
Software and Systems Modeling (2021) 20:1379–1401
https://doi.org/10.1007/s10270-020-00857-8

SPEC IAL SECT ION PAPER

Language-independent look-ahead for checking multi-perspective
declarative process models

Martin Käppel1 · Lars Ackermann1 · Stefan Schönig2 · Stefan Jablonski1

Received: 15 December 2019 / Revised: 26 November 2020 / Accepted: 22 December 2020 / Published online: 9 January 2021
© The Author(s) 2021

Abstract
Declarative process modelling languages focus on describing a process by restrictions over the behaviour, which must be
satisfied throughout thewhole process execution.Hence, they arewell suited formodellingknowledge-intensive processeswith
many decision points. However, such models can be hard to read and understand, which affect the modelling and maintenance
of the process models tremendously as well as their execution. When executing such declarative (multi-perspective) process
models, it may happen that the execution of activities or the change of data values may result in the non-executability of
crucial activities. Hence, it would be beneficial to know all consequences of decisions to give recommendations to the process
participants. A look-ahead attempts to predict the effects of executing an activity towards possible consequences within an a
priori defined time window. The prediction is based on the current state of the process execution, the intended next event and
the underlying process model. While execution engines for single-perspective imperative process models already implement
such functionality, execution approaches, for multi-perspective declarative process models that involve constraints on data
and resources, are less mature. In this paper, we introduce a simulation-based look-ahead approach for multi-perspective
declarative process models. This approach transforms the problem of a context-aware process simulation into a SAT problem,
by translating a declarative multi-perspective process model and the current state of a process execution into a specification of
the logic language Alloy. Via a SAT solver, process trajectories are generated that either satisfy or violate this specification.
The simulated process trajectories are used to derive consequences and effects of certain decisions at any time of process
execution. We evaluate our approach by means of three examples and give some advice for further optimizations.

Keywords Declarative process models · Multi-perspective · Look-ahead · Model checking · Predictive business process
monitoring · SAT solving

1 Introduction

In the last years, business process management (BPM) has
gained massive importance for enterprises of all industries

Communicated by Jens Gulden and Rainer Schmidt.

B Martin Käppel
martin.kaeppel@uni-bayreuth.de

Lars Ackermann
lars.ackermann@uni-bayreuth.de

Stefan Schönig
stefan.schoenig@ur.de

Stefan Jablonski
stefan.jablonski@uni-bayreuth.de

1 University of Bayreuth, Bayreuth, Germany

2 University of Regensburg, Regensburg, Germany

and sizes in order to increase their efficiency, to reduce costs
and to be compliant with legal regulations [15]. Two oppos-
ing classes of business processes can be identified: routine
processes and knowledge-intensive processes1 [16,17].

Imperative processes are considered to be stable, pre-
dictable and determined [16,29]. They encompass less vari-
ants and their execution barely depends on the knowledge and
decisions of (human) process participants [29]. Hence, at any
time the exact control flow is known, as well as the depen-
dencies between different process perspectives (e.g. process
participants or data in form of variables or formulars). In
contrast, the exact control flow of declarative processes is
not given a priori and their execution strongly depends on

1 Sometimes knowledge-intensive processes also called flexible or
decision-intensive processes.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-020-00857-8&domain=pdf

1380 M. Käppel et al.

the knowledge and the decisions of the (human) process par-
ticipants [29].

This distinction is also reflected in the associated pro-
cess modelling languages. The so-called imperative process
modelling paradigm includes languages such as Petri nets
[41] and BPMN [20], focuses on describing all execu-
tion paths explicitly in a graph-based structure. Hence, the
languages are well suited to structured processes with lit-
tle variation. On the other hand, the so-called declarative
paradigm, including languages such as Declare [28], Multi-
Perspective-Declare (MP-Declare) [8], DCR graphs [22],
GSM [23] and the Declarative Process Intermediate Lan-
guage (DPIL) [31,44], focuses on describing the process by
restrictions (so-called constraints) over the behaviour, which
must be satisfied throughout the whole process execution.
Thus, they do not model the control flow explicitly. This
paradigm enables a larger degree of flexibility, which is why
declarative modelling languages can be considered as well
suited for knowledge-intensive processeswithmany decision
points. Declarative process modelling languages provide a
repertoire of templates, i.e. a set of commonly used constraint
types for modelling knowledge-intensive processes. Various
declarative process modelling languages support different
process perspectives. There are single-perspective languages
(e.g. traditional Declare) aswell as languages that support the
resource and data perspectives (e.g. MP-Declare). Hence,
in multi-perspective modelling languages, constraints are
capable of expressing connections between different process
perspectives [13,30]. A well-known drawback of declarative
modelling languages is that corresponding process models
can be hard to read and understand [16]. In the following,
several reasons are discussed.

Let us consider the single-perspective process model hid-
denCoExistence shown in Fig. 1 modelled with a graphical
Declare notation. This process model consists of five activ-
ities namely a, b, c, d and e. The activities d and e as well
as a and b are connected via a response constraint which
expresses that if activity d or a is executed, activity e or b
must be executed eventually afterwards. The notCoExistence
template between e and b ensures that only one of the two
activities is executed. The precedence constraint expresses,
that c can only be executed if b was executed before.

Having a closer look at the process model reveals implicit
dependencies between one ormore constraints. These depen-
dencies are called hidden dependencies [37]. If activity d is
executed, for example, neither b nor c can be executed after-
wards. Therefore, the model comprises hidden dependencies
between d and b as well as between d and c. In the same
manner there is a hidden dependency between e and a. In
Sect. 2, we show based on additional examples that hidden
dependencies are not an issuewith control-flow constraints in
particular but alsowith the declarativemodelling paradigm in

general. Moreover, in MP-Declare, for instance, this issue is
aggravated since it describes additional process perspectives.

A second, more general observation [16] is that it can be
hard to interpret declarative process models in terms of con-
cretely permissible process trajectories and the implications
of actions in particular states of a running process.

Concluding from theprevious explanations, hiddendepen-
dencies in particular and a low understandability in general
are a consequence from an aspect that is considered to be
a core strength of declarative process modelling languages,
i.e. its implicit description of permissible process behaviour.

Those issues affect the modelling and maintenance of
declarative processmodels tremendously aswell as their exe-
cution [17]. When modelling a declarative process there is
a high risk for over- or underspecifying the corresponding
process model. A process model is called overspecified if
it forbids valid process trajectories. It is called underspeci-
fied if it allows process trajectories that are not conformant
with reality. Often the reason for a wrong specification of
a process model are hidden dependencies or deadlocks, i.e.
contradictions between constraints under certain conditions,
that were not revealed. The detection of hidden dependencies
or deadlocks requires the simulation of process trajectories
and their (manual) checking.

When executing a declarative process model, it may
happen that executing a specific activity results in a non-
executability of an other activity. In our sample process,
for example, it becomes impossible to execute activity c if
activity d was executed. In other cases, the execution of an
activity leads to an extended execution (i.e. it takes more
time) or spends more resources. In the worst case, a neces-
sary activity cannot be executed and thus the process instance
cannot be completed. Hence, it would be beneficial to know
all consequences of a decision to give recommendations to
the process participants. For example, the shortest path to
finish the process instance can be recommended or the abort
of the execution, because the desired outcome of the process
is not reachable anymore. However, it is difficult for the pro-
cess participants to estimate such consequences, even if they
know the underlying process model, because of the above
mentioned drawbacks of declarative process modelling lan-
guages. Based on the problem statement above a research
question arises which is the central basis for the rest of the
paper: Given an arbitrary state of a (prospectively) running
process, how can we uncover (hidden) dependencies the user
might not be aware of?

The two application scenarios (execution and modelling)
mainly differ essentially in terms of time requirements.Using
prediction during an execution of a process model it is essen-
tial that a prediction is produced almost instantaneously, as
the predictions are usually needed in real time. In contrast, a
prediction during the modelling phase can be considered to
be not time critical.

123

Language-independent look-ahead for checking multi-perspective declarative process models 1381

Fig. 1 hiddenCoExistence
example process in a graphical
Declare notation d

a

e

b c

response

response precedence

notCoExistence

This paper is a continuation of previous work [25] that
takes a first step to a multi-perspective look-ahead func-
tionality that answers the research question above. The
look-ahead determines all possible process trajectories up to
a desired length based on an uncompleted process execution.
While execution engines for single-perspective imperative
process models already implement such functionality, exe-
cution approaches, for multi-perspective declarative process
models that involve constraints on data and resources are less
mature and do not consider preventive strategies [3].

Altogether, the present paper contributes (1) a detailed
overviewabout themain challenges of a look-ahead function-
ality for declarative processes; (2) a concept of a look-ahead
functionality that is independent of a concrete process mod-
elling language; (3) a new implementation that outperforms
the previous one given in [25]; (4) an experimental evalu-
ation of the implementation on declarative process models;
and (5) based on the evaluation, a discussion of strengths and
limitations of the look-ahead functionality.

The remainder of the paper is structured as follows. We
first recall basic terminology and introduce a running exam-
ple in Sect. 2. In Sect. 3, we describe the idea of a look-ahead,
requirements, challenges and necessary features of a look-
ahead functionality in detail. In Sect. 4, we present the
concept of a modelling language-independent look-ahead
functionality and provide a description of implementation
details and all necessary preliminaries. Section 6 gives an
overview of related work and delimits our work from exist-
ing work. We evaluate our concept in Sect. 5 by means of
three declarative process models and inform of existing lim-
itations. Finally, Sect. 7, draws conclusions from the work
and gives an outlook for future work.

2 Terminology and running example

In this section, we recall basic terminology and introduce a
running example. Process perspectives are introduced to pro-
vide a common basis for the contents of both process models
and process traces. Traces describe a particular execution
state of a process which, traditionally is a completed process
trajectory. However, though our look-ahead approach oper-

ates on incomplete process trajectories, it is possible to build
it upon the same notion.

2.1 Process perspectives

Independent from the modelling paradigm, processes can be
seen from different perspectives [29]. Relevant perspectives,
for example, include function, behaviour, data, organization
and operation [29]. However, it is also feasible to define and
consider numerous further perspectives, like a time perspec-
tive or a cost-oriented perspective. Considering a process
from several perspectives is necessary in order to be able
to see a process as a whole and not just to light individual
aspects. Otherwise, important factors influencing the process
might be neglected. Typically the different perspectives are
intertwined, in that sense that they affect each other. We call
such coherences cross-perspective. For example, often the
behaviour depends on value ranges of parameters or orga-
nizational characteristics. In the following, we describe the
perspectives we will require later more in detail.

The behaviour perspective (also called control flow per-
spective) describes activities, their execution ordering (e.g.
task sequences or parallelism) or constraints for their exe-
cution [29]. Expressing the control flow perspective strongly
depends on the underlyingmodelling paradigm, respectively,
the used process modelling language. The organizational
perspective, in turn, manages the involvement of human
resources in processes, e.g. it provides an anchor to the pro-
cess in the form of human roles responsible for executing
activities. Usually, there is a strong relation to an orga-
nizational model, that captures process workers, roles, or
organizational units as well as their relationships [29]. The
operational perspective describes technologies and items,
e.g. tools or software applications, that are used by perform-
ing an activity. The data-oriented perspective (also called
information perspective) deals with a set of data objects as
well as the data flow between the activities [29]. Generally,
three types of data objects are distinguished: application data,
process-relevant data and process control data. Application
data is application specific and is usually managed by the
process participants or services that are involved in the execu-
tion of the process. Typical application data, for instance, are
business documents like formular data or contracts. Process-

123

1382 M. Käppel et al.

relevant data encompass data that are used to decide which
execution paths shall next be taken (e.g. variables that indi-
cate the state of a process execution) [29]. Hence, such data
often reflect pre- and post-conditions of activity execution.
The process control data covers information about the cur-
rent state of a process as well as its execution history (e.g.
the time when an activity was executed) [29]. In this paper,
most of the time we exclusively deal with application and
process-relevant data.

2.2 Events, traces and logs

The approach proposed in the present paper is based on con-
cepts we are going to introduce in this section. We recall
the standard definitions of events, traces and process logs as
defined in [42]: an event is an occurrence of an activity (a step
in a business process) in a particular process instance, a trace
is a temporal sequence of events that are related to the same
instance of the process, and an event log is amultiset of (com-
pleted) traces. Events are characterized by various properties
(i.e. information about the execution of an activity), such as
the timestamp, the name of the activity, the process partici-
pants or systems involved in executing the activity, the used
tools or further data payload in form of variables with par-
ticular values. A trace is the record of a process execution.
Let E be the universe of all events, i.e. the set of all pos-
sible event identifiers. We can assign a value of a property
to an event. Though, the proposed approach is independent
from any particular set of properties, for the present paper,
we assume that these properties are the timestamp (C), the
activity name of an event (A), the involved persons (I), the
used tools (T) and data objects (D). For a process instance p
we denote all process entities that can occur as follows: C for
the domain of timestamps, Ap for the activity names, Ip for
persons, Tp for tools, and Dp for further data payload in form
of variables. Hence, we can define the following mappings
that assign a value of a particular property to an event:

πC :E → C,

πA :E → Ap,

πT :E → P(Tp),

πI :E → P(Ip),

πD :E → P(Dp).

While exactly one activity or timestamp belongs to each
event, several tools or persons can be assigned to an event
(e.g. a paper is written by two authors with two different
word processing tools). Hence, we mapped the event to the
power set of the allowed resources. Note, that the power set
also contains the empty set, so we can express that no per-
son or no tool is involved in the execution of the activity, by
mapping the property to the empty set.

We can now define, trace and event log more formally:

Definition 1 Let E be the universe of all events. A trace is
a finite, non-empty sequence σ = 〈e1, . . . , e|σ |〉 of events
of the same process instance such that for 1 ≤ i < j ≤
|σ | : ei , e j ∈ E; σ(i) �= σ(j) ∧ πC(ei) ≤ πC(e j), where
|σ | denotes the length of σ . We use the notation σ(i) to
refer to the ith element in σ . An event log is a multiset[
σ

w1
1 , . . . , σ

wn
n

]
of traces with wi ∈ N+.

Note, that it is important to differ clearly between event
and activity. The definition does not disallow the repetition
of an activity, it only states that the corresponding event has
to be unique within the entire log. Hence, two events can
encapsulate the same activity, but then have to differ in other
properties like the timestamp, the organizational resource or
the affiliation to the process instance. Furthermore, the defi-
nition states that all events of a trace refer to the same instance
of the process. It also follows from the definition, that the time
within a trace is increasing. In case of two events with iden-
tical timestamps, the order between these events is chosen
arbitrarily.

We say a trace is completed if working on the correspond-
ing process instance was stopped, that means no additional
events related to the process instance will occur in the
future. In case of imperative process models, this happens
by achieving an end event. In case of declarative modelling
languages, like Declare, the user has to stop working on the
process instance [28]. The user can stop working on a pro-
cess instance if and only if no constraint of the underlying
process model is violated [28].

Definition 2 A trace is called valid if the corresponding pro-
cess instance does not violate a constraint of the process
model.

Definition 3 A completed trace is a valid trace that was
successfully closed, i.e. the user stopped working on the cor-
responding process instance.

2.3 Running example

In the sequel, we will refer extensively to the following run-
ning example.

Example 1 The publishPaper process model describes the
process of writing and submitting a scientific paper on an
abstract level. For a better understanding and since our
approach does not depend on a specific modelling language,
we initially do not use a concrete processmodelling language
but a mixture of different languages. We describe the control
flow of the process with a graphical Declare notation (cf. Fig.
2). The constraints of the Declare model mean that:

1. an abstract has to be written before its submission,

123

Language-independent look-ahead for checking multi-perspective declarative process models 1383

WriteAbstract

notResponse

precedence
SubmitAbstract

WritePaper SubmitPaper CheckPaper AcceptPaper

RejectPaper

precedence

precedence

chainPrecedence

chainResponse
chainPrecedence

chainPrecedence

notPrecedence
notCoExistence

8

1

2

3

4

5

6

7

8

6

Fig. 2 publishPaper example process in a graphical Declare notation

2. a paper has to be written before its submission,
3. the abstract has to be submitted before the paper,
4. a paper must be checked instantly after its submission,
5. before checking a paper, it must have been submitted

sometimes before,
6. a paper cannot be accepted or rejected without having

been checked before,
7. a paper cannot be accepted and rejected at the same time,
8. a rejected paper should not be submitted again.

The cross-perspective constraints are described in a textual
manner in the following:

– an abstract should not exceed the limit of eight lines,
– if the abstract exceeds the limit of eight lines, the sub-
mission is rejected instantly,

– a paper should not exceed the limit of ten pages,
– if a paper exceeds the limit of ten pages, it will be instan-
taneously rejected,

– a paper should not be checked by one of the authors,
– the authors of abstract and paper must be the same,
– a paper, respectively, an abstract should be written from
at least one author,

– the authors should use at least one word processing tool.

The process model is multi-perspective and considers with
exception of the time perspective, the most common process
perspectives.

3 Look-ahead fundamentals

In this section,wediscuss the idea of the look-ahead function-
ality in detail and explain the scope of our approach. Section
3.1 describes the idea of a look-ahead functionality and in
Sect. 3.2 we identify requirements and challenges for realiz-

ing such a look-ahead functionality referring to our previous
work.

3.1 General idea

The look-ahead attempts to predict the effects of executing
an activity towards possible consequences within an a-priori
defined time window. The prediction is based on three arte-
facts: (i) the activity that should be executed next, (ii) the
underlying process model and (iii) the previous trace of the
current execution.

Apart from the intended next step activity, we need the
process model for the prediction to judge whether an execu-
tion is valid. Since the history of a process instance affects
the future process trajectory it is essential to consider also the
previous trace. Most of the time the previous trace is uncom-
pleted, which means that the process instance is not closed
yet (otherwise a look-ahead would be needless).

It is necessary to define a time window, because otherwise
the search space for consequences is possibly unlimited. For a
unifieddescription,wecall this timewindow look-aheadwin-
dow and its size look-ahead length. The look-ahead length
indicates the number of events the look-ahead looks in the
future. All those terms are visualized in Fig. 3.

The predicted consequences are a broad term and encom-
pass different aspects. These ranges from valid process
trajectories including all hereby usable resources like tools
or persons to observations like that the execution takes more
time, spends more resources or cannot be successfully fin-
ished. Furthermore, consequences consider not only things
that can happen but also things that become impossible,
for example, activities, which cannot be executed again or
process trajectories that are not viable anymore. Common
consequences would be, for example:

123

1384 M. Käppel et al.

TIME

2020-07-12PR
O

CE
SS

 P
ER

SP
EC

TI
VE

S

…

Alice, Bob

MS Word

Abstract
(5 Lines)

Write
Abstract

…

2020-09-14

Alice, Bob

LaTeX

Paper
(9 Pages)

Write
Paper

…

…

…

…

…

…

…

2020-10-20

Eve

Check
Paper

…

…

…

…

…

…

…

…

…

…

…

…

…

?

?

?

?

?

?

?

?

?

?

?

?

PREVIOUS TRACE NEXT STEP
ACTIVITY

LOOK-AHEAD WINDOW

1 2 n+1 n+2 n+1+l

LOOK-AHEAD LENGTH

Fig. 3 Illustration of the look-ahead concept

– Which activities can be executed within the look-ahead
length?

– Is it possible to complete the process instance within the
look-ahead length?

– Is it possible to reach the desired process outcome?
– Whichpersons and further resources are possibly involved
in the execution within the look-ahead window?

– Are there activities or resources that cannot be involved
in the future execution of the process instance?

– Is there a deadlock within the look-ahead window?
– Do I have to execute a specific activity next?

We illustrate the idea of a look-ahead by the running exam-
ple. Assume that the researchers Alice and Bob start writing
an abstract by using the word processing software Word.
Applying look-ahead of length 1 shows that as a next step
Alice and Bob can either submit the abstract or start writing
the paper. Ifwe increase the look-ahead length up to 4,we rec-
ognize the earliest time for checking the paper and that Alice
and Bob are not allowed do this activity by their own. It also
follows that it is impossible to achieve the intended process
outcome, i.e. the acceptance of the paper, within the look-
ahead window. The effect of the look-ahead length becomes
more clearly by the following scenario: assume that Alice
and Bob have exceeded the page limit of the paper. The look-
ahead of length 4 shows that the process instance can go on

and reveals no problems. However, if we look 5 steps into
the future we recognize that it is unavoidable that the paper
is rejected.

3.2 Challenges and requirements

In this section, we first present some challenges which
the development of a look-ahead functionality for multi-
perspective declarative process models bears. Afterwards,
we derive requirements from these challenges that the look-
ahead functionality should meet. We use these requirements
later to proof our claims.
Challenge 1: Large number of possible process trajectories
The provided flexibility of declarative (multi-perspective)
process models goes hand in hand with a tremendous growth
of possible process trajectories. Their number is not only
affected by the control-flow perspective but also by fur-
ther process perspectives. In the publishPaper example (cf.
Sect. 2.3), for instance, the possibility to use different word
processing tools for writing increases the number of valid
process trajectories. Let us consider the following traces:

σ1 = 〈WriteAbstract(Alice; Word), WritePaper(Alice; Word)〉,
σ2 = 〈WriteAbstract(Alice; Word), WritePaper(Alice; Latex)〉,
σ3 = 〈WriteAbstract(Alice; Word), WritePaper(Alice; Word, Latex)〉.

123

Language-independent look-ahead for checking multi-perspective declarative process models 1385

We observe that all traces are identical w.r.t. the control-
flow perspective, but differ on the operational perspective.
The situation is aggravated if the data-oriented perspective
is taken into account. Since the paper must not exceed the
limit of 10 pages, for each of the three traces there exist
10 valid process trajectories. Assume we can additionally
choose between three authors and twoword processing tools.
Hence, we would have 7 ·3 ·10 = 210 possibilities for a cor-
rect execution of the activity WritePaper. In our calculation,
the first factor describes all non-empty subsets of possible
authors, in the same way the second factor is the number of
combinations of word processing tools, and the last factor
indicates the number of values for the number of pages that
are still within the given page limit. In other words: starting
with writing the abstract like in the traces above leads to at
least 30 valid execution options (note that the author is fixed,
since paper and abstract must have the same authors). In this
scenario, it would also be possible to submit the abstract. For
this activity, there exists only one possibility. Since there are
processes where variables can attain an arbitrary integer or
real value, this could lead to an infinite number of process tra-
jectories. Hence, we have to make appropriate assumptions
to limit the approach to a finite number of process trajectories
without a significant loss of quality.
Challenge 2: Checking validity of process trajectories The
particularities of modelling languages affect the validation
of process trajectories. The manner of checking whether a
trace violates a constraint depends on the constraint itself. For
example, some constraints must be checked forwards, oth-
ers backwards and some of them by analysing the complete
process trajectory [36]. Assume there would be a constraint
that demands that the paper can only be checked once. In
this case, the fulfilment can only be checked by considering
the whole trace. In case of the precedence constraint, that an
abstract has to be written before its submission it would be
sufficient to consider the events in the trace before the event
that contains the SubmitAbstract activity.
Challenge 3: Intertwined process perspectives The structure
of the constraints together with the multi-perspectivity make
it impossible for validation to consider the process perspec-
tives isolated or to neglect some of them. Neglecting one
or more process perspectives would reduce the number of
constraints, which would be beneficial for validation (since
less constraints must be checked). In our example, the con-
trol flow is affected by the data-oriented perspective, since
exceeding the maximum limit of pages of the paper leads to
a rejection of the submission. Focussing only on the control-
flow perspective reveals no violations. The violation only
affects the data-orientedperspective.Another examplewould
be the following (uncompleted) trace:

σ4 = 〈WriteAbstract(Alice; Word), WritePaper(Bob; Word)〉.

Regarding the control-flow perspective, the trace is valid.
However, there is a violation on the organizational perspec-
tive, since the authors of both activities must be the same.
Hence, it is not possible to omit process perspectives in
general. A process perspective can only be neglected for par-
ticular traces and then only if a violation of a constraint on
other process perspectives has already been identified.
Challenge 4: Multiple changes of validity Especially in case
of a long look-ahead length, it would be beneficial for the per-
formance if an uncompleted trace which is currently invalid
could be labelled as invalid for all time. Then this trace could
be excluded for further consideration. However, traces can
change their validity several times. For example, we consider
the evolution of a trace σ5 at different times (t1, t2, and t3):

σ
t1
5 = 〈WriteAbstract, WritePaper, SubmitAbstract〉,

σ
t2
5 = 〈WriteAbstract, WritePaper, SubmitAbstract, SubmitPaper〉,

σ
t3
5 = 〈WriteAbstract, WritePaper, SubmitAbstract,

SubmitPaper, CheckPaper〉.

We consider that σ
t1
5 is valid, but after submitting the paper

(σ t2
5) the trace becomes temporary invalid, because after sub-

mitting paper and abstract a check of the paper is mandatory.
Executing the activity CheckPaper (σ t3

5) changes the validity
of the trace into valid again. Hence, one of the key challenges
is to recognize whether an invalid uncompleted trace stays
invalid or not.
Challenge 5: Length of the look-ahead window It has already
beenmentioned in Sect. 3.1 that the look-ahead length affects
accuracy and reliability of the prediction, since a greater
look-ahead length gives more insights and consequences.
However, a large look-ahead length is potentially accom-
panied by a strong growth of possible process trajectories. A
crucial task therefore is to determine the optimal look-ahead
length for the given uncompleted trace. Already determining
an upper bound is no trivial task, since the execution of a
process instance can be extended or shortened through the
execution of a particular activity.

These challenges lead to four main requirements the look-
ahead functionality should meet:
Requirement 1: Completeness of simulation Within the
mandatory limitation described in Challenge 1 the look-
ahead should find reliably all valid process trajectories
(so-called completeness of simulation). Otherwise it is not
sure that all relevant consequences can be derived. In some
cases, it seems to be sufficient to search only for a subset of
good enough process trajectories (because some traces are
very similar or of low interest). However, the decision what
can be considered as good enough depends on the particu-
lar situation and the particularities of the process. Since our
approach should work independently of such particularities,
we require all process trajectories. Nevertheless, there should

123

1386 M. Käppel et al.

be some appropriate filtermethods to extract the relevant pro-
cess trajectories by individual criteria.
Requirement 2: Systematic and efficient search The large
number of possible process trajectories requires a system-
atic and efficient search within the look-ahead window. This
includes among other things avoiding redundancy, in that
sense that execution paths should not be checked multiple
times.
Requirement 3: Language Independence There are sev-
eral different modelling languages for (multi-perspective)
declarative processes that suffer from the understandability
problems described in the introduction. Hence, our look-
ahead approach is not only relevant for selected modelling
languages and must be independent of a particular language
as far as possible. This bears its own challenges, because dif-
ferent languages possess different expressiveness (we will
discuss this issue in Sect. 4.1.2) and their own particularities.
For example, in MP-Declare and Declare the repository of
templates is incomplete in that sense, that both languages pro-
vide the possibility to define custom templates by using the
underlying logic (Metric First-Order Temporal Logic [8]).
Furthermore, the support of different process perspectives
between the languages differ. Hence, the look-ahead should
support as much as possible the particularities of different
process modelling languages and should be extendable to
further languages.
Requirement 4: Output format for easy post-processing In
general the output of the look-ahead should be in a format
that allows an easy post-processing with existing tools and
frameworks to derive different consequences. As seen in the
previous section, those consequences are manifold, so the
output format should be supported by numerous frameworks
and tools and must enable an easy way for implementing
custom types of analysis.

4 Concepts of simulation-based look-ahead

We use a simulation-based approach for implementing the
look-ahead functionality described in Sect. 3. The term
simulation-based means that the proposed approach gener-
ates all possible continuations of a process instance (future
process trajectories)within the look-aheadwindow, in case of
executing the intended activity next. The generated process
trajectories are eventually validated whether they conform to
the underlying process model. Hence, the output of the look-
ahead is a set of traces (these can be either completed or
uncompleted, since the trace length is restricted by the look-
ahead length). This output is sufficient for our purposes, since
the traces contain all necessary information to derive possi-
ble consequences as exemplarily mentioned in Sect. 3.1. We
based our simulation technique on a transformation of declar-
ative process models to a logic language called Alloy [24].

The Alloy language is a declarative modelling language for
describing software structures, taking into account desired or
required restrictions [24].Hence, this objective is very similar
to the idea of declarative process modelling languages. The
usage of a logic framework is in some way natural, because
modelling languages like Declare or MP-Declare are based
on logics. In a strict sense, Alloy is not just a logic language
rather than a framework that consists of a logic, a language
and an analysis tool (Alloy Analyzer) [24]. We use the well-
known eXtensible Event Stream (XES)2 standard format to
store the generated traces, because this format enables a flex-
ible analysis, since nearly every process mining tool is built
upon this format.

In addition to the activity that should be executed next,
the underlying process model, and the previous trace of
the current execution, the look-ahead requires as input all
activities and resources (e.g. persons, tools or variables) that
can be theoretically involved in the execution. Otherwise, it
would be not clear which concrete instances of the resources
(also called process entities) can be used within the pro-
cess, respectively, the process instance. Note, that the process
model does not contain this information explicitly. For exam-
ple, in the publishPaper process model we have constraints
about authors and reviewers, but no concrete instances of
authors or reviewers. For simulation, we have to explic-
itly specify these instances, e.g. that all possible authors are
Alice, Bob and Eve and all possible word processing tools
are Word, Latex and LibreOffice. Our approach is visualized
in Fig. 4. In the following, we describe the single steps of the
approach including all necessary preliminaries in detail.

4.1 Transformation to Alloy

For the simulation, we have to transform the inputs of our
approach to an Alloy specification. Since we utilize Alloy as
the language to specify the simulation task, i.e. the language
that describes the task for the look-ahead, it is necessary
to be able to represent a process execution trace in Alloy.
Therefore, we describe an Alloy-based meta-model (so-
called Process Event Chain Meta-Model). This meta-model
was proposed in [2] and extended in [3] to support the
data-oriented perspective. We adapt this meta-model from
a previous version [3] to support also the operational per-
spective. In summary, it covers up the following process
perspectives: (i) functional and control-flow perspective, (ii)
organizational perspective, (iii) operational perspective and
(iv) data-oriented perspective. In the subsequent section we
describe this meta-model in detail, since it is fundamental to
the understanding of the transformation toAlloy.Afterwards,
we describe the transformation of process model, process
entities, previous trace and next step activity to Alloy.

2 http://www.xes-standard.org/openxes/start.

123

http://www.xes-standard.org/openxes/start

Language-independent look-ahead for checking multi-perspective declarative process models 1387

Fig. 4 Concept of the
simulation-based look-ahead

TRANSFORMATION TO ALLOY

PROCESS EVENT LOG

DERIVE CONSEQUENCES

SAT-SOLVING: GENERATING EXAMPLES AND COUNTEREXAMPLES

XES

ALLOY ANALYZER

PROCESS EVENT CHAIN META MODEL

…
INSTANCES OF RESOURCES /

PROCESS ENTITIES
PROCESS MODEL

TIME

PREVIOUS TRACE

SUBMIT
PAPER

INTENDED NEXT
STEP ACTVITY

Sec. 4.1

Sec. 4.2

Sec. 4.3

Sec. 4.3

4.1.1 Process event chain meta-model

The structure of the meta-model is shown in Fig. 5. In order
to represent an event in Alloy, the abstract signature PEvent
is introduced. This abstract signature forms the backbone of
the chain structure of the process execution traces. A signa-
ture in Alloy describes a static structure and can be compared
with a class in object-oriented programming languages. Each
PEvent just contains its unique position (pos) within the
trace. It would be more intuitive to implement this trace as
a singly or doubly linked list. However, a performance test
showed that such an implementation is accompanied by a
significantly worse runtime [2]. It is worth to notice that in
Alloy the keyword abstract has a different meaning than in
object-oriented programming languages. In Alloy the key-
word abstract does not automatically prevent an instantiation
of the signature. An instantiation is only prevented if there
is another signature that extends the abstract signature [24].
Hence, all events in the trace are instances of TaskEvents (the
last extension of PEvent).

The signature TaskEvent inherits from PEvent and encap-
sulates all resources that are carried by an event (e.g. the
name of the activity or involved persons). This encompasses
at least one instance ofAssociatedElement. The activity refer-
ring to the event is modelled as an instance of the signature
Task. The signatureAssociatedElement serves as an interface
that enables the extension of the meta-model by additional
process elements to support further process perspectives.

To enable the modelling of organizational structures,
we integrate the organizational meta-model that was first
proposed in [9] and transformed to Alloy in [2] in our meta-

model. It adds the ability to assign persons (Identity) to
events and to build hierarchical organizational structures.
The operational perspective is realized in the same way via
the extension Tool of the signature Element. The signature
Relation allows to formulate structural relations between
all subtypes of Element. Therefore, Relation contains three
fields: subject, predicate and object. An example of such a
relation would be: Alice (subject) hasRole (predicate) author
(object). Since the meta-model allows that every subtype of
Element can act both as subject and object, it is up to the
modeller to formulate meaningful relations.

The meta-model provides the functionality for represent-
ing the data-oriented perspective through the interaction of
the signaturesDataObject,WriteAccess, VariableObject and
Value. ADataObject can represent, for instance, a document
or a formular, that can be named by extending it or vari-
ables (VariableObject) that form further payload, like the
maximum page limit in our running example. A WriteAc-
cess assigns a concrete value (an instance of the signature
Value) to a data object. Therefore, a WriteAccess contains
a field which refers to a data object and a field for its
assigned value. The value can be either an integer or a char-
acter sequence (so-called String). Other data types, such as
floating-point numbers are not supported by Alloy. However,
we can simulate a floating-point number with two integers,
one representing the significand and one the exponent (power
of ten). The data-oriented perspective in the meta-model
would be expressive enough to encode the time perspective
of a process by representing the time as one or more inte-
ger values. This would be the same concept as programming
languages use for representing time (cf. unix timestamps).

123

1388 M. Käppel et al.

<<abstract>>
AssociatedElement

<<abstract>>
PEvent

pos: Int

<<abstract>>
TaskEvent

<<abstract>>
Value

v: (Int + String)

<<abstract>>
WriteAccess

<<abstract>>
DataObject

<<abstract>>
VariableObject

<<abstract>>
Task

<<abstract>>
Identity

<<abstract>>
Group

<<abstract>>
Tool

<<abstract>>
Element

<<abstract>>
Relation

<<abstract>>
RelationType

assoEl
value

data

predicate

objectsubject

Fig. 5 Process Event Chain Meta-Model

Note, that in this approach it makes no difference whether
we consider time as global, local, relative or absolute times.

The meta-model was implemented in Alloy. In order
to keep the description of preliminaries concise, we omit
presenting the source code and refer to [3]. The implemen-
tation contains some additional non-structural constraints to
express important restrictions that cannot be covered up by
the static structure of the meta-model. These are mentioned
in the following:

1. ATaskEvent is associatedwith exactly one activity (Task).
2. The PEvents are consecutively numbered and start at the

lowest available number, to ensure that the trace is con-
tinuous and gap free.

3. All AssociatedElements can only occur together with an
event.

4. A Group can only be part of a process instance if their
contained organizational units are also part of the process
instance.

5. An activity cannot be executed by a group, only by the
members (identities) of the group.

6. Each data object can occur at most one time in an event
(together with the concept of the WriteAccesses this pre-
vents that the value of a data object is changed multiple
times within an event).

4.1.2 Transformation of multi-perspective process models
to Alloy

The transformation of a declarativemulti-perspective process
model to Alloy is based on the initial modelling language.
This step was already done for MP-Declare [3] and DPIL
[2]. We would like to briefly recap the essential steps of
transforming an MP-Declare model and a DPIL model to
Alloy. Afterwards, we discuss under which preliminaries
this approach can be extended to cover further modelling
languages like DCR graphs. The transformation of an MP-
Declare or DPIL process model involves two major steps: (i)
creating signatures for the process entities and (ii) transform-
ing the constraints (MP-Declare), respectively, rules (DPIL)
of the process model to Alloy. In order to be able to follow
the contribution we explain those parts of the Alloy notation
that are necessary for understanding.

The process entities are transformed to Alloy code as
described in Algorithm 1. Therefore, each process entity is
transformed into a unique and eponymous signature extend-
ing the particular entity type (e.g. Task, Tool, Identity or
VariableObject).

In the literature, MP-Declare is considered as a reposi-
tory of constraint templates. However, this repository is not
complete and can be extended by defining custom templates
with the underlying Metric First-Order Temporal Logic. In
[3] a one-to-one mapping from MP-Declare templates to
Alloy predicates is presented. In Alloy a predicate describes

123

Language-independent look-ahead for checking multi-perspective declarative process models 1389

Algorithm 1: Transformation of process entities to
Alloy code
Input: Activities Ap , tools Tp , persons Ip , data objects Dp
Output: Alloy code that initializes the process entities

1 for a ∈ Ap do
2 print one sig a extends Task {}
3 end
4 for t ∈ Tp do
5 print one sig t extends Tool {}
6 end
7 for i ∈ Ip do
8 print one sig i extends Identity {}
9 end

10 for d ∈ Dp do
11 print one sig d extends VariableObject {}
12 end

a function with a Boolean return value [24]. This mapping
encompasses the common MP-Declare templates in the lit-
erature and must be extended for custom templates. The idea
behind this mapping is based on two concepts: (i) temporal
relationships between events are mapped to positional rela-
tionships in a trace and (ii) additional attribute conditions are
mapped to a constraint that selects a subset of all existing
events based on their attributes. According to the structure
of the templates, the predicates have as parameter one or
two activity events and additional restrictions like activation,
target and correlation conditions. A repository of the com-
mon MP-Declare templates and their corresponding Alloy
formulae can be found in [3]. For better understanding of
this mapping Listing 1 shows exemplarily the MP-Declare
response template as corresponding Alloy formulae. The
concept for transforming DPIL rules to Alloy is identical.
A table of DPIL rule templates and corresponding Alloy for-
mulae can be found in [2]. Using these transformation rules,
it is straightforward to transform MP-Declare rules to Alloy,
since each rule is an instance of an MP-Declare template.
These instances are listed in an Alloy fact block. In Alloy
facts are blocks for formulating invariants, i.e. they contain
constraints that are always assumed to be true [24]. It does
not matter whether one or more fact blocks are used. Hence,
we can form a conjunction of constraints to represent the
whole processmodel. In order to automatically translateMP-
Declare models and DPIL models to Alloy a model-to-text
transformation was implemented.

The underlying logic for Alloy is a threefold calculus:
first-order predicate logic, relational logic and navigation
expression logic [24]. Hence, the expressiveness of Alloy
is limited to first-order logic. Consequently, it is only pos-
sible to map modelling languages to Alloy that possess a
expressiveness that is less or equals to first-order logic (FOL).
Otherwise, not all features of a language can be mapped to
Alloy. In case of Declare, which relies on Linear temporal
logic (LTL) [28], it was shown in [18] that LTL and first-

pred response[t1, t2 : Task , act , tar :
TaskEvent , cor : TaskEvent -> TaskEvent]
{

2 ∀ hte : any[t1] | #(inAfter[hte , t2] ∩
act ∩ cor.hte) > 0

}

Listing 1 Alloy formulae of the MP-Declare response template

order logic are equally expressive over discrete-time models.
However, the expressiveness of multi-perspective declara-
tive modelling languages is an open question in research and
would exceed the scope of this paper. Because of the success-
ful use for MP-Declare and DPIL, an Alloy-based approach
seems promising for other modelling languages as well.

4.1.3 Transformation of the previous trace to Alloy

The Process Event ChainMeta-Model allows the representa-
tion of a trace as an instance of the meta-model.We represent
the next step activity as an event enext that additionally con-
tains all process entities thatwouldbe involvedbyperforming
this activity. Since the output of the look-ahead is a set of con-
tinuations of the previous trace extended by enext , we can
simply append this event to the previous trace. Hence, we
have no longer to consider a previous trace and an intended
next step activity separated from each other (which is why
we only use the term trace in the following). We use a fact
block to represent this trace in Alloy, which means, the Alloy
Analyzer interprets this trace in the same way as a constraint
of the process model.3 Hence, all generated traces have to
fulfil this constraint, in that sense that the trace must be a
prefix of the simulated traces.

The position of an event in the process event chain is iden-
tified via an index (field pos in the meta-model). In Alloy it is
necessary to define a-priori the number of available integer
values. This is done via the bitwidth parameter B. The Alloy
Analyzer then generates integer values in the range of

[
−2B−1, 2B−1 − 1

]
.

It is an Alloy specific peculiarity that the indices are arranged
symmetrically around zero [24]. Hence, the first position of
the trace has the index −2B−1. For example, a bitwidth of 6
allows a maximum trace length of 64 and the indices range
from -32 to 31.

This limitationof integers also affects the representationof
data objects, since it requires finite domains and the variables
can attain only integer values within in the above defined
range. Hence, we have to choose the bitwidth large enough

3 Remember that the Alloy Analyzer searches for examples that fulfil
a given Alloy model and the given Alloy model here describes traces,
which means that the Analyzer will generate exemplary traces.

123

1390 M. Käppel et al.

Algorithm 2: Transformation of previous trace and next
step activity to Alloy
Input: Previous trace σprev , next event enext , bitwidth B,

activities Ap , tools Tp , persons Ip , data objects Dp
Output: Alloy code that describes the previous trace and the next

step activity
1 σ ← σprev.append(enext)
2 start ← −2B−1

3 k ← 1
4 while k < |σ | do
5 print fact {
6 print #(at Pos[πA(σ (k), start + k)]) > 0
7 for t ∈ Tp do
8 if t ∈ πT (σ (k)) then
9 print #(at Pos[t, start + k]) > 0

10 else
11 print #(at Pos[t, start + k]) = 0
12 end
13 end
14 for i ∈ Ip do
15 if i ∈ πI(σ (k)) then
16 print #(at Pos[i, start + k]) > 0
17 else
18 print #(at Pos[i, start + k]) = 0
19 end
20 end
21 print #(nWaAt Pos[start + k]) = |πD(σ (k))|
22 if πD(σ (k)) �= ∅ then
23 for v ∈ πD(σ (k)) do
24 if δ(σ (k), v) ≥ 0 then
25 print #(at Pos[wa_v_δ(σ (k), v), start + k]) > 0
26 else
27 print

#(at Pos[wa_v_n|δ(σ (k), v)|, start + k]) > 0
28 end
29 end
30 end
31 print }
32 k ← k + 1
33 end

to encompass the domains of the data objects. We refer to
the domain of a data object v as domv . Since Alloy only
supports integer values, the domain is a subset ofZ and can be
defined via an enumeration (e.g. domAbstract = {1, 2, . . . , 8}).
We define the following mapping to return the attained value
of a particular data object within an event:

δ : E × Dp → Z, (e, v) �→ a ∈ domv.

Based on the previous definitions, it is now possible to
describe the algorithm which transforms a trace to Alloy (cf.
Algorithm 2). After appending the next step event to the pre-
vious trace (Algorithm 2 line 1), we have to iterate through
the trace (Algorithm 2 line 4) and assign the events including
their involved process entities to the corresponding position.
We use the utility function atPos(assoElement, pos) to assign
an arbitrary subtype of AssociatedElement to an event at a

certain position. A function in Alloy is a reusable snippet of
code that can be parameterized via zero or more arguments
and which returns a set or an integer [24]. The atPos function
gets two parameters (the AssociatedElement and the position
of the event) and returns a set ofTaskEventswhich satisfy two
conditions: the position of the TaskEvent must be identical to
pos and assoElement must be associated with the event. The
correct position is calculated by shifting the index k of the
trace by −2B−1. The assignment to the event on the given
position is ensured as we demand that the return value of this
function should not be the empty set, i.e. the cardinality (in
Alloy denoted by #) of the returned set must be greater zero
(e.g. Algorithm 2 line 6).

However, it is not sufficient to assign all process entities
to the correct positions, since that does not prevent a later
modification of the trace through the Alloy Analyzer. Since
we modelled the trace as a fact block the Alloy Analyzer has
to fulfil the assignments. Hence, associated elements can-
not be removed from an event. However, it is feasible for
the Alloy Analyzer to add additional elements to the events
of the trace. For example, a further word processing tool or
author could be added to the event that contains the activ-
ity WriteAbstract. Since the historic execution of a process
instance must be immutable we have to explicitly exclude all
process entities that are not related to the respective event.
This is done in differentways for the types of the process enti-
ties. For activities (type Task), it is not necessary to exclude
other activities, since the structure of meta-model ensures
that each event contains exactly one activity. In case of tools
and identities, we prevent assigning further elements to an
event utilizing the atPos function in the following way: we
demand that for all tools and identities that are not associated
explicitly with the event at a certain position the atPos func-
tion should return the empty set, i.e. a set with cardinality
zero (Algorithm 2 lines 11 and 18).

s
The assignment and the prevention of undesired assign-

ments of data objects to an event requires a more sophisti-
cated handling than assigning performers, activities and tools
to an event (Algorithm 2 lines 21–30). Since a data object and
its concrete value are encapsulated within aWriteAccess, the
WriteAccess is assigned to an event instead of the data object.
However, this encapsulation is concerned with some perfor-
mance issues. During the simulation of project trajectories
the Alloy Analyzer would have to create WriteAccesses on
demand. A performance test has shown that the creation of
a WriteAccess during simulation runtime takes significant
more time than assigning already instanciatedWriteAccesses
to an event. Hence, we create and initialize a-priori all theo-
retically possible WriteAccesses, so that during runtime the
WriteAccesses simply have to be assigned to events. This
procedure is described in Algorithm 3 which is executed
before Algorithm 2. The algorithm creates aWriteAccess for

123

Language-independent look-ahead for checking multi-perspective declarative process models 1391

Algorithm 3: Creating and initializing WriteAccesses
for data objects
Input: Data objects Dp
Output: Alloy code that initializes all possible WriteAccesses

for data objects
1 for v ∈ Dp do
2 for j ∈ domv do
3 if j ≥ 0 then
4 print one sig wa_v_ j extends WriteAccess {}
5 print fact {
6 print wa_v_ j .data = v

7 print wa_v_ j .value = j
8 print }
9 else

10 print one sig wa_v_n| j | extends WriteAccess {}
11 print fact {
12 print wa_v_n| j |.data = v

13 print wa_v_n| j |.value = j
14 print }
15 end
16 end
17 end

each combination of data object and value of its domain. The
creation involves two steps. First, a signature for theWriteAc-
cess is created (Algorithm 3 line 4 and line 10). The name
of the WriteAccess is composed by the prefix wa, followed
by the name of the data object, and the value. Since nega-
tive integers would violate theAlloy convention for signature
names, we have to consider whether the value is greater or
equal to zero or negative (Algorithm 3 line 3). In case of a
negative value, we take the absolute value with the prefix
n (Algorithm 3 line 10). Second, the WriteAccess is initial-
ized in a fact block, associating the corresponding data object
and the particular value (Algorithm 3 lines 5-8 and 11-14).
Eventually, the WriteAccesses can be assigned under con-
sideration of their names to a certain position via the atPos
function (Algorithm 2 lines 24–28). Themeta-model ensures
that every data object can occur at most once within an event.
Hence,we have to prevent assigning further data objects only.
This is done by limiting the number of WriteAccesses on the
corresponding position in the trace via the function nWaAt-
Pos(pos) to the number of assigned data objects (Algorithm
2 line 21).

We demonstrate the transformation of a trace to Alloy
by the following example. Assume we have the following
previous trace (we indicate the attained value of a data object
in squared brackets directly after the name of the data object)

σ = 〈WriteAbstract(Alice, Bob; Latex; Abstract[2]),

SubmitAbstract(Alice Bob; Abstract[2])〉

and a next step activity

enext = WritePaper(Alice, Bob; Word; Paper[8]).

Furthermore, the process entities are assumed to be as fol-
lows:

Tp = {Latex, Word, LibreOffice},

Ip = {Alice, Bob, Eve},

Dp = {Paper, Abstract}.

As described in the running example, we have the following
domains for the data objects:

domPaper = {1, 2, . . . , 10},
domAbstract = {1, 2, . . . , 8}.

Applying Algorithms 1, 3 and 2 in exactly this order with
the inputs above and a bitwidth of 6 returns the Alloy code
shown in Listing 2. Note, that this Alloy code contains all
inputs for our approach.

// Process entities (Ap, Tp , Ip , Dp)
2 one sig WriteAbstract extends Task {}

. . .

4 one sig RejectPaper extends Task
one sig Alice extends Identity {}

6 one sig Bob extends Identity {}
one sig Eve extends Identity {}

8

one sig LibreOffice extends Tool {}
10 one sig Word extends Tool {}

one sig Latex extends Tool {}
12

one sig Paper extends VariableObject {}
14 one sig Abstract extends VariableObject {}

16 // WriteAccesses for Paper
one sig wa_Paper1 extends WriteAccess {}

18 fact {
wa_Paper1.data = Paper

20 wa_Paper1.value= 1
}

22 . . .

one sig wa_Paper10 extends WriteAccess {}
24 fact {

wa_Paper10.data = Paper
26 wa_Paper10.value= 10

}
28

// WriteAccesses for Abstract
30 one sig wa_Abstract1 extends WriteAccess {}

fact {
32 wa_Abstract1.data = Abstract

wa_Abstract1.value= 1
34 }

. . .

36 // Process Model
. . .

38 //Trace including next event
fact {

40 // Previous Trace
#(atPos[WriteAbstract ,-32]) >0

42 #(atPos[LibreOffice , -32])=0
#(atPos[Word ,-32])=0

44 #(atPos[Latex ,-32]) >0
#(atPos[Bob ,-32]) >0

46 #(atPos[Eve ,-32])=0
#(atPos[Alice ,-32]) >0

48 #(nWaAtPos [-32])=1
#(atPos[wa_Abstract2 ,-32]) >0

50

#(atPos[SubmitAbstract , -31]) >0
52 #(atPos[LibreOffice , -31])=0

#(atPos[Word ,-31])=0
54 #(atPos[Latex ,-31])=0

123

1392 M. Käppel et al.

#(atPos[Bob , -31]) >0
56 #(atPos[Eve , -31])=0

#(atPos[Alice , -31]) >0
58 #(nWaAtPos [-31])=1

#(atPos[wa_Abstract2 ,-31]) >0
60

//Next event
62 #(atPos[WritePaper ,-30]) >0

#(atPos[LibreOffice ,-30])=0
64 #(atPos[Word , -30]) >0

#(atPos[Latex , -30])=0
66 #(atPos[Bob , -30]) >0

#(atPos[Eve , -30])=0
68 #(atPos[Alice , -30]) >0

#(nWaAtPos [-30])=1}
70 #(atPos[wa_Paper8 ,-30]) >0

}

Listing 2 Example for representing a trace in Alloy

4.2 SAT-solving: generating examples and
counterexamples

Through the transformation of the processmodel and the cur-
rent process execution state to Alloy, we have transformed a
context-aware process simulation problem into a SAT prob-
lem. The Alloy Analyzer provides different constraint solver
(so-called SAT solvers) for solving SAT problems. So far,
we have introduced Alloy’s SAT solvers as techniques that
generate examples for a given Alloy model. However, more
precisely it is possible to run them in two opposedmodes, i.e.
the SAT solvers can be used to generate instances that either
satisfy or violate a given Alloy specification. We refer to
the former as examples and to the latter as counterexamples.
Therefore, we have to configure a command which causes
the Alloy engine to search for instances. This can be done
according to the following templates depending on whether
we are searching for examples or counterexamples.

In case of searching examples, we define an empty predi-
cate (look) and configuring a run command:
pred look run look for x TaskEvent, B Int. If one is inter-
ested in counterexamples, we have to define an assert (look)
and must configure a check command:
assert look hypothesis check look for x TaskEvent, B Int.

The configuration of the solution space is for both com-
mands identical. The solution space is called scope. Through
defining the scope we bound the sizes of the sets assigned to
type signatures. This limitation of the solution space is nec-
essary to make the SAT problem finite. Otherwise, the SAT
problem might be undecidable due to the infinite amount of
possible solutions. Since the look-ahead window represents
a limited solution space, this limitation does not affect the
functionality of the look-ahead. Nevertheless, the scopemust
be specified correctly for generating the process trajectories.
Therefore, we must specify the number of events (x). This
parameter is set to the sum of the length of the previous trace
including the next step activity and the look-ahead length. In
the case that we are searching for counterexamples, we must
specify in the assert block what exactly we are looking for a

counterexample (hypothesis). If wewant for example answer
the question (cf. Sect. 3.1): Do I have to execute activity a
next (i.e. at the current position currentPos)? It is necessary to
encode the question as a hypothesis in the assert block. This
hypothesis can be formulized by assuming an answer to the
question. In our example, the hypothesis would be: suppose
we execute a next (of course it would be also possible to sup-
pose that we do not execute a next). This could be encoded in
the following way: assert look atPos[currentPos, a]. Note,
that we can arbitrary combine constraints in the assert block,
to ask for counterexamples for more complex questions that
also relates identities, data objects and tools.

Within this defined scope Alloy guarantees distinctness
and exhaustiveness while generating solutions. These prop-
erties avoid redundant solutions and ensure that all possible
solutions are considered.As a consequenceof these twoprop-
erties Alloy also achieves determinism. Determinism means
that the found solutions can be replicated according to the
predefined settings [2].

In case of counterexamples, one is often interested only
in one or a fixed number of process trajectories. Therefore,
we add the possibility to generate only a fixed number of
process trajectories. However, the quality of the generated
solutions is unclear. Hence, it could be necessary to generate
a lot of counterexamples until we found a solution that fits to
the requirements.

4.3 Transformation to XES and deriving
consequences

We export the generated traces of the previous step into the
well-known eXtensible Event Stream (XES) standard format
for further analysis. Therefore, the solutions found by the
Alloy Analyzer must be parsed and converted to the XES
format. The XES format is well suited for deriving conse-
quences, since nearly every process mining tool is built upon
this format. Hence, we can use the rich set of different pro-
cess mining techniques to derive consequences of various
kinds and can adapt the analysis to custom preferences. This
flexibility is important, because the focus of interest can be
manifold (cf. Sect. 3.1) and each process contains some indi-
vidual particularities that need to be dealt with. Note, that
it makes no difference whether we analyse valid traces or
counterexamples in form of invalid traces. This distinction is
only important for the interpretation of the results.

When parsing the solutions of the Alloy Analyzer each
trace is labelled with a unique ID. In dependence on the
encompassed process perspectives of the simulated process
model, we add the necessary XES extensions to the event
log. Furthermore, we enriched our look-ahead functionality
with three of the analyses described in Sect. 3.1:

123

Language-independent look-ahead for checking multi-perspective declarative process models 1393

– Is it possible to finish the process instancewithin the look-
ahead window? For answering this question, we check
whether no solution is found or a completed trace within
the look-aheadwindow. In case of no solution, it is impos-
sible to finish the process instance within the look-ahead
window.

– Which process entities are possibly involved in the execu-
tion within the look-ahead window? We iterate through
the event log of generated traces and extract the process
entities used within the look-ahead window. Therefore, it
is sufficient to skip the previous trace including the next
step activity.

– Is it possible to reach the desired process outcome? The
outcome is described via a particular activity and addi-
tional requirements on other process perspectives.Hence,
we have to check whether a trace fulfils these conditions.

We conclude this section with one important remark about
the interpretation of the look-ahead results. All results must
be interpreted against the background of the limitation of the
look-aheadwindow, since it affects the set of generated traces
in many ways. For example, we cannot conclude that every
process entity that is not involved within the look-ahead win-
dow is automatically forbidden within this scope. The reason
for that is that the validity of a trace can—as mentioned in
Sect. 3.2—change several times. Sincewe are only interested
in valid process trajectories, we neglect all those trajectories
that are invalidwithin the look-aheadwindowbut canbecome
valid again. Note, that in case of counterexamples it is the
other way around and we are interested in invalid process
trajectories. Hence, with a larger look-ahead window some
further process entities could still be involved.

4.4 Reasons for Alloy and comparison with other
logic frameworks

In the following, we give some reasons for using Alloy
and compare it with other logic frameworks. Recall that
the Alloy logic is a threefold calculus: first-order predi-
cate logic, relational logic and navigation expression logic
[24]. Comparable logic frameworks such as B, Object Con-
straint Language (OCL), VDM and Z are based on the same
logic concept, but use different techniques in the background
[24]. While Alloy uses SAT solving the other logic frame-
works are based on finite state machines. However, utilizing
finite state machines leads to an exponential state explosion.
Hence, they suffer from the same problem of exponential
blowout as the SAT solving strategy of Alloy. However,
Alloy has an advantage over the other frameworks. While
other frameworks cannot open up the solution space auto-
matically and require a manually defined test specification,
Alloy is based on a full automatic analysis that does not anal-
yse the complete solution space [24]. This technique is called

constraint solving and offers fast feedback for limited solu-
tion spaces. Since the look-ahead window represents such
a limited solution space, Alloy meets the defined require-
ments better than other frameworks. This strategy possesses
additionally advantages against approaches that would use a
more expressive formal language than first-order logic. For
example, the Alloy language is less expressive than regular
expression, because it is limited to first-order logic. However,
using regular expressions requires separate symbols for each
possible state of the process. This encompasses the order of
activities as well as values of variables and other resources.
To avoid a possibly unlimited number of states, it becomes
again necessary to limit the solution space. Furthermore,
there exists currently no approach that transforms a multi-
perspective declarative process model to regular expressions
(only for single-perspective languages like Declare). Hence,
Alloy seems to be an adequate solution as demonstrated by
the successful use for the simulation and the execution of
multi-perspective declarative process models [2,3].

However, the limited expressiveness compared to formal
languages such as regular expressions could be a poten-
tial problem. Nevertheless, the expressiveness is sufficient
to cover modelling languages like DPIL and MP-Declare as
seen in the previous sections. Technically, the expressiveness
of these languages is an open question in research and not
theoretically proven; however, until now the provided expres-
siveness is sufficient to cover all element of these modelling
languages. For extending the approach to other declarative
modelling languages, e.g. to DCR graphs, it must be evalu-
ated whether the expressiveness of Alloy logic is sufficient.

Apart from the technical points, various studies con-
sider Alloy to be useful in similar areas as the application
areas of the look-ahead. In [40], Alloy is described as use-
ful for testing and verifying code in software projects. The
authors emphasize the good balance between analysabil-
ity and expressiveness of Alloy as well as the availability
of the important modelling tasks simulation, verification
and debugging. The ability for incremental building and
exploration of system design are very similar to modelling
declarative process models in order to avoid an under- or
overspecification.

4.5 Applications for the look-ahead approach

We conclude this section by describing two promising
applications for our introduced look-ahead functionality: pre-
dictive business process monitoring and process modelling
or checking.

A wide look-ahead helps to take appropriate measures at
an early stage. The revealed consequences of the look-ahead
can be combined with domain knowledge of the particular
process to give recommendations to the process participants,
e.g. a very cost and time saving execution path or the abort

123

1394 M. Käppel et al.

of the process execution. It also becomes possible to predict
the most likely process trajectory by comparing the current
execution with historic process executions.

Process models are checked by comparing the desired
behaviour with the expected behaviour provided in themodel
[8,42]. For this task, exemplary process executions in form
of traces are used. In context of process modelling each
trace describes a scenario, i.e. a specific situation of the
process. The look-ahead allows to analyse such scenarios
by determining possible consequences. The resulting conse-
quences provide information, whether the process model is
conformant with reality and reveal undesired behaviour like
contradictions, deadlocks or undesired process trajectories.
Studies in cognitive science confirm the positive effects of
examples especially of counterexamples for understanding
[43].

5 Implementation and evaluation

In this section, we provide implementation details and evalu-
ate the proposed look-ahead concept by the running example
and a further multi-perspective declarative process model.
Afterwards, we emphasize the difference to the previous
approach presented in [25], check which of the requirements
defined in Sect. 3.2 are fulfilled, and discuss existing limita-
tions.

5.1 Implementation

The proposed look-ahead approach has been implemented
as a Java application including a graphical user interface (cf.
Figs. 6, 7). The graphical user interface allows the definition
of involved process entities (cf. Fig. 6(1)), the import of a
DPIL model or an MP-Declare model (cf. Fig. 6(2)), and the
definition of the current state of the process execution (cf. Fig.
7(3)). The user has the possibility to define the intended next
step activity (cf. Fig. 7(4)) as well as the look-ahead length
(cf. Fig. 7(5)). By clicking the configuration button (cf. Fig.
7(7)) for counterexamples, the user can define the search for
counterexamples in detail (cf. Sect. 4.2). By clicking on the
run button (cf. Fig. 7(6)), the inputs are transformed to Alloy
code, which is directly executed via the JavaAPI4 provided
by Alloy.

Alloy ships with different SAT solvers, which are inter-
changeable due to the multiple abstraction layers in the
architecture of Alloy. The set of available SAT solvers
depends on the platform, since some of them require a
32bit execution environment or a linux distribution. The SAT
solvers offer some configuration options like space allocation

4 http://alloytools.org/documentation/alloy-api/index.html.

or symmetry breaking. Symmetry breaking prevents sym-
metric solutions, i.e. solutions that are isomorphic [24]. In
our implementation, we always enable symmetry breaking
and allocate the maximum of available space.

A fixed number of generated instances are shown as a pre-
view (cf. Fig. 7(8)). All generated instances can be exported
for further processing. Therefore, generated instances by the
SAT solver are parsed and transformed into the well-known
XES format utilizing the OpenXES library.5

5.2 Evaluation

SAT solving for propositional logic is known to be NP-
complete (Cook–Levin theorem [12]). Hence, it is important
to evaluate the look-ahead that is based on this principle in
term of its runtime performance. Note, that measuring the
runtime performance does not primarily evaluate the look-
ahead itself rather than the used SAT solver. For evaluation
we use the single-perspective process model hiddenCoEx-
istence from the introduction, the running example, and an
additional process model we describe shortly in the follow-
ing.

Example 2 The realEstate process model describes the pro-
cess of visiting and buying a real estate on an abstract level.
Its complexity, measured in the number of constraints, pro-
cess entities and domain of the involved data objects, is less
than of the publishPaper process. We describe this process
model in the same manner as the running example. The con-
trol flow is described in Fig. 8. The hereby used constraints
mean that:

1. before buying a real estate, the customer has to request an
application,

2. if an application was requested, it would have to be han-
dled by a real estate agent,

3. before buying a real estate the application has to be
approved,

4. the customer has to visit the real estate before buying.

Furthermore, we have the following cross-perspective con-
straints:

1. customer and real estate agent should not be the same,
2. the incomes are of four categories. Only if the category is

1 or 4 it is possible for the customer to buy the real estate.

We run this process with five different persons.

We identified the following influencing factors on the
computational time: (i) the number of process entities, (ii) the

5 http://www.xes-standard.org/openxes/start.

123

http://alloytools.org/documentation/alloy-api/index.html
http://www.xes-standard.org/openxes/start

Language-independent look-ahead for checking multi-perspective declarative process models 1395

1

2

Fig. 6 Graphical User Interface of the look-ahead Demo

Fig. 7 Graphical User Interface
for defining previous trace and
look-ahead

7

3

4
5

6

7

8

123

1396 M. Käppel et al.

BuyRealEstateProcessApplicationRequestApplication
precedence

precedence

ApproveApplication
precedence

VisitRealEstate

precedence
response

1 2 3

4

Fig. 8 realEstate example process in graphical Declare notation

number of constraints the model contains and (iii) the length
of the trace. The influence of these factors was already eval-
uated in [3] and the trace length was revealed as the driving
influencing factor. These results hold for the look-ahead, too.
In our analysis, we focussed on two further points. First, we
investigate how the different process perspectives affect the
runtime. Therefore,we analyse the runtime separately for dif-
ferent process perspectives, i.e. we iteratively omit process
perspectives. Second, we compare the performance of two
SAT solvers (SAT4J and MiniSAT). All benchmarks have
been performed on a Windows 10 64 Bit system equipped
with an Intel Core i7-4790K CPU @4.00GHZ 16GB mem-
ory and SSD drive.

In the following, we analyse the runtime performance of
our measures.
hiddenCoExistence In runtimeanalysis of the single-perspective
hiddenCoExistence process model (cf. Table 1), we observe
an exponential growing runtime in dependent on the look-
ahead length. Also the above mentioned dependency on the
trace length can be observed. In case of invalid previous
traces (marked as bold) the runtime increases only slowly.
The runtime of the used SAT solvers (SAT4J and MiniSAT)
are nearly identical, which is why we present only the results
of the SAT4J solver in Table 1.
publishPaper and realEstate The runtime analysis for the
publishPaper process model and the realEstate process
model are shown in Tables 3 and 2, respectively. In this
analysis, we are focussing on the influence of different pro-
cess perspectives and the SAT solvers. We observe that the
data-oriented perspective affects the runtime most, while
the control-flow perspective has a slight influence only. The
operational perspective and organizational perspective have
a comparable effect on the runtime. Reasons for the differ-
ence to the data-oriented perspective can be traced back to the
domain of the data-objects.With respect to the large runtime,
the difference between the used SAT solvers is emphasized
more clearly as in the hiddenCoExistence process model. In
both analyses, we neglect a deeper analysis of the influence
of the trace length, since the effect is already investigated in
[3].

In summary, the presented approach outperforms the pre-
vious one in [25]. However, the runtime currently limits the

approach to rather small application scenarios or scenarios
with less strict time requirements, like model checking. Due
to the interchangeability of the SAT solvers in Alloy, our
future work will include an extensive study of different SAT
solvers that provide better parallelization than the currently
used SAT solvers.

5.3 Checking the fulfillment of the requirements

Next, we give a brief summary which of the requirements for
the look-ahead functionality are met by our implementation.
Note, that the requirements are defined in Sect. 3.2 . Require-
ment 1 (Completeness of simulation) is fullymet, sinceAlloy
guarantees distinctness and exhaustiveness while generating
solutions. Also redundant solutions are avoided through the
Alloy Analyzer. The second requirement (Systematic and
efficient search) is largely fulfilled within the possibilities of
a SAT solving-based approach. The used SAT solvers use dif-
ferent strategies to search the solution space in an efficient
manner. However, the current runtime limits the approach
to rather small application scenarios or scenarios with less
strict time requirements. Requirement 3 (Language indepen-
dence) is fully achieved through the support of the modelling
languages Declare, MP-Declare and DPIL. Furthermore, an
extension to other modelling languages appears realistic,
even if a final check of the expressiveness of the underlying
logic concepts has to be checked. Also the last requirement
(Output format for easy post-processing) is achieved, since
nearly every process mining tool is built upon the chosen
XES format. Hence, an easy post-processing of the gener-
ated traces is possible.

5.4 Difference to the previous approach

We conclude this section by describing the difference to the
previous approach in [25]. The main difference is the way
how we use the SAT solving capabilities of Alloy. In [25] a
brute-force algorithm generates all possible process trajec-
tories and transforms them into Alloy code as described in
Sect. 4.1.3. Afterwards, the Alloy Analyzer is used to check
these traces for validity. Therefore, the Alloy Analyzer has
to search for a solution in the given scope. The restrictions

123

Language-independent look-ahead for checking multi-perspective declarative process models 1397

Table 1 Runtime analysis of the single-perspective hiddenCoExistence process model

Look-ahead length

Prev. Trace 1 2 3 4 5 6 7 8 9 10

〈〉 0s 0s 0s 0s 1s 2s 7s 22s 68s 239s

〈A〉 0s 0s 0s 0s 1s 3s 8s 26s 83s 320s

〈B〉 0s 0s 0s 1s 2s 5s 15s 46s 158s 621s

〈C〉 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s

〈D〉 0s 0s 0s 0s 1s 1s 3s 8s 10s 23s

〈E〉 0s 0s 0s 0s 1s 2s 3s 8s 10s 20s

〈A, B〉 0s 0s 0s 1s 2s 6s 16s 61s 148s 463s

〈A, C〉 0s 0s 0s 0s 0s 1s 2s 3s 5s 5s

〈A, B,C〉 0s 0s 0s 1s 3s 7s 21s 72s 240s 797s

〈A, B, D〉 0s 0s 0s 0s 1s 2s 3s 3s 5s 6s

Table 2 Runtime analysis of the realEstate process model

Look-ahead length
SAT4J MiniSAT

Configuration, Trace 1 2 3 4 5 1 2 3 4 5

all persp.,〈〉 0s 4s 3m 36m 3.5h 0s 3s 2m 28m 3h

without org. persp.,〈〉 0s 0s 6s 5m 42m 0s 0s 4s 4m 33m

without data persp.,〈〉 0s 0s 2s 2m 34m 0s 0s 1s 2m 24m

as single persp.,〈〉 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s

Table 3 Runtime analysis of the publishPaper process model

Look-ahead length
SAT4J MiniSAT

Configuration, Trace 1 2 3 4 5 1 2 3 4 5

all persp.,〈〉 1s 2m 4h - - 1s 2m 3.5h - -

without org.,〈〉 0s 1m 32m 4h - 0s 48s 25m 3.5h -

without op.,〈〉 0s 1m 30m 4h - 0s 45s 24m 3.5 -

without data,〈〉 0s 2s 29s 5m .5h 0s 1s 28s 4m .5h

as single persp.,〈〉 0s 0s 0s 1s 1s 0s 0s 1s 1s 1s

through the process model and the trace leave only two pos-
sible solutions: If the trace in the model was valid, the Alloy
Analyzer produces exactly one solution which is identical to
the trace in the Alloy specification. Otherwise, no solution
was found, and the trace was classified as invalid. Hence, for
each trace that should be validated the Alloy Analyzer has
to search through the whole solution space. Due to the large
number of traces that has to be checked, the solution space is
searched through many times. In the approach presented in
the paper at hand, we generate only valid traces (or invalid
traces in case of counterexamples) instead of checking a trace
for validity. This has the advantage that the solution space has
to be searched through only once which is the reason for the
runtime improvement.

6 Related work

This work relates to the stream of research on (multi-
perspective) declarative process management. Since the
look-ahead approach touches many different aspects, we
divide this section into paragraphs with respect to these
aspects.
Problems of understanding andmodelling of declarative pro-
cess models The problems in understanding and modelling
of declarative process models described at the beginning of
this paper are well known in current research. Nevertheless,
there are likewise little studies that explicitly deal with the
comprehensibility of declarative process models. In [21], the
authors present a systematic study focusing on the compre-

123

1398 M. Käppel et al.

hension of Declare models. Their study revealed that single
constraints can be handled well by the most subjects, while
combinations of constraints pose a significant challenge [21].
The study also showed that subjects use the layout (i.e. the
composition of notation elements in the processmodel) in the
processmodel for reading aDeclaremodel.Hence, the graph-
ical notation can hamper the understanding of the model.
Comparable understandability studies have been considered
hybrid representations where graphical and text-based spec-
ifications of declarative processes have been studied [1,6].
However, currently there exists no comparable study forMP-
Declare models.
HiddendependenciesOne reason for the difficult understand-
ing of declarative process models are hidden dependencies.
The detection of hidden dependencies is addressed in [37]. In
[14] hidden dependencies between constraints are identified
as one of the main causes, why declarative process models
are more difficult to comprehend and require a higher men-
tal effort of both the modeller and the reader. The authors
proposed a methodology to detect these hidden dependen-
cies and make them visible. They integrated this method into
the Declare Execution Environment,6 that enriches existing
Declare models with visual and textual annotations to clarify
allowed or disallowed behaviour by the model. This can be
considered in some way as a simplified single-perspective
look-ahead strategy. In an empirical study with 95 novice
Declare modellers, the practical use of this approach was
proven [14].
Redundant constraints and contradictions A very simi-
lar problem are redundant constraints and contradictions
between constraints. This issue is addressed in [11]. The
authors use automata-product monoids to reveal redundan-
cies and inconsistencies. However, this approach is also
limited to single-perspective process models.
Execution of multi-perspective declarative process models
There are a few approaches for the execution of multi-
perspective declarative process models. In [3], the authors
transform MP-Declare process models into the logic lan-
guageAlloy and use theAlloy framework for their execution.
The same was done in [2] for DPIL process models. Addi-
tionally, there exists an execution framework for DPIL [44].
Also the DCR graph framework [22] offers the execution of
themulti-perspective declarative processmodels basedon the
notion graphmarking [35,38]. A further common declarative
modelling language is the Guard-Stage-Milestone (GSM)
language that enables the design of business artefacts with
declarative elements to describe the intended behaviourwith-
out an explicit definition of the control flow [7,26]. This
language is also executable and was embedded into a multi-
agent systems semantic for reasoning about knowledge and
time at the formalism of first-order logic [7]. In the EM-

6 http://www.processmining.be/declareexecutionenvironment/.

BrA2CE project [19], the Semantics of Business Vocabulary
and Business Rules (SBVR) framework is extended by con-
cepts such as activities, states and participants. The SBVR
rules are translated to event-condition-action (ECA) rules to
enable their execution. For some other declarative modelling
languages, such as CLIMB [27], there exist no frameworks
for modelling and execution.
Mining of multi-perspective declarative process models The
automatic extraction ofmulti-perspective declarative process
models has been addressed in latest research as well. In [32],
the authors present an approach for the extraction of MP-
Declare models based on SQL queries. A similar approach
based on parallel and distributed computing is presented in
[39]. A toolkit and software framework for deriving MP-
Declare rules is given in [5].
Generating process execution tracesThe generation of traces
and, as a result, of complete event logs gains more and more
attention in research in the last years, since generated event
logs are often better suited for evaluating various process
mining algorithms than real-life event logs [2,4,34]. While a
large number of trace generators already exist for imperative
process models, there exists only a small number of genera-
tors for (multi-perspective) declarative process models. The
existing generators are mostly limited to the control flow
perspective and organizational perspective. So far, only two
approaches provide additional support for the data-oriented
perspective. In [34], the authors present anAlloy-based event
log generator for MP-Declare process models and in [2]
a trace generator for DPIL process models is presented.
However, both approaches are limited to the behavioural,
organizational and data-oriented perspective. If a sufficient
number of completed process executions are already avail-
able, Long Short-Term Memory Neural Networks (LSTMN
networks), such as in [10], can be trained to simulate fur-
ther process trajectories or entire event logs. However, such
approaches depend on a sufficient number of already com-
pleted traces and may generate process trajectories that are
not conformant to the underlying process model. Further-
more, the approach is currently limited to the control flow
perspective, organizational perspective and time perspective.
Predictive business process monitoring Predictive business
process monitoring is an extensively discussed topic in
research. However, existing approaches are mostly limited
to control-flow, organizational and time perspective. In gen-
eral, those approaches are based on event logs, so they can be
also applied to knowledge-intensive processes. The proposed
look-ahead in this paper is also used for prediction tasks;
however, there is a main difference to common predictive
business process monitoring techniques like neural networks
[10,33].While neural networks are trained on completed pro-
cess trajectories and predict the most likely execution, the
look-ahead returns basedon aprocessmodel, all possible pro-
cess trajectories up to a certain length [25]. However, trained

123

http://www.processmining.be/declareexecutionenvironment/

Language-independent look-ahead for checking multi-perspective declarative process models 1399

models work statistical and are consequently error prone in
this way, that they can predict non-compliant process trajec-
tories. In contrast, the logic-based look-ahead predicts only
conformant process trajectories. However, the look-ahead
does not consider experience gained in training data.

7 Conclusion and future work

In this paper, we introduced a logic-based look-ahead
approach for multi-perspective declarative process models.
Specifically, we contributed (1) an overview over challenges
in the simulation and validation of declarative process mod-
els; (2) a realization of a look-ahead functionality for two
declarative process modelling languages (MP-Declare and
DPIL) that can be extended to further languages in the future;
and (3) an experimental investigation of the look-ahead
approach including a discussion of strengths and limitations.

In future work, the approach needs a more rigorous eval-
uation that investigates different SAT solvers in depth. Since
the SAT problem is NP-complete the focus should primar-
ily be on parallelization to achieve a shorter runtime. The
development of hybrid process modelling techniques also
affects execution and simulation approaches like the pro-
posed look-ahead. Hence, the idea of a look-ahead should
also be transferred to hybrid process models. Furthermore,
the underlying meta-model should be extended to support
further process perspectives, especially the time perspective,
without using the data-oriented perspective as a workaround.
Additionally, the lifecycle of activities and various types
of events, such as human tasks, service tasks or automatic
tasks, should be integrated in the meta-model. Since there
is a variety of different declarative modelling languages the
approach should be extended to further languages, especially
DCR graphs and CMMN. In this context, an analysis of the
expressiveness of common declarative modelling languages
would be helpful to investigate the question which formal
language should be used to validate, execute and simulate
multi-perspective declarative process models.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abbad Andaloussi, A., Burattin, A., Slaats, T., Petersen, A.C.M.,
Hildebrandt, T.T., Weber, B.: Exploring the understandability of a
hybrid process design artifact based on dcr graphs. In: Reinhartz-
Berger, I., Zdravkovic, J., Gulden, J., Schmidt, R. (eds.) Enterprise,
Business-Process and Information Systems Modeling, pp. 69–84.
Springer, Cham (2019)

2. Ackermann, L., Schönig, S., Jablonski, S.: Simulation of Multi-
perspective Declarative Process Models. In: BPMWorkshops, pp.
61–73. Springer (2016)

3. Ackermann, L., Schönig, S., Petter, S., Schützenmeier, N., Jablon-
ski, S.: Execution of multi-perspective declarative process models.
In: OTM 2018 Conferences, pp. 154–172 (2018)

4. Ackermann, L., Schönig, S.: Mudeps: Multi-perspective declar-
ative process simulation. In: Azevedo, L., Cabanillas, C. (eds.)
Proceedings of the BPMDemo Track 2016, CEURWorkshop Pro-
ceedings, vol. 1789, pp. 12–16 (2016)

5. Alman, A., Ciccio, C.D., Haas, D., Maggi, F.M., Mendling, J.:
Rule mining in action: the rum toolkit. In: Ciccio, C.D., Depaire,
B., Weerdt, J.D., Francescomarino, C.D., Munoz-Gama, J. (eds.)
Proceedings of the ICPM Doctoral Consortium and Tool Demon-
stration Track, CEURWorkshop Proceedings, vol. 2703, pp. 51–54

6. Andaloussi, A.A., Buch-Lorentsen, J., L\’pez, H.A., Slaats, T.,
Weber, B.: Exploring the modeling of declarative processes using
a hybrid approach. In: Conceptual Modeling—38th International
Conference, ER 2019, Salvador, Brazil, November 4-7, 2019, Pro-
ceedings, pp. 162–170. Springer (2019). https://www.alexandria.
unisg.ch/258707/

7. Belardinelli, F., Lomuscio,A., Patrizi, F.: Verification of gsm-based
artifact-centric systems through finite abstraction. In: Proceedings
of the 10th International Conference on Service-Oriented Com-
puting, ICSOC’12, pp. 17–31. Springer-Verlag, Berlin, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-34321-6_2

8. Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking
based on multi-perspective declarative process models. Expert
Syst. Appl. 65, 194–211 (2016)

9. Bussler, C.: Analysis of the organization modeling capability of
workflow-management-systems. In: PRIISM’96 Conference Pro-
ceedings, pp. 438–455 (1996)

10. Camargo, M., Dumas, M., González-Rojas, O.: Learning accurate
lstmmodels of business processes. In:Hildebrandt, T., vanDongen,
B.F., Röglinger, M., Mendling, J. (eds.) Business Process Manage-
ment, pp. 286–302. Springer, Cham (2019)

11. Ciccio, C.D., Maggi, F.M., Montali, M., Mendling, J.: Resolving
inconsistencies and redundancies in declarative process models.
Inf. Syst. 64, 425–446 (2017). https://doi.org/10.1016/j.is.2016.
09.005

12. Cook, S.A.: The complexity of theorem-proving procedures. In:
Proceedings of the Third Annual ACM Symposium on Theory of
Computing, STOC’71, pp. 151–158. Association for Computing
Machinery, New York, NY, USA (1971). https://doi.org/10.1145/
800157.805047

13. de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general pro-
cess mining framework for correlating, predicting and clustering
dynamic behavior based on event logs. Inf. Syst. 56, 235–257
(2016). https://doi.org/10.1016/j.is.2015.07.003

14. De Smedt, J., De Weerdt, J., Serral, E., Vanthienen, J.: Improv-
ing understandability of declarative process models by revealing
hidden dependencies. In: Nurcan, S., Soffer, P., Bajec, M., Eder,
J. (eds.) Advanced Information Systems Engineering, pp. 83–98.
Springer, Cham (2016)

15. Dumas,M., Rosa,M.L.,Mendling, J., Reijers, H.A.: Fundamentals
of Business Process Management. Springer, Cham (2018)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.alexandria.unisg.ch/258707/
https://www.alexandria.unisg.ch/258707/
https://doi.org/10.1007/978-3-642-34321-6_2
https://doi.org/10.1016/j.is.2016.09.005
https://doi.org/10.1016/j.is.2016.09.005
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1016/j.is.2015.07.003

1400 M. Käppel et al.

16. Fahland, D., Lübke, D., Mendling, J., Reijers, H., Weber, B.,
Weidlich, M., Zugal, S.: Declarative versus imperative process
modeling languages: the issue of understandability. In: Halpin, T.,
Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor,
R. (eds.) Enterprise, Business-Process and Information Systems
Modeling, pp. 353–366. Springer Berlin Heidelberg, Berlin (2009)

17. Fahland, D., Mendling, J., Reijers, H.A., Weber, B., Weidlich, M.,
Zugal, S.: Declarative versus imperative process modeling lan-
guages: the issue of maintainability. In: Rinderle-Ma, S., Sadiq,
S., Leymann, F. (eds.) Business Process Management Workshops,
pp. 477–488. Springer Berlin Heidelberg, Berlin (2010)

18. Gabbay, D.: The declarative past and imperative future. In: Ban-
ieqbal, B., Barringer, H., Pnueli, A. (eds.) Temporal Logic in
Specification, pp. 409–448. Springer Berlin Heidelberg, Berlin
(1989)

19. Goedertier, S.,Haesen,R.,Vanthienen, J.: Rule-based business pro-
cess modelling and enactment. Int. J. Bus. Process Integr. Manag.
3(3), 194–207 (2008)

20. Group, O.M.: Business process modeling notation version 2.0.
technical report, object management group final adopted speci-
fication (2011)

21. Haisjackl, C., Barba, I., Zugal, S., Soffer, P., Hadar, I., Reichert,
M., Pinggera, J., Weber, B.: Understanding declare models: strate-
gies, pitfalls, empirical results. Softw. Syst. Model. 15(2), 325–352
(2016). https://doi.org/10.1007/s10270-014-0435-z

22. Hildebrandt, T.T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Con-
tracts for cross-organizational workflows as timed dynamic condi-
tion response graphs. J. Log. Algebr. Program. 82(5–7), 164–185
(2013). https://doi.org/10.1016/j.jlap.2013.05.005

23. Hull, R., Damaggio, E., De Masellis, R., Fournier, F., Gupta,
M., Heath, F.T., Hobson, S., Linehan, M., Maradugu, S., Nigam,
A., Sukaviriya, P.N., Vaculin, R.: Business artifacts with guard-
stage-milestone lifecycles: Managing artifact interactions with
conditions and events. In: Proceedings of the 5th ACM Interna-
tional Conference on Distributed Event-Based System, DEBS’11,
pp. 51–62. Association for Computing Machinery, New York, NY,
USA (2011). https://doi.org/10.1145/2002259.2002270

24. Jackson, D.: Software Abstractions: Logic, Language, and Analy-
sis. The MIT Press, Cambridge (2012)

25. Käppel, M., Schützenmeier, N., Schönig, S., Ackermann, L.,
Jablonski, S.: Logic based look-ahead for the execution of
multi-perspective declarative processes. In: Reinhartz-Berger, I.,
Zdravkovic, J., Gulden, J., Schmidt, R. (eds.) Enterprise, Business-
Process and Information Systems Modeling, pp. 53–68. Springer,
Cham (2019)

26. Lomuscio, A., Griesmayer, A., Gonzalez, P.: Verifying gsm-based
business artifacts. In: 2013 IEEE 20th International Conference on
Web Services, pp. 25–32. IEEE Computer Society, Los Alamitos,
CA, USA (2012). https://doi.org/10.1109/ICWS.2012.31

27. Montali, M.: Specification and Verification of Declarative Open
Interaction Models: a Logic-Based Approach. Ph.D. thesis, Uni-
versity of Bologna (2009)

28. Pesic, M.: Constraint-based workflow management systems: shift-
ing control to users. Ph.D. thesis, Industrial Engineering and
Innovation Sciences (2008). https://doi.org/10.6100/IR638413.
Proefschrift

29. Reichert, M., Weber, B.: Flexibility Issues in Process-Aware Infor-
mation Systems, pp. 43–55. Springer Berlin Heidelberg, Berlin
(2012). https://doi.org/10.1007/978-3-642-30409-5_3

30. Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discov-
ering simulation models. Inf. Syst. 34(3), 305–327 (2009). https://
doi.org/10.1016/j.is.2008.09.002

31. Schönig, S., Ackermann, L., Jablonski, S.: Towards an implemen-
tation of data and resource patterns in constraint-based process
models. In: Modelsward, pp. 271–278 (2018)

32. Schönig, S., Ciccio, C.D., Maggi, F.M., Mendling, J.: Discov-
ery of multi-perspective declarative process models. In: Sheng,
Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) Service-Oriented
Computing—14th International Conference, ICSOC, Lecture
Notes in Computer Science, vol. 9936, pp. 87–103

33. Schönig, S., Jasinski, R., Ackermann, L., Jablonski, S.: Deep learn-
ing process prediction with discrete and continuous data features.
In: Proceedings of the 13th International Conference on Evaluation
of Novel Approaches to Software Engineering, ENASE 2018, pp.
314–319. SCITEPRESS - Science and Technology Publications,
Lda, Portugal (2018). https://doi.org/10.5220/0006772003140319

34. Skydanienko, V., Francescomarino, C.D., Maggi, F.: A tool for
generating event logs from multi-perspective declare models. In:
BPM (Demos) (2018)

35. Slaats, T., Mukkamala, R., Hildebrandt, T., Marquard, M.: Exfor-
matics declarative case management workflows as dcr graphs. In:
BPM, pp. 339–354 (2013)

36. Smedt, J.D., Weerdt, J.D., Vanthienen, J., Poels, G.: Mixed-
paradigm process modeling with intertwined state spaces. Bus. Inf.
Syst. Eng. 58(1), 19–29 (2016). https://doi.org/10.1007/s12599-
015-0416-y

37. Smedt, J.D., Weerdt, J.D., Serral, E., Vanthienen, J.: Discover-
ing hidden dependencies in constraint-based declarative process
models for improving understandability. Inf. Syst. 74(Part), 40–52
(2018)

38. Strømsted, R., López, H.A., Debois, S., Marquard, M.: Dynamic
evaluation forms using declarative modeling. In: BPM (2018)

39. Sturm, C., Schönig, S., Ciccio, C.D.: Distributed multi-perspective
declare discovery. In:Clarisó,R., Leopold,H.,Mendling, J., vander
Aalst, W.M.P., Kumar, A., Pentland, B.T., Weske, M. (eds.) Pro-
ceedings of the BPM Demo Track and BPM Dissertation Award,
CEUR Workshop Proceedings, vol. 1920

40. Torlak, E., Taghdiri, M., Dennis, G., Near, J.P.: Applications and
extensions of alloy: past, present and future. Math. Struct. Comput.
Sci. 23, 915–933 (2013)

41. van der Aalst, W.: The application of petri nets to workflow man-
agement. J. Circuits Syst. Comput. 8, 21–66 (1998). https://doi.
org/10.1142/S0218126698000043

42. van der Aalst, W.M.P.: Process Mining-Discovery, Conformance
and Enhancement of Business Processes. Springer Berlin Heidel-
berg, Wiesbaden (2011)

43. Zazkis, R., Chernoff, E.: What makes a counterexample exem-
plary? Educ. Stud. Math. 68, 195–208 (2008). https://doi.org/10.
1007/s10649-007-9110-4

44. Zeising, M., Schönig, S., Jablonski, S.: Towards a common plat-
form for the support of routine and agile business processes. In:
Collaborative Computing: Networking, Applications and Work-
sharing (2014)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/s10270-014-0435-z
https://doi.org/10.1016/j.jlap.2013.05.005
https://doi.org/10.1145/2002259.2002270
https://doi.org/10.1109/ICWS.2012.31
https://doi.org/10.6100/IR638413
https://doi.org/10.1007/978-3-642-30409-5_3
https://doi.org/10.1016/j.is.2008.09.002
https://doi.org/10.1016/j.is.2008.09.002
https://doi.org/10.5220/0006772003140319
https://doi.org/10.1007/s12599-015-0416-y
https://doi.org/10.1007/s12599-015-0416-y
https://doi.org/10.1142/S0218126698000043
https://doi.org/10.1142/S0218126698000043
https://doi.org/10.1007/s10649-007-9110-4
https://doi.org/10.1007/s10649-007-9110-4

Language-independent look-ahead for checking multi-perspective declarative process models 1401

Martin Käppel is a research assis-
tant with the Institute for Com-
puter Science at University of
Bayreuth (Germany). He received
the master’s degree (with hon-
ours) at University of Bayreuth.
His research is focused on Pro-
cess Mining and the development
of Small Sample Learning meth-
ods for BPM. Based on his work,
he published scientific papers in
international conferences and jour-
nals.

Lars Ackermann is an Assis-
tant Professor of Computer Sci-
ence with the Institute for Com-
puter Science at University of
Bayreuth (Germany). He received
the master’s degree (with hon-
ours) in Computer Science and
the doctoral degree from Univer-
sity of Bayreuth. He has an estab-
lished background in BPM/Pro-
cess Mining and has been work-
ing in this field for several years.
He published extensively in the
research area of business process
management and information sys-

tems, both in international conferences and journals.

Stefan Schönig is a Professor
for Information Systems with the
Institute of Management Informa-
tion Systems at the University of
Regensburg in Germany. He
received both the master’s degree
(with honours) in Applied Com-
puter Science (Engineering/Com-
puter Science) and the doctoral
degree from University of Bayreuth.
Before, he held a position as a
tenured assistant professor at Uni-
versity of Bayreuth. He was a
post-doctoral researcher with the
Institute for Information Business

at WU Vienna (Vienna University of Economics and Business). He has
an established background in BPM/Process Mining and IoT research
and has been working in this field for over 9 years. He published
extensively in the research area of BPM and information systems, both
in international conferences and journals.

Stefan Jablonski is a Full Pro-
fessor of Computer Science with
the Institute for Computer Science
at University of Bayreuth (Ger-
many). He is head of the chair for
Databases and Information Sys-
tems. His major research interests
include Business Process Manage-
ment, flexible process enactment
technologies and metamodelling.
He has been participating in numer-
ous national and international BPM
research as well as industrial
projects.

123

	Language-independent look-ahead for checking multi-perspective declarative process models
	Abstract
	1 Introduction
	2 Terminology and running example
	2.1 Process perspectives
	2.2 Events, traces and logs
	2.3 Running example

	3 Look-ahead fundamentals
	3.1 General idea
	3.2 Challenges and requirements

	4 Concepts of simulation-based look-ahead
	4.1 Transformation to Alloy
	4.1.1 Process event chain meta-model
	4.1.2 Transformation of multi-perspective process models to Alloy
	4.1.3 Transformation of the previous trace to Alloy

	4.2 SAT-solving: generating examples and counterexamples
	4.3 Transformation to XES and deriving consequences
	4.4 Reasons for Alloy and comparison with other logic frameworks
	4.5 Applications for the look-ahead approach

	5 Implementation and evaluation
	5.1 Implementation
	5.2 Evaluation
	5.3 Checking the fulfillment of the requirements
	5.4 Difference to the previous approach

	6 Related work
	7 Conclusion and future work
	References

