ)−1 with χ the
magnetic susceptibility of the ferrogel. The external magnetic field induces a magneti-
zation M = χB/(1 + χ) in the ferrogel. The magnetic field effect is quadratic meaning
that the orientation of the field (parallel or antiparallel) with respect to gravity or to the
surface normal does not matter.

For a (magnetic) film the magnetic influence on surface deformations comes from two
surfaces, an upper and lower one to fluid a and b with magnetic susceptibilities χa and
χb, respectively. For a very thin film or a film with equal deformations at both surfaces
(disregarding peristaltic motions) the magnetic properties of the bulk fluids enter only
via the l.h.s. of the normal stress boundary condition (6.22). Therefore, the magnetic
destabilizing influence from the two surfaces leads to a contribution with κ → κ1 ∼
(χa−χb)

2 in eq. (6.24) independent of the magnetic properties of the film. If the two bulk
fluids are magnetically equivalent (magnetically symmetric case), there is no destabilizing
effect of a normal magnetic field coming from the boundaries. A rigorous and complete
derivation of κ1 is given in the appendix B.5 with the result

κ1 =
(χa − χb)

2

(µa + µb)µaµb

(6.25)

with permeabilities µ = 1 + χ. In the case χa = 0 (vacuum) the expression for χ1 used in
eq. (3.19) of chapter 3 is reobtained.

However, as is the case for viscous and elastic film properties, the magnetic properties
of the film itself enter the C(z) function (6.21) via the right hand side of eq. (6.22). A
uniaxial ferrogel film does have a permanent (surface) magnetization [14, 15, 91], while
in an isotropic one a considerably large surface magnetization can be induced by an
external field. This induced magnetization is always parallel to the external field and has a
stabilizing effect on surface waves (cf. appendix B.5). The frozen-in surface magnetization
M ′

0, however, deforms with the membrane or film and produces a stabilizing (destabilizing)
effect, if it is parallel (antiparallel) to an external field (cf. appendix B.5). This influence
of a permanent surface magnetization on surface deformations is of the same k-order as
the film elasticity and the surface tension and can be described by the replacement

γ̃ → γ̃ ±M ′
0B (6.26)

where we are interested in the destabilizing case, only. Taking together both magnetic
contributions to the normal stress boundary condition (6.22) the C(z) function

C(z)(k, ω) = γ̃ −M ′
0B + iω(ν

⊥
+ νbk

2) + cbk
2 − κ1B

2k−1 (6.27)

replaces eq. (6.21), while eq. (6.20) remains the same. Using these two functions in the
dispersion relation (6.19) for a half-space surface, or in eq. (6.23) for the hydrodynamically
symmetric interface (or in eq. (B24) of Ref. [86] for the general case) describes propagat-
ing, weakly damped surface waves at magnetic films that can be excited and maintained
by thermal fluctuations, external mechanical (acoustic) forces, or other means. The wave
propagation speed is clearly reduced due to the action of the magnetic field, which “soft-
ens“ the stiffness of the film or membrane. Non-propagating modes are also possible.
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6.6 Rosensweig instability

As done in section 3.4, eqs. (6.19-6.20), and (6.27) can be slightly reinterpreted: These
are conditions for an external field strength B, at which a surface perturbation ξ with
wave vector k and (real) frequency ω0 relaxes to zero or grows exponentially for σ neg-
ative or positive, respectively (ω = ω0 − iσ). For σ = 0 such a surface perturbation
is marginally stable (or unstable) against infinitesimal disturbances, since eq. (6.19) has
been obtained by linearizing the dynamic equations and the boundary conditions about
the ground state. The functions ω0 and B still depend on k and the latter has to be mini-
mized with respect to k in order to get the true linear instability threshold. There is no
guarantee that a threshold exists for a finite frequency due to the additional requirement
ω2

0 > 0. We therefore discuss first the stationary case. Assuming ω0 = 0 the threshold
condition σ = 0 leads to C̃(z)(k, ω=0) = 0. We will further analyze this condition for the
special cases, where the surface magnetism can be either neglected or has only a small
influence in section 6.6.1, a permanently magnetized film with no magnetic contrast of
the surrounding fluids in section 6.6.2, while the general case, when both destabilizing
magnetic field effects are present, is discussed in section 6.6.3. The possibility of an oscil-
latory instability and the case of hydrodynamically symmetric configurations is discussed
in the final subsection 6.6.4.

6.6.1 Stationary, asymmetric case without surface magnetism

Dealing with the case of a strong magnetic contrast between the upper and lower bulk
fluid (e.g. vacuum and a ferrofluid, respectively), we neglect the surface magnetic effect.
Experimentally, this case can be realized by a ferrogel (or a non-magnetic gel) on top of a
ferrofluid and vapor or vacuum above the film. In that case the threshold magnetic field
is

κ1B
2(k) = γ̃k +

ρ(b)G

k
+ cbk

3 (6.28)

and is finite for a non-zero magnetic contrast, χa 6= χb, of the bulk fluids, only. Minimizing
with respect to k leads to the critical wave vector

k2
c =

1

6cb

(

√

γ̃2 + 12ρ(b)Gcb − γ̃
)

(6.29)

and the critical magnetic field Bc = B(k = kc). Slightly above the minimum, the curvature
of the marginal stability curve is given by

κ1(B(k)2 −B2
c ) = (1/kc)

√

γ̃2 + 12ρ(b)Gcb(k − kc)
2 (6.30)

The linear threshold conditions for this stationary instability are completely indepen-
dent of the viscosities of both, the underlying fluid as well as the film itself, resembling
the case of bulk free surface Rosensweig instabilities in ferrofluids and ferrogels (cf. chap-
ter 3). In contrast to the latter case, here the critical wave vector does depend on the
transverse elastic properties (c

⊥
) of the ferrogel (through γ̃) as well as on the bending

elastic modulus cb. The reason is that both effects enter the normal stress boundary con-
dition with a k-dependence different from that of the magnetic field (cf. eq. (6.27)), or to
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phrase it differently, the magnetic field deformations do not introduce a specific internal
length scale compared to ordinary 3 D elasticity, but they do in relation with surface
elasticity.

On the other hand, the linear growth rate σ of the most unstable mode is completely
determined by the (transverse) viscous properties of the film and the bulk fluid

σ =
κ1(B

2 − B2
c )

ν
⊥
kc + νbk3

c + 2ν
(b)
2

(6.31)

where the wave vector of the most unstable mode ku = kc(1− δ̃) with

δ̃ =
κ1(B

2 − B2
c )

2γ̃ + 12cbk2
c

ν
⊥

+ 3νbk
2
c

ν
⊥
kc + νbk3

c + 2ν
(b)
2

(6.32)

is slightly smaller than the critical one. If the dissipation in the film or membrane can be
neglected, the growth rate, σ = κ1(B

2 − B2
c )/(2ν

(b)
2 ), is given by the bulk fluid viscosity

as in the case of a bulk ferrofluid or ferrogel (cf. section 5.3.4), and the most unstable
mode is the critical one, ku = kc in linear order [27].

The linear threshold conditions for the stationary instability are also independent of
the longitudinal material properties (ǫ, c

‖
) of the film and therefore indistinguishable from

those of an incompressible film.
Since we are operating in the long wavelength limit, usually the bending elasticity is

less important than ordinary elasticity, except for very thin films, where c
⊥

and γ are
zero or can be neglected. In the former case, in particular for ρ(b)Gcb ≪ γ̃2 the critical
quantities can be simplified to

k2
c =

ρ(b)G

γ̃

(

1− 3
ρ(b)Gcb

γ̃2

)

(6.33)

κ1B
2
c = 2

√

ρ(b)Gγ̃

(

1 +
1

2

ρ(b)Gcb

γ̃2

)

(6.34)

Of course, the critical wavelength and field increase with increasing elasticity and scale
at onset with the relevant elastic modulus of the ferrogel c

⊥
with exponents 1/2 and 1/4,

respectively. In the pure ferrofluid case, c
⊥

= 0 = cb, the critical values are identical to
those of the usual Rosensweig instability, i.e. there is no difference between a bulk free
surface and a film, except for a possible difference in the surface tension σT in the two
cases.

In the opposite, bending dominated regime, ρ(b)Gcb ≫ γ̃2 the critical values are

k4
c =

ρ(b)G

3cb

(

1− γ̃
√

3ρ(b)Gcb

)

(6.35)

κ2
1B

4
c =

16

9
ρ(b)G

√

3ρ(b)Gcb

(

1 +
3

2

γ̃
√

3ρ(b)Gcb

)

(6.36)

Here, the critical wavelength and field scale at onset with the bending elastic modulus of
the ferrogel film cb with exponents 1/4 and 1/8, respectively.
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6.6.2 Permanent-magnetic, symmetric case

We now consider a film consisting of a permanent-magnetic gel with the intrinsic (surface)
magnetization M ′

0 to be rigidly anchored to the elastic degrees of freedom. In particular
we choose it to be always antiparallel to the external field B. In this section we just
discuss the case of a magnetic symmetry between the bulk fluids a and b, being either
both non-magnetic or having the same magnetic susceptibility. For this case the magnetic
contribution stemming from the left hand side of eq. (6.22) cancels (κ1 in eq. (6.25) is zero)
and only the divergence of the magnetic membrane stress tensor gives a field dependent
contribution to the threshold condition for a stationary instability

C̃(z)(k) = ∆ρ Gk−2 + γ̃ −M ′
0B + cbk

2 = 0 (6.37)

Here, ∆ρ is the density difference between the medium above and below the film or
membrane. Eq. (6.37) leads to an instability with a characteristic mode

k4
c =

∆ρ G

cb
(6.38)

when the applied critical field reaches the threshold value

Bc =
1

M ′
0

(

γ̃ + 2
√

cb∆ρ G
)

. (6.39)

Note that the critical wave vector is independent of M ′
0, dominated by the bending elastic

coefficient, and rather similar to eq. (6.35). The threshold field is inversely proportional
to the magnitude of the intrinsic permanent magnetization.

6.6.3 The general case

We now discuss the general case, where both destabilizing magnetic field effects are
present, i.e. a uniaxial film with the permanent magnetization opposite to the field
and a magnetic contrast between the two surrounding fluids. The condition for marginal
stability against stationary convection, eq. (6.27),

C̃(z)(k) = ∆ρ Gk−2 + γ̃ + cbk
2 −M ′

0B − κ1B
2k−1 = 0 (6.40)

leads to the neutral curve B = B(k). In principle, one could expect a competition between
the two different instabilities described in the two preceding subchapters, i.e. a transition
from a stationary instability with a wave vector like that of eq. (6.29) to one like that of
eq. (6.38).

The minimum threshold condition dB/dk = 0 allows us the calculate the critical wave
vector kc as a real root of

κ1(3cbk
4
c + γ̃k2

c −∆ρ G)2 + 2M ′2
0 (cbk

4
c −∆ρ G)k3

c = 0 (6.41)

In dimensionless form eq. (6.41) contains three relevant numbers RB =cb/(∆ρ Gd4), RE =
γ̃/(∆ρ Gd2), and RM =M ′2

0 /(∆ρ Gκ1d
3), if the wave vector is scaled by the film thickness

d. For RM > RB, RE there are two different minimum solutions, kc1 and kc2, possible.
However, the critical fields associated with these wave vectors, Bc1 = B(kc1) and Bc2 =
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B(kc2), are never equal, except in the limit RM → ∞, where kc1 = −kc2 and the case
of section 6.6.2 is reached. For RM . RB, RE there is only one minimum solution of
eq. (6.41), which tends for smaller RM to the solution of section 6.6.1. Thus, for a given
set of material parameters there is always one definite instability at a minimum Bc , and
never a competition between instabilities of different kc.

6.6.4 Additional remarks

Finally we will explore the possibility of an oscillatory instability. If we assume that the
film compressional modulus, ε̃, and the longitudinal elastic modulus c

‖
and viscosity ν

‖

can be neglected (incompressible film), one can show that the curve of marginal stability,
B = B(k, ω) has its minimum at ω0 = 0, and thus any oscillatory state would have
a higher threshold than the stationary one. In the general case, the proof of the non-
existence of an oscillatory instability is much more involved. One can show (under the
proviso that ν

⊥
+ νbk

2 and ν
‖

are of the same order of magnitude) that there is no finite

frequency possible if ǫ̃k2 ≤
√

3(γ̃k2 + ∆ρ G + cbk
4). In the opposite case the threshold of

an oscillatory instability (if it exists) is higher than that for the stationary one.
If the densities of the two bulk fluids above and below the film or membrane are

identical, their gravitational influence on the interface undulations cancels. The thin film
itself is not sensitive to gravity, since its volume is going to zero in the two-dimensional
limit. Therefore, the gravity term is absent in the normal stress boundary condition and
the linear instability criterion in the stationary case is C(z) = 0 (instead of C̃(z) = 0).
The general marginal stability curve B = B(k) then has a minimum for a vanishing
k2

c ∼ ∆ρ G→ 0 leading to a vanishing threshold B4
c ∼ ∆ρ G→ 03. The lowest wave vector

for a finite experimental set-up of horizontal dimension L, kc = 2π/L gives κ1B
2
c ≈ 2πγ̃/L,

since effects of bending and surface magnetization are negligible for large L. This means
there is only one surface excitation (spike) in the whole sample, governed by the (effective)
surface tension. This is a very well known scenario, theoretically and experimentally [92],
for ordinary ferrofluid free surfaces under strongly reduced gravity conditions.

6.7 Discussion

The driving force of the Rosensweig instability manifests itself in the boundary conditions,
only, for ferrofluids as well as ferrogels (if magnetostriction is neglected). The question
arises, how will the characteristics of the onset of the instability change, if the elastic
medium itself is very thin so that it can be considered as a film or a membrane. In
the present chapter we have addressed this question by extending previously obtained
dispersion relations of surface waves at a half-space ferrogel boundary to those of the
membrane surfaces. The very thin membrane is surrounded by two Newtonian fluids
that can be ferrofluids with different magnetic properties. Possible generalizations to
viscoelastic surrounding fluids and to viscoelastic (rather than elastic) membranes have
been sketched. The magnetic film itself can be either a superparamagnetic isotropic
magnetic gel, or an anisotropic ferromagnetic one having a finite intrinsic magnetization.

3Since the limits k → 0 and κ1 → 0 are not interchangeable, the formulas of section 6.6.2 are not
applicable to the case of vanishing gravity; rather, one has to establish relations between the smallness
of ∆ρ G, the smallness of kc, and the smallness of κ1, in order to get a definite result for Bc in that case.



88 Rosensweig instability in films and membranes

Apart from the material properties of the surrounding fluids, the derivation of dis-
persion relations in thin films makes use of certain effective (frequency and wave vector
dependent) surface material parameters that describe the internal film properties. For
surface waves an effective elastic surface modulus is introduced that contains the intra-
layer elastic and viscous properties. In the same manner we introduce in our discussion an
effective surface permeability for the magnetic film describing the induced or permanent
magnetic film properties, which generally are different from the bulk quantities. In recent
experiments [93] this kind of difference between bulk and surface behavior in the magnetic
properties has been seen when spin coating a ferrofluid.

In our discussion we have restricted ourselves to modes where the upper and the lower
surface of the membrane move in phase, resulting in an undulated membrane of constant
thickness (in linear approximation). This is complementary to a previous discussion of
films of finite thickness, where just peristaltic motions where taken into account [84]. For
superparamagnetic films we get two different additional contributions to the dispersion
relation. One is due to the magnetic asymmetry between the surrounding liquids. This
contribution is of the same character as the magnetic part of surface waves in the half-
space case and vanishes in the symmetric case (no magnetic contrast between the two
surrounding fluids). The second contribution comes from the magnetizability of the thin
film itself. This last contribution, however, acts always stabilizing and effectively stiffens
the membrane. Thus, a (symmetric) superparamagnetic membrane in air, for instance,
will never become unstable to undulations of the type described here. An intuitive reason
for this is the fact that in the symmetric case the magnetic field is not distorted in
the limit of an infinitely thin membrane even if the membrane itself is subject to small
perturbations. As a result, no destabilizing force acts on the magnetic dipoles in the
film. In the present discussion we therefore focus on the case of high magnetic contrast
between the surrounding fluids discussing the influence of the surface elastic properties to
the characteristics of the Rosensweig instability. Due to the elastic and bending elastic
surface properties, the characteristic mode at onset is shifted to higher wavelengths and
the critical magnetic field towards higher field strengths. We can distinguish the limiting
cases of a bending dominated regime and the regime where surface elasticity plays the
important role.

For an anisotropic magnetic thin film or membrane, its permanent magnetization
can lead to the Rosensweig instability, if the applied field is strong enough and oriented
antiparallel to it. In this case the magnetic asymmetry between the surrounding liquids
is not needed and such a magnetic film surrounded by air can become unstable.

Finally, the general case of an anisotropic magnetic membrane separating two liquids
of different magnetic properties has been discussed. In principle, there is a competition
between the previously discussed instability mechanisms (either based on the magnetic
contrast or on the permanent film magnetization), which generally occur at a different
wavelength. However, it turns out that such a pattern competition does not occur in the
system under consideration, because the critical magnetic field according to one of the
mechanisms is always smaller than the other one. Only in the limiting case of infinitely
high intrinsic magnetization (infinitely low magnetic contrast) both critical fields can be
equal. In this case, however, the different characteristic modes at onset are of the same
magnitude, but of opposite sign, and no competition of two different spatial modes arises.



Chapter 7

The adjoint system for the

Marangoni convection

In this chapter we will apply the method that we introduced in chapter 5 to derive the
adjoint system for the Rosensweig instability to the case of the Marangoni instability.
Also in the case of the Marangoni instability the adjoint system taking into account
the deformability of the surface was unknown and nonlinear discussions where therefore
restricted to flat surfaces1.

7.1 Introduction to Marangoni convection

The Marangoni instability is a prominent example of a surface tension driven instability.
If a temperature gradient is applied to a layer of a fluid with a free surface, the conducting
state becomes unstable beyond a certain critical temperature gradient when heating is
done from below and convection starts. For thick layers the instability is driven by buoy-
ancy (classical Rayleigh-Bénard convection), but if the layer is smaller than about 1mm,
Pearson [94] proposed fluctuations of the surface tension, that arise due to temperature
fluctuations at the free surface, being the mechanism driving the convection.

The Marangoni instability was investigated extensively theoretically. Nield [95] first
compared linearly the competition between the buoyancy and the surface tension driven
instability mechanism, but both, Pearson and Nield, still considered a flat, undeformable
surface. Scriven and Sternling [96] and later on Smith [97] accounted for a free deformable
surface. In Ref. [96] only capillary effects have been considered and an always unstable
conducting regime was obtained due to missing stabilizing gravitational contributions for
the long wavelength limit. Smith discussed a layer model, a light fluid above a heavier
one. A comprehensive linear study was first given by Takashima [50, 51] in 1981, who also
discussed the possibility of an oscillatory branch that could arise for negative Marangoni
numbers. Pérez-Garćıa and Carneiro [98] generalized this approach to the combination
of both, surface driven and buoyancy driven convection, which matches the results of
Takashima in the limit of negligible buoyancy forces. All nonlinear theoretical discussion
up to now assumed a flat, undeformable surface. Rosenblat et al., for instance, discussed
the nonlinear regime in a cylindrical container [52] in terms of an extended Galerkin
method. This discussion was later on extended to rectangular vessels [53, 54], but for this

1This chapter is based on [74].
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Figure 7.1: Qualitative sketch of the geometry under consideration in the case
of pure Marangoni convection. The fluid is confined between the rigid surface
at z = 0 and the deformable surface initially at z = d. The deflection of the
deformable surface with respect to the flat surface is denoted by ξ with its unit
normal vector n pointing upwards. The applied temperature gradient is always
parallel, the acceleration due to gravity G always antiparallel to the z−axis.

approach no adjoint system is needed. The case of a horizontally infinite layer of fluid
was studied in Refs. [55] and [99]. In Ref. [56] a two layer model was considered, where
the adjoint system was derived using the ansatz of [99] provided the surface is flat.

Inspired by the result of the case of the Rosensweig instability, we apply the same
formalism (section 5.2) to the case of stationary Marangoni convection to find the ad-
joint system of equations for this case as well. However, there exists a crucial difference
between these two instabilities. While in the case of magnetic fluids the external force
acts normal to the free surface, in the case of Marangoni convection the external force
is acting tangentially to the surface. We can therefore verify our formalism for any ar-
bitrary direction of the driving force. This external force for the Marangoni instability
is, as mentioned already, mediated by temperature fluctuations. The surface tension σT

is therefore assumed to be temperature dependent and reads in a series expansion up to
linear order in T

σT (T ) = σT (TR)− γ(T − TR) (7.1)

with the change in surface tension due to temperature fluctuations γ = −(∂σT (T )/∂T )T=TR

and where TR represents an arbitrary reference temperature. For the following discussion
we will refer to σT (TR) as σT .

7.2 Basic equations and the adjoint system

To find the adjoint system for the purely surface driven convection we assume a viscous
Newtonian fluid. As done in the case of the Rosensweig instability, we assume it to be
compressible with a barotropic equation of state at the beginning, but in the end we will
again use the limit of an incompressible fluid. Additionally we have to incorporate the
equation of heat transport with the temperature T and the thermal diffusivity χ̃. All the
other variables are denoted in the same way as in the previous discussion. As we want
to discuss the purely surface driven contribution of convection, all contributions due to
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buoyancy are neglected. The system of equations thus reads

∂tρ + ∂k(ρvk) = 0 (7.2)

∂tgi + ∂jTij = ρGi (7.3)

∂tT + vj∂jT = χ̃∂j∂jT (7.4)

The stress tensor Tij of the fluid under consideration takes the form

Tij = vjgi + pδij − ν2(∂jvi + ∂ivj)− ν̂(∂kvk)δij (7.5)

We require the normal as well as the tangential stress at the free surface between the
Newtonian fluid and the vacuum to be balanced, leading to the normal and tangential
boundary conditions, respectively

p− ρ0Gξ − 2ν2∂zvz − ν̂(∂kvk) = −σT (∂2
x + ∂2

y)ξ (7.6)

ν2(∂yvz + ∂zvy) = −γ∂yT + γβ∂yξ (7.7)

ν2(∂xvz + ∂zvx) = −γ∂xT + γβ∂xξ (7.8)

where β denotes the applied temperature gradient across the fluid.
Additionally we have to specify the phenomenological boundary conditions at the

surface. Again the kinematic boundary condition (2.44) for a free deformable surface is
assumed to hold. Second, we assume the heat flux Q through the surface to be propor-
tional to the local temperature gradient, where κ denotes the coefficient of (surface) heat
conduction.

Q(T ) = −κ∂zT (7.9)

At the bottom (z = 0) of the container we assume the usual rigid boundary conditions

vi = ∂zvz = T = 0 (7.10)

The state vector |φ〉 now becomes six dimensional and is defined by

|φ〉 = (vx, vy, vz, p, T, ρ) (7.11)

so that the system of equations reads again in the general form

L0 |φ〉 = 0 (7.12)

We use the usual scalar product, however, now the z−integration is bounded between the
bottom plate (z = 0) and the free surface (z = ξ).

〈φ̄ | φ〉 = lim
L→∞

1

4L

L
∫

−L

dx

L
∫

−L

dy

ξ
∫

0

dz

t
∫

0

dt φ̄φ (7.13)

The adjoint linear operator then turns out to be

L†
0 =

(

A C

B D

)
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A =







−ρ∂t−ν2∂
2
i −(ν̂+ν2)∂

2
x −ν̂∂x∂y−ν2∂y∂x −ν̂∂x∂z−ν2∂z∂x

−ν̂∂y∂x−ν2∂x∂y −ρ∂t−ν2∂
2
i −(ν̂+ν2)∂

2
y −ν̂∂y∂z−ν2∂z∂y

−ν̂∂z∂x−ν2∂x∂z −ν̂∂z∂y−ν2∂y∂z −ρ∂t−ν2∂
2
i −(ν̂+ν2)∂

2
z







(7.14)

B =







−∂x −∂y −∂z

0 0 0

0 0 0






C =







−∂x 0 0

−∂y 0 0

−∂z −β 0






(7.15)

D =







0 0 − 1
ρ0

∂t

0 −∂t − χ̃∂2
i 0

− 1
ρ0

∂t 0 − c2

ρ0
∂t






(7.16)

The surface contributions of the integration by parts should vanish to fulfill eq. (5.22)
leading to the corresponding boundary conditions in the adjoint case.

iω2ν2∂z v̄z + iων̂(∂kv̄k) + iωp̄ + ρGv̄z + σT k2v̄z = 0 (7.17)

v̄x(−ikx)T̂ (z)− v̄xγβ(−ikx) + v̂x(z)ν2(∂z v̄x + ∂xv̄z) = 0 (7.18)

v̄y(−iky)T̂ (z)− v̄yγβ(−iky) + v̂y(z)ν2(∂z v̄y + ∂y v̄z) = 0 (7.19)

−χ̃T̄ ∂zT + χ̃T∂zT̄ = 0 (7.20)

In the last set of equations we have used the fact, that every variable of the original system
is modulated by ξ, in particular we used T (z) = T̂ (z)ξ and vx,y(z) = v̂x,y(z)ξ. Actually
eq. (7.20) just states, that the adjoint temperature may differ from the original one by
just a constant. For the phenomenological boundary conditions we take the same form
as for the original case, namely

v̄z = iω̄ξ̄ (7.21)

Q̄(T̄ ) = −κ ∂zT̄ (7.22)

The boundary conditions at the rigid bottom turn out to be self-adjoint, but are repeated
here

v̄i = ∂z v̄z = 0 (7.23)

T̄ = 0 (7.24)

7.3 The dimensionless representation

For the further discussion we give the dimensionless version of the problem discussed in
the previous section, because it is common in all the other discussion regarding convection.
Following the usual steps [100], the linearized dynamical equations for the deviations from
the conducting state of the temperature Θ and the vertical component of the velocity vz

read

(D2 − k2)(D2 − k2 − iω)vz(z) = 0 (7.25)

(D2 − k2 − iωP)Θ(z) = −vz(z) (7.26)
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The boundary conditions at the free surface using the stress balance then read

(D2 + k2)vz(z) = −Mk2

(

Θ(z)− 1

P ξ

)

(7.27)

CP(iω −D2 + 3k2)Dvz(z) = −(B − k2)k2ξ (7.28)

And for the phenomenological boundary conditions we have

vz(z) = iωξ (7.29)

P(D + F)Θ(z) = Fξ (7.30)

At the bottom, the equations reduce to

vz = Dvz = Θ = 0 (7.31)

While rescaling the variables we have introduced dimensionless numbers such as the
Prandtl number P = ν2/χ̃, the Marangoni number M = γβd2/(ρχ̃ν2), the Crispa-
tion number C = ρν2χ̃/(σT d), the Bond number B = ρGd2/σT and the Biot number
F = (∂Q/∂T )d/κ as well as the dimensionless derivative with respect to z, D = d/dz.

Using the same arguments for the adjoint set of equations we find

(D2 − k2)(D2 − k2 + iω̄)v̄z(z) = −AΘ̄(z) (7.32)

(D2 − k2 + iω̄P)Θ̄(z) = 0 (7.33)

It is worth mentioning here that in eq. (7.32) an additional number, A = β2d4/(χ̃ν2),
arises. This is, however, consistent with condition (7.20), which allows the temperature
in the adjoint case to differ from the original temperature by a constant factor. One
could rescale the dimensionless adjoint temperature by exactly this number A, resulting
in a dimensionalized adjoint temperature. This, however, is not surprising since also in
the discussion of the adjoint system of the Rosensweig problem, the adjoint strain field
acquired a different physical unit due to the dynamic coupling between velocity field and
the strain field. The adjoint boundary conditions stemming from the adjoining process
turn out to be

−M(Dv̄z(z))k2

(

Θ̂− 1

P

)

= (Dv̂z)(D
2+k2)v̄z(z) (7.34)

CP(ωω̄−iωD2+3iωk2)Dv̄z(z) = −(B−k2)k2v̄z(z) (7.35)

While the ones describing the free surface are

v̄z(z) = iω̄ξ̄ (7.36)

P(D + F)Θ̄(z) = F ξ̄ (7.37)

The self-adjoint boundary conditions at the bottom are repeated here in dimensionless
form

v̄z = Dv̄z = 0 (7.38)

Θ̄ = 0 (7.39)
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Also in the dimensionless representation we explicitly made use of the fact that the
macroscopic variables are modulated by ξ, in particular we used Dvz(z) = (Dv̂z(z))ξ and
Θ(z) = Θ̂(z)ξ.

At that point we should mention a crucial point. While the adjoint boundary condi-
tions in the case of the Rosensweig instability (5.31-5.33) turned out to be independent
of the eigenvectors of the original case, the tangential boundary condition (7.34) contains
the eigenvectors of the original case. By inspection of the adjoining-process this is due to
coupling between the temperature and the velocity field, even though this coupling does
not drive the instability. A similar coupling in the bulk equations of the Rosensweig case –
the magnetic field to the velocity or the strain field – was missing. As a consequence, the
adjoint dispersion relation will also depend on the original eigenvectors, which is discussed
in detail in section 7.6.

7.4 The dispersion relation

We start solving the system of equations in the original case. Previous analytical work
accounting for a stationary instability with finite deformation of the surface always as-
sumed stationary equations from the beginning. However, to find a connection between
the adjoint and original case, we need the general dispersion relation of surface waves
propagating on the free surface.

To solve the dynamical equations (7.25) and (7.26) subject to the boundary conditions
(7.27-7.31) we used an ansatz with hyperbolic functions [72]2. In particular we used, after
substitution of eq. (7.26) into eq. (7.25), the following solutions

Θ(z) =

3
∑

i=1

(

Ai cosh(λiz) + Bi sinh(λiz)
)

(7.40)

vz(z) = −
2
∑

i=1

(

λ2
i − k2 − iωP

)(

Ai cosh(λiz) + Bi sinh(λiz)
)

(7.41)

together with the roots

λ2
1 = k2 (7.42)

λ2
2 = k2 + iω (7.43)

λ2
3 = k2 + iωP (7.44)

The solvability condition of the boundary conditions gives the corresponding dispersion
relation of plane waves traveling on the surface of the fluid. However, the dispersion
relation can only be given implicitly and is shown in section 7.6

D(ω, k,M) = 0 (7.45)

We will restrict ourselves in this discussion to the stationary case, although solutions of
eq. (7.45) with a finite frequency ω might exist at the threshold. On the other hand one

2The article [72] was on the competition between the Bénard-Marangoni and the Rosensweig instability
in ferrofluids, but we adopt the ansatz with hyperbolic functions for the eigenvectors in geometries with
a finite layer depth.
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can prove analytically, that a nontrivial solution of eq. (7.45) is ω = 0. Using this result
we can perform the limit of a stationary instability and the solvability condition in the
stationary case reduces to the neutral curve

M =
8k(B + k2)(k cosh(k) + F sinh(k))(2k − sinh(2k))

8Ck5 cosh k + (B + k2)
(

sinh3(k)− k3 cosh(k)
) (7.46)

which coincides with the result obtained by Takashima [50] assuming stationarity from
the beginning. In the limit of vanishing surface deformations (C → 0) we find the same
results as Pearson [94], Nield [95] as a special case.

These calculations and also the following ones have been checked using the ansatz of
Nield [95], who used Fourier modes.

7.5 The adjoint dispersion relation

As in the the case of the Rosensweig instability, to get the adjoint system, one has to
start with the fully dynamic problem. Using again hyperbolic functions the solutions can
be written as

v̄z(z) =

3
∑

i=1

(

Āi cosh(λ̄iz) + B̄i sinh(λ̄iz)
)

(7.47)

Θ̄(z) = −(iω̄ − k2 + λ̄3)(λ̄3 − k2)
(Ā3

A
cosh(λ̄3z) +

B̄3

A
sinh(λ̄3z)

)

(7.48)

together with the adjoint roots

λ̄2
1 = k2 (7.49)

λ̄2
2 = k2 − iω̄ (7.50)

λ̄2
3 = k2 − iω̄P (7.51)

With the help of the adjoint boundary conditions, we obtain the dispersion relation
of surface waves in the adjoint space that can only be given implicitly again (section 7.6)

D̄(ω̄, ω, k,M) = 0 (7.52)

This equation also gives ω̄ as a function of the frequency in the original case ω, although
the expression is more complicated than for the case of the Rosensweig instability and
a solution of eq. (7.52) has not been obtained analytically. Nevertheless we have to
guarantee that eq. (7.52) is fulfilled even when approaching the critical point for the
stationary instability. When expanding eq. (7.52) in terms of ω we obtain

D̄(ω̄, ω, k,M) = D̄0(ω̄, ω=0, k,M) + D̄1(ω̄, ω=0, k,M) ω +O(ω2) (7.53)

When approaching the marginal point, D̄1 and all the contributions of higher order in ω
cancel with ω becoming 0. To fulfill eq. (7.53), additionally D̄0 has to vanish. It can be
shown, that if ω̄ as a function ω vanishes when ω vanishes, the constant contribution D̄0

becomes zero and the adjoint dispersion relation is satisfied (see section 7.6). Therefore
the instability in the adjoint case occurs at the same point with the same characteristics.
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7.6 Discussion of the dispersion relation

In this section we give the dispersion relations of the original and the adjoint Marangoni
problem. In particular we discuss the adjoint dispersion relation in the limit of ω → 0.

The solvability condition of the system of dynamic equations (7.2-7.5) together with
the boundary conditions (7.6-7.10) at the deformable surface yields the dispersion relation.
It describes the relation between the frequency and the wave vector of surface waves
propagating on a free surface. In an implicit form (and using λ1 = k) it reads

D(ω, k,M) ≡

iω5P3(P − 1)k
{

k
[

iωPCλ3 cosh(λ3)
(

2kλ2

(

k2(4iωP(P − 1) +M)− 2ω2P(P − 1)
)

+ sinh(k) sinh(λ2)
(

iωk2(M+ 8iωP(P − 1))− iω3P(P − 1)

+2k4(M+ 4iωP(P − 1)
)

)

+k3λ3M(B + k2)(λ2 sinh(k)− k sinh(λ2))

+ sinh(λ3)
(

λ2k
(

Mk2(2P − 1)(B + k2)− 8ω2P2k2CF(P − 1)− 4iω3P2(P − 1)CF
)

+ sinh(k) sinh(λ2)
(

k4(B + k2)(2P − 1)M+ iωPMk2(B + k2)

−8ω2P2(P − 1)FCk4 − 8iω3P2(P − 1)FCk2 + ω2P2(P − 1)FC
)

)

−λ2 cosh(λ2)
(

(B + k2)λ3

(

Mk2 − ω2P(P − 1)
)

cosh(λ3) sinh(k)

+iωP
(

2CMλ3k
3 + sinh(k) sinh(λ3)(iω(P − 1)(B + k2)F + CMk2(2k2 + iωP))

)

)]

+ cosh(k)
[

λ2 cosh(λ2)
(

iωPCλ3 cosh(λ3)
(

iω3P(P − 1)− 2k4(M+ 4iωP(P − 1))

−iωk2(M+ 4iωP(P − 1))
)

− sinh(λ3)
(

k4M(B + k2)(2P − 1)

−8ω2P2(P − 1)FCk4 − 4iω3P(P − 1)FCk2 + ω4P2(P − 1)FC
)

)

+k2
(

(B + k2)λ3(Mk2 − ω2P(P − 1)) cosh(λ3) sinh(λ2)

+iωP
(

CMλ2λ3(2k
2 + iω) + sinh(λ2) sinh(λ3)(iω(P − 1)F(B + k2)

+CM(iω + k2)(iωP + 2k))
)

)]}

= 0 (7.54)

Taking the stationary limit of this expression (while neglecting the five trivial roots ω = 0)
results in the neutral curve given in eq. (7.46).

Using the same procedure for the adjoint problem, yields the implicit dispersion rela-
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tion in the adjoint space (using λ̄1 = k)

D̄ ( ω̄, ω, k,M) ≡ P(P − 1)iω̄3
{

−
[

λ̄3 cosh(λ̄3)
(

λ̄2

(

iω̄3k2(B + k2)(P − 1)P

+iωACF(2k+iω̄(P−1))
)

cosh(λ̄2) sinh(k)

+k cosh(k)
(

iω̄2ωCP2(ω̄2+4iω̄k2 − 8k2) cosh(λ̄2)

−(iωACF(2k2 + iω̄(P − 1)) + iω̄3k2(B + k2)P(P − 1)) sinh(λ̄2)
)

+iωω̄2Ck2P2(P − 1)
(

8k3λ̄2 − 4iω̄kλ̄2 + (8k4 − 8iω̄k2 − ω̄2) sinh(k) sinh(λ̄2)
)

)

+kF
(

iωACF
(

(2k2−iω̄) sinh(λ̄2)−2kλ̄2 sinh(k)
)

+ sinh(λ̄3)
(

iωCλ̄2(4k
2(P−1)P2(2k2−iω̄)ω̄2

+A(k2(2− 4P) + iω̄P) + cosh(k) cosh(λ̄2)(2Ak2(2P − 1)− iω̄(P − 1)A

+ω̄2P2(P − 1)(ω̄2 + 4iω̄k2 − 8k2))) + iω̄3λ̄2k(B + k2)(P − 1)P
−iω̄3k2P(P − 1)(B + k2) cosh(k) sinh(λ̄2)

−iωkC sinh(k) sinh(λ̄2)(A(iω̄(3P − 1) + k2(4P − 1)

+ω̄2P2(P − 1)(ω̄2 + 8iω̄k − 8k4)))
)

)]

+
PΘ̂− 1

PDv̂z
k2M

[

cosh(λ̄3)λ̄3

(

λ̄2

(

iωACF(P − 1)

−2ω̄2k3P(B + k2) + 2ω̄2P2(B + k2)
)

+ sinh(k) cosh(λ̄2)
(

iωACFk2(2P − 1) + ωω̄ACF(P − 1) + 2ω̄2k4P(B + k2)

−2ω̄2k4P2(B + k2) + iω̄3k4(B + k2)− iω̄3k2P2(B + k2)
)

)

+ω̄2k2(B + k2)FP(P − 1)
(

2kλ̄2 + (2k2 − iω̄) sinh(k) sinh(λ̄2)
)

sinh(λ̄3)

−iωCkλ̄2 cosh(λ̄2)
(

AF λ̄3+k sinh(λ̄3)(AF sinh(λ̄3)

−ω̄3P2(P−1)(λ̄3 cosh(λ̄3)+F sinh(λ̄3)))
)

−k cosh(k)
(

λ̄2 cosh(λ̄2)
(

λ̄3(iωACF(2P − 1) + 2ω̄k2(B + k2)(P − 1)P) cosh(λ̄3)

+2ω̄2k2FP(P − 1)(B + k2) sinh(λ̄3)
)

−iωC
(

sinh(λ̄2)(k
2 − iω̄)(AF sinh(λ̄3) + iω̄3P(P − 1)(λ̄3 cosh(λ̄3) + F sinh(λ̄3)))

)

)]}

= 0 (7.55)

Here D̄ stills contains ω, the frequency of surface waves in the original space. To find the
relation between ω̄ and ω is not as simple as in the case of the Rosensweig instability.
However, all what we need is to guarantee that ω̄ vanishes at the linear threshold of the
physical problem, where ω = 0. The reason for this requirement is that the resonance
condition for a nonlinear expansion of the basic equations cannot be satisfied in the case
of a finite adjoint frequency ω̄ but a vanishing frequency ω. In section 7.5 the expansion
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of D̄ in terms of ω is given, eq. (7.53), and will not be repeated here. As stated already
above, the adjoint dispersion relation depends on the original eigenvectors due to the
dynamic bulk coupling between the temperature and the velocity field. The stationary
limit for the latter one is given by

vz(z) =
8Mck

3 cosh(k)

PN

{

kz sinh(k) cosh(kz) (7.56)

−
[

kz cosh(k) + sinh(k)− z sinh(k)
]

sinh(kz)
}

ξ

while the stationary eigenvector for the temperature field reads

Θ(z) =
1

PN

{

2k2Mc cosh(k)
(

kz cosh(k)− (z − 3) sinh(k)
)

z cosh(kz)

−
[

16k2F +Mc

(

k2(1 + z)− 1 + (1 + k2(1 + z)) cosh(2k)
)

+k
(

Mc(1− z + k2z2)− 8F
)

sinh(2k)
]

sinh(kz)
}

ξ (7.57)

with the abbreviation

N = 2k
(

(Mc−8)k2−2F
)

cosh(k) + 4kF cosh(3k)

+
(

8(1−2F)k2 +Mc + (8k2−Mc) cosh(2k)
)

sinh(k) (7.58)

We can substitute eqs. (7.56) and (7.57) into the constant contribution D̄0 of eq. (7.53)
resulting in the explicit expression

D̄0(ω̄, ω=0, k,M) = ω̄(ω=0)k2(B2 + k2)(P − 1)2P3 (7.59)

×
(

k cosh(k) + F sinh(k)
)2k sinh2(k)(sinh(2k)− 2k)

1 + 2k2 − cosh(2k)

When assuming P 6= 1 and k 6= 0, D̄0 = 0 can only be satisfied if ω̄(ω = 0) = 0. Thus,
for a stationary instability in the original case, also the adjoint case is stationary.



Chapter 8

Conclusions

In this thesis we theoretically studied the nonlinear properties of the normal field or
Rosensweig instability in isotropic magnetic gels. The Rosensweig instability, discovered
in 1967, describes the phenomenon of the transition between an initially flat surface of a
magnetic fluid and a deformed surface of hexagonally ordered surface spikes, as soon as
a homogeneous magnetic field applied perpendicular to the flat surface exceeds a certain
critical value. Magnetic gels combine the superparamagnetic behavior of magnetic fluids
with the elastic properties of elastomers. If exposed to a homogeneous magnetic field also
the free surface of a ferrogel undergoes a transition from an initially flat state to a state
of regularly ordered surface spikes beyond a certain critical field strength. The critical
magnetic field, however, increases with increasing shear modulus. The characteristic wave
number instead remains unchanged compared to usual ferrofluids.

The Rosensweig instability differs from other instabilities by its static nature. A mo-
tionless flat surface becomes unstable and deforms until another motionless but deformed
state is fully developed. In mathematical terms, this static property manifests itself in a
vanishing frequency of the characteristic surface mode at the linear onset, a result also
typical for stationary instabilities but with the difference that the velocity field there
usually stays finite. This static property motivated a time independent treatment of the
nonlinear equations in previous discussions. In chapter 3 we focused first on the linear
properties of the Rosensweig instability and showed that its static nature should be in-
terpreted as the limiting process of surface waves whose frequency tends to zero rather
than as a time independent process from the beginning. Treating the set of hydrodynamic
equations dynamically, we were able to derive the corresponding linear eigenvectors. The
static limits of the latter reveal the static nature of the Rosensweig instability, namely
that the velocity field vanishes identically whereas the strain field acquires a finite static
value. This rather singular property is due to the deformability of the surface, which
is modeled by the kinematic boundary condition. This condition relates the temporal
change of the surface position to the local velocity normal to the surface. If treated in
a time-independent manner, this condition maps the rigid boundary condition and the
surface does not deform.

A first theoretical discussion of the nonlinear regime of the Rosensweig instability in
usual ferrofluids was given by Gailitis, who energetically compared the stability of different
regular surface patterns. In chapter 4 we extended this energy method with additional
elastic contributions in order to describe isotropic magnetic gels. By minimizing the
surface energy density for the three regular patterns of stripes, squares and hexagons
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we found that the stripe pattern is never stable with respect to either of the other two
patterns. At the linear onset, the hexagonal configuration of surface spikes turns out to
be the energetically favored pattern. Upon further increase of the control parameter the
hexagonal pattern in turn becomes energetically unstable and a square pattern develops.
Both transitions, from the flat surface to hexagons and from hexagons to squares, are
accompanied by hysteretic regions that become smaller for increasing elastic shear moduli.

The energy method compares the energy of the possible surface patterns but does nei-
ther predict, which of these patterns can be dynamically attained, nor takes into account
the dissipative processes in the medium that become important during the growth of the
surface spikes. Furthermore, it is strictly valid only in the unphysical limit of a vanishing
magnetic susceptibility. These drawbacks motivated us to discuss in the fifth chapter
the nonlinear regime of the Rosensweig instability using an expansion of the fundamen-
tal hydrodynamic equations in terms of the normalized difference ǫ between the applied
magnetic field and the critical one.

When expanding the fundamental hydrodynamic equations in terms of ǫ, the non-
linearities give rise to inhomogeneities in the second and higher order equations. To
systematically guarantee the solvability of these equations using Fredholm’s theorem, the
adjoint linear eigenvectors are needed. For systems involving a deformable surface in
general and for the Rosensweig instability in particular, the set of adjoint linear equa-
tions with their corresponding boundary conditions were not known. For the derivation
of the latter two assumptions turned out to be crucial. First, one has to treat the system
dynamically and the static limit should only be used at the very end, and second, one
has to start with the hydrodynamic set of equations describing a compressible medium.
The incompressibility assumption can then be used once the system of equations is ad-
joint. The first assumption rests on the findings of the linear discussion, namely that the
static character of the Rosensweig instability should be interpreted as a limiting process
rather than as a static process from the beginning. The second assumption guarantees the
symmetry of the stress tensor that is needed to consistently define the adjoint tangential
boundary conditions. With the set of adjoint equations and the corresponding boundary
conditions, the adjoint linear eigenvectors were obtained. Thereby right traveling waves
in the original system transform into left traveling waves in the adjoint system and vice
versa. Furthermore they show the same static properties as the original eigenvectors,
namely that the adjoint velocity field vanishes in the static limit whereas the strain field
acquires a finite static value.

With the adjoint linear system for the Rosensweig instability at hand, we fulfilled
the solvability conditions in the second and in the third perturbative order in terms of ǫ
and finally obtained the amplitude equation for the Rosensweig instability. Within the
scope of our assumptions, in particular because we neglected magnetostrictive effects, the
hydrodynamic and the magnetic bulk equations decouple. Since we assumed a fast relax-
ing magnetic field which is governed by linear static Maxwell equations, the solvability
condition for the magnetic equations is fulfilled trivially. As a consequence, Fredholm’s
theorem applied to the hydrodynamic bulk equations does not contain the magnetic field
variables, which act as the control parameter. Besides the bulk equations the Rosensweig
instability crucially depends on the boundary conditions and in particular on the normal
stress boundary condition. We showed in our analysis that the normal stress boundary
condition cannot be fulfilled trivially in the higher perturbative orders, but rather acts as
a supplement to Fredholm’s theorem, in order to determine the higher order corrections
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to the control parameter.

In the derived amplitude equation two contributions are important. We succeeded for
the first time in deriving the quadratic coefficient in the amplitude equation from the fun-
damental hydrodynamic equations. The quadratic coefficient implies that hexagons are
the stable configuration of surface spikes at the linear threshold and in addition that the
bifurcation from the flat surface to the surface spikes is transcritical involving a bistable
region between hexagonally ordered spikes and the flat surface below the linear threshold.
Both results are experimentally verified properties of the Rosensweig instability. Addi-
tionally we derived a second order time derivative in the case of magnetic gels. The
linearized amplitude equation therefore acquires the form of a damped harmonic oscilla-
tor. If a finite amplitude surface pattern is disturbed, this disturbance will relax in the
form of a damped oscillation. In the case of the Rosensweig instability in ferrofluids, whose
amplitude equation has also been derived in this thesis, this second order time derivative
is not present. The amplitudes of the stable static surface patterns are determined by
the cubic coefficients in the amplitude equation. They show that for high magnetic field
strengths the hexagons become unstable and transform into a square pattern. A result
that is in accordance with the energy method. The cubic coefficients calculated in this
thesis are independent of the elastic shear modulus and the magnetic susceptibility, due
to the assumption of a linear elastic as well as a linear magnetic medium.

Our discussions revealed that the Rosensweig instability is a purely surface driven
instability within the scope of our assumptions. A natural question is then to ask: What
happens, if the superparamagnetic medium is just a surface, namely a thin film or a mem-
brane. In chapter 6 we discussed this question assuming a membrane, either made of an
isotropic or an anisotropic magnetic gel, floating on a Newtonian liquid or on a ferrofluid.
In the first case we realized, that the film does not become unstable, if we assume an
isotropic magnetic gel. An intuitive reason for this is given by the character of the driving
force itself. Small surface fluctuations render the applied homogeneous magnetic field lo-
cally inhomogeneous, which causes a Kelvin force. In the case of membranes we showed,
that in the limit of vanishing film thickness the magnetic field remains undistorted causing
no force acting to the magnetic film. This changes if we assume an anisotropic magnetic
gel, where the frozen-in magnetization is rigidly anchored to the elastic medium. In this
case the film becomes unstable with respect to periodical disturbances if the frozen-in
magnetization is oriented opposite to the applied magnetic field. A typical property of
the Rosensweig instability in isotropic magnetic gels is that its characteristic wavelength
is the same as for usual ferrofluids. If we assume a non-magnetic film floating on top of a
usual ferrofluid, this changes and the characteristic mode depends on the elastic properties
of the membrane.

We realized in this thesis that the character of the Rosensweig instability is owed to
the deformability of the surface between the magnetic medium and the vacuum above.
Another very prominent example of an instability which involves a deformable surface is
given by the pure Marangoni instability. In this case, temperature fluctuations at the
free surface of a fluid cause fluctuations of the surface tension that in turn deform the
surface and drive convection. In the case of the Marangoni convection, the adjoint system
of linear equations that takes into account a deformable surface also was unknown and
nonlinear discussions therefore had to assume flat and undeformable surfaces. Using the
same arguments as for the Rosensweig instability, we were able to derive the adjoint system
and the corresponding boundary conditions for the Marangoni instability. As shown in
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chapter 7, the adjoint boundary conditions involve the linear eigenvectors of the original
system. The latter property is due to a bulk coupling between the temperature field and
the velocity field, although this coupling does not drive the instability. As a consequence,
the solution of the adjoint system for the Marangoni convection is rather involved and
an easy interpretation in terms of a translation between right and left traveling waves,
as it was the case for the Rosensweig instability, is not possible. The driving force in
the case of the Marangoni instability acts purely tangentially, while for the Rosensweig
instability the force is orthogonal. Thus the method used to derive the adjoint systems
for both instabilities should also work for any arbitrary orientation of the driving force at
the surface.



Appendix A

Decoupling of the dynamic system

In this appendix we show explicitly the decoupling of the Maxwell equations and the
bulk equations for the magnetic medium under the assumptions of linear magnetostatics
and negligence of magnetostrictive effects. Separating the actual magnetic field into the
applied magnetic field H0 (respectively B0 for the flux density) and the perturbations due
to the deformed surface denoted as h respectively b

H = H0 + h (A.1)

B = B0 + b (A.2)

The latter can be expressed as the gradient of a scalar potential Φ

h = −∇Φ (A.3)

b = −µ∇Φ (A.4)

with µ denoting the magnetic permeability of the medium.
The magnetic field enters the dynamic bulk equations of the medium only through

the stress tensor Tij given by (2.35). Concentrating on the magnetic contributions of the
momentum conservation equation (2.33), we obtain, since the applied magnetic field is
assumed be constant, the contributions

∂j

(

Bihj + Hjbi + bihj −
1

2
(Bkhk + Hkbk + bkhk)δij

)

(A.5)

Substituting the perturbed magnetic fields in terms of the scalar potential one can simplify
(A.5) as

∂j

(

−Bi∂jΦ− Bj∂iΦ + µ(∂iΦ)(∂jΦ) + Bk(∂kΦ)δij −
1

2
µ(∂kΦ)(∂kΦ)δij

)

(A.6)

Evaluating the partial derivative ∂j leaves us with

−Bi∂j∂jΦ−Bj∂j∂iΦ + µ(∂iΦ)(∂j∂jΦ) + µ(∂jΦ)∂j∂iΦ + Bj∂j∂iΦ− µ(∂jΦ)∂j∂iΦ

(A.7)

Obviously the second term cancels the fifth as well as the third term cancels the sixth.
The remaining two contributions cancel by realizing that the magnetic scalar potential
has to satisfy the Laplace equation. In total all magnetic contributions cancel in the bulk
equations for the magnetic medium.
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Appendix B

Magnetic fields

Within the scope of our assumptions the hydrodynamic bulk equations completely de-
couple from the magnetic bulk equations. This enables us to find solutions to the bulk
system separately. Furthermore, since the magnetic system is entirely independent of
any hydrodynamic variable (except that the distortions of the magnetic field should be
proportional to the surface deformation) it is worth determining the magnetic field for
a given surface deformation ξ(x, y, t) first and substitute afterwards into the system of
hydrodynamic equations. In this section we give a detailed derivation for all the magnetic
field expressions used in the main text.

B.1 The Heaviside-Lorentz system of

electromagnetic units

Throughout this thesis the Heaviside-Lorentz or the rationalized Gauss system of electro-
magnetic units has been used to describe the magnetic phenomena [69]. The choice of this
system is set by the fundamental hydrodynamic equations in chapter 2 and in particular
by the choice of the energy density (2.7). We will therefore introduce this system of units
in this section based on the book of Jackson [69] and although this thesis only considers
magnetic fields we will, for completeness, include the electric degrees of freedom in this
introductory section as well.

The fundamental laws in the electrodynamic theory, Coulomb’s law of electrostatics
and the Ampère law, only give proportionalities between measured forces, FC and FA re-
spectively, and the distance and the magnitude of two electric charges or electric currents.
Coulomb’s law reads

FC = k1
q1q2

r2
(B.1)

where q1 and q2 are electric charges, r is the distance between them and k1 is a propor-
tionality constant and Ampère’s law is given by

dFA

dl
= 2k2

I1I2

r
(B.2)

relating the force per unit length to the electric currents I1 and I2 that are carried by
two parallel, infinitely long conducting wires of negligible cross-section separated by the
distance r.
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Quantity Heaviside-Lorentz SI

Speed of light c (µ0ǫ0)
−1/2

Magnetic induction B B/
√

µ0

Magnetic field H
√

µ0H

Magnetic scalar potential Φ
√

µ0Φ

Magnetization M
√

µ0M

Magnetic permeability µ µ/µ0

Table B.1: This table shows the conversion rules between the Heaviside-Lorentz
system of units used in this thesis and the SI units (taken from [69]) for the macro-
scopic variables relevant in this thesis. The magnetic permeability of vacuum is
given by µ0 = 4π · 10−7H/m and the speed of light by c = 2.99792458 · 108m/s.

The proportionality constants k1 and k2 are either given by the eqs. (B.1) and (B.2) if
the unit charge has been chosen independently or one can choose them arbitrarily with the
consequence of defining unit charge. Due to the common definition of the electric current
as the time rate of change of charge, one can give the relative dimension of k1 with
respect to k2 as k1 = c2k2

1, where c denotes the speed of light. In the Heaviside-Lorentz
system of units these proportionality constants are arbitrarily chosen as k1 = 1/(4π) and
k2 = 1/(4πc2) and the Heaviside-Lorentz system therefore differs from the usual Gaussian
system of units by a factor 4π.

Measured in the Heaviside-Lorentz units, the magnetic and the electric field variables
acquire the same physical units and the constitutive equations read

D = E + P (B.3)

H = B−M (B.4)

where D denotes the electric displacement field, E the electric field and P the electric
polarization. The last equation is exactly the relation between the magnetic field H, the
magnetic flux density B and the magnetization M as we obtain by thermodynamic means
in eq. (2.9). In the Heaviside-Lorentz system of units the Maxwell equations acquire the
form

∇ ·D = ρel (B.5)

∇×H =
J

c
+

∂D

c∂t
(B.6)

∇×E = −∂B

c∂t
(B.7)

∇ ·B = 0 (B.8)

where ρel and J denote the electrical charge density and its corresponding current, re-
spectively. In the absence of the latter and for time independent magnetic fields, which is

1At this point one can only claim that the relative dimensions of k1 and k2 are that of velocity squared,
whereas the magnitude is still arbitrary. Deriving the wave equation from this, however, fixes the still
undetermined magnitude of this velocity to that of the speed of light in vacuum (cf. [69]).
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one of our assumptions, these equations become the static Maxwell equations (2.36) and
(2.37) as used in this thesis. To convert the equations in this thesis to the SI system, the
rules given in table B.1 can be applied.

B.2 Expansion to higher perturbative orders

B.2.1 The Maxwell equations

For the nonlinear discussion of an instability involving a deformable surface, it is con-
venient to distinguish the externally applied magnetic field Hext in all orders from the
distortion field h due to the deformed surface and correspondingly for the magnetic flux
densities

H = Hext + h and B = Bext + b (B.9)

The external magnetic field is, in our geometry, always directed parallel to the z−axis
(cf. fig. 2.1 on p. 18), however, the magnitude remains tunable. We therefore expand the
applied external field as well as the flux density according to

Hext = Hc + ǫH(1) + ǫ2H(2) + . . . (B.10)

Bext = Bc + ǫB(1) + ǫ2B(2) + . . . (B.11)

where ǫ denotes the normalized difference between the applied magnetic field and the
critical one (this is the expansion we used in eq. (5.1)).

In addition, the deformed surface will cause the magnetic field to be distorted. These
deviations from the applied magnetic field are taken into account by the field h and b

that are also expanded similarly as

h = ǫh(1) + ǫ2h(2) + . . . (B.12)

b = ǫb(1) + ǫ2b(2) + . . . (B.13)

The same expansion applies to the corresponding fields in the vacuum.
The deviations from the applied field still have to satisfy the linear magnetostatic

equations, b = µh and ∇·b = 0 = ∇×h, which allows for the introduction of a magnetic
scalar potential [69] h = −∇Φ that is then governed by the Laplace equation

∆Φ = 0 and ∆Φvac = 0 (B.14)

The scalar magnetic potentials attain the expansion in terms of ǫ from the fields and
correspondingly are written as

Φ = ǫΦ(1) + ǫ2Φ(2) + ǫ3Φ(3) + . . . (B.15)

This one to one correspondence between distortion field h and the scalar potential Φ
within the different orders is only true within the scope of our assumptions of chapter 5
where long wavelength variations of the arising pattern are discarded.

Since the Laplace equation is linear and homogeneous, its expansion to the higher
orders is trivial. The bulk solutions can be found in each order independently and in
particular, Fredholm’s theorem will be fulfilled in each order.
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B.2.2 The boundary conditions

Since the surface normal n is not constant but depends on the surface deflection (as do the
distorted field contributions), a higher harmonic coupling to previous orders is possible
(in contrast to the system of bulk equations). For the upcoming calculation it is useful
to determine first the fields at the boundary z = ξ

H = Hc + ǫ
(

H(1) − (∇Φ(1))z=0

)

+ ǫ2
(

H(2) − (∇Φ(2))− ξ(1)(∂z∇Φ(1))z=0

)

+ǫ3

(

H(3)−(∇Φ(3))z=0−ξ(1)(∂z∇Φ(2))z=0−
1

2
[(ξ(1)2∂2

z +2ξ(2)∂z)∇Φ(1)]z=0

)

(B.16)

and accordingly for the magnetic field Hvac and the magnetic flux densities B and Bvac.
The contributions in (B.16) that are explicitly proportional to ξ(1) or ξ(2) are due to the
deformable surface.

As mentioned, the surface normal n, initially directed parallel to the z−axis, changes
its orientation in the course of time as the surface perturbation grows (cf. fig. 2.1 on
p. 18). To give a proper expansion of the boundary conditions, we additionally have to
expand the surface normal as a function of the surface deflection ξ(x, y, t)

n = n0 + ǫn(1) + ǫ2n(2) + ǫ3n(3) (B.17)

with the different perturbative contributions given by

n(1) =







−∂xξ
(1)

−∂yξ
(1)

0






, n(2) =







−∂xξ
(2)

−∂yξ
(2)

1
2
(∂xξ

(1))2 + 1
2
(∂yξ

(1))2






(B.18)

and n(3) =







−∂xξ
(3) − 1

2
(∂yξ

(1))2(∂xξ
(1))− 1

2
(∂xξ

(1))3

−∂yξ
(3) − 1

2
(∂xξ

(1))2(∂yξ
(1))− 1

2
(∂yξ

(1))3

(∂yξ
(1))(∂yξ

(2)) + (∂xξ
(1))(∂xξ

(2))






(B.19)

With the previous considerations on hand, we are able to expand the boundary con-
ditions in terms of ǫ. The fact that the normal component of the magnetic flux density is
continuous at the boundary gives the following condition

n ·
(

Hvac −H
)

= n ·
(

Bvac −B + M
)

= n ·M (B.20)

Consider the linear perturbative order of the last equation

n(1) ·
(

Hvac
c −Hc

)

+ n(0) ·
(

H(1)vac −H(1)
)

= n(1) ·M(0) + n(0) ·M(1) (B.21)

For the constant contributions (constant with respect to x and y), we find

H(1)vac
z −H(1)

z = M (1)
z (B.22)

while the contributions proportional to n(1) cancel identically. The corresponding expres-
sion for the second order contribution to the applied field, H

(2)vac
z −H

(2)
z = M

(2)
z , can be

obtained straightforwardly.
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The boundary condition for the tangential components of the magnetic field (2.38) is
given in linear order

n(1) × (Hvac
c −Hc) + n(0) ×

(

H(1)vac −H(1)
)

= 0 (B.23)

which can be simplified substituting eq. (B.22) to (with a ∈ {x, y})

h(1)vac
a − h(1)

a = −(∂aξ
(1))M0 (B.24)

In the second perturbative order we find

n(2)×
(

Hvac
c −Hc

)

+ n(1) ×
(

H(1)vac −H(1) −∇Φ(1)vac +∇Φ(1)
)

+n(0) ×
(

H(2)vac −∇Φ(2)vac + kcξ
(1)∇Φ(1)vac −H(2) +∇Φ(2) + kcξ

(1)∇Φ(1)
)

= 0

(B.25)

which is simplified in the same manner (by exploiting the results of the previous order)
to

(

∂aΦ
(2)vac − ∂aΦ

(2)
)

− (∂aξ
(2))Mc − (∂aξ

(1))M (1)

+(∂aξ
(1))
(

∂zΦ
(1)vac − ∂zΦ

(1)
)

− kcξ
(1)
(

∂aΦ
(1)vac + ∂aΦ

(1)
)

= 0 (B.26)

with a ∈ {x, y}. Upon substituting the linear solutions (B.34) and (B.35) this immediately
leads to expressions (B.39) and (B.40) used in section B.4 to find the magnetic eigenvectors
in the second perturbative order. Finally we deduce for the tangential boundary condition
in the third perturbative order

n(3)× (Hvac
c −Hc) + n(2) ×

(

H(1)vac −H(1) − (∇Φ(1)vac) + (∇Φ(1))
)

+ n(1) ×
(

H(2)vac −H(2) − (∇Φ(2)vac) + (∇Φ(2)) + kcξ
(1)(∇Φ(1)vac) + kcξ

(1)(∇Φ(1))
)

+ n(0) ×
(

H(3)vac −H(3) − (∇Φ(3)vac) + (∇Φ(3))− ξ(1)(∂z∇Φ(2)vac) + ξ(1)(∂z∇Φ(2))

−1

2
(k2

cξ
(1)2 − 2kcξ

(2))(∇Φ(1)vac) +
1

2
(k2

cξ
(1)2 + 2kcξ

(2))(∇Φ(1))
)

= 0 (B.27)

where it will be sufficient for our discussion to consider only the contributions proportional
to the main characteristic modes ξ(1) as discussed in section 5.3.2.

Along the same lines the boundary condition that guarantees the continuity of the
normal component (2.39) of the magnetic flux density is derived. In first perturbative
order we get

n(1) · (Bvac
c −Bc) + n(0) ·

(

B(1)vac −B(1)
)

= 0 (B.28)

which is straightforwardly simplified to

b(1)vac
z − b(1)

z = 0 (B.29)

For the corresponding condition in the second perturbative order we obtain

n(2) ·
(

Bvac
c −Bc

)

+ n(1) ·
(

B(1)vac −B(1) −∇Φ(1)vac + µ∇Φ(1)
)

+n(0) ·
(

B(2)vac −B(2) −∇Φ(2)vac + µ∇Φ(2) + kcξ
(1)∇Φ(1)vac + µkcξ

(1)∇Φ(1)
)

= 0

(B.30)
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which is simplified by exploiting the previous order to

µ∂zΦ
(2) − ∂zΦ

(2)vac − (∂xξ
(1))
(

µ∂xΦ
(1) − ∂xΦ

(1)vac
)

−(∂yξ
(1))
(

µ∂yΦ
(1) − ∂yΦ

(1)vac
)

+ kcξ
(1)
(

µ∂zΦ
(1)vac + ∂zΦ

(1)
)

= 0 (B.31)

Finally, the third order boundary conditions takes the form

n(3) · (Bvac
c −Bc) + n(2) ·

(

B(1)vac −B(1) − (∇Φ(1)vac) + µ(∇Φ(1))
)

+ n(1) ·
(

B(2)vac −B(2) − (∇Φ(2)vac) + µ(∇Φ(2)) + kcξ
(1)(∇Φ(1)vac) + µkcξ(∇Φ(1))

)

+ n(0) ·
(

B(3)vac −B(3) − (∇Φ(3)vac) + µ(∇Φ(3))− ξ(1)(∂z∇Φ(2)vac) + µξ(1)(∂z∇Φ(2))

−1

2
(k2

cξ
(1)2 − 2kcξ

(2))(∇Φ(1)vac) +
1

2
(k2

cξ
(1)2 + 2kcξ

(2))(∇Φ(1))
)

= 0 (B.32)

where again it will be sufficient for our discussion to focus on the contributions propor-
tional to the main characteristic modes ξ(1).

Since we expect to find the amplitude equation as the solvability condition for the
third perturbative order of the basic equations, it is sufficient to truncate the expansion
of the magnetic boundary conditions here.

B.3 Solutions in linear order

With the magnetic boundary conditions in the different perturbative orders at hand, we
can start to solve the magnetic Laplace equation (B.14). For the linear deviations form
the ground state, the Laplace equation can be solved with the ansatz [20]

Φ(1) = Φ̂(1)ξ(1)ekz and Φ(1)vac = Φ̂(1)vacξ(1)e−kz (B.33)

Substituting this bulk solutions into the boundary conditions (B.24) and (B.29) yields
the governing equations for the yet undetermined amplitudes Φ̂(1) and Φ̂(1)vac

∂xΦ
(1)vac − ∂xΦ

(1) = (∂xξ
(1))M0 (B.34)

∂zΦ
(1)vac − µ∂zΦ

(1) = 0 (B.35)

Finally we obtain as the solution for the scalar magnetic potential in linear order

Φ(1) = − M0

1 + µ
ξ(1)ekz (B.36)

Φ(1)vac =
µM0

1 + µ
ξ(1)e−kz (B.37)

B.4 Solutions in higher orders

In second order we obtain for the Laplace equation

∆Φ(2) = 0 and ∆Φ(2)vac = 0 (B.38)
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in the medium and in vacuum, respectively. In the second order of the ǫ−expansion the
magnetic boundary conditions for the tangential component of the total magnetic field
H + h can be simplified to

∂xΦ
(2)vac − ∂xΦ

(2) =
2µ

1 + µ
Mc ∂xξ

(2) + M (1)∂xξ
(1) (B.39)

∂yΦ
(2)vac − ∂yΦ

(2) =
2µ

1 + µ
Mc ∂yξ

(2) + M (1)∂yξ
(1) (B.40)

while the boundary condition for the normal component of the flux density B reads

∂zΦ
(2)vac − µ∂zΦ

(2) = − µ

1 + µ
Mc

∑

i,j

(k2
1ijξiξj + k2

2ijξiξ
∗
j + c.c.) (B.41)

where we introduced abbreviations that depend on the angle θij between the i-th and the
j-th main characteristic mode

k1ij = kc

√

2 + 2 cos θij (B.42)

k2ij = kc

√

2− 2 cos θij (B.43)

A convenient ansatz for the magnetic scalar potentials to solve this system of equations
consists of two contributions. The first contribution Φ(2,1) is proportional to the linear
deflection ξ(1) to account for the contributions proportional to M(1) in the boundary
conditions (B.39) and (B.40). This automatically satisfies the Laplace equation (B.38)
for Φ(2,1) (section B.3). The second contribution Φ(2,2) accounts for the higher harmonic
couplings of the linear characteristic modes proportional to ξ(2), which are modeled by
the product of two characteristic modes

ξ(2) = kc

∑

i,j

(ξiξj + ξiξ
∗
j + c.c.) (B.44)

The characteristic wave vector kc in eq. (B.44) is just added to give ξ(2) the same unit as
ξ(1).

The Laplace equation (B.38) for Φ(2,2) is satisfied by the ansatz

Φ(2,2) = kc

∑

i,j

(Φ̂
(2,2)R
ij ξiξje

k1ijz + Φ̂
(2,2)I
ij ξiξ

∗
j e

k2ijz + c.c.) (B.45)

and by a corresponding one for the magnetic potential in vacuum.
The boundary conditions for the different Fourier modes decouple and can be satisfied

separately. We obtain for the contributions proportional to ξ(1)

Φ(2,1) = −M (1)

1 + µ
ξ(1)ekcz (B.46)

Φ(2,1)vac =
µM (1)

1 + µ
ξ(1)e−kcz (B.47)

which are of the same structure as in the linear case. The presence of M (1) guarantees
Φ(2,1) to be of second order.



112 Magnetic fields

The contributions due to the higher harmonics of the characteristic modes read

Φ̂
(2,2)R
ij =

µ

(1 + µ)2
Mc

(k1ij

kc

− 2
)

(B.48)

Φ̂
(2,2)Rvac
ij =

µ2

(1 + µ)2
Mc

(k1ij

µkc

− 2
)

(B.49)

while Φ̂
(2,2)L
ij and Φ̂

(2,2)Lvac
ij are obtained replacing k1ij by k2ij in eqs. (B.48) and eqs. (B.49),

respectively.
Finally we seek the necessary contributions of the magnetic field in the third pertur-

bative order. We restrict the discussion to those proportional to the main characteristic
modes ξ(1). The differential equations for the scalar potentials of the distortions to the
magnetic fields read

∆Φ(3,1) = 0 and ∆Φ(3,1)vac = 0 (B.50)

with the corresponding boundary conditions (at z = 0) given by

∂yΦ
(3,1)vac − ∂yΦ

(3,1) = M (2)∂yξ
(1) (B.51)

∂xΦ
(3,1)vac − ∂xΦ

(3,1) = M (2)∂xξ
(1) (B.52)

∂zΦ
(3,1)vac − µ∂zΦ

(3,1) = 0 (B.53)

The solutions of this set of equations is obtained following the lines of the second order
calculations, eqs. (B.46) and (B.47), leading to

Φ(3,1) = −M (2)

1 + µ
ξ(1)ekcz and Φ(3,1)vac =

µM (2)

1 + µ
ξ(1)e−kcz (B.54)

The contributions due to the higher harmonic modes could in principle be calculated
in the same way as in the second order. However, these contributions again contribute
only to the pressure offset and are therefore of no importance for the amplitude equation.

B.5 Magnetic fields in the case of membranes

B.5.1 The superparamagnetic case

Since the driving force of the Rosensweig instability is solely manifest in the boundaries,
the question arises what happens in case of an infinitely thin deformable magnetic medium.
The behavior of a magnetic membrane is discussed in chapter 6 of the main text. Here
we provide the magnetic field solutions for the geometry depicted in fig. 6.1 on p. 78, to
get the necessary coefficient κ1, eq. (6.25).

Having in mind that we are interested in the limit kd→ 0, we assume the two bound-
aries ξ+ and ξ− at z = +d/2 and z = −d/2, respectively, to be distorted in-phase from
their initially flat position by ξ± = ξ ≡ ξ0 exp i(ωt−kx). Also for the membranes we only
consider the magnetostatic limit, since the surface wave frequencies involved are much
smaller than the electrodynamic ones. The magnetizations are assumed to follow instan-
taneously (on the time scale of the surface waves) the external fields. This leads to the



B.5 Magnetic fields in the case of membranes 113

Laplace equation for the magnetic potentials of the field-distortions h(α) = −∇Φ(α) from
the initially homogenous fields H

(α)
hom = B(α)/µα in the three regions α = {a, m, b}

∆Φ(i) = 0 (B.55)

The solution of these three equations can be written as

Φ(a) = Φ̂(a)ξe−kz (B.56)

Φ(m) = Φ̂(m)
a ξekz + Φ̂

(m)
b ξe−kz (B.57)

Φ(b) = Φ̂(b)ξekz (B.58)

defining the amplitudes Φ̂(a), Φ̂
(m)
a , Φ̂

(m)
b , and Φ̂(b) with k2 = k2

x + k2
y. These functions

have to fulfill the usual magnetic boundary conditions [69]

n×H(a) = n×H(m) (B.59)

n ·B(a) = n ·B(m) (B.60)

at z = −d/2 and

n×H(m) = n×H(b) (B.61)

n ·B(m) = n ·B(b) (B.62)

at z = −d/2. The amplitudes are therefore related to the external magnetic field strength
B by

Φ̂(a) =
µb − µa

µb + µa

B

µa
(B.63)

Φ̂(b) =
µa − µb

µb + µa

B

µb

(B.64)

where the limit kd→ 0 has already been taken. The magnetic contributions to the stress
tensor

Tij =
1

2
B ·H δij −

1

2
(BiHj + BjHi) (B.65)

enter the l.h.s. of the normal stress boundary condition (6.22) as

T (a)
zz − T (b)

zz = B ∂z(Φ
(a) − Φ(b)) (B.66)

= −B2k
(µa − µb)

2

µaµb(µa + µb)
ξ (B.67)

which immediately leads to the magnetic contribution in eq. (6.24) with the coefficient κ1

given in eq. (6.25).
As we take the limit towards infinitely thin films, the magnetization M′ in the mem-

brane becomes a density per unit area. We therefore introduce the effective surface per-
meability of the infinitely thin film µ′ within the same framework as done for the in-plane
elastic moduli in [86] and as derived in section 6.3

H′ =
1

µ′B
(m) (B.68)
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with the effective permeability of the membrane µ′ given by µ′ = µm/d.
Expanding the magnetic potential in the membrane Φ(m) (at z = 0) in terms of the

film thickness d, gives

Φ(m) =
µa + µb − 2µm

µa + µb

B

µm
ξ +O(d) (B.69)

Substituting (B.69) into the expression of the membrane stress tensor T
(m)
ij yields, after

integration over the film thickness and substitution of the expression for the effective
membrane permeability, a distortion linear in ξ to the effective film stress tensor T

(m)
ij

T
(m)
zj = −iB2µ′−1kjξ +O(d) (B.70)

Taking the divergence of T
(m)
zj results in the source of normal stress due to the presence

of the magnetic membrane in the effective boundary condition (6.22)

∂jT
(m)
zj = −B2k2µ′−1ξ (B.71)

This contribution is always stabilizing. For the case of a large magnetic contrast between
the fluids a and b the contribution (B.67) dominates in the limit of vanishing kd and is
therefore used in section 6.6.1.

B.5.2 The permanent-magnetic case

Things slightly change, when assuming a membrane made of an anisotropic magnetic gel
[14, 15, 91]. We take the intrinsic permanent magnetization M0 of the initially flat film
to be oriented antiparallel to the externally applied magnetic field and assume the same
geometry as done for the paramagnetic case (see fig. 6.1 on p. 78). However, the magne-
tization in the membrane material is fixed and is assumed not to change its magnitude
while applying an external magnetic field.

The ground state for the unperturbed flat case with an intrinsic membrane magneti-
zation M0 and an externally applied field B is given for the surrounding media a and b
by (α ∈ {a, b})

B(α)
z = B −M0 (B.72)

H(α)
z =

1

µα
B − 1

µα
M0 (B.73)

M (α)
z =

(

1− 1

µα

)

(B −M0) (B.74)

while the situation in the film is defined by

Bz = B −M0 (B.75)

Hz = B (B.76)

The intrinsic magnetization M0 is anchored rigidly to the membrane, therefore while
deforming the film, the magnetization follows as

M = −M0ez + M0∇ξ (B.77)
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The magnetic flux density B(m) in the membrane is then given by

B(m) = −M0ez + M0∇ξ + H(m) + Bez (B.78)

We can split the field H(m) in the membrane again into a constant undisturbed part, given
by eq. (B.76), and a part proportional to the surface deflection ξ. Due to the latter part
the static Maxwell equations can be fulfilled, which correspond to the following Poisson
equation for the potential Φ(m) defined by h(m) = −∇Φ(m)

∆Φ(m) = M0∆ξ (B.79)

whose general solution is given by

Φ(m) = Φ̂(m)
a ekzξ + Φ̂

(m)
b e−kzξ + M0ξ (B.80)

For the distortions in the bulk fluids a and b we assume the same structure as in the
superparamagnetic case, fulfilling the Laplace equation. Matching the field disturbances
according to the magnetic boundary conditions (B.60) and (B.60) at the two surfaces
z = −d/2 and z = d/2, fixes the amplitudes of the magnetic potential in the three regions.

When performing the limit towards thin films, we have to consider a permanent mag-
netization with respect to the area M ′

0, rather than with respect to the volume. Both
quantities are related by M0 = M ′

0/d when assuming a homogeneously magnetized bulk
material. However, for the actual calculations it is convenient to introduce an effective
membrane permeability µ′

0. Due to the definition of M ′
0, this effective membrane per-

meability is given by µ′
0 = 1/d. Within the limit of vanishing film thickness we then

obtain

Φ(a) = −(B0 − µ′
0M

′
0)(µa − µb)

µa(µa + µb)
e−kzξ (B.81)

Φ(m) = B(µ′
0)

−1ξ (B.82)

Φ(b) =
(B0 − µ′

0M
′
0)(µa − µb)

µb(µa + µb)
ekzξ (B.83)

Evaluation of the right hand side of the boundary condition (6.22) in case of a per-
manent magnetic film material leads to

∂jT
(m)
zj = −(B − µ′

0M
′
0)B(µ′

0)
−1k2ξ (B.84)

In the limit d → 0 this expression simplifies to M ′
0Bk2ξ, which has been used in the

main text, eqs. (6.26,6.27). We realize, that this contribution acts destabilizing if, as we
assumed, the intrinsic magnetization and the applied magnetic field are oriented anti-
parallel.

The usual magnetic normal stress difference arising from the left hand side of eq. (6.22)
turns out to be

T (a)
zz − T (b)

zz = −(B0 − µ′
0M

′
0)

2k
(µa − µb)

2

µaµb(µa + µb)
ξ (B.85)

which again is only non-zero in case of a magnetic contrast between the media a and b.
Furthermore it is essentially the same contribution as in eq. (B.67) with the effective field
B0 − µ′

0M
′
0.
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Appendix C

The hydrodynamic boundary

conditions

C.1 Expansion of the boundary conditions

In this section we discuss the expansion of the hydrodynamic boundary conditions in
terms of ǫ. Recall first, that we require the tangential stress at the free surface to vanish
whereas the normal stress is balanced by surface tension and gravity

n× T · n = n× Tvac · n (C.1)

n · T · n− n · Tvac · n = σT∇ · n− ρGξ (C.2)

The contributions of the stress tensor to the different perturbative orders are defined by
the expansions of the macroscopic variables, eqs. (5.1,5.2), and by the expansion of the
surface normal n, eq. (B.17). The linear eigenvectors of the hydrodynamic set of equations
are either proportional to ekz or eqz (cf. section 3.5). For the boundary conditions one
has to evaluate them at z = ξ and therefore an expansion similar to (B.16) is needed that
explicitly accounts for the deformability of the surface.

C.2 The linear perturbative order

The boundary conditions in linear order are straightforwardly calculated, but are repeated
here for completeness. For the tangential stress boundary condition we obtain

2µ2ǫ
(1)
yz + ν2

(

∂zv
(1)
y + ∂yv

(1)
z

)

= 0 (C.3)

2µ2ǫ
(1)
xz + ν2

(

∂zv
(1)
x + ∂xv

(1)
z

)

= 0 (C.4)

whereas the normal stress boundary condition reads

2µ2ǫ
(1)
zz + 2ν2∂zv

(1)
z − p(1) + Gρξ(1) −

(

µH0∂zΦ
(1) −Hvac

0 ∂zΦ
(1)vac

)

= σT∇ · n(1)

(C.5)

In section 3.2 we introduced potentials for the irrotational and the rotational flow
contributions. To solve the system of equations for the potentials we have to translate
the boundary conditions above to the corresponding ones valid for the potentials. We

117
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start with the tangential boundary conditions. To be able to express the strain field in
terms of the gradient of the velocity field (3.9), we first have to take the derivative of
eqs. (C.3,C.4) with respect to time. Upon substitution of eqs. (3.11) we end up with

µ̃2(∂
2
z − ∂2

y)Ψ
(1)
x + µ̃2(∂y∂x)Ψ

(1)
y + 2µ̃2∂y∂zϕ

(1) = 0 (C.6)

µ̃2(∂x∂y)Ψ
(1)
x + µ̃2(∂

2
z − ∂2

x)Ψ
(1)
y − 2µ̃2∂x∂zϕ

(1) = 0 (C.7)

where the coefficient (µ2 + ν2∂
(0)
t ) has been abbreviated by µ̃2.

For the normal stress boundary condition we additionally have to discuss the contribu-
tions that explicitly contain the surface deflection ξ(1). At a first glance these contributions
may be considered as inhomogeneities. However, the deflection ξ(1) is related to the local
velocity. Upon taking the time derivative of eq. (C.5) we can substitute the linearized

kinematic boundary condition ∂tξ
(1) = v

(1)
z . Following the same lines as in the case of the

tangential boundary conditions, we find

−(2µ̃2∂z∂y + Gρ∂y + σT k2∂y)Ψ
(1)
x + (2µ̃2∂z∂x + Gρ∂x + σT k2∂x)Ψ

(1)
y

+(2µ̃2∂
2
z + Gρ∂z + σT k2∂z)ϕ

(1) − ∂tp
(1) − ∂t

(

H0µ∂zΦ
(1) −Hvac

0 ∂zΦ
(1)vac

)

= 0

(C.8)

Additionally, we can substitute the solution for the pressure p(1), obtained in section
3.2, and the solutions for the magnetic fields, obtained in appendix B, to finally arrive at

−(2µ̃2∂z∂y + Gρ∂y + σT k2∂y −
µ

1 + µ
M2

0 ∂z∂y)Ψ
(1)
x

+(2µ̃2∂z∂x + Gρ∂x + σT k2∂x −
µ

1 + µ
M2

0 ∂z∂x)Ψ
(1)
y

+(2µ̃2∂
2
z + Gρ∂z + σT k2∂z − ρω2 − µ

1 + µ
M2

0 ∂2
z )ϕ

(1) = 0 (C.9)

where again the explicit surface deflection ξ(1), arising from the magnetic solutions, has
been replaced by the local velocity.

The steps leading to eq. (C.8), where we first took the time derivative of eq. (C.5) to
implement afterwards the kinematic boundary condition, are very crucial. By inspection
of eq. (C.5) we realize that it is finite in the stationary limit revealing the force balance
between elastic, gravitation, magnetic and surface tension forces. Eq. (C.8), however, is
at least linear in the time derivative and so are the eigenvectors derived from it. The
latter property is in accordance with the understanding that there is no motion in the
medium, if the surface pattern is fully developed. These considerations show that, due to
the kinematic boundary condition, the bulk equations inherently scale one order higher
with respect to the time derivative, when compared with the normal stress boundary
condition. This different scaling behavior has to be taken into account, if we combine the
solvability conditions from the bulk with those from the normal stress boundary condition
(chapter 5).
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C.3 The second perturbative order

In the second order we find the tangential boundary conditions involving the hydrody-
namic fields as

2µ2ǫ
(2)
xz +ν2

(

∂zv
(2)
x +∂xv

(2)
z

)

=−ξ(1)∂z

[

2µ2ǫ
(1)
xz + ν2(∂xv

(1)
z +∂zv

(1)
x )
]

+ (∂yξ
(1))
[

2µ2ǫ
(1)
yz + ν2(∂yv

(1)
x +∂xv

(1)
y )
]

−2(∂xξ
(1))
[

µ2(ǫ
(1)
zz + ǫ(1)

xx ) + ν2(∂zv
(1)
z + ∂xv

(1)
x )
]

+ ρv(1)
x v(1)

z ≡ Ω(2)
xz (C.10)

2µ2ǫ
(2)
yz +ν2

(

∂zv
(2)
y +∂yv

(2)
z

)

=−ξ(1)∂z

[

2µ2ǫ
(1)
yz + ν2(∂yv

(1)
z +∂zv

(1)
y )
]

+ (∂xξ
(1))
[

2µ2ǫ
(1)
xy + ν2(∂xv

(1)
y +∂yv

(1)
x )
]

−2(∂yξ
(1))
[

µ2(ǫ
(1)
zz + ǫ(1)

yy ) + ν2(∂zv
(1)
z + ∂yv

(1)
y )
]

+ ρv(1)
y v(1)

z ≡ Ω(2)
yz (C.11)

In eqs. (C.11) and (C.10) the inhomogeneities on the right hand side have been abbreviated

by Ω
(2)
xz and Ω

(2)
yz , respectively. In particular these inhomogeneities are proportional to

[ξ(1)]2.
The normal stress boundary condition (C.2) reads in second order

2µ2ǫ
(2)
zz +2ν2∂zv

(2)
z − p(2) + Gρξ(2) − µHc∂zΦ

(2) + Hvac
c ∂zΦ

(2)vac

= −2µ2[ǫ
(1)
zz ]2 + ρ[v(1)

z ]2 −McBc

[

(∂yξ
(1))2 + (∂xξ

(1))2
]

− 1

2
µ
(

∂zΦ
(1)
)2

+
1

2

(

∂zΦ
(1)vac

)2 − 2µHc(∂yξ
(1))(∂yΦ

(1)) + 2Hvac
c (∂yξ

(1))(∂yΦ
(1)vac)

+
1

2
µ(∂yΦ

(1))2 − 1

2
(∂yΦ

(1)vac)2 +
1

2
µ(∂xΦ

(1))2 − 1

2
(∂xΦ

(1)vac)2

−2µHc(∂xξ
(1))(∂xΦ

(1)) + 2Hvac
c (∂xξ

(1))(∂xΦ
(1)vac)

+ξ(1)∂z

(

2µ2ǫ
(1)
zz + 2ν2∂zv

(1)
z − p(1) − µ

1 + µ
M2

c kξ(1)
)

+
µ

1 + µ
M (1)Mckcξ

(1)

−σT ∆ξ(2) (C.12)

Furthermore, we obtain for the kinematic boundary condition in second order

∂
(0)
t ξ(2) + ∂

(1)
t ξ(1) + (v(1) · ∇)ξ(1) = v(2)

z + ξ(1)∂zv
(1)
z (C.13)

The physical boundary is at z = ξ, giving rise to an additional dependence on ξ. In
eqs. (C.11-C.13) such terms have already been made explicit (e.g. the last one of (C.13)).
Thus these boundary conditions are effective ones that have to be taken at z = 0.

Inspecting the expressions (C.12) and (C.13) one immediately realizes that two qual-
itatively different contributions are present. On the one hand we obtain contributions
proportional to the higher harmonic coupling [ξ(1)]2 of the main characteristic mode. On
the other hand, there are still contributions proportional to the main characteristic mode
ξ(1) itself. The latter will allow us to find the linear contributions in an amplitude equation
even though the control parameter is not present in the bulk equations.

To solve the corresponding hydrodynamic bulk equations, we introduced a scalar,
ϕ(2), and a vector potential, Ψ(2), in section 5.3, to discuss potential and rotational flow
contributions separately. Following the same lines as done in the linear order (section
C.2), we can translate the boundary conditions into a corresponding set of equations for



120 The hydrodynamic boundary conditions

the amplitudes of the second order potentials ϕ(2) and Ψ(2). We obtain for the tangential
contributions (C.11) and (C.10)

µ̃2(∂
2
z−∂2

y)Ψ
(2)
x +µ̃2(∂y∂x)Ψ

(2)
y +2µ̃2∂y∂zϕ

(2) = 2µ2v
(1)
k ∂kǫ

(1)
yz +∂

(0)
t Ω(2)

yz (C.14)

−µ̃2(∂x∂y)Ψ
(2)
x −µ̃2(∂

2
z−∂2

x)Ψ
(2)
y +2µ̃2∂x∂zϕ

(2) = 2µ2v
(1)
k ∂kǫ

(1)
xz +∂

(0)
t Ω(2)

xz (C.15)

using ǫ
(1)
xz = ǫ

(1)
yz ≡ 0 at the boundary (cf. eqs. (C.3,C.4)). The normal stress boundary

condition (C.12) translates into

−(2µ̃2∂y∂z + ρG∂y)Ψ
(2)
x + (2µ̃2∂z∂x + ρG∂x)Ψ

(2)
y + (2µ̃2∂

2
z + ρG∂z)ϕ

(2) − ∂
(0)
t p(2)

= ∂
(0)
t

(

Hcµ∂zΦ
(2) −Hvac

c ∂zΦ
(2)vac

)

+ M (1)Mckc
µ

1 + µ
∂

(0)
t ξ(1) + ∂

(0)
t Ω(2)

zz

+2µ2v
(1)
k ∂kǫ

(1)
zz − 2ρGξ(1)∂zv

(1)
z + ρG∂

(1)
t ξ(1) + 2µ2∂

(1)
t ǫ(1)

zz − σT ∂
(0)
t ∆ξ(2) (C.16)

Eqs. (C.14-C.16) follow from (C.11-C.12) by taking the time derivative with respect to

t(0) without loss of generality. This is why in eq. (C.16) only the contribution ∂
(0)
t p(2) and

no contribution ∂
(1)
t p(1) arises, while ∂

(0)
t ǫ

(2)
ij gives rise to contributions ∼v

(2)
i and ∼∂

(1)
t ǫ

(1)
ij

(cf. eq. (5.58)).

C.4 The third perturbative order

We take over the procedure of the previous section to the third order. If we use the solu-
tions (5.81,5.85,5.87) of the hydrodynamic bulk equations in second order, the kinematic
boundary condition reads

∂
(0)
t ξ(3) + ∂

(1)
t ξ(2) + ∂

(2)
t ξ(1) + (v(1) · ∇)ξ(2) + (v(2) · ∇)ξ(1) (C.17)

= v(3)
z +ξ(1)∂zv

(2,2)
z +ξ(1)∂zv

(2,1)hom
z −µ2+µ̃2

qµ̃2
k2

cξ
(1)∂

(1)
t ξ(1)+ξ(2)∂zv

(1)
z +

1

2
ξ(1)2∂2

zv
(1)
z

The tangential boundary conditions are of the usual structure and given as

2µ2ǫ
(3)
yz + ν2

(

∂zv
(3)
y + ∂yv

(3)
z

)

= Ω(3)
yx (C.18)

2µ2ǫ
(3)
yz + ν2

(

∂zv
(3)
y + ∂yv

(3)
z

)

= Ω(3)
xz (C.19)

where inhomogeneous contributions, which are at least proportional to the higher har-
monic couplings, are collected in the abbreviation Ω

(3)
ij , as done similarly in second order.

The only reason why we have to consider the third order boundary conditions is to obtain
the linear contributions to the amplitude equation. The general solution involving the
higher harmonic couplings is not needed. Since Ω

(3)
ij is at least proportional to the higher

harmonic couplings it is therefore unimportant in this discussion and is not shown here.
Taking the time derivative of eqs. (C.18,C.19) together with (5.118) we find

µ̃2(∂
2
z − ∂2

y)Ψ
(3)
x + µ̃2(∂y∂x)Ψ

(3)
y + 2µ̃2∂y∂zϕ

(3) = ∂
(0)
t Ω(3)

yx + 2µ2(∂
(1)
t ǫ(2)

yz + ∂
(2)
t ǫ(1)

yz )

+2µ2(v
(1)
k ∂kǫ

(2)
yz + v

(2)
k ∂kǫ

(1)
yz )(C.20)

−µ̃2(∂x∂y)Ψ
(3)
x − µ̃2(∂

2
z − ∂2

x)Ψ
(3)
y + 2µ̃2∂x∂zϕ

(3) = ∂
(0)
t Ω(3)

xz + 2µ2(∂
(1)
t ǫ(2)

xz + ∂
(2)
t ǫ(1)

xz )

+2µ2(v
(1)
k ∂kǫ

(2)
xz + v

(2)
k ∂kǫ

(1)
xz )(C.21)
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For the normal stress boundary condition we obtain from eq. (C.2)

2µ2ǫ
(3)
zz +2ν2(∂zv

(3)
z )− p(3) + ρGξ(3) − (µHc∂zΦ

(3) −Hvac
c ∂Φ(3)vac)

= (µH(2)∂zΦ
(1) −H(2)vac∂zΦ

(1)vac) + (µH(1)∂zΦ
(2) −H(1)vac∂zΦ

(2)vac)

+Ω(3)
zz + σT∇ · n(3) (C.22)

which by a similar procedure can be written as

−(2µ̃2∂z∂y+ρG∂y)Ψ
(3)
x + (2µ̃2∂z∂x + ρG∂x)Ψ

(3)
y + (2µ̃2∂

2
z + ρG∂z)ϕ

(3) − ∂
(0)
t p(3)

= (µHc∂zΦ
(3) −Hvac

c ∂zΦ
(3)vac) +

µ

1 + µ
(McM

(2) + M (1)2)kc∂
(0)
t ξ(1) + ∂

(0)
t Ω(3)

zz

+ρG(∂
(2)
t ξ(1) + ∂

(1)
t ξ(2) + v

(2)
k ∂kξ

(1) − ξ(1)∂zv
(2)
z − ξ(2)∂zv

(1)
z −

1

2
ξ(1)2∂2

zv
(1)
z )

+2µ2(∂
(2)
t ǫ(1)

zz + ∂
(1)
t ǫ(2)

zz + (v
(1)
k ∂k)ǫ

(2)
zz + (v

(2)
k ∂k)ǫ

(1)
zz ) + σT ∂

(0)
t ∇ · n(3) (C.23)
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Appendix D

Eigenvectors in the second order

In this appendix we give the contributions to the eigenvectors in the second perturba-
tive order that are proportional to the higher harmonic couplings ξ(2). Due to the fact
that we have to treat the system dynamically throughout all orders, the expressions be-
come tedious and have therefore been calculated with Mathematica. In the following the
solutions for the hydrodynamic potentials are represented for the patterns under consid-
eration, hexagons (θij = 2π/3), squares (θij = π/2) and stripes (θij = 0) as well as for the
interaction between hexagons and squares (θij = π/6) (cf. fig. 5.2 on p. 59).

The inhomogeneous contributions to the vector potential, cf. eq. (5.98), separate into
a contribution ∼e(kc+q)z and ∼e2qz . For the hexagonal case (ij = ji = 12 = 23 = 31) we
obtain

Ψinhom
NMij(z) =

(k2
c + q2)(2µ2q

2 − 5µ2qkc + ρ[D
(0)
t ]2)

2q(k2
c − q2)(2kcqµ̃2 + q2µ̃2 − ρ[D

(0)
t ]2)

e(kc+q)zD
(0)
t

+
3k2

cq(µ2k
2
c + 2µ2q

2 − ρ[D
(0)
t ]2)

(k4
c − 5k2

cq
2 + 4q4)(µ̃2k2

c − 4µ̃2q2 + ρ[D
(0)
t ]2)

e2qzD
(0)
t (D.1)

with {N, M} ∈ {R, L}. The abbreviation D
(0)
t stands for 2iω(0) + 2σ(0), 2σ(0), and

−2iω(0) + 2σ(0) for N = M = R, N 6= M , and N = M = L, respectively. The sec-
ond coefficient Ψ̃inhom

NMij reads

Ψ̃inhom
NMij(z) =

(k2
c +q2)(6k3

cµ2−10k2
cqµ2+kcq

2µ2+2q3µ2+qρ[D
(0)
t ]2)

2(2k4
c−2k3

cq−3k2
cq

2+2kcq3+q4)(2k2
c µ̃2−2kcqµ̃2−q2µ̃2+ρ[D

(0)
t ]2)

e(kc+q)zD
(0)
t

− k2
cq(k

2
cµ2 − 2q2µ2 + ρ[D

(0)
t ]2)

(3k4
c − 7k2

cq
2 + 4q4)(3k2

c µ̃2 − 4q2µ̃2 + 2ρ[D
(0)
t ]2)

e2qzD
(0)
t (D.2)

For the square pattern we get (ij = ji = 15)

Ψinhom
NMij(z) =

(k2
c +q2)(4µ2k

3
c−10µ2qk

2
c +2µ2q

3+(kc+q)ρ[D
(0)
t ]2)

2(k4
c−2qk3

c−2k2
cq

2+2kcq3+q4)(µ̃2k2
c−2µ̃2qkc−µ̃2q2+ρ[D

(0)
t ]2)

e(q+kc)zD
(0)
t

+
qk2

c (2µ2q
2−ρ[D

(0)
t ]2)

4(k4
c−3q2k2

c +2q4)(2µ̃2k2
c−4µ̃2q2+ρ[D

(0)
t ]2)

e2qzD
(0)
t (D.3)

= Ψ̃inhom
NMij(z) (D.4)
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For the stripe geometry, i = j, we obtain

Ψinhom
NMij(z) =

(k2
c +q2)

(

6k2
cµ2−4kcqµ2−2q2µ2−ρ[D

(0)
t ]2

)

2(kc−q)(3k2
c +4kcq+q2)

(

3k2
c µ̃2−2kcqµ̃2−q2µ̃2+2ρ[D

(0)
t ]2

)
e(kc+q)zD

(0)
t (D.5)

and

Ψ̃inhom
NMij(z) =

k2
c

[

4k4
cµ2 − 4q2(2q2µ2 − ρ[D

(0)
t ]2)− k2

c (20q2µ2 + 3ρ[D
(0)
t ]2)

]

4(k2
c − q2)2(4q3µ̃2 + qρ[D

(0)
t ]2)

e2qzD
(0)
t

+ Z1

[

4(kc−q)2(kc+q)3
(

k2
c µ̃2+2kcqµ̃2+q2µ̃2−2ρ[D

(0)
t ]2

)

]−1

e(kc+q)zD
(0)
t (D.6)

with the numerator Z1 being given by

Z1 = (k2
c +q2)

(

24k3
cqµ2−4q4µ2−2q2ρ[D

(0)
t ]2+20k2

cq
2µ2+3k2

cρ[D
(0)
t ]2

)

+8kcq
3µ2−4kcqρ[D

(0)
t ]2 (D.7)

In addition, to describe the interaction between the square and the hexagonal pattern,
we need to consider also the case θij = π/6, (ij = ji = 14 = 36 = 25)

Ψinhom
NMij(z) = N−1

1

{

(k2
c +q2)(2q3µ2−10k2

cqµ2+k2
cµ2(1+3

√
3)+qρ[D

(0)
t ]2 (D.8)

+
√

3kcq
2µ2+kc(1−

√
3)ρ[D

(0)
t ]2)

}

e(kc+q)zD
(0)
t

− k2
cq(k

2
cµ2(2

√
3− 3)− 2(2−

√
3)(q2µ2 − ρ[D

(0)
t ]2))

((2 +
√

3)k2
c − 4q2)(k2

c − q2)((2 +
√

3)k2
c µ̃2 − (4q2µ̃2 − 2ρ[D

(0)
t ]2))

e2qzD
(0)
t

where the denominator N1 is given by

N1 = 2(k2
c−q2)

{

2(2+
√

3)k4
c µ̃2−4(1+

√
3)k3

cqµ̃2+q4µ̃2−q2ρ(D
(0)
t )2

+k2
c

[

(1+
√

3)ρ[D
(0)
t ]2+2(1−

√
3)q2µ̃2)

]

+4kcq
3µ̃2−2kcqρ[D

(0)
t ]2

}

(D.9)

and

Ψ̃inhom
NMij(z) =

(3 + 2
√

3)k2
cµ2 + (2 +

√
3)(2q2µ2 − ρ[D

(0)
t ]2)

(k2
c − q2)

[

(
√

3− 2)k2
c + 4q2

][

(
√

3− 2)k2
c µ̃2 + 4q2µ̃2 − ρ[D

(0)
t ]2

]
qk2

ce
2qzD

(0)
t

−N−1
2

{

(k2
c +q2)

[

(3
√

3−1)k3
cµ2+10k2

cqµ2−2q3µ2

−2qρ[D
(0)
t ]2+kc

√
3q2µ2−kc[1+

√
3]ρ[D

(0)
t ]2

]

}

e(kc+q)zD
(0)
t (D.10)

with

N2 = 2(k2
c−q2)

[

2(2−
√

3)k4
c µ̃2+4(

√
3−1)k3

cqµ̃2+q4µ̃2−q2ρ[D
(0)
t ]2

+2k2
c [1+

√
3]q2µ̃2+k2

c [1−
√

3]ρ[D
(0)
t ]2+4kcq

3µ̃2−qkcρ[D
(0)
t ]2

]

(D.11)
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For the scalar potential we obtain from eq. (5.109) in the geometry of hexagons (ij =
ji = 12 = 23 = 31)

ϕ̂NMij =
[

8ρ[D
(0)
t ]2kcq(q+kc)(k

2
c−4q2)

]−1 {

2k5
cq(12µ̃2−14µ2−3ν2D

(0)
t )−12q4ρ[D

(0)
t ]2

+2k4
c

(

4µ̃2q
2−16µ2q

2+ν2q
2D

(0)
t +2ρ[D

(0)
t ]2

)

+k2
c

(

19q2ρ[D
(0)
t ]2+8q4[4µ̃2+4µ2+ν2]D

(0)
t

)

−4kc

(

9q3ρ[D
(0)
t ]2−4q5[3µ2+ν2D

(0)
t ]
)

+k3
c

(

17qρ[D
(0)
t ]2−96µ̃2q

3+52µ2q
3+20q3ν2D

(0)
t

)

}

D
(0)
t (D.12)

and for the case of squares (ij = ji = 15)

ϕ̂NMij =
[

4
√

2ρ[D
(0)
t ]2kc(kc+q)(k2

c−2q2)(k2
c−2kcq−q2)

]−1 {

4k7
c (6µ̃2−7µ2−2ν2D

(0)
t )

+2q5ρ[D
(0)
t ]2−4k6

cq(10µ̃2−14µ2−5ν2D
(0)
t )

+k2
c

(

16q5µ̃2−16q5µ2−8q5ν2D
(0)
t +9q3ρ[D

(0)
t ]2

)

+2kc

(

5q4ρ[D
(0)
t ]2−4q6(3µ2+ν2D

(0)
t )
)

+k5
c

(

3ρ[D
(0)
t ]2−4q2[22µ̃2−14µ2−3ν2D

(0)
t ]
)

−k3
c

(

35q2ρ[D
(0)
t ]2−4q4[20µ̃2+15µ2+3ν2D

(0)
t ]
)

−k4
c

(

13qρ[D
(0)
t ]2−4q3[18µ̃2−22µ2−9ν2D

(0)
t ]
)

}

D
(0)
t (D.13)

For stripes (i = j) we obtain

ϕ̂NMij =
[

(kc−q)(kc+q)(3kc+ q)ρ[D
(0)
t ]2

]−1 {

2kc(2kc−q)ρ[D
(0)
t ]2

+(kc−q)(3kc+q)
[

k2
c (6µ̃2−7µ2)−3q2µ2+2kcq(µ̃2+2µ2)

]

−ν2(kc−q)(3kc+q)(3k2
c−2kcq+q2)D

(0)
t

}

D
(0)
t (D.14)

For θij = π/6, (ij = ji = 14 = 36 = 25) we obtain
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ϕ̂NMij =−D
(0)
t N−1

3

{

4k10
c qµ̃2

[

4(329+190
√

3)µ̃2−4(677+391
√

3)µ2+7ν2(168+97
√

3)D
(0)
t

]

−4k11
c µ̃2

2

[

12(97+56
√

3)µ̃2−14(97+56
√

3)µ2−ν2(556+321
√

3)D
(0)
t

]

+4(
√

3−2)q5ρ[D
(0)
t ]2(4q2µ̃2−ρ[D

(0)
t ]2)(q2µ̃2−ρ[D

(0)
t ]2)

−k2
cq

3
[

(99+4
√

3)ρ3[D
(0)
t ]6−q2ρ2[D

(0)
t ]4

(

7(73−8
√

3)µ̃2+32(2+
√

3)µ2+8ν2D
(0)
t

)

−16q6µ̃2

(

16(2+
√

3)µ2−4(2+
√

3)µ̃2+ν2(9+4
√

3)D
(0)
t

)

+8q4ρ[D
(0)
t ]2µ̃2

(

(51−40
√

3)µ̃2+32(2+
√

3)µ2+ν2(13+4
√

3)D
(0)
t

)

]

+k3
cq

2
[

(113+76
√

3)ρ3[D
(0)
t ]6

−32q6µ̃2
2

(

28(2+
√

3)µ̃2+(71+42
√

3)µ2+2ν2(14+9
√

3)D
(0)
t

)

−q2ρ2[D
(0)
t ]4

(

(687+552
√

3)µ̃2+4(93+52
√

3)µ2+4ν2(33+20
√

3)D
(0)
t

)

+2q4ρ[D
(0)
t ]2µ̃2

(

2(334+304
√

3)µ̃2+2(577+328
√

3)µ2+ν2(418+256
√

3)D
(0)
t

)

]

+k4
cq
[

(61+27
√

3)ρ3[D
(0)
t ]6

−16q6µ̃2

(

4(37+16
√

3)µ̃2+4(29+16
√

3)µ2+ν2(2+5
√

3)D
(0)
t

)

−q2ρ2[D
(0)
t ]4

(

51(20+11
√

3)µ̃2−8(83+48
√

3)µ2−2ν2(162+91
√

3)D
(0)
t

)

+q4ρD
(0)
t µ̃2

(

9(326+183
√

3)µ̃2−16(137+80
√

3)µ2−2ν2(666+367
√

3)D
(0)
t

)

]

+2k3
c µ̃2

[

2q2µ̃2

(

4(823+475
√

3)µ̃2−2(742+429
√

3)µ2−ν2(577+333
√

3)D
(0)
t

)

−ρ[D
(0)
t ]4

(

(1989+1148
√

3)µ̃2−14(123+71
√

3)µ2−ν2(705+407
√

3)D
(0)
t

)

]

−k5
c

[

(99+59
√

3)ρ3[D
(0)
t ]6

−q2ρ2[D
(0)
t ]4

(

(1128+1143
√

3)µ̃2−4(80+43
√

3)µ2−6ν2(22+13
√

3)D
(0)
t

)

+q4ρ[D
(0)
t ]2µ̃2

(

(6710+4079
√

3)µ̃2+4(523+319
√

3)µ2+2ν2(432+239
√

3)D
(0)
t

)

−4q6µ̃2

(

16(101+64
√

3)µ̃2+(2462+1441
√

3)µ2+ν2(1082+611
√

3)D
(0)
t

)

]

+2k8
cqµ̃2

[

2q2µ̃2

(

4(841+487
√

3)µ̃2−4(1449+838
√

3)µ2−5ν2(521+301
√

3)D
(0)
t

)

−ρ[D
(0)
t ]2

(

(1693+980
√

3)µ̃2−4(676+391
√

3)µ2−ν2(1193+689
√

3)D
(0)
t

)

]

+k7
c

[

2q2ρ[D
(0)
t ]2µ̃2

(

(4601+2657
√

3)µ̃2−2(823+482
√

3)µ2−15ν2(45+26
√

3)D
(0)
t

)

−ρ2[D
(0)
t ]4

(

9(123+71
√

3)µ̃2−28(19+11
√

3)µ2−2ν2(109+63
√

3)D
(0)
t

)

−2q4µ̃2

(

4(1702+985
√

3)µ̃2+14(268+151
√

3)µ2+ν2(1675+966
√

3)D
(0)
t

)

]

+k6
cq
[

ρ2[D
(0)
t ]4

(

(727+425
√

3)µ̃2−8(85+48
√

3)µ2−2ν2(151+87
√

3)D
(0)
t

)

+2q4µ̃2

(

4(1302+769
√

3)µ̃2−8(730+413
√

3)µ2−ν2(2945+1712
√

3)D
(0)
t

)

−q2ρ[D
(0)
t ]2µ̃2

(

10(633+373
√

3)µ̃2−8(1042+593
√

3)µ2−ν2(3838+2220
√

3)D
(0)
t

)

]

+4kcq
4(4q2µ̃2−ρD

(0)
t )
[

12(2+
√

3)q2µ̃2(q
2µ̃2−ρD

(0)
t )

+4ν2D
(0)
t (2+

√
3)q2(q2µ̃2−ρD

(0)
t )−(

√
3− 2)ρ[D

(0)
t ]2(7q2µ̃2−5ρ[D

(0)
t ]2)

]}

(D.15)
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with the denominator N3 given by

N3 = 8

√

2+
√

3kc(kc+q)
(

(2+
√

3)k2
c−4q2

)

(D.16)

×
[(

2(2+
√

3)k4
c−4(1+

√
3)k3

cq−2(
√

3−1)k2
cq

2+4kcq
3+q4

)

µ̃2

+
(

(1+
√

3)k2
c−2kcq−q2

)

ρ[D
(0)
t ]2

][

(2+
√

3)k2
c µ̃2 − (4q2µ̃2 − ρD

(0)
t )
]

ρ[D
(0)
t ]2

The homogeneous contributions to the vector potential follow from eq. (5.108). The
solutions for hexagons (ij = ji = 12 = 23 = 31) read

Ψ̂hom
NMij =

[

8k2
c (kc+q)ρ[D

(0)
t ]2

(

ρ[D
(0)
t ]2−q(2kc+q)

)(

µ̃2k
2
c−4µ̃2q

2+ρ[D
(0)
t ]2

)

]−1

×
{

4kcq(2kc+q)µ̃2
2

[

k4
c (6µ̃2−7µ2)+2k3

cq(µ̃2−4µ2)−8kcq
3(µ̃2+2µ2)

+k2
cq

2(13µ2−24µ̃2)
]

− 2ν2µ̃2kc(kc−2q)q(2kc+q)(kc+2q)(3k2
c−kcq+2q2)D

(0)
t

+µ̃2ρ[D
(0)
t ]2

[

4q5µ̃2+3k3
cq

2(µ2−2µ̃2)+k2
cq

3(79µ̃2+8µ2)
]

−ρ3[D
(0)
t ]6(kc−q)

+2kcρ[D
(0)
t ]3µ̃2ν2(k

2
c−2kcq−5q2)(3k2

c−kcq+2q2)+2kcρ
2ν2[D

(0)
t ]5(3k2

c−kcq+2q2)

−ρ2[D
(0)
t ]4

[

5µ̃2q
3+k3

c (17µ̃2−8µ2)+kcq
2(µ̃2−4µ2)+k2

cq(17µ̃2+4µ2)
]

}

D
(0)
t (D.17)

and for squares (ij = ji = 15) we obtain

Ψ̂hom
NMij =

[

8ρ[D
(0)
t ]2k2

c (kc+q)
(

(k2
c−2kcq−q2)µ̃2−ρ[D

(0)
t ]2

)(

4µ̃2q
2−ρ[D

(0)
t ]2−2µ̃2k

2
c

)]−1

×
{

8kcµ̃
2
2(k

2
c−2kcq−q2)

[

2kcµ̃2(3kc+q)(k2
c−2q2)−µ2(7k

4
c−7k2

cq
2+8kcq

3−6q4)
]

−8ν2µ̃2kc(k
2
c−2q2)(k2

c−2kcq−q2)(2k2
c−kcq+q2)D

(0)
t

+2µ̃2ρ[D
(0)
t ]2

[

k5
c (33µ̃2−26µ2)−2q5µ̃2−2kcq

4(5µ̃2 − 7µ2)−k2
cq

3(29µ̃2+12µ2)

+k3
cq

2(20µ2−81µ̃2) + k4
cq(36µ2−15µ̃2)

]

+4µ̃2kcρν2(3kc−5q)(kc+q)(2k2
c−kcq+q2)[D

(0)
t ]3

+ρ2[D
(0)
t ]4

[

5q3µ̃2+k3
c (23µ̃2−12µ2)+kcq

2(µ̃2−4µ2)+k2
cq(11µ̃2+8µ2)

]

−4kcρ
2ν2[D

(0)
t ]5(2k2

c−kcq+q2)+(kc−q)ρ3[D
(0)
t ]6

}

D
(0)
t (D.18)

And for stripes

Ψ̂hom
NMij =−

[

8k2
cρ[D

(0)
t ]2(kc+q)

(

(kc−q)(3kc+q)µ̃2+ρ[D
(0)
t ]2

)]−1

×
{

4µ̃2kc(kc−q)(3kc+q)
[

k2
c (6µ̃2 − 7µ2)− 3q2µ2+2kcq(µ̃2 + 2µ2)

]

−4µ̃2kcν2D
(0)
t (kc−q)(3kc+q)(3k2

c−2kcq+q2)

+ρ[D
(0)
t ]2

[

µ̃2(31k3
c +3k2

cq+5kcq
2+q3)−4kc(5k

2
c−4kcq+q2)

]

−4kcρν2[D
(0)
t ]3(3k2

c−2kcq+q2)+ρ2[D
(0)
t ]4(kc−q)

}

D
(0)
t (D.19)
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For θij = π/6, (ij = ji = 14 = 36 = 25) one obtains

Ψ̂hom
NMij =−N−1

4 D
(0)
t

{

4k9
cqµ̃

2
2

[

2(7+4
√
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√

3)D
(0)
t

]

−4k8
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[
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√
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√
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√
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t

]
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(0)
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(0)
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+kcq
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(0)
t ]2)

[
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(0)
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(0)
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(0)
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]

−k2
cq
[
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√
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(0)
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2

(
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√

3)D
(0)
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)

+q2ρ2[D
(0)
t ]4

(

(8−11
√
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√

3µ2−2ν2(2−
√

3)D
(0)
t

)

−q2µ̃2ρ[D
(0)
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(
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√
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√
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with the denominator N4 given by

N4 = 8ρ[D
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(D.21)

With these potentials the components of the velocity field can be calculated straight-
forwardly. To determine the components of the strain field via eq. (5.58), however, the
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inhomogeneous contributions −v
(1)
k ∂kǫ
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ij have to be calculated additionally
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where we have displayed only the ξiNξjM contributions to −v
(1)
k ∂kǫ

(1)
ij . The contributions

∼ ξiNξ∗jM can be derived from eqs. (D.22-D.27) by the replacements

ξiNξjM −→ ξiNξ∗jM and kj −→ −kj , cos θij −→ − cos θij (D.28)
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Appendix E

Usual ferrofluids

In the case of ferrofluids, the dynamic equation for the strain field (2.34) is absent and
we only retain the continuity equation (2.32) and the Navier-Stokes equation (2.33). Fur-
thermore, all contributions to the stress tensor (2.35) that are proportional to the elastic
shear modulus µ2 drop out. The expansion to the nonlinear regime follows the same lines
as for magnetic gels. The solvability for the bulk hydrodynamic equations for ferrofluids
then reads

〈v̄i |∂(1)
t (ρv

(1)
i )〉 = −〈v̄i |∂j(ρv

(1)
i v

(1)
j )〉 (E.1)

Following the same lines as in section 5.3.1 we obtain for the left hand side of eq. (E.1),

if we retain the lowest order of the expansion in terms of ∂
(0)
t ,

〈v̄i |∂(1)
t (ρv

(1)
i )〉 = −12ρ

kc
([ω(0)]2 − [σ(0)]2)σ(1)

N
∑

i=1

ξ̂iξ̂
∗
i (E.2)

Similarly the right hand side of equation (E.1) reads

〈v̄i |∂j(ρv
(1)
i v

(1)
j )〉 = −24ρσ(0)([ω(0)]2 − [σ(0)]2)(ξ̂1ξ̂2ξ̂3 + ξ̂∗1 ξ̂

∗
2 ξ̂

∗
3) (E.3)

We realize, that the lowest order in the expansion of eq. (E.1) in terms of ∂
(0)
t is at least

proportional to [∂
(0)
t ]3 due to the deformable surface: The velocity in the original and

the adjoint space have to be proportional to the time derivative of the surface deflection
and, consequently, the product 〈v̄i | ∂j(ρv

(1)
i v

(1)
j )〉 is proportional to [∂

(0)
t ]3. This is also

the reason why the contributions to the amplitude equation in the case of ferrofluids do
not contribute in the case of magnetic gels. The common factor ([ω(0)]2− [σ(0)]2) in (E.1)
cancels and, finally, we end up with

σ(1)

σ(0)
ξ̂1 = −4

3
kcξ̂

∗
2 ξ̂

∗
3 and | ξ̂1 |2=| ξ̂2 |2=| ξ̂3 |2 (E.4)

and the corresponding conditions for all cyclic permutations 1 → 2 → 3 → 1. As for
magnetic gels, eq. (E.4) only exists for the hexagonal pattern, whereas for any other
surface pattern the amplitudes show no nonlinear interaction in the second order.

The solutions for the second order eigenvectors can be taken from the discussion of
magnetic gels in section 5.3.2 and 5.3.3 by simply substituting µ2 = 0 and are therefore not
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shown here. With the solutions of the second order, the third order Fredholm’s theorem
can be fulfilled. The latter reads in the case of ferrofluids

〈v̄i |ρ∂
(2)
t v

(1)
i 〉+ 〈v̄i |ρ∂

(1)
t v

(2,1)
i 〉 = −〈v̄i |ρ∂

(1)
t v(2,2)〉 − ρ〈v̄i |∂j(v

(1)
i v

(2,1)
j + v

(2,1)
i v

(1)
j )〉

−ρ〈v̄i |∂j(v
(1)
i v

(2,2)
j + v

(2,2)
i v

(1)
j )〉 (E.5)

Since the analytical expressions for the eigenvectors v
(2,2)
i are bulky, the explicit calculation

of the cubic coefficients has been performed with Mathematica and the results are shown
below. We should mention, however, that also in the third order the right hand side of
eq. (E.5) is proportional to [∂

(0)
t ]3 and the global factor ([ω(0)]2− [σ(0)]2) can be canceled.

The discussion of the normal stress boundary condition in the case of ferrofluids can
be taken from the sections 5.3.4 and 5.4. In the second order, the additional condition to
the amplitudes (5.115) is valid for ferrogels and ferrofluids, alike, and in the corresponding
third order condition (5.133) we have to substitute µ2 → 0 with the consequence that
there is no second order time derivative. The typical time scale in the case of ferrofluids is
then given by τ0 = ν2kc/(ρG) which is in accordance with previous theoretical discussions
[39]. The final amplitude equation is derived in the same way as in section 5.5 for magnetic
gels and finally results for the hexagonal pattern in

∂T ξ1 =
1

2
ǫ̃flξ1 −

2

3
√

A
ξ∗2ξ

∗
3− |ξ1 |2 ξ1 −

Bfl
120

Afl
(|ξ2 |2 + |ξ3 |2)ξ1 (E.6)

For the square pattern the quadratic coefficient is absent and we obtain

∂T ξ1 = ǫ̃flξ1− |ξ1 |2 ξ1 −
Bfl

90

Afl
|ξ5 |2 ξ1 (E.7)

where the cubic coefficients are given by

Afl ≈ 8.625 (E.8)

Bfl
120 ≈ 3.150 (E.9)

Bfl
90 ≈ 4.266 (E.10)

The discussion for the different stable patterns follows the same lines as in section 5.5.
At the linear onset we find hexagons to be the preferred pattern, which remains subcriti-
cally stable for control parameters larger than

ǫ̃A = − 4

9(Afl + 2Bfl
120)

(E.11)

Since Bfl
90 + 2Bfl

30 < Afl + 2Bfl
120 and Bfl

90/A
fl < 1, where the cubic coefficient accounting

for the nonlinear interaction between hexagons and squares is given by Bfl
30 ≈ 4.545, the

hexagon pattern transforms into a square pattern for control parameters larger than

ǫ̃B =
2(Bfl

90 + 2Bfl
30)

9(Afl + 2Bfl
120 − Bfl

90 − 2Bfl
30)

2
(E.12)

The square pattern in turn becomes unstable again for control parameters lower than

ǫ̃S =
2(Afl + Bfl

90)

9(Afl + Bfl
90 − Bfl

120 − Bfl
30)

2
(E.13)
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[38] A. Schlüter, D. Lortz and F. Busse, On the stability of steady finite amplitude
convection, J. Fluid Mech. 23, 129 (1965).

[39] R. Friedrichs and A. Engel, Non-linear analysis of the Rosensweig instability, Eu-
rophys. Lett. 63, 826 (2003).

[40] R. Friedrichs, Low symmetry patterns on magnetic fluids, Phys. Rev. E 66, 066215
(2002).

[41] S. K. Malik and M. Singh, Nonlinear dispersive instabilities in magnetic fluids, Q.
Appl. Math. 42, 359 (1984).

[42] S. K. Malik and M. Singh, Modulational instability in magnetic fluids, Q. Appl.
Math. 43, 57 (1985).

[43] S. K. Malik and M. Singh, Nonlinear focusing in magnetic fluids, Q. Appl. Math.
44, 629 (1987).

[44] C. Kubstrup, H. Herrero and C. Pérez-Garćıa, Fronts between hexagons and squares
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