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terstützung zum Gelingen dieser Masterarbeit beigetragen hat.

Mein Dank gilt Herrn Prof. Dr.-Ing. Frank Rieg und seinen Mitarbeitern am Lehrstuhl für

Konstruktionslehre und CAD, die es mir ermöglicht haben, dieses interessante Thema zu
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1 Introduction and Objective

In engineering optimization is a mathematical strategy aiming at manipulating a model
of a real system so that one or more properties and specific values of the system are
improved. For the diverse demands of modern engineering a series of different specific
optimization methods have been developed. The system response is provided by a com-
puter simulation, so the procedure can be carried out fully automated. Computer-based
optimization methods play an integral role in the design of e. g. production processes,
air routes, control systems and geometric structures [1].

For the engineering design process specialized methods were developed aiming to find
optimal distributions of solid material. An expensive trial and error based development
can be avoided by such cost and time efficient structural optimization procedures. No-
wadays, especially in the industrial sector of mobility, where lighter structures lead to
better performing and less fuel consuming products, the use of computer aided optimi-
zation is omnipresent and almost inevitable [2]. The topology optimization itself is a
fundamental design step that requires little to no a priori knowledge about the struc-
ture, yet only information about the available design space and the expected loading
conditions [3].
Multi-objective optimization aims to find a set of solutions to a problem that can not be

outperformed with respect to all optimization goals. The set of trade-off solutions that is
the result of such an multi-objective optimization can lead to more specific insights about
the design problem in comparison to classical approaches [4]. Amongst the approaches
to solve a multi-objective optimization problem the evolutionary algorithms have proven
to be promising choices. Evolutionary algorithms have already been used for multi-
objective topology optimization [5–8] and have demonstrated the ability to provide the
engineer with a set of near-application trade-off solutions [9–11].
The objective of this thesis is to develop a multi-objective topology optimization met-

hod for engineering design. The most promising algorithm from literature has to be
chosen and, if necessary, expanded to account for problem-specific demands. Because
most examinations have only yet focused on showing that multi-objective structural op-
timization is possible, in this thesis more near-application problems will be tackled. This
includes large structures, non-rectangular design spaces, and three dimensional models.
Optimization goals will be up to three independent objectives derived from mechani-
cal and thermal calculations with up to three different constraints. Methods to reduce
computational effort and to enhance the usability will be presented and implemented.
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1 Introduction and Objective

The found optimization results will be used to derive sets of trade-off design propo-
sitions. The found solutions will be discussed with respect to their qualities and the
performance of the optimizer. Physical experiments and simulations will be carried out
to evaluate, whether the developed optimization tool can reliably find feasible solutions
to the proposed problems. The applicability of the presented method in an engineering
design process will be discussed.
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2 Theoretical Framework

In the following chapter the theoretical framework will be presented. First, the linear
finite element method will be discussed as a means to provide system responses for me-
chanical and thermal models. After introducing the concepts of evolutionary algorithms
and multi-objective optimization the state of art in numerical multi-objective optimiza-
tion will be illustrated. The concepts of structural optimization and especially topology
optimization in engineering shall be illustrated afterwards.

2.1 Finite Element Method

The finite element method is a numerical approach to solving boundary value problems of
partial differential equations. An arbitrary shaped continuum is discretized by dividing
it into a set of simple-shaped continua, the so-called finite elements. The entirety of the
elements make up the mesh. The elements are defined by a set of points in space that
are referred to as the nodes [12]. The discretization of an arbitrary continuum using
quadrangular elements is illustrated in Figure 2.1.

continuum node

finite elementdiscretized region

Figure 2.1: Discretization of a two dimensional continuum using quadrangular elements.

The elements are chosen according to the demands of the meshing algorithm, assump-
tions about the state variables, arising numerical issues, and geometrical features. The
discretization level and the appropriate choice of the elements have large influence on
the correctness of the results and on the performance of the solver [13].

For the stationary problems that will be covered in this thesis, the partial differential
equations will be approximated locally by a set of algebraic equations. These equations
can be solved for every element and are compiled to an overall solution. For continuum
elements it is possible to solve the problems by numerical methods. For this purpose, the
state variables are approximated over the element volume by polynomial shape functions.
The degrees of freedom are defined at the nodes. By this means, it is possible to describe
the course of the state variables over the whole continuum [12]. In order to achieve
realistic results, it is important to either model structure using a sufficient number of

3



2 Theoretical Framework 2.1 Finite Element Method

elements or to use shape polynomials of a higher degree in order to correctly describe
the local state variable field [13].

The finite element method proved to be a very effective tool for many applications,
including mechanical, thermal, electrostatic, and fluid dynamic simulation. Many com-
mercial software products are available and the method has become a standard tool in
engineering and science. Mechanical finite element analysis (FEA) is a basic step of
the strength calculation in engineering. The following chapters will cover details of the
solution of linear elasticity problems and problems of stationary thermal conduction.

2.1.1 Linear Elasticity

In mechanical finite element calculations the basic principles of continuum mechanics are
used to find equations to describe the deformation behavior of parts under mechanical
loading. Apart from the conservation equations for mass, momentum, and energy, a ma-
terial law is required. Linear elasticity describes material behavior in which deformation
and loading are always proportional. Material failure, plasticity and other non-linearities
are neglected [12,14].
Linear elasticity is described by the three dimensional Hooke’s law. In the method of

finite elements the deformation is approximated by the spatial displacement of the nodes
that are the degrees of freedom of the system [12]. The one dimensional Hooke’s law,
also known as the spring equation, is given in Equation 2.1, where u is the displacement
or the deformation of a spring, k is the spring constant or the stiffness of the spring and
F is the force applied to the spring.

u = k−1 · F (2.1)

For stationary problems the equation is a linear function of the force, when k is not
a function of F nor u and F is not a function of u. The first condition is fulfilled for
small displacements and the second condition is fulfilled for models without contact or
spatially dependent loading conditions. Henceforth only linear problems with isotropic
materials will be tackled [14]. Non-plastic deformation of poly-crystalline alloys at room
temperature is a good example for a problem that fulfills all of these criteria.
For any element, the nodal displacement must be described as a function of the applied

forces. The conservation equations and the material law can be transformed into a weak
form, a set of algebraic equations, by variational calculus. The so-called element stiffness
matrix ~~Ke, that maps all degrees of freedom to the applied nodal forces in all spatial
directions, is the element-wise solution to these equations. For the definition of ~~Ke, two
independent material properties and all the element’s nodal coordinates are required.
Usually the modulus of elasticity E and the Poisson’s ratio ν are used. All element
stiffness matrices are subsequently compiled into a single system of equations and the
boundary conditions are included. This results in a linear system of equations of the
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2 Theoretical Framework 2.2 Numerical Optimization in Engineering

form shown in Equation 2.2, where ~~K is the overall stiffness matrix and ~u and ~F are the
nodal displacements and forces, respectively [12].

~~K~u = ~F (2.2)

There are two possible types of boundary conditions: forces and displacements. In
order to obtain a unique solution, the degrees of freedom in every direction have to be
prescribed at at least one node. The linear system of equations can be solved by classical
methods as well as by more sophisticated ones, that exploit the sparse occupation of the
overall stiffness matrices. Direct and iterative solvers are available. In a subsequent
step, the displacement field can be used to calculate local strains and stresses, in order
to gain additional information about the mechanical properties of the system [12].

2.1.2 Stationary Thermal Conduction

Thermal conduction is the predominant way of heat transfer in solids. In steady state,
heat is transfered according to Fourier’s equation given in Equation 2.3. The heat flux
density ~q is defined as the thermal power per area. ∇T is the local temperature gradient
and λ is a material constant, the so-called thermal conductivity [15].

~q = −λ∇T (2.3)

Analogous to the linear elasticity, Equation 2.3 can also be solved by the finite element
approach. Nodal temperatures are the degrees of freedom of the system and heat sources
and drains can be modeled by applying nodal heat fluxes. If λ and the boundary condi-
tions are independent of the temperature, the problem is also linear and can be solved
analogously to a linear elastic problem. Any surface that has no boundary conditions
applied to it, is treated as if it was perfectly isolated [15].
In real life problems these assumptions are rarely justified. Boundary conditions that

model any kind of natural heat drains depend strongly on the surface temperature and
λ is fundamentally a function of the temperature. The linear assumptions are only valid
for very small temperature deviations.

2.2 Numerical Optimization in Engineering

Current problems in the applied sciences can only be solved by using specialized opti-
mization methods. Some problems can be handled with skilled heuristic approaches but
computational optimization methods have proven to be very useful tools [16].
A optimization aims to minimize an objective function f(~x) by finding a vector of N

optimal parameters ~x∗ ∈ IRN . IRN is the decision variable space or the parameter space.
In application this is mostly done considering one or more constraining equations gi(x)
or inequations hi(x) as shown in Equation 2.4. If not stated otherwise, all following
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2 Theoretical Framework 2.2 Numerical Optimization in Engineering

optimization problems will be minimization problems. Maximization of an objective
function f(~x) can be done by minimizing −f(~x) [17].

min{f(~x)|~x ∈ IRN |gi(~x) = 0, i = 1, ..., n;hj(~x) ≤ 0, j = 1, ...,m} (2.4)

A point ~x∗ ∈ IRN is called a global minimum of f(~x), if it satisfies Equation 2.5 [17].

f(~x∗) = min{f(~x)|~x ∈ IRN} (2.5)

If the point ~x∗ satisfies Equation 2.5 only for certain ~x with |xi−x∗
i | < ε (for a constant

positive ε), ~x∗ is called a local minimum of f(~x) [17].
Optimization has been an important part of the industrial design process for a long

time. For instance, at the automotive industry, where a steadily growing demand of
more capable models is to be met. Engineers benefit from modern optimization tools
that automatically conduct an interative process that constantly yields an improved
design. These mathematical methods allow the designers to efficiently solve complex
problems in a way that the human mind would not be capable of [17].

2.2.1 Evolutionary Optimization

Evolutionary optimization algorithms are a class of meta-heuristics that mimic the basic
principles of evolutionary biology: natural selection and genetic recombination [18].
In ecosystems it is assumed that those members of a population have the best chances

of reproduction, that are most fit to their environment. Their genetic code, and thus
their characteristics, are more likely to be passed on to their offspring and subsequent
generations, respectively. By this means, over the time species adapt to their environ-
ment. A classical simplified example is the giraffe’s neck. Ancestors of the giraffe had
shorter necks and therefore could not reach fruit on high trees. When their population
grew, food supply eventually became short. Yet, those members of the populations with
longer necks could reach fruit in higher trees and therefore suffered less from the food
shortage. Their better nourishment lead to greater physical strength that enabled those
individuals to succeed over mating rivals and to pass on their genetic material. This
mechanism is called natural selection [19].
All characteristics of an animate being are defined on molecular level by its genetic

code. The deoxyribonucleic acid (DNA) is a linear macro molecule made up from four
different components. The sequence of these components determines all the characte-
ristics of the organism. The genetic code is set during the parents’ reproduction. The
offspring’s genetic code is made up in parts of the mother’s and the father’s genetic code.
It is also possible that due to environmental influences (e. g. chemicals, radiation), cer-
tain components of the DNA are changed. These so-called mutations happen rarely but
can change the organism’s biochemistry significantly [19].
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2 Theoretical Framework 2.2 Numerical Optimization in Engineering

Evolutionary Algorithms

Abstractions of the mechanisms described in the previous section can been used to solve
non-linear optimization problems. The variables are encoded in a string to resemble the
genetic code inside the DNA. Initially, a population of parents is created randomly so
that each member (or individual) has their own unique genetic code. In every iteration
(usually called a generation), offspring solutions are generated via recombination of the
parental genetic code. Subsequently, a new parental population is created from the
former offspring to create another generation of new members. Which parents are to
be preferred depends on their performance that is commonly referred to as the fitness.
Evolutionary algorithms usually differ in terms of how the fitness is determined and how
the offspring is generated. Most common EAs use selection, crossover and mutation
operators to create an offspring population [20]. The arbitrary evolutionary algorithm
is shown in pseudo-code in Algorithm 2.1.

The terms fitness and selection go hand in hand and resemble the process of natural
selection. The fitness is a measure of the gene code’s quality in respect to the optimiza-
tion goal. In single-objective optimization the fitness can for instance be the objective
function itself. A selection operator that mimics mating rivals fighting for a reproduction
partner is the tournament. The classical approach is to randomly choose two members
of the parental population and to then compare their fitness. The one with the better
fitness is chosen for reproduction [20].
The two most common processes to create offspring genetic code are crossover and

mutation operators. When crossover operators are used, two members are chosen by
tournament and their gene code is then combined. In Figure 2.2 (a) a two-point crossover
is shown. The genetic code of the parents is cut at two random positions. The first
parent’s genetic code between the cuts is subsequently replaced by the code of the second
parent. Figure 2.2 (b) shows the mutation of a binary chromosome. Two of ten bits are

Algorithm 2.1 Arbitrary evolutionary algorithm
begin

create_initial_population
assign_fitness
while no abortion criterion is met do

for population size do
selection
recombination
mutation
(genotype-phenotype mapping)
assign_fitness

end
compile_new_parental_population

end
output

end
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1 0 0 1 1 0 1 1 0 1

0 0 1 1 0 0 1 1 1 0
1 0 0 1 0 0 1 1 0 1

1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0 0 1 0 1

(a)

(b)

Q Q

Figure 2.2: Binary genetic operators to create offspring members. In (a) a recombination
scheme using two gene codes, the two-point crossover, is shown. In (b) the mutation of a
gene is shown.

flipped which corresponds roughly to a probability of mutation of one fifth. These two
operations can be either consecutive (as it is implied in Figure 2.2) or exclusive. In the
latter instance one would have to define a fraction of the offspring population that is first
derived by crossover and subsequently mutated while the other part is only mutated.
There are modified operators to work with real-number parameters but the presented
binary operators can also be used to work with different parameter encodings [20].
After creating an offspring population by the genetic operators the objective functions

are to be evaluated and the fitness is to be assigned. If in the following generation
the whole offspring replaces the former parental population, one may lose some very fit
solutions. To avoid this the concept of elitism is used. This ensures, that very fit solutions
are kept as parents. The compilation of a new parental population from both, parents
and offspring is therefore another important step of an evolutionary algorithm [20].
To use an evolutionary algorithm as described in this section, one has to define four

parameters: population size µ, crossover and mutation probabilities, and an abortion
criterion. An ordinary abortion criterion is the definition of a maximum number of ge-
nerations tmax. In order to avoid unfeasible solutions and to enhance the algorithm’s
performance genotype-phenotype mapping can be used. This concept is also taken from
nature, where different genes (genotypes) may result in the same characteristics (phe-
notype) of the individual [19,20]. Because this mapping is very problem specific, it will
be discussed later in Section 3.3.

Evolutionary algorithms show great success in finding global optima, because they are
less prone to getting lost in local optima compared to gradient-based approaches. For
this purpose, a genetically diverse population is desired throughout the optimization. To
exploit this concept it is crucial to avoid effects that narrow down the genetic diversity
and to establish an appropriate amount of random mutations. The advantages of a
large population can be wasted by using a too severe selection operator or by applying
too strict constraint handling. Non-optimal or constraint-violating solutions can contain
interesting geometrical features and parameter blocks that lead to efficiently finding a
global optimum [20].
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The ability to find global optima, of course, does not guarantee repeatable success, due to
the massive use of probabilistic operators and a series of runs may have to be conducted
to get reliable results. Also, it is not possible to estimate any valid abortion criteria
because during the optimization a period of no improvement may occur. There are
widely acknowledged guidelines as to when and how genetic algorithms may outperform
other optimization approaches [20].

Population Based Incremental Learning

Population Based Incremental Learning (PBIL) is a meta-heuristic that combines fe-
atures of evolutionary algorithms and other methods from the domain of artificial in-
telligence for single-objective optimization. Like the classical evolutionary algorithm
described in Section 2.2.1 PBIL is a population based method. But unlike the explicit
storage of a parental population crucial for any evolutionary algorithm, in this case the
genetic code is saved implicitly via a vector of probabilities. Every entry of this vec-
tor represents the probability of the corresponding binary parameter being a 1. Other
formulations for real-coded parameters are available [18].
The probability vector ~p is initialized with all entries being 0.5. Every member of the

offspring population is created directly from this vector. After evaluating the objective
function, every probability pi is updated as shown in Equation 2.6. In the original
formulation of the algorithm mutations are also implemented directly to the vector of
probabilities [18].

pt+1
i = (pti · (1− LR)) + (LR · xi) (2.6)

LR is the so-called learning rate that controls how much the probability vector is changed
in every generation and ~xi is the i-th gene of the currently best member that was found
during the t-th generation. The classical PBIL algorithm is shown in Algorithm 2.2.

Algorithm 2.2 Classical PBIL algorithm
begin

initialize_probabilities := 0.5
create_initial_population
assign_fitness
while no abortion criterion is met do

update_probabilities
mutate_probabilites
generate_population
assign_fitness

end
output

end

Several modifications of the updating scheme exist, some that also include a negative
learning rate or some that also use second or third best solutions to update the proba-
bility [18]. During the optimization the vector of probability is being narrowed down to

9
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eventually approach an optimum structure [21]. For problems that can be solved using
evolutionary algorithms PBIL is an effective strategy that is less prone to getting lost in
local minima because population diversity vanishes slower [21] and that is very straight
forward to implement [18]. However, at least three parameters have to be set, whose
influence is not as well understood as that of a classical evolutionary algorithm. The
PBIL method can also be applied to multi-objective optimization problems. For this
purpose, a set of probability vectors and a way to allocate members to them have to be
established [8, 21].

2.2.2 Multi-Objective Optimization

In real applications there is usually more than one independent objective function that
has to be taken into account. These can either be considered as constraints to a classical
optimization approach or as further objective functions. An optimization with respect
to more than one objective is called a multi-objective optimization. Problems of four or
more objective functions are also referred to as many-objective optimization problems
[22]. The mathematical formulation of an optimization as shown in Equation 2.4 can
be expanded to represent multi-objective problems. This is shown in Equation 2.7, in
which K is the number of objectives and S is a subset of feasible solutions inside the
binary decision variable space IBN formed by the constraint functions [23].

min{f1(~x), f2(~x), ..., fK(~x)|~x ∈ S} (2.7)

Most objective functions work in some way exclusionary to each other for instance mini-
mization of a structure’s mass and simultaneously its compliance. In general, reduction
of mass leads to a less stiff structure and vice versa. Therefore it is impossible to define
a single optimal point in objective space (henceforth referred to as a solution) and the
concepts of domiation and Pareto-optimality have to be introduced. Solution A domi-
nates another solution B if it outperforms B in at least one objective function with the
other objective values being at least equal. B is then dominated by A or in other words
B is in no way better than A. If there does not exist any solution that dominates A,
it is non-dominated and a single trade-off solution of the multi-objective optimization.
Such a solution is called Pareto-optimal to account for the fact that an improvement of
one objective function can only be achieved by accepting a decrease in another objective
function [4, 24]. Domination and Pareto-optimality in two dimensional objective space
are illustrated in Figure 2.3. An example for a symbolic syntax for domination, A ≺ B

(A dominates B), is given in [25] and will henceforth be used.
The solution of any multi-objective optimization is a set of trade-off solutions called

the Pareto-front. In two dimensional objective space this front is a steadily decreasing
curve, for K = 3 it is a surface and in many-objective problems the Pareto-front is a
hyper-surface in objective space. For a problem as shown in Equation 2.7 the Pareto-
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C

Figure 2.3: Domination (a) and Pareto-optimality (b). In (a) the gray space indicates
the area where potential solutions would dominate solution B. A is dominating B. In (b)
solution A, B and C are non-dominated and Pareto-optimal.

front is the convex border of the feasible objective space IRK [4]. Two special points
can be defined: the utopia point and the nadir point. The utopia point is defined as
the point in objective space made up from the best coordinates of all Pareto-optimal
solutions. The utopia point can by definition never be reached. The nadir point is
somewhat defined similarly. It is made up of the least optimal objective values. These
concepts are shown in Figure 2.4 (a) for two objectives.

utopia

nadir

(a)
f1

f2

(b)
f1

f2

IRK IRK

Figure 2.4: Real Pareto-front (a) with utopia and nadir point. Non-dominated solutions
with approximated Pareto-front (b) in objective-space. The region of feasible solutions is
shown in gray and the Pareto-front is shown as a dashed line. The approximated Pareto-front
is the border of the region of solutions dominated by the Pareto-solutions.

An approximated Pareto-front is a set of non-dominated trade-off solutions. It represents
the approximated border of the feasible objective space. Connecting the solutions with
straight lines does not take into account the possibility of non-existence of solutions on
this line and is therefore not suited as a illustration. Figure 2.4 (b) shows a correct ap-
proximation of a constant border. This scheme is henceforth used to plot approximated
Pareto-fronts for two objective functions.
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Single-Objective Approaches

For approximating the Pareto-front it may be useful to turn the multi-objective problem
into a set of single-objective problems. These can then be solved using classical single-
objective optimization approaches with their specific advantages and disadvantages. The
most straight forward approach is to simply weight the objective functions by factors
ωi ∈ [0; 1] as shown in Equation 2.8 in order to reduce the problem to a single-objective
problem. K − 1 weighting factors are required [26].

f(~x) =
∑K
i=1 fi(~x) · ωi (2.8a)∑K

i=1 ωi = 1 (2.8b)

The solution of such a single objective optimization problem is expected to be member of
the Pareto-front so the Pareto-front is approximated by sweeping through the weighting
factors [24,26]. While this approach may seem intuitive and a simple way to approximate
the Pareto-front, it has a great disadvantage. This strategy does only find convex points
off the Pareto-front. Using this method for arbitrary problems may result in misleading
solutions. Also, normalization of the objective functions is necessary but requires a priori
knowledge about the absolute values of the objectives [24].
Amongst others, another notable approach to gain single-objective problems would

be to keep an objective and to treat the other objectives as constraints. This is the
so-called ε-constraint method. But like the weighting function approach, this method
has also proven to be unable to provide fully satisfying solutions to multi-objective
optimization problems [24]. All approaches that project multi-objective problems to a
set of single-objective problems suffer from the necessity of a discretization in objective
space and potential losses due to inappropriate definitions of that discretization.

Non-Sorting Genetic Algorithm II

More promising approaches to approximating the Pareto-front of a multi-objective op-
timization problem are population based. In this section an evolutionary method called
Non-Sorting Genetic Algorithm II (NSGA-II) will be described that has proven to be
very promising in multi-objective optimization [25] and especially in multi-objective to-
pology optimization [5–8].
As described in Section 2.2.1 an evolutionary algorithm has to be adapted to specific

problems. This happens in terms of how the objectives are scalarized into a fitness value.
For multi-objective optimization one may want to assign better fitness to members of the
population that are not dominated by another member [27]. The approach that NSGA-II
chooses is allocating every solution to a front Fi meaning that the Pareto-front is the
first front F1. The second front F2 is defined as the set of solutions that would be non-
dominated if the Pareto-front would have been removed from the offspring population.

12
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This allocation is repeated for Fi+1 until all solutions are allocated to a front [25]. The
size of each front is Li. This scheme is illustrated in Figure 2.5.

(a)
f1

f2

F1

F2

F3

(b)
f1

f2

i+ 1

i

i− 1

Figure 2.5: Non-dominated sorting (a) and crowd distance calculation (b). In (a) each
solutions is assigned to a front F1 to Fn due to their non-domination level. In (b) the
crowding measure is shown for the i-th member of a front (1 < i < L). Adapted from [25].

Subsequently, the solutions are assigned integer ranks corresponding to the fronts they
are allocated to. Pareto-elements therefore have a rank of 1, members of F2 have rank
2 and so on. The efficient algorithm, called non-dominated sorting, used to allocate
solutions to the fronts, requires O(K · µ2) computations and is given in [25].

Apart from the ranks, another scalar is used to determine the fitness of a found solu-
tion. The crowding distance is a measure for the distribution density of solutions inside
each front. For the i-th solution it is determined by adding up the distances between its
closed neighbors when sorted according to each objective. Preferring solutions with a
larger crowding distance may lead to a more equally dense populated Pareto-front. The
solutions with minimum or maximum objective values are assigned an infinite crowding
distance in order to preserve them [25]. The concept of the crowding distance is also
illustrated in Figure 2.5 for a set of L = 5 solutions.

Both, rank and crowding distance, together make up the fitness function used in
NSGA-II. In order to compare two solutions during the tournament phase of an evo-
lutionary algorithm, the so-called crowded-comparison operator ≺n is introduced. Its
definition is as follows: A ≺n B if the rank of A is lower than the rank of B. If both have
equal ranks, A ≺n B if the crowding distance of A is larger than B’s [25].
In NSGA-II the overall procedure of a generation, after the first population is initia-

lized randomly, is as follows: From the parental set of solutions an offspring population
is generated by tournament and recombination techniques as described in Section 2.2.1.
Both populations are then merged into a combined population in order to establish eli-
tism. All members of the combined population are then assigned ranks and crowding
distances. The combined population is then sorted according to the crowded-comparison
operator and subsequently truncated to fit the defined population size by removing the
elements that are least fit [25]. This procedure is illustrated in Figure 2.6.
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non-dominated
sorting

crowding distance
sorting

Rt

Qt

Pt

F1

F2

F3 Pt+1

rejected

rejected

Figure 2.6: The NSGA-II procedure adapted from [25]. The parental population Pt and
the offspring population Qt are combined to a population Rt. The members of Rt are
subsequently assigned to the fronts F1 to Fn according to their non-domination and sorted
with respect to the crowding distance. The parental population of the following generation
Pt+1 is created from the most fit members of Rt.

In the original paper there is also given a straight forward approach to implement
constraint handling. This is done during the tournament phase. Prior to the actual
crowding-comparison the constraints are considered. If both solutions do not violate
any constraints, the crowding-comparison operator applies as usual. If one solution does
violate the constraints, while the other does not, the non-violating solution is preferred.
If both randomly chosen solutions violate one or more constraints, the solution with the
smaller overall constraint violation is to be chosen [25].
Even though NSGA-II has proven to be a very promising evolutionary approach to

multi-objective optimization there are plenty of other approaches published, each with
its own strengths and weaknesses. Amongst these approaches are classical algorithms as
presented in [28] as well as multi-objective particle swarm optimization [29], the multi-
objective version of the PBIL [8] and the many-objective version of NSGA-II [22, 30].
Each of these approaches has proven to be an appropriate choice for a special problem.

2.2.3 Structural Optimization

Structural optimization is an engineering method used to generate optimal structure of
parts or modules. In every case, the problem aims to distribute material in an optimal
way. The only a priori required quantities are an initial structure and the loading
conditions. Usually constraints are defined to gain feasible results or because they are
required by the optimization method [3, 31].
One can distinguish between three basic types of structural optimization: sizing, shape

optimization, and topology optimization. Sizing describes an approach where the struc-
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ture itself is in many ways already predefined. E. g. non-continuum elements such as
bars, trusses or plates are defined in terms of their location and connections. Inside
this design domain only the element parameters are to be optimized, i. e. diameters,
thicknesses or element types are to be defined. This is depicted in Figure 2.7 (a), where
an optimal suspension is found by appropriately setting the trusses’ thicknesses [31].

(a)

(b)

(c)

Figure 2.7: The three types of structural optimization. Sizing (a) only affects element
parameters such as the beam cross-sectional area. The shape optimization shown in (b) can
effectively reduce peak stresses at notches by redistributing material. Topology optimization
allows for holes to be created in the design space as it is shown in (c). Gray areas indicate
continua. Based on [31].

Shape optimization however works without a prefixed design domain. The borders of
the material are the design variable and are chosen appropriately. This does not allow
for holes to be created but can effectively reduce stress peaks and set radii of curvature
as it is illustrated in Figure 2.7 (b) [31].

Topology optimization explicitly allows for holes to be created and aims to find an
optimum distribution of solid material and void inside a predefined design domain. It
clearly distinguishes from sizing by explicitly aiming to find a strict 0-1 distribution of
the material [31]. An example is given in Figure 2.7 (c) and this method is discussed in
detail in the subsequent section.
All the problem formulations can be solved by various optimization schemes. Amongst

them are purely mathematical approaches as the moving asymptotes method or empirical
approaches that e. g. aim to find a fully stressed design. The aim of such optimizations
is to find an optimum set of variables that makes up the resulting structure. This
structure usually contains a number of geometrical features, that are distinctly shaped
domains of solid material that can ultimately make up guidelines for a subsequently
derived engineering design.
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Topology Optimization

In topology optimization the size, shape and topology of the structure are initially
unknown. They are described by a set of distribution functions over a fixed design
domain. The design domain is usually discretized by uniform finite elements with fixed
position and parameters. Henceforth, only isotropic materials are taken into account to
avoid the necessity of optimizing the principal direction of the material [31].

Most commonly, the desired discrete 0-1 distribution is replaced by a set of real-
valued variables and the problem is solved as a sizing problem. The design variables are
interpreted as the material’s physical density and penalized to steer to a 0-1 distribution
again. The goal of a topology optimization is then to find an optimal vector of element
densities ~ρ [31]. The very popular solid isotropic material with penalization method
(SIMP) maps the element density ρi ∈ [0, 1] to the local elastic modulus Ei as shown
in Equation 2.9. E0 is the assigned material property of the solid material and α is a
parameter usually greater than 3.0 [31].

Ei = ραi E0 (2.9)

Usually, the target volume is to be predefined, too. After a first guess of a homogeneous
density distribution an iterative update scheme is applied to find the optimal distribu-
tion. This is done considering box constraints giving upper and lower values for the
densities. Mathematically appropriate optimization algorithms are required that can
cope with a large number of design variables and a moderate number of constraints.
Many other formulations to solve the topology optimization problem exist beside this
most common one. For practical reason one might sometimes want to prescribe regions
in which no optimization is to be conducted. Initially selected variables can be set to
always be 1 or 0. Henceforth, the term fixed element is going to be used for elements
that are prescribed to always be solid material.

Topology optimization in general and the SIMP approach in particular are prone to
a number of numerical instabilities. Apart from the possibility of converging towards
a local optimum, there is the so-called checkerboard effect that occurs in most simple
implementations of topology optimization. A pattern of alternating solid and void ele-
ments shows significantly greater stiffness per mass than any other structure. This is a
numerical effect that has no physical meaning. Several methods exist to avoid checker-
board patterns such as the use of higher degree shape functions or filters that average
the element densities in a defined neighborhood [32].
Apart from the checkerboard effect, mesh dependencies can occur due to non-uniqueness

or non-existence of optimum mass distributions. This means that for the same design
problem the same optimizer may obtain fundamentally different structures. For finer
meshes the structure also tends to become finer and to converge towards a microstruc-
ture. This effect, like the checkerboarding, is not resulting in helpful design propositions
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and is therefore to be avoided by filtering or specialized constraints [32]. An example of
mesh discretization dependence and for the checkerboard effect is given in Figure 2.8.
The images were generated by an 88 lines Matlab code1. The first structure was obtai-
ned on a 35×20 elements mesh and shows regions in which checkerboarding occurs. The
second structure was found on the same mesh but checkerboarding was suppressed with
a filter. The last structure was found using the same parameters as the previous struc-
ture just on a 70×40 elements mesh. The two structures visibly differ in terms of the
arrangement of truss-like features.

Figure 2.8: Numerical instabilities of topology optimization. Left: Structure with dis-
tinct checkerboards structures. Mid: Structure with checkerboarding suppressed by a filter.
Right: Structure found on a finer mesh.

In [33] a list of challenges is published that topology optimization methods are supposed
to meet in order to prove their potential in real life application. A universally applicable
topology optimization method must perform well on all the following issues:

• Efficiency on three dimensional large scale problems

• Applicability to arbitrary physics problems and numerical methods

• Stable physical and geometrical constraint handling

• Mesh and starting-guess independence

• Easy to use and to set parameters

Further Processing of the Results

The results that are obtained by topology optimization are rarely instantly usable. Even
if near-application constraints were considered, direct production is not possible. Even
when using additive manufacturing, it is not always advisable to use the unprocessed
results of an optimization. The structures found by an optimization procedure should
rather be inspiration to the designer and seen as an initial design guess. Engineering
features, such as holes, threads or connectors may have to be added and manufactu-
ring limitations are to be considered as well as the estimated costs and the aesthetic
appeal. Taking these points into consideration one may obtain a well performing design
proposition.

1http://www.topopt.dtu.dk/?q=node/751
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When the discretization of the design domain is too coarse or if noisy features have
to be eliminated, one might want to smooth the resulting structure. When real-valued
density distributions are considered, one might want to define a cut-off density first
to gain a well defined voxel-like solid body. Further processing might benefit from
the findings of computer graphics and medical three dimensional imaging. A way to
gain a smoothed surface is the application of a modified marching cubes algorithm
[34]. The resulting triangular surface mesh can be further processed using explicit or
implicit iterative methods developed from signal processing methodology [35,36]. These
methods show significantly better volume preservation and less shrinkage than classical
approaches such as Gaußian filtering. Nevertheless, smoothing is to be avoided when
checkerboarding occurs [32]. A two step approach is shown in Figure 2.9, in which a two
dimensional structure has been smoothed as described above.

Figure 2.9: Two step smoothing of a 0-1 distribution structure. First a modified marching
cube algorithm is applied and second an implicit iterative fairing algorithm is used.

The typical development process using structural optimization consists of preliminary
considerations about the design domain, the underlying physics and suitable numerical
models. A topology optimization with subsequent smoothing might give first insights
into a possible solution and further shape optimization can be applied. Further calcula-
tions and testing must be conducted to check the functionality of the derived design.
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3 Optimizer Development

In the following sections the development of a multi-objective optimizer is described. The
chosen approach will combine an evolutionary algorithm with an element-wise design
parametrization ~ρ known from methods such as the SIMP approach.

The first section will cover an estimate of the computational effort to solve multi-
objective topology optimization problems with evolutionary methods. Therefore, in the
subsequent chapters, special attention is given to the appropriate choice of the optimi-
zation algorithm and to an adequate genotype-phenotype mapping to reduce computa-
tional effort. Details about the implementation are given in a subsequent section.

3.1 Complexity of Evolutionary Topology Optimization

While the finite element meshes used will be small in terms of usual engineering problems,
the number of finite element analyses to be carried out will be the predominant source
of hardware limitations. Therefore, only the computational complexity, not memory
complexity, will be considered.
Direct finite element sparse matrix solvers used to evaluate the objective functions

have a computational complexity of O(M ·W 2) [37]. M is the number of nodes in the
finite element mesh and W is the bandwidth of the stiffness matrix, which makes up the
linear system of equations that has to be solved. Both parameters increase with a rising
overall number of elements. W also depends strongly on the numbering of elements and
nodes. This yields an overall complexity of O(M ·W 2 ·µ · tmax) for any population based
structural optimization. Taking the density of every element as an independent binary
parameter, a mesh of n elements results in a problem of N parameters. The number of
nodes, bandwidth, population size and the required number of generations are usually
increasing functions of N [13, 37, 38]. A deeper analysis of the proper parameter tuning
will be presented in a following chapter. Now assuming N ∝ M , N ∝ W 2, N ∝ µ and
N ∝ tmax the above relation yields a overall complexity estimate of O(N4). This is in
good accordance with preliminary runs with differently sized problems that revealed that
the examined problems are at least of O(N3) complexity. This is, in algorithmic theory,
considered calculable but in engineering application such behavior is not tolerable. The
effort for solving larger problems rather quickly reaches the limits of any, even high-end,
stock computer [39].
In order to be able to solve near-application problems, a significant reduction of the

computational effort is essential. There are several ways to achieve this: First, the com-
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plexity can be reduced by adequate choice of algorithms. As standard multi-objective
optimization algorithms are evolutionary [40], a reduction of the complexity is not di-
rectly possible. Computation time can therefore only be reduced by a constant factor.
The evaluation of different members’ objective functions in a generation is completely
independent of the other members so parallel computing can be used to reduce not CPU
but wall time (i. e. time that passes on a physical clock on a wall) significantly. Also
classical modeling techniques aiming to reduce costs of the finite element analysis, as ex-
ploiting symmetries, are used. Apart from that the principle of the genotype-phenotype
mapping can be used to increase the performance of an evolutionary algorithm.

3.2 Optimization Algorithm

This section will tackle the choice of an appropriate optimization strategy. A fitting
representation of the variables will be discussed first, then the choice of a fitting op-
timization algorithm is presented. Further sections will tackle solution clustering and
preliminary considerations concerning appropriate parameter setting.

3.2.1 Binary Parameter Coding

For any optimization it is crucial to know the species of the parameters that are to be
optimized. In the present instance either a real-numbered representation of the element
densities or a binary representation were considered. The real-numbered approach is
crucial to any classical, gradient-based optimization technique, such as the SIMP appro-
ach. Whereas classical operators used in an evolutionary algorithm use binary coding
(see Section 2.2.1). Although specialized operators for real-valued parameters exist these
require additional parameters. A binary representation forces a strict 0-1 distribution
of the material. This distribution would otherwise have to be established by additional
operators that would further complicate the optimization.
The reasons listed above indicate strongly that in the present case a binary parameter

coding is superior to a real-valued one. Henceforth a binary distribution of the element
density will be assumed in which a 0 stands for a hole in the material and a 1 stands for
solid material. No intermediate values are allowed at all. The material properties are
distributed to be the predefined material property for a solid element and a sufficiently
small non-zero value for a hole. This ensures that numerical issues during the finite
element analysis due to arising singularities are avoided [31]. As an example for any
material property the distribution of the elastic modulus is shown in Equation 3.1 in
which E0 is the material property of the solid material.

E(ρ) =

E0 for ρ = 1

10−16 for ρ = 0
(3.1)
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A distribution of this kind will further on be used for any material parameter. The binary
approach allows for the recombination operators two-point crossover and mutation to be
implemented directly as they are presented in Section 2.2.1. Crossover and mutation will
be consecutive operations. The exchange of blocks of well-performing genes is established
by periodic numbering of the elements. This ensures that consecutive bits inside the
genetic code encode connected elements. Other traits of the binary representation will be
exploited in the following sections when a clustering method and a genotype-phenotype
mapping are presented. Fixed elements can be defined prior to the optimization in order
to force regions to always consist of solid material.

3.2.2 Choice of Algorithm

In preliminary studies three promising evolutionary approaches to solving multi-objective
topology optimizations were implemented and tested. A single objective weighted sum
approach using PBIL (wPBIL) was tested against NSGA-II and multi-objective PBIL
(moPBIL). As PBIL originally works with binary parameters and has a very good re-
putation to be able to find global minima at least as efficient as regular evolutionary
algorithms [18] it was chosen for the weighted sum approach. NSGA-II and moPBIL
were both found very promising to solve topology optimization tasks [5,8] with moPBIL
having a slight advantage over NSGA-II [7].

The results of the preliminary tests indicated that the wPBIL approach was able to
find a couple of very well advanced non-dominated solutions for every set of weighted
parameters. Nevertheless it proved to be very computationally extensive as a population
based optimization had to be carried out repeatedly. The solutions were not equally
distributed over the objective space either as finding the right weights is not a trivial task.
The two other explicitly population based approaches performed way better in terms of
the number of found solutions and equal distribution of the solutions over the objective
space for comparable computational effort. In terms of domination wPBIL performed
especially well compared to the other approaches. This observation is demonstrated by
three Pareto-fronts in Figure 3.1.
The structures found, nevertheless, did not differ much from those found by NSGA-II,

for instance. This leads to the conclusion that both approaches were heading towards
the same optimum, yet wPBIL did so faster. This is depicted in Figure 3.2, where two
exemplary structures are shown. As in engineering, the results of the optimization will
be subject to a number of subsequent design steps, small changes in the structure may
not be of interest. In this instance, an evenly filled set of Pareto-optimal solutions may
provide further insights than a few well advanced solutions. It showed that the same
quality of structures could be reached by the other algorithms too, by accepting a greater
computational effort.
Comparing the two directly population based approaches, NSGA-II and moPBIL, it

showed that, unlike it is predicted in [7], NSGA-II seems to perform slightly better
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Figure 3.1: Comparison between three optimization approaches. Approximated Pareto-
fronts are shown for NSGA-II, wPBIL and moPBIL. The local superior performance of
wPBIL is emphasized in a detailed plot.

in terms of how far the Pareto-front advanced. This and the fact that NSGA-II goes
with a minimum number of parameters that have to be set seem to make NSGA-II the
preferable choice as an optimization algorithm. In comparison to NSGA-II, moPBIL
has more parameters that have to be chosen appropriately and to which no reliable
literature is available. As all parameters that have to be set for NSGA-II are common for
most evolutionary algorithms, one can benefit from previous studies concerning optimum
parameter tuning. This is in some ways also true for wPBIL. The issue of appropriate
parameter tuning is tackled in detail in a Section 3.2.4.

A combination of an evolutionary algorithm and a subsequent weight-based local op-
timization was introduced in [5]. This approach was not implemented because the ad-
ditional computational effort to carry out multiple local searches did not seem justified

Figure 3.2: Two exemplary structures found by wPBIL (left) and NSGA-II (right) with
equal relative mass. The structure on the right performs slightly better in objective space
but both structures’ shapes seem to not differ significantly and might eventually result in
the same engineering design.
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taking into account the considerations outline above. As the computational effort to
solve larger problems is predicted to be very large one might want to find a reasonable
compromise in sacrificing precision of the results for a significantly reduced computing
time.

Considerations basing on preliminary studies show that both, wPBIL and NSGA-II,
seem to perform well in finding an approximated Pareto-optimal set of solutions. NSGA-II
was chosen for further use, as it may provide insights into the solution space that are
more relevant to engineering. Apart from that, NSGA-II is also less prone to poorly set
parameters.

3.2.3 Solution Clustering

As described earlier, it is desirable to not only find some unevenly distributed solutions
but to find a densely filled approximated Pareto-front with as many trade-off solutions as
possible. With a rising number of binary parameters the actual number of fundamentally
different solutions may get obscured by the amount of Pareto-optimal variations of one
and the same structure. This is due to the fact that a single inverted parameter may
lead to small changes in the objectives and might result in another trade-off solution. Of
course, for practical reasons, in this case it may not be beneficial to regard all structures
found during the optimization. Therefore, in order to reduce the number of found
structures it may be best to merge very similar structures into a cluster of solutions.
A clustering method that works in objective space is presented in [5]. In topology

optimization this might not be the best approach, as it is possible to ignore interesting
structures only because they lie close to another solution in objective space. A clustering
method that works in parameter space will be presented here in order to emphasize the
fundamental structures that make up the Pareto-front. For this purpose, a trait of the
representation of the structure as a binary string is exploited. In information technology
the Hamming distance h is used to find transmission errors by comparing the received
string with members of a set of expected strings. In order to calculate h a bit-wise XOR

operator has to be used on both structures. The Hamming distance is then defined as
the count of all 1’s in the resulting binary string. If two binary string are equal h =
0. The lesser h, i. e. the less parameters differ, the more similar are two strings [41].
The calculation of the Hamming distance is shown for two arbitrary binary strings in
Equation 3.2.

1000101001

XOR 1010001011

0010100010 ⇒ h = 3

⇒ h̃ = 0.3

(3.2)

As the structures can be expressed as binary strings, it is possible to calculate h for
two structures. To make this scalar independent of the length of the strings or of the
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size of the structure, respectively, h will be normalized to h̃ by the number of binary
parameters used. For the structures given in Figure 3.2 h would be 24 and h̃ would be
0.03.
The clustering method now uses h̃ to decide wether two solutions are treated as being

similar. For this purpose, a maximum h̃ is to be defined that still qualifies as simila-
rity. In this thesis a value of 0.1 was chosen for two dimensional structures and 0.2 for
three dimensional structures. The solutions are sorted by one objective first, then h̃ is
calculated for consecutive structures and then similar solutions are added to the same
cluster set. One solution per set is output in order to represent the whole cluster. The
representing structure is chosen according to [5] amongst all solutions inside the cluster
as the structure closest to the cluster’s center in objective space. Henceforth, presented
structures are taken from clustered solutions, if not stated otherwise.

3.2.4 Parameter Setting

Using NSGA-II and the presented genetic operators as the basis to develop an optimizer
the user has to define four parameters: mutation rate, crossover probability, population
size, and a stopping criterion. In this section an estimate about correct parameter setting
is to be made for problems of a considerably high number of binary parameters. Problems
of few real-numbered parameters might need considerably differently parameter setting.
The mutation rate is set to a value that results in one fitness-altering parameter

flip per structure [42] and the crossover probability is set to a value between 0.9 to
1.0 to ensure that most of the results are coming from the diversity preserving crossover
operations [42]. In the scope of this thesis a mutation rate of pmut ≈ N−1 and a crossover
probability of 0.99 were used. [38] proposes that the optimal population size is in the
same magnitude as the number of binary parameters. Smaller population sizes may
initially perform better but will probably get stuck in local optima due to insufficient
genetic diversity [18,43].

The simple stopping criterion for evolutionary algorithms is to just stop after a prede-
fined number of iterations. Apart from this, there are no real stopping criteria found to
be practical [33]. The definition of a residuum is impossible for evolutionary algorithms,
as no steady convergence is observable. For multi-objective optimization the definition
of a sophisticated abortion criterion is even more complicated, as multiple objectives are
to be taken account for. In the scope of this thesis the maximum number of generation
was set proportional to the population size. For more than two objectives the number
of iterations had to be increased even further. A rule of thumb was developed for an
appropriate setting of the population size and the maximum number of iterations given
in Equation 3.3 with µ ≈ N .

µ · tmax ≥ (K − 1) ·N2 (3.3)
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Henceforth, if not stated otherwise, the above values are used. In order to avoid problems
arising from too short optimization duration it is possible to continue the optimization
after its abortion, if required.

3.3 Genotype-Phenotype Mapping

In order to avoid unfeasible solutions, e. g. due to the checkerboard effect (see Section 2.2.3)
or loose material floating in space, an additional step can be introduced that maps the
binary variable bit string to the finite element mesh used for evaluating the objective
functions. Mathematically this is another geometrical constraint to the optimization
resulting in further reduction of the parameter space IBN to the subspace of feasible
solutions S (see also Equation 2.7). The projection of a member ~x ∈ S to the feasible
objective space Z is shown in Figure 3.3. As Z itself is again a subspace of IRK , the
mapping can affect the Pareto-front negatively (also shown in Figure 3.3).

x1

x2

x3
f1

f2~x
~z

S
Z

IBN IRK

Figure 3.3: Projection from S to Z. S and Z are subspaces of IBN and IRK , respectively.
A point ~x ∈ S is projected to a point ~z ∈ Z in objective space. Based on [4].

The necessity for such a mapping is depicted in Figure 3.4. Three different binary so-
lutions (a)-(c) to a simple design problem (d) on a coarse grid are shown. Even though
solutions (a) and (b) might perform well in objective space, they are not desirable results
for an engineer. Solution (a) shows a checkerboard pattern and (b) shows random geo-
metrical features and material floating in space. Both solutions may contain interesting
geometrical features but their position in objective space probably does not concur with
the performance of a potentially derived design. A result that might be more desirable is
solution (c). It may perform worse in objective space than (a) but it may also have more
potential to provide insights about an optimal structure. Solution (b) performs way
worse in objective space than (c), however, it contains interesting geometrical features.
Solutions (a), (b) and (c) belong to IBN but only ~x(c) ∈ S.
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(a) (b)

(c) (d)

F

Figure 3.4: Three solutions (a)-(c) for a design problem (d). Mass and compliance are to
be minimized. Domination order in IRK is (a)≺(c)≺(b).

There are two work-arounds for the presented complications: Instead of simply discar-
ding (b), its mass and compliance could be significantly improved by small changes in
parameter space and instead of accepting (a) as an optimal solution one might prefer
solution (c). Even though this means worse results in objective space, solution (c) is
more near-net shape than the other two and may therefore be better suited as a design
recommendation. This means that from an engineering point of view both, parameter
and objective space, can not be viewed independently when evaluating multi-objective
optimization results. Sometimes worse solutions in objective space are to be preferred
due to their superiority in parameter space.
The preceding considerations suggest to avoid infeasible solutions. In order to improve

performance of the evolutionary algorithm one might want to not discard the solutions
but to improve them. By the proposed genotype-phenotype mapping several infeasible
parameter combinations found by the optimizer are mapped to a single feasible mesh.
Another approach to improve performance is the ground element filtering technique
(GEF, also referred to as approximate density distribution [44–46]) used to reduce the
number of parameters and therefore computational effort. The used problem-specific
genotype-phenotype mapping is presented in detail in the following sections.

3.3.1 Feasibility Filtering

Preliminary tests with binary representation of element densities and nature-inspired
meta-heuristics showed that found solutions tend to seem noisy and to have random
features. This is due to the extensive use of probabilistic methods (see Section 2.2.1).
Other than the checkerboard effect, these do not show up in gradient-based optimization
approaches. Their influence on the optimization has been discussed in the prior section.
A way to overcome these detrimental effects shall be described here.
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The binary representation of the element densities allows to easily classify any parameter
as either a solid or a void element. The approach chosen tries to smooth the surface
of the structure by step-wise filling holes and removing unconnected solid elements. In
order to be able to determine an element’s role inside the structure, it is necessary to
obtain information about its surrounding. For every element inside the mesh a list of
its neighbor elements (henceforward simply referred to as its neighbors) is created in
an initial step. For this purpose, it is analyzed with how many elements the element
shares a surface. Using hexahedral elements, it is possible to gain information about
the dimensionality of the structure by determining the maximum number of neighbors.
If all elements have no more than four neighbors the structure is of a two dimensional
shape. If elements with up to six neighbors exist, the design space is three dimensional.

The multi step procedure is shown in Figure 3.5 for an arbitrary beam-like structure.
In the first step, in order to avoid checkerboarding, all void elements that are surrounded
on all sides by solid elements are filled. Therefore, the number of solid neighbors is

I

II

III

IV

∗

F

Figure 3.5: Four steps of the filtering. Top right: Exemplary two dimensional design
problem with fixed elements in a darker shade. Top left: The parameter set initially found
by binary selection, recombination and mutation operations. I: Holes are filled. The aste-
risk marks a boundary condition exception. II: Unconnected solid elements are removed.
III: Elements surrounded by 3 solid elements are filled. IV: Solid elements that are only
connected on one side are removed. A fifth step is used for three dimensional problems.
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compared to the maximum number of neighbors counted earlier (4 for two dimensional
case, 6 for three dimensional, when using hexahedral elements). An exception is made
for elements to which boundary conditions were applied. Any surface with boundary
conditions is treated as another solid neighbor element. This ensures connection of the
structure to boundary conditions. The following steps are similar to the first one. In the
second step all solid elements that are not connected to another solid element over at
least one surface are removed. Here, also surfaces with boundary conditions are taken
into account. The third and forth step fill holes that are surrounded by solid material
on all but one side and remove solid elements that are connected to other elements over
one side only, respectively. A fifth step fills void elements that are surrounded by four
solid ones only if the structure was found to be three dimensional.

The general procedure is depicted in pseudo-code in Algorithm 3.1. The operation
count_solid_neighbors includes the exception made for surfaces with boundary condi-
tions. In order to avoid dependency of the element numbering, remove or fill operations
are carried out on a copy of the input structure, that only replaces the actual input
structure after every step. After steps that remove solid elements fixed elements are
restored. As the filtering described in this section leads to structures that seem to be
more feasible design suggestions for an engineer, the filtering will henceforth be referred
to a as feasibility filtering.

3.3.2 Removal of Isolated Material

In the present instance the optimization aims at finding a set of suggestions to a certain
engineering design problem. In topology optimization one might want to receive a single
continuous body without additional parts of unconnected material floating in space.
This problem is unique to the binary representation of the element density. In gradient-
based real-numbered optimization approaches such behavior usually does not occur.
Even though the isolated material does not necessarily negatively influence the results
of the finite element analysis, it leads to overestimation of the relative mass, which may
result in underrating the fitness of a member. Thus, the main structure should be kept,
while all other clusters of solid elements are to be removed. The approach described in
this section removes islands of material that are not connected to any fixed parameter.
Hence, at least one element density should be fixed to make use of this procedure.
Connections of solid elements to fixed domains are determined using a maze solving

strategy similar to Trémaux’s algorithm [47]. The basic idea is that from any element
inside the main structure there exists a continuous path through solid elements to an
element flagged fixed. If such a path does not exist, the elements are not connected to
the main structure and can therefore be removed. The deterministic algorithm presented
here will try all possible links. If it eventually reaches a fixed element all elements that
were part of the path will be flagged as keep and will therefore not be removed. If
all possible paths were tried and no fixed element was encountered, all elements in the
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Algorithm 3.1 Feasibility filtering algorithm
begin

if then
max_neighbors := 4

else
max_neighbors := 6

end
for every void element do

count_solid_neighbors
if solid_neighbors == max_neighbors then

element := solid
end

end
for every solid element do

count_solid_neighbors
if solid_neighbors == 0 then

element := void
end

end
set_fixed_elements_to_solid
for every void element do

count_solid_neighbors
if solid_neighbors == max_neighbors - 1 then

element := solid
end

end
for every solid element do

count_solid_neighbors
if solid_neighbors == 1 then

element := void
end

end
set_fixed_elements_to_solid
if 3D then

for every void element do
count_solid_neighbors
if solid_neighbors == max_neighbors - 2 then

element := solid
end

end
end

end

path will be flagged delete. The algorithm starts at the lowest numbered solid element
that is not fixed. After the first path is flagged either keep or delete, another starting
point is to be determined. Again, the lowest numbered solid element without any flag
is chosen and the procedure is repeated until either an element with a fixed or keep

flag is encountered or a delete flag has to be set. The procedure is repeated until no
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Algorithm 3.2 Algorithm used to remove isolated material
begin

for every solid element do
evaluate_number_of_solid_neighbors
set_keep_flag_if_fixed

end
for every solid element without any flag do

starting_position := element
path := {}
add_current_position_to_path
while no break flag is set do

counter_at_current_position := counter_at_current_position + 1
find_neighbor_with_lowest_counter
if Nowhere left to go then

all_members_of_path := delete
set_break_flag

else
move_to_next_element
add_new_position_to_path
if A neighbor has keep flag then

all_members_of_path := keep
set_break_flag

end
end

end
end
remove_elements_flagged_delete

end

suitable starting points can be found and all solid elements are flagged, respectively.
Subsequently, all parameters with a delete flag are set to 0 and therefore removed from
the structure.
Prior to the start of the process for every solid element the number of its solid neighbors

has to be evaluated. A list of every element’s neighbors has already been generated for
the feasibility filtering. Every element is assigned a counter initialized to be 0. The
paths are found by step-wise moving the current position from an element to one of its
neighbors. Every time the current position is changing to another element, that element
is added to a set path and its counter is raised by 1. From all neighboring elements the
current position moves to the element that has the lowest counter. If multiple elements
share the lowest counter, the one with the lowest numbering is chosen. It is only possible
to move to elements whose counter is lower than its number of solid neighbors. If no
neighbor fulfills this requirement anymore, all paths from that starting point were tried
and every element in the path set receives a delete flag. The basic procedure is depicted
in Algorithm 3.2.
With a rising number of elements the effectivity of this step increases. For full functi-

onality it may be best to assign fixed elements to surfaces of the design domain at which
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boundary conditions are applied. That way it is made sure that the main structure is
always connected to those areas.

3.3.3 Ground Element Filtering

Ground element filtering (GEF, also known as approximate density distribution) is a
simple numerical technique exploiting surface spline interpolation for projecting den-
sity distributions from a coarsely discretized mesh (henceforth referred to as parameter
mesh) to another mesh of higher resolution (henceforth referred to as finite element
mesh, as it is used for the finite element analysis) [46]. The technique can be used to
avoid checkerboarding effects and to reduce the number of parameters that are to be
optimized. Even though the projection of a structure to a finer mesh does not improve
the resolution of the structure, it does improve the results of the finite element analysis
used as objective functions as it refines the spatial discretization. Also structures of
elements only connected over their edge nodes are avoided, which is especially necessary
for thermal calculations.Finer meshes consist of a greater number of finite elements and
therefore raise the computational effort. The following description of the GEF process
for binary density distributions is based on [44–46].

In a first step, a real-valued density distribution ~ρreal on the finer mesh can is computed
from the binary density distribution of the coarse mesh ~ρGEF using the relations given
in Equation 3.4. The parameter mesh consists of m elements and the finer mesh consists
of n, respectively.

~ρreal = ~~C
~~A−1~ρGEF = ~~T~ρGEF (3.4a)

~~A = [aij ]m×m = [d(~ri, ~rj)] (3.4b)
~~C = [ckj ]n×m = [d(~r ∗

k , ~rj)] (3.4c)

d(~ri, ~rj) =
√

(~ri − ~rj)T (~ri − ~rj) (3.4d)

The function d(~ri, ~rj) returns the euclidean distance between two element’s volume cen-
troids ~r. Centroids of elements of the finer mesh are indicated by an asterisk. In order
to again obtain a binary density distribution ~ρ, the transformation given in Equation 3.5
is used with ε ∈ [0, 0.5].

~ρi =

0 for ρreal + ε ≤ 0.5

1 for ρreal + ε > 0.5
(3.5)

An example of ground element filtering is given in Figure 3.6. The real-value density
distribution and two meshes with a 0-1 distribution are shown for an already filtered
structure that was found during a run of an evolutionary algorithm. ε has a significant
influence on the derived finite element mesh. Higher values of ε lead to a bulkier struc-
ture. Henceforth, the value of ε will be 0.1, if feasibility filtering is used, and 0.35, if
no further filtering is used. This compensates for the fact that the feasibility filtering
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itself leads to bulkier structures as it forbids elements that are only connected to another
element over their edges-nodes.

Figure 3.6: Ground element filtering. Top left: Initial binary parameters on a coarse
mesh. Top right: Corresponding real-values density distribution. Bottom: Two derived
binary finite element meshes for ε = 0.05 and 0.35, respectively.

Ground element filtering is straight forward to implement and universally applicable to-
gether with all types of finite elements and any number of spatial dimensions. It can be
useful to supress checkerboarding and to reduce the number of parameters in topology
optimization. Nevertheless, it has two disadvantages: First there is no a priori way to
determine an adequate value of ε. As this value can have a strong influence on the
final structure [46], various preliminary tests may have to be conducted. This circum-
stance is tackled by the prior application of feasibilty filtering. Second, as depicted in
Equation 3.4, it is necessary to invert an m×m matrix. Matrix inversion is very compu-
tationally extensive due to high algorithmic complexity of the underlying numerics. In
the scope of this thesis the size of the matrices never rose to a point where the inversion
might have had noticeable influence on the overall runtime of the optimizer.

3.3.4 Filter Combination

The feasibility filtering, the removal of isolated material, and the GEF together make up
the problem specific genotype-phenotype mapping used in this thesis. The application of
the mapping works as a strict geometric constraint to the optimization. In Algorithm 3.3
the combination of the three steps is shown. The genotype-phenotype mapping method
takes a set of parameters as input, processes it into a feasible structure and returns
the derived binary element density distribution for the finite element mesh. Original
parameters, structure, and mesh are saved for every generated member.
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Algorithm 3.3 Genotype-phenotype mapping
begin

structure := input_parameters
while structure changes do

structure := filter(structure)
end
remove_isolated_material
mesh := gef(structure)
while mesh changes do

mesh := filter(mesh)
end
return mesh

end

The feasibility filter described in Section 3.3.1 is applied to the structure not only once
but several times. As shown in Algorithm 3.3, the filtering process is repeated until
the structure is no longer influenced by the filtering. This allows for the selection and
recombination operators of an evolutionary algorithm to use the structure rather than
the original parameter set and suppresses long outgrowths of material. Additional multi-
stage feasibility filtering is applied to the mesh in order to avoid artifacts from non-
optimal GEF parameters. All stages of a genotype-phenotype mapping are shown in
Figure 3.7 applied to a random parameter set. Feasibility filtering is repeated four times
until further application would not have any more influence.

The features feasibility filtering and removal of isolated material can be bypassed in
order to evaluated their influence (see Section 5.2). Henceforth, if not stated otherwise,
both are executed during optimization. GEF is always used but could also be bypassed
by using the same input files for the parameter structure and for the finite element
mesh. As the removal of isolated material is working only together with a set of fixed
elements most problems contain at least one fixed element. It is especially reasonable to
fix elements to which boundary conditions are applied or at which objective functions
are evaluated.
By the presented genotype-phenotype mapping, the complexity of the optimization

problem is reduced from approximately O(N4) to approximately O(N2 · n2). Here N is
the number of binary parameters in and n is the number of finite elements to which the
parameter mesh is projected by the GEF technique.

3.4 C++ Implementation

The features covered in this chapter were implemented in C++ 11 under Windows 10
Pro x64. The code was compiled in Visual C++ 2015 using optimization to decrease
runtime. Selection and genetic operators, the finite element analysis, and the objective
functions run simultaneously using the std::thread class in order to reduce computation
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Figure 3.7: Full genotype-phenotype mapping cycle of a randomly generated binary struc-
ture. From top left to bottom right: First image shows the design domain with fixed elements
and boundary conditions. Second image shows randomly generated binary parameters. The
following four structures show the progress of repeated application of the feasibility filter.
Subsequently, the images in the bottom row show that unconnected material is removed and
GEF is used to project the structure to a mesh of higher resolution. The final structure is
obtained after another application of the feasibility filter.

time. This works efficiently because data races do not occur. This is due to the fact
that no shared memory has to be written on during these steps.

The original implementation of NSGA-II outputs all members of the parental popu-
lation with rank 1. Different from that, in the present case, an external Pareto-set is
used that is updated after every generation. All members of the updated parental gene-
ration that do not violate any constraints are added to the set and non-Pareto-elements
are removed subsequently. This way, it is ensured that the Pareto-front contains all
Pareto-optimal solutions found during the optimization even if their number excels the
population size. Clustering is applied directly to this external Pareto-set. The Pareto-set
and the clustered set are implemented using the container class std::map in order to
be able to easily add and remove solutions and to efficiently search for entries. To solve
the equations of the GEF (see Section 3.3.3), the linear algebra header-only template
library Eigen2 was used.

In order to avoid solutions being found twice, an archive of already found solutions
is implemented. Every solution that was at least found once is added to a std::map.
During the generation of a new solution it is checked, if this structure has already been
found. If this is the case, the generation process is repeated until a new unique structure

2http://eigen.tuxfamily.org/
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is found. This is efficiently possible due to the logarithmic time complexity for searching
entries inside a sorted list [39].

Objective functions are evaluated by finite element analysis. For this purpose, a
modified version of the free ware finite element programm z883 was provided that reads
structural information and information about the boundary conditions in a directory
Z88Opt and prints files containing state variables and the structure’s mass in a directory
temp. The system call to run the finite element analysis is modified so that only the
calculations are done and only the output files are written that are explicitly required
for the prescribed objectives. These outputs are subsequently read and processed into
the objective values. Details about the implementation of the objective functions are
given in the next chapter.
The objective functions, their parameters, and the parameters for NSGA-II are read

from a control file NSGAII.ctrl in the directory input together with a list of fixed
elements fix.txt and the structural data of the parameter mesh. An exemplary control
file is given in the appendix. Objective functions are added to the evaluation when the
identifier OBJECTIVE is read. Parameters and constraints for this objective can be passed
afterwards. A list of implemented objective functions and their parameters is given in
the appendix. Not all objective functions are automatically optimized. Because some
objective functions can be evaluated and used only as a constraint (e. g. the maximum
stress), the number of objectives that are to be optimized has to be defined too. Apart
from the objective functions, also material parameters and the parameters of NSGA-II
have to be assigned in the control file.
The results of the optimization are output in several files inside the output directory.

The log file log.txt includes all information that was read from the control file as well
as information about starting time and duration of the matrix inversion required by
GEF. In every generation the starting and end time of the generation, the number of
found Pareto-elements, clustered elements, and the maximum rank inside the parental
population are output. Similar output is printed to the screen. The log file also includes
error messages and information about the overall optimization time. Pareto-solutions
and clustered solutions are output in two seperate files of the same kind. Every line
represents a found structure. The first number is a counter starting at 1. The following
real numbers are the values of all evaluated objective functions. After the objective
values the binary string that encodes the finite element mesh is added.
In order to halt the optimization and to restart it later, after every generation, the

whole parental population is output as well as the archive. These files can be pasted
to the input directory and will then be used together with the Pareto-set as an initial
point for the optimization. An overview over the folder and file structure of the program
is given in the appendix.

3http://en.z88.de/

35

http://en.z88.de/
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In order to evaluate the presented method and to gain benchmark results, several op-
timization problems were created. Linear elasticity and stationary thermal conduction
are regarded and up to three objectives are considered. In the following section the opti-
mization problems are described. To evaluate the Pareto-optimal solutions found by the
optimizer, the found structures are further tested. Pareto-optimal design propositions
are to be derived and their performance is to be examined. The methodology used to
derive designs from the results of NSGA-II as well as the experimental setup is described
in the subsequent section.

4.1 Optimization Problems

All models were initially set up and meshed in Abaqus CAE 6.184. The finite element
meshes consist of linear hexahedral elements (element type C3D8 in Abaqus and ele-
ment type 1 in z88Aurora, respectively). The models where subsequently imported
into z88Aurora, where node and element sets were created, boundary conditions were
applied and material data was allocated in order to get the required input file format.
Even if two dimensional problems are solved, no actual two dimensional elements were
used. All models expand in three dimensions and are meshed with hexahedral elements.
A tabular listing of the problems, their parameters and constraints is given in the ap-
pendix.
In order to minimize the mass of the structure, the concept of relative mass is used.

The definition of the relative mass r is given in Equation 4.1, where n denotes the number
of finite elements, Vi is the volume, and ρi is the physical density of the i-th element.
VDD is the volume of the design domain.

r =
∑n
i=1 Viρi
VDD

(4.1)

Throughout the following sections the design domain will be shown in a light gray color,
whereas fixed elements will be colored in a darker shade of gray. In all cases, the term
stress refers to a positive scalar that is the von Mises equivalent stress. The optimi-
zation problems under purely mechanical loading are typically about minimization of
mass and compliance. Compliance can be minimized either via minimization of certain
absolute nodal displacement values or by maximizing the first eigenfrequency of a struc-

4https://www.3ds.com/products-services/simulia/products/abaqus/
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ture [7]. The SIMP approach usually maximizes the stiffness by minimizing the elastic
energy e that is the sum over the elastic energy of all N elements. Its definition is given
in Equation 4.2 with ~ui being the element’s vector of displacement and ~~Ke

i being the
element’s stiffness matrix [31].

e = 1
2

N∑
i=1

~uTi
~~Ke
i ~ui (4.2)

For the mechanical models conventional engineering symbols will be used to depict the
boundary conditions. Surfaces to which temperatures are applied are indicated by thick
lines. Heat flows are indicated using arrows. The isotropic linear material data consists
of the elastic Young’s modulus E, the Poisson’s ratio ν and the thermal conductivity
λ. The maximum tolerable stress σt can be considered indirectly by constraining the
maximum element von Mises equivalent stress.

Problem 1

The first problem resembles a two dimensional beam. It will be used as a benchmark
problem to compare the results obtained by the presented method with the findings pre-
sented in [7], where the problem is referred to as MOP1 (for multi-objective problem 1).
The design domain with the applied boundary conditions is shown in Figure 4.1. De-
flections in all spatial dimensions are constraint on the left end of the beam. A force
of 1 kN is applied in negative y-direction at point A. The design domain is subdivided
into a parameter mesh of 18 × 6 = 108 elements resulting in 108 binary parameters.
The corresponding finite element mesh consists of 30 × 10 = 300 elements. A steel-like
material is used with E = 200 GPa, σt = 200 MPa and ν = 0.3.
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Figure 4.1: Beam design domain of problem 1. All displacements are constrained on left
hand side and loaded with a point load of 1 kN on right upper edge. Adapted from [7] where
it is referred to as MOP1.
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The design problem is set to minimize both the relative mass r and the absolute displa-
cement uA at the contact point of the force A. The relative mass is constrained to be in
the range of 0.5 to 0.8. This resembles the constraints presented in [7].

Problem 2

The second problem is a two dimensional bridge-like structure loaded with a constant line
force of 10 N mm−1 in negative y-direction. The structure and the boundary conditions
are symmetric to a vertical axis and therefore the design domain only covers half of the
structure. The problem dimensions and boundary conditions are shown in Figure 4.2.
The symmetric axis is taken account for by constraining displacements in x-direction.
The parameter mesh consists of 10 × 10 = 100 and the finite element mesh consists of
20× 20 = 400 elements. The upper row of parameter elements is fixed so there is a total
of 90 binary parameters. Similar to problem 1, steel-like material data is used.

design domain

10 N mm−1

A

10
0m

m

200 mm

thickness 5 mm

x

y

Figure 4.2: Bridge-like design domain of problem 2. The structure and its boundary
conditions are symmetric to a vertical axis. A constant line load is applied to the 10 fixed
elements at the top.

The problem is set to minimize both the relative mass r and the elastic energy e. Because
the mesh consists of all uniform cubical elements, the definition of the elastic energy of
Equation 4.2 was used to derive a simplified objective e∗ to account for a minimization
of the elastic energy. For cubical elements and a strict 0-1 distribution the element
stiffness matrix can be canceled out as well as the constant factor of a half so that e ∝ e∗

applies. The definition of the simplified objective is given in Equation 4.3.

e∗ =
N∑
i=1

ρi ~u
T
i ~ui (4.3)
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In order to compare the results with solutions found by the SIMP approach, the deflection
at point A is also output but not explicitly minimized.

Problem 3

Problem 3 is a beam-like structure with a mechanical loading similar to problem 1.
Its design domain was chosen as a basis for the further physical experiments that are
described in Section 4.2. The parameter mesh consists of 21 × 14 = 294 elements and
the finite element mesh is made up of 35× 20 = 700 elements. An area of 20× 20 mm
is fixed and the loading of 3 kN in negative y-direction is applied to its center. The
problem contains a total of 243 binary parameters.
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Figure 4.3: Beam design domain of problem 3. All displacements are constrained on left
hand side and loaded with a point load of 3 kN on Point A. Around the loading there is a
set of fixed elements.

Apart from r, the displacement of point A in y-direction is to be minimized. The mass
is constrained to a range of 0.25 to 0.75. The stress was constrained to a maximum of
200 MPa. An aluminum-like material with E = 70 GPa and ν = 0.27 was assumed with
similar properties to the material used to produce the derived parts.

Problems 4 and 5

Problems 4 and 5 are both based on the design domain of problem 3 shown in Figure 4.3.
The meshes, fixed elements and physical dimensions are kept and thermal boundary
conditions are applied. On one side a temperature of 200 ◦C and on the other side a heat
drain of 5 W is applied. A drawing of the design domain with the thermal boundary
conditions is given in Figure 4.4. The material is assumed to have a thermal conductivity
of 200 W m−1 K−1.
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20
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Figure 4.4: Thermal design domain of Problems 4 and 5 based on the structure of Pro-
blem 3 as shown in Figure 4.3. The left edge of the structure has a constant temperature of
200 ◦C and the other edge is connected to a heat drain of 5 W.

Problem 4 is the optimization with respect to r and to T at point A with r being
restricted to be less than 0.7. Taking a nodal temperature as an objective function is
connected with a series of complications. If an element is connected only to the heat
drain and has no solid connection to the initial temperature, the resulting temperature
may be close to the numerical minimum temperature, which has no physical meaning and
yet would outperform any other solution by many orders of magnitudes. If this solution
also had a very low relative mass, this would lead to a failure of the NSGA-II algorithm
because no real solution would ever be able to outperform it. A simple constraint would
have no effect because the solution would presumably never vanish from the parental
population. Such behavior is avoided simply by discarding any solution that shows an
unrealistically low temperature.
Problem 5 is a superposition of problems 3 and 4. Both mechanical and thermal

calculations are done to optimize r as well as T and uy at point A. This means that
three independent objective functions are to be minimized. r is constrained to be less
than 0.4, the nodal displacement uy is constrained to be less than 1.0 mm, and the
maximum stress is set to 200 MPa.

Problem 6

Problem 6 is a three dimensional optimization problem that is based on a model pre-
sented in [3, 48]. It is of a cubical shape with displacements at the lower vertices being
constrained in all directions. A four-fold rotational symmetry is exploited in order to
reduce the computational effort and to ensure symmetrical results. The design domain
together with the applied boundary conditions is shown in Figure 4.5.
The design domain consists of 6× 6× 12 = 432 elements and the finite element mesh

is made up of 10 × 10 × 20 = 2000 elements. Four point loads in positive z-direction
of 1 kN each are applied to the top plane of the cube. A single element is fixed at the
constrained node. A steel-like material is used, r is constrained to a maximum of 0.8
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and the maximum permitted stress is σt = 200 MPa. The displacement in z-direction at
the loaded node and the relative mass are to be optimized.

1 kN 1 kN

1 kN

1 kN

10
0m

m

100 mm 100 mm

25 mm25 mm

x

y

z

Figure 4.5: Cubical design domain of problem 6. The structure and its boundary conditions
have a four fold rotational symmetry with respect to the z-axis. One forth of the structure
makes up the design domain with the element at the support and another four elements
around the loading being fixed. Based on [3, 48].

Problem 7

Problem 7 is the most near application problem tackled in this thesis. It resembles a
bearing mount under mechanical and thermal loading. A fitting example would be the
mounting of the nose cap of a space shuttle. The design domain is a rectangular block
with a hole of 30 mm diameter that is supposed to hold an axle. The axle presses into the
bearing with a force of 500 N and works as a heat drain that conducts 5 kW. The contact
to the nose cap has a temperature of 1000 K. An axial symmetry is exploited. The design
domain is depicted in Figure 4.6. The parameter mesh consists of 395 elements with
fixed elements at the bottom and at the hole in order to ensure functionality of the
resulting structures. The finite element mesh consists of 1099 elements.
Objectives are the relative mass constrained to be ≤ 0.3, the deflection of point A

in y-direction, and the contact temperature to the axle. This temperature is defined
as the maximum temperature of all nodes in contact with the axle. Analogous to the
complication described for problem 4 and 5, numerical marginal cases have to be taken
care of in order to avoid unrealistic objective values. The displacement is constraint to be
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Figure 4.6: Bearing mount-like design domain of problem 7. Left: Drawing of the bearing
mount-like design domain with mechanical and thermal boundary conditions. The lower
surface of the design space is constrained from moving in y-direction. A single point is fixed
in all directions and symmetrical boundary conditions are applied. A cylindrical cavity with
a diameter of 30 mm is loaded with a surface force by a shaft. The shaft itself is acting as a
heat drain. Right: Parameter mesh with fixed elements emphasized in gray.

less than 0.001 mm. The material data resembles an isotropic fibre reinforced ceramic
typically used in advanced aerospace engineering application. The elastic modulus is
60 GPa, ν = 0.3 and λ =15 W m−1 K−1. Stresses are constraint not to exceed 80 MPa.

4.2 Experimental Setup

In order to find out whether it is possible to obtain Pareto-optimal designs from the
presented optimizer, sets of design propositions are to be derived, machined and tested.
The parts are to be loaded by a hydraulic press and the displacement in y-direction at
a certain point is to be evaluated by digital image correlation (DIC).
Problem 3 was chosen to be used for the tests. The design domain of Figure 4.3

is used as a basis to design five specimens of different relative masses. A prototypical
drawing is given in Figure 4.7. The original design domain is unchanged and shown
in gray. The parts are to be mounted to a solid support via two screw joints. The
location of the joints was chosen to account for the bearing reaction due to the bending
force. The force itself is to be applied via a locator that is screwed onto the part. By
that means, it is ensured that the point of contact does not change significantly during
loading. All screw threads are ISO M8. A smoothing tool as described in Section 2.2.3
was provided and used to derive part designs. The default parameters were used. The
parts were designed in Creo Parametric 3.05 with a minimum inside radius of 5 mm
and machined out of 100 mm×12 mm aluminum bar stock. A temperable AlCuMgPb

5https://www.ptc.com/en/cad/creo/parametric
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alloy was used. A detailed data sheet is given in the appendix. The design process will
be further illustrated in Section 5.3.1.
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Figure 4.7: Drawing of specimen based on design problem 3. The gray area corresponds
to the design domain specified in Figure 4.3. All screw threads are ISO M8.

The whole testing rig is shown in Figure 4.8. The hydraulic press stud is mounted to a
steel frame (a). The force is applied manually via a lever (b) and a measuring amplifier
(c). In the foreground two industrial cameras (d) are shown mounted to a tripod. Both
cameras point to the region of interest with an angle of 5◦ to 25◦ towards each other.
The cameras are connected to each other and to a measuring amplifier. The amplifier
is connected to a computer with the DIC software used to calibrate the cameras, take
images and to do the image correlation.
To evaluate the performance of the derived part designs, the manufactured parts

are to be mounted to a support and loaded with a hydraulic press. Details of the
mounting are shown in Figure 4.8. All fixed parts are mounted to a machine bed. The
supporting structure (e) is made from welded 30 mm construction steel in order to reduce
its contribution to the system compliance. A brass locator (f) transfers the force from
the hydraulic press (g) into the specimen (h). A pressure cell (i) records the overall force
applied. The specimens are bolted to the mounting support with a torque wrench set to
27 N m and the locator is manually screwed hand-tight into the specimen.

In order for the DIC to obtain a surface displacement field, it maps patters found on
the specimen’s undeformed surface to the deformed surface. These patterns have to be
applied to the structure manually [49]. The specimens were spray painted white and
then speckled with black spray paint. By that means, a fine, even speckle pattern is
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(a)
(b)

(c)

(d)

(e)

(g)

(e)
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(g)
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Figure 4.8: Test rig (top), mounting details (bottom left) and prepared specimen surface
(bottom right). (a) supporting frame, (b) hydraulic lever, (c) measuring amplifier, (d)
industrial cameras on tripod, (e) mounting support, (f) locator, (g) hydraulic press, (h)
specimen, (i) pressure cell.

obtained. This speckle pattern is also shown in Figure 4.8. To achieve even lighting and
to avoid the need for further light sources the background is masked with white paper.

The DIC system used was Limess Q-400-3D6 together with the software Istra 4D
x64 4.3.0.48. In order to obtain correct results, the cameras were focused on the region
of interest, the aperture was set appropriately and the system was calibrated [49]. Three
different camera setups were used, each with different camera angles, distance to the

6http://www.limess.com/en/products/digital-image-correlation
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specimen and aperture settings. Exemplary images for each camera setup are given in the
appendix. With each setup three image correlations could be carried out. One for each
camera and another one in three dimensions. The procedure was repeated twice for every
sample including the mounting process in order to compensate for systematical errors.
By that means, for every sample 18 displacement fields were obtained and evaluated at
the desired point (see Figure 4.3).
Apart from the physical testing, the design propositions were also subject to further

simulations. Problem 7 was also basis for further analysis. The smoothed structures
as well as two derived designs were imported into z88Aurora, Abaqus CAE 6.18
and Comsol 5.27 and meshed. Mechanical and thermal simulations were carried out
with meshes of different element sizes and shape functions in order to find a suitable
discretization.

7https://www.comsol.com/
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5 Results

In this chapter the results of the application of the previously described optimizer will
be shown and discussed. In the first section the overall performance of the presented
method will be evaluated by exemplary structures and subsequently the influence of the
genotype-phenotype mapping will be shown. In the last chapter optimization results for
problems of different sizes, number of objectives, and physics will be presented. Both
physical experiments and further calculations were conducted in order to verify the
optimization results and to evaluate the derived part designs. Optimization results will
be compared to other approaches and to results from literature.

5.1 Optimizer Performance

In Figure 5.1 approximated Pareto-fronts for problem 3 are shown at five different gene-
rations. They were found using NSGA-II (µ = 300, tmax = 300). One can see that over
the course of the optimization the approximated Pareto-front seems to converge towards
a curve in objective space. The term convergence is misleading because no convergence
in a mathematical sense does occur [33]. Nevertheless, the relative improvement per
generation decreases over the course of the optimization, whereas the fronts steadily
advance. Apart from that, one may observe that the coverage in objective space and
the number of found solutions also improve over the time. In generation one there are
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Figure 5.1: Approximated Pareto-fronts for problem 3 at five different generations.
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only eight solutions, whereas in the last generation 202 trade-off solutions were found.
A greater number of solutions also increases the quality of the approximation of the
Pareto-front. The number of found solutions and the number of clustered solutions are
plotted over the number of generations in Figure 5.2. The size of the Pareto-set of solu-
tions rises almost steadily over the course of the optimization and eventually seems to
settle at a fixed value of around 200. The number of clustered solutions first alternates
but over time also seems to level off at a fixed value. This behavior has been found for all
multi-objective optimizations carried out and is in good accordance with findings from
literature [50]. Multiple runs with the same parameters also showed similar amounts of
found solutions and clusters.
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Figure 5.2: Number of found solutions per generation. Top: Number of Pareto-optimal
solutions found up until the current generation. Bottom: Number of solution clusters.

Performance evaluation of population based optimizers, especially evolutionary algo-
rithms, is not a simple task. The frequent use of probabilistic operators leads to an
unpredictable course and statistical variation of the results [20]. In Figure 5.3 the obtai-
ned Pareto-fronts of ten independent runs of NSGA-II are shown. Problem 1 was solved
applying the same parameters used in [7] (µ = 30, tmax = 120) without feasibility fil-
tering. It can be seen that above r = 0.65 most solutions seem to cumulate. However,
below r = 0.65 the variation is significantly bigger. The displacement varies with up to
a factor of two at a fixed relative mass and cumulations of solutions are hard to iden-
tify. Interestingly, not a single solution was found during more than one run. It can be
concluded that, in order to evaluate the performance of an multi-objective evolutionary
algorithm and its features, comparing two single runs can not yield significant insights.
A number of runs has to be conducted and variation as well as the best Pareto-front
have to be compared.
The region of solutions found for problem 1 is shown in Figure 5.3 together with

a Pareto-front taken from [7], which was assembled from non-dominated solutions of
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Figure 5.3: Variation over ten runs of NSGA-II. Left: Pareto-fronts for problem 1 found
by ten optimizer runs with the same parameters without filtering. Right: Big white marks
indicate solutions presented in [7]. Gray coloring indicates the area between the overall
Pareto-front and the region that was dominated by all found solutions.

ten independent runs. It can be seen that the Pareto-front obtained by the presented
optimizer lies very close to the one presented in literature. Slight differences may be
results of different finite element implementations or statistical variations as decribed
earlier in this section. More severe deviations may be results of differently implemented
constraint handling. All in all, the optimizer presented in this thesis proved to be able
to find similar results in the same time as optimizers presented in the literature.
Taking into account the statistical variations and thus comparing overall Pareto-fronts,

another difficulty arises. It is the definition of the quality of obtained solutions. When
comparing two approximated Pareto-fronts multiple factors may be considered, for in-
stance the number of solutions, even spreading of the solutions inside the front, diversity
of the solutions in parameter space (see Section 3.2.3). These measures do not des-
cribe how far the Pareto-front advanced. This may be described in terms of how much
of front one is dominated by another or the area of objective space not dominated by
an approximated front [7, 25]. Considering the above points, tuning an evolutionary
algorithm’s parameters itself is a multi-objective optimization problem because someti-
mes many evenly spread solutions may contain more valuable information than a few
single solutions even though these might be better in terms of domination (see also
Section 3.2.2).
In Figure 5.4 five pairs of structures of equal mass are shown found by NSGA-II (µ =

150, tmax = 150) for problem 2 together with structures found by the SIMP approach
(α = 4). The software used was z88Arion, using sensitivity filtering and the default
parameters. This optimization was conducted with the same mesh that was used by the
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Figure 5.4: Five solutions to problem 2. From top to bottom the relative mass increases
from 0.2 to 0.6 in steps of 0.1. On the left hand side the results obtained by NSGA-II are
shown and on the right the strucutures found by the SIMP approach are given.

evolutionary algorithm. It can be seen that in the depicted range of r the found solutions
are of fundamentally different shapes. The lightest structure found by z88Arion shows
considerably finer geometrical features than its counterpart but also shows areas in which
no discrete 0-1 distribution was achieved. The results found by the optimizer based on
NSGA-II inherently show a strict 0-1 distribution but also show more coarse features
due to the filtering described in Section 3.3. All structures show diagonal supports that
tend to get bulkier for greater relative masses. The point of contact with the walls is
located significantly lower in structures found by NSGA-II.
In Figure 5.5 the Pareto-front for problem 2 is shown. To achieve a Pareto-set, 19

runs of SIMP were conducted with relative target volumes from 0.1 to 1.0. The simpli-
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fied compliance objective e∗ was calculated from the corresponding displacements after
Equation 4.3. It can be seen that for r > 0.25 the Pareto-front found by NSGA-II
dominates the SIMP solutions. This may be due to the lowered contact points of the
support structure. The worse results of NSGA-II in objective space below r = 0.25
may have occurred due to the fact that the SIMP approach found solutions without a
0-1 distribution.
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Figure 5.5: Comparison between Pareto-fronts found by NSGA-II and an SIMP approach
for problem 2. The simplified compliance objective e∗ is plotted against the relative mass.

Findings discussed in this section indicate that the presented optimizer basing on NSGA-II
is able to find better solutions than a classical SIMP approach when optimizing struc-
tural stiffness. The SIMP optimizer took around 1000 finite element calculations to find
19 solutions. It took NSGA-II 22 500 FEA runs to find 189 non-dominated solutions.

5.2 Influence of the Genotype-Phenotype Mapping

The influence on the Pareto-fronts by the genotype-phenotype mapping described in
Section 3.3 is shown in Figure 5.6. The Pareto-fronts and the corresponding variations
with and without filtering are compared for problem 1 (left) and problem 3 (right). As
discribed in Section 5.1, the variations over ten runs are drawn as areas in order to
illustrate the statistical variations by the evolutionary algorithm.
The unfiltered results for problem 1 are the same that are shown in Figure 5.3. Only

taking into account the results in objective space, it seems as if the filtering would have
had a negative effect on the results. It can be seen that the results with activated filtering
show a broader area of variation and, above r = 0.54, show a less advanced Pareto-front.
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Figure 5.6: Pareto-fronts influenced by filtering. Variation depicted as areas described in
Section 5.1. Left: Pareto-fronts to problem 1. Gray area as shown in Figure 5.3. Dotted
lines show ten runs with activated filtering. Solid line shows overall Pareto-front found with
filter. Right: Pareto-fronts for ten runs of problem 3. Filtering was again deactivated for
the gray area and activated for the striped area.

The latter is probably due to the filtering working as an additional geometrical constraint
to the optimization resulting in a reduction of the objective space (see Figure 3.3).
For problem 3, in contrast to the above, a much more positive effect caused by the

filtering can be observed. For a relatively low computational effort (µ = 30, tmax = 120)
the optimizer together with the filter was able to find a more advanced Pareto-front (with
exception of one single point). Without the use of the filtering no results were found
for r < 0.55. A similar effect can also be observed on the left plot. Below r = 0.54 the
filter was able to find significantly better solutions in one instance. The positive effect
on problem 3 is probably due to its greater amount of elements compared to problem 1.
Thus, the constraint imposed on the problems by the filtering seems disadvantageous
for smaller problems. For large enough problems the filter does not only lead to a more
advanced Pareto-front but also helps to more quickly spread the Pareto-front over the
desired range of relative volume.
The influence of the filter in parameter space is shown in Figure 5.7. Both structures

were members of the approximated Pareto-front after 120 generations and both have
a relative volume of around 0.68. The filtered structure shows smooth outlines and
seems more near-design compared to the structure that was found without filtering.
The unfiltered structure seems more bulky than the filtered one, even though it has the
same relative mass. This is due to the many small holes that were generated. Also, some
material is not connected to the beam, which leads to a wrong position of the solution
in objective space. Both of these problems are addressed directly by the filter. It may
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Figure 5.7: Filtered (left) and unfiltered (right) solution to problem 3 after 120 generations
(r ≈ 0.68).

be possible to generate a smoother structure by a more fitting choice of ε, but there is
no general method to determine this factor a priori.
All in all, the findings presented in this section indicate that the genotype-phenotype

mapping described in Section 3.3 is significantly advantageous for optimizing larger
structures using a binary representation of a structure together with an evolutionary
algorithm. For a large amount of binary parameters the filtering process strongly im-
proves the approximation of the Pareto-front. Found solutions not only perform better
in objective space but also tend to be more feasible as a basis for further engineering
design. Negative effects due to the filtering can be observed for smaller structures. As
it is the scope of this thesis to apply multi-objective evolutionary optimization to larger
structure, all further optimization runs presented will have made use of the filtering.

5.3 Optimization Results

As presented in Section 4.1, the developed optimizer was used to find sets of Pareto-
optimal trade-off solutions for different problems. In this section the found structures
are presented and their performance in objective space is discussed. Special attention is
given to engineering designs derived from the found solutions. First purely mechanical
problems will be discussed and subsequently more thermal calculations will also be taken
into account.

Mechanical Objectives

In Figure 5.8 twelve structures are shown found for problem 3. The results were obtai-
ned after 300 generations with a population size of 300. The first solution with the
least relative mass fundamentally distinguishes from the others because it is basically
a horizontal beam with a lengthy hole close to the supporting wall. The next heavier
solutions consist of a horizontal beam and a diagonal supporting beam. The fourth and
fifth structure show a different topology and an additional support structure. The he-
aviest solutions are rather similar to each other and only the thickness of the structure
seems to increase.
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r = 0.260 r = 0.283 r = 0.301 r = 0.357

r = 0.450 r = 0.538 r = 0.634 r = 0.636

r = 0.646 r = 0.673 r = 0.677 r = 0.750

Figure 5.8: Twelve solutions to problem 3. From top left to bottom right the mass of
the structure increases while the displacement at the upper right corner of the structure
decreases.

Problem 6 was the largest structure that was subject to a multi-objective optimization
in the scope of this thesis, in terms of computational effort and number of elements that
make up the finite element mesh. 446 single results and 8 clusters were found. A run
with µ = 450 over 400 generations took over 49 h on a desktop computer with a four
core CPU at 3.2 GHz on Windows 10 Pro x64.

In Figure 5.9 five smoothed results are shown for problem 6. The smoothed triangular
surface mesh was mirrored in order to show the whole structure. Additionally, an optimal
structure obtained by [48] on a mesh of 30 × 30 × 30 elements is given. The optimum
structure from literature is described as a quadropod solution with solid legs transferring
the point loads to the nearest supports and additional material interconnecting the
legs [48]. Similar results were obtained by NSGA-II. Four leg-like connections between
the fixed elements and interconnecting material between neighboring legs can be observed
with the interconnections being in the upper part of the design space. Over the whole
permitted range of r, changes of the structures mostly consist of further thickening of
the structure and larger interconnections. Because symmetry with respect to a plane
not parallel to a coordinate plane is not implementable, two symmetry planes were
implemented instead of the possible four that the design domain holds. Nevertheless,
three of the five presented solutions show additional symmetry that was not a priori
imposed to the system. The above points might be indicators for solutions close to
optimal structures. Still some non-symmetrical geometry can be observed. The lightest
structure presented in Figure 5.9 also seems to show a mesh dependent appearance that
indicates that the spatial discretization of the density distribution started failing at such
low relative masses.
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Figure 5.9: Five smoothed solutions to problem 6. From top left to bottom the relative
mass increases from 0.1 to 0.5. Bottom right shows results presented in [48].

There are clear indicators that show that the results to problem 6 are likely to be very
close to an optimal material distribution. When talking about additional unprescribed
symmetries and similar shapes, one has to keep in mind the characteristics of the evo-

54



5 Results 5.3 Optimization Results

lutionary optimizer used. Due to the probabilistic generation of the parameters slight
unevenness always occurs. This effect is attenuated by the use of a smoothing tool.

Thermal Objectives

In Figure 5.10 all clustered solutions are shown for problem 4. The overall Pareto-set
included 65 trade-off solutions found after 1000 generations and with a population size
of 300. The problem formulation can be interpreted as finding the optimal connecting
structure between a heat drain and a surface that is to be cooled. Mass as well as the
contact temperature to the heat drain are to be minimized.

r = 0.311 r = 0.277 r = 0.266 r = 0.249

r = 0.248 r = 0.243 r = 0.240 r = 0.237

r = 0.219 r = 0.214 r = 0.211 r = 0.206

r = 0.205 r = 0.200 r = 0.198 r = 0.193

r = 0.181 r = 0.178 r = 0.177 r = 0.172

r = 0.169 r = 0.157 r = 0.149 r = 0.127

Figure 5.10: 24 solutions to problem 4. From top left to bottom right the temperature at
the upper left corner of the structure increases while the mass of the structure decreases.
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All found structures are thin lines that resemble printed circuit board tracks with a
width of two elements. The lightest structure is a simple connection between the two
surfaces. The structure with the lowest contact temperature is showing two distinct
geometrical features. First, the whole heat drain is covered in material to maximize
the heat transfer rate. The second feature is a meandering structure of the connection.
All structures shown are path-shaped so the meandering leads to a longer path and
thus the thermal resistance of the structure rises. Over the course of the Pareto-set of
solutions the meandering decreases in both amplitude and frequency while minimizing
the mass. Single solutions show spots at which the width of the connection is more than
two elements. This is probably due to a inadequately set GEF parameter ε.

The structures seem so circuit board-like probably due to the rectangular structures.
No predominant diagonal structures were found in any of the Pareto-optimal solutions.
This could be an indicator for anisotropy caused by either the mesh or the genotype-
phenotype mapping. By simply regarding the geometrical features one might get the
impression that better performing solutions could have been found because the meande-
ring could have been carried on further. The problem is a classical example for solutions
that converge towards a micro structure if meshes are continuously refined. The coarse
parameter mesh imposes another geometrical constraint by setting a minimum size for
any geometrical feature. In the present case this has a positive effect for application
because it forces solutions to stay machinable.

Mechanical and Thermal Objectives

Problem 5 is the first problem tackled in this thesis that is optimized with respect to
three objective functions. The three dimensional Pareto-front is plotted in Figure 5.11.
178 solutions were found after 1000 generations with a population size of 300. The
scattered solutions in objective space are projected to the boundary planes of the plot
in order to illustrate the shape of the front. The scattered solutions are color-coded to
emphasize their relative mass.
Seven corresponding solutions are shown in Figure 5.12. The presented solutions

were chosen manually from the three dimensional scatter plot in order to represent the
single-objective optima, trade-offs between the single-objective optima and a trade-off
between all the objectives. Analogous to the results for problem 4, one can see that,
in order to minimize the contact temperature, meandering structures and full contact
with the right edge are favorable. The structure itself distinguishes significantly from
the results presented in Figure 5.10 because multiple constraints are to be taken into
account. The stiffest solution resembles the solutions presented in Figure 5.8, but no
similar solution was found, even though no constraints would have prevented it. In
comparison to Figure 5.8 another constraint is imposed forbidding displacements of less
than 1.0 mm. Even considering this additional constraint the solution of minimum weight
found for problem 5 outperforms the solution of minimum weight found for problem 3.
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Figure 5.11: Pareto-surface of solutions found for problem 5 as thick markers. The markers
are color-coded to show the relative mass. The plane is projected to three two dimensional
plots shown as black dots in the boundary planes.

This means that both runs of NSGA-II may have in some way failed to fully occupy the
allowed objective space and to find optimum structures. Nevertheless, it was possible
to easily obtain information about what geometrical features influence the objectives.
The trade-off solutions presented in Figure 5.12 illustrate that the geometrical features
influence changes when the importance of another objective rises.

umin = 0.289 mm

rmin = 0.287

Tmin = 172.6 ◦C

Figure 5.12: Seven solutions to problem 5 in a triangular arrangement. The corners of
the triangle show structures of minimum objectives. Between two corners Pareto-optimal
trade-offs between the two objectives are shown. The central structure represents a trade-off
between all three objectives..
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In Figure 5.13 smoothed solutions to problem 7 are shown from both sides to illustrate
their three dimensional structure. 1205 solutions were found over the course of 300
generations with 300 population members. From the shown Pareto-set 81 solutions were
extracted that are non-dominated considering only the stiffness and contact temperature
of the structure. The three dimensional Pareto-front is thereby reduced to a problem of
two objectives. This approach was found superior to a simple two objectives problem
with a mass constraint because during the optimization there is a driving force towards
lightweight structures rather than just a discarding of too heavy solutions. From that
set of 81 solutions eight solutions were picked to be displayed.

(a)

(b)

Figure 5.13: Eight smoothed solutions to problem 7. Shown are a front view on the left
and a back view on the right, respectively. From top left to bottom right the compliance
increases and the maximum contact temperature decreases. Interesting geometrical features
(a) and (b) can be observed throughout the Pareto-set.

Of course, all solutions have in common the regions that were fixed elements in the para-
meter mesh. Due to the relative mass objective all solutions showed less material at the
side opposite to the shaft hole. The stiffest solution shows material added between the
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bottom plate and the hole to reduce the displacement in y-direction. When the struc-
tures get less stiff and towards a lower contact temperature, material is removed below
the shaft hole. The shaft hole is supported by single rods of supporting material. In
Figure 5.13 it can be seen that the void below the shaft hole (a) enlarges with decreasing
contact temperature and that additional supporting material (b) is added farther away
from the symmetric axis. Apart from these geometrical features some random features
can be observed: Single elements are added to the bottom plate without obvious rea-
son. Some support structures show counter-intuitively much material added to it while
others showed non-symmetric features. All in all, the results indicate that not all found
solutions are optimal and that the computational effort probably was to little. The used
optimizer parameters did not fulfill the rule of thumb given in Equation 3.3. Neverthe-
less, interesting features could be observed that influence the solutions performance in
objective space.
However, selecting fitting solutions from the truncated two dimensional Pareto-front

required some engineering knowledge and visual inspection of the Pareto-front because
some obviously unfeasible solutions were output. An example for a nonsense solution
that shows random outgrowth of material is given in Figure 5.14. In this instance the
smoothing algorithm seems to have failed at places where two solid elements were only
connected to each other via a single node. This kind of obviously non-optimal result can
probably be avoided by a larger population and a greater overall number of generations.

Figure 5.14: Unfeasible solution with random material outgrowth. Both sides of the
smoothed structure are shown.

5.3.1 Digital Image Correlation

The mechanical problem 3 was chosen to be subject to a subsequent derivation of a
set of engineering designs. From the Pareto-set depicted in Figure 5.8 five results were
selected according to their position in objective space. The chosen structures are shown
in Figure 5.15.
The pixel-like distributions of material and void were smoothed using the previously

described smoothing technique. Both of these distributions are shown in Figure 5.15 and
both were used to design the area that was to be optimized (gray area in Figure 4.7).
During the design process of the specimens for the digital image correlation attention
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Figure 5.15: Five solutions to problem 3. From top to bottom the relative mass increases
from 0.3 to 0.7. On the left are the optimization results, in the middle are the smoothed
results and on the right hand side the derived designs are shown.

was paid to keeping the original shape of the results of NSGA-II while simultaneously
ignoring obviously random geometries and features that arose from the finite element
discretization. Additionally, manufacturing limitations were considered e. g. minimum
inside radii and an overall simple design consisting of a manageable number of geometri-
cal features to keep the machining effort on an acceptable level. The design propositions
given in Figure 5.15 on the right hand side were found acceptable trade-offs. The relative
mass of the solutions changed, but the order was kept from lightest to heaviest structure.

The specimens were prepared, mounted, and loaded as described in Section 4.2. The
machined specimen are shown in the appendix. Images were captured of unloaded and
loaded samples in order to gain information about the local displacement of the evalua-
tion point in y-direction. Images and results obtained of a single image correlation are
shown in Figure 5.16. An image of the loaded part is shown as well as the structures con-
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Figure 5.16: Digital image correlation process. From left to right: Initial image, found
contour of the deformed part and displacement field with evaluation point.

tours found during the correlation. On the right hand side the obtained y-displacement
field is shown over the deformed sample. The evaluation point is indicated by a green
dot. The correlation of the images works semi-automatically. A suitable starting point
for the correlation has to be set by hand. Prominent parts of the speckle pattern in the
vicinity of the evaluation point were chosen for this purpose. The default parameters of
the correlation algorithm were chosen. The results of the image correlation are shown in
Figure 5.17 together with the Pareto-front obtained by NSGA-II and predictions about
the displacement of the specimens by z88Aurora.
The displacement values are presented in a box plot in order to take account for

the statistical variation over the different obtained values. The boxes show the second
and third quartile and the median. The whiskers show maximum and minimum values
within 1.5 times the interquartile range. Outliers are given as single dots. This way

0.3 0.4 0.5 0.6 0.70.0

0.2

0.4

0.6

0.8

1.0

r

u
y
in

m
m

NSGA-II
z88
DIC

Figure 5.17: Results of the digital image correlation experiments as a box plot. The
boxes show the median and the first and third quartile. The whiskers show minimum and
maximum values within 1.5 times the interquartile range [51]. Outliers are shown as small
circles. Also plotted are finite element analysis predictions and the underlying solutions on
the Pareto-front found by NSGA-II.
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of representing the data considers the small amount of sample points and the lack of
knowledge about the underlying statistics [51].

It can be seen that the displacements predicted during a run of NSGA-II are signifi-
cantly smaller than those found for the parts designed basing on NSGA-II’s results. The
results of the finite element analysis show that it was possible to obtain a set of trade-
off solutions to the mechanical design problem. The median values of the displacement
obtained by DIC follow a similar course but are again significantly greater. The deviation
of the measured displacements seem roughly equal for the three medium-heavy specimen
and was greatest for the lightest and smallest for the heaviest specimen. Less than 6 %
of the measured values were outside the range of 1.5 times the interquartile range. The
deviation of the measured displacements may be a superposition of many errors. The
compliance of the mounting support was measured significantly less than 0.02 mm under
full loading. The loading force was captured automatically and was found to have an
overall error of less than 5.0 N which is less than 2 %, due to the manual operation of the
hydraulic press. Further sources of error may be a flawed speckle pattern or non-optimal
settings of focus, aperture and exposure duration of the cameras or the calibration of
the image correlation. The theoretical error of the image correlation algorithm lies in
the sub-pixel domain [49].
The result plotted in Figure 5.17 strongly indicate that the set of derived designs are

in fact trade-off solutions. The actual objective values meanwhile do strongly deviate
from those predicted by NSGA-II. This might be due to the adapted design, but it
seems more likely to be due to the insufficient spatial discretization that had to be used
in order to keep the computational effort tolerable. One can not explicitly state that
the found design solutions are optima. Designs derived from Pareto-optimal solutions
found by NSGA-II do not dominate each other. Considering that, one might assume
that Pareto-optimal points on the pareto front can be used to design Pareto-optimal
parts. The results obtained by the finite element analysis seem qualitatively adequate
as objective functions even though, quantitatively, they are imprecise.

5.3.2 Simulations

In order to determine the practical value of the solutions presented in Figure 5.13 further
simulations were carried out. The smoothed solutions as well as two derived trade-off
designs were regarded. The trade-off designs are shown in Figure 5.18 together with
the smoothed solution from which each one was derived. The designs were made using
the technique presented in the previous chapter. The results found by NSGA-II show
a topology not machinable by classical means. This circumstance is passed on into the
derived design. The bottom plate seems significantly thicker for the derived designs.
This is an optical effect due to the smoothing and the hence rounded down edges.
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Figure 5.18: Derived designs of two selected solutions to problem 7. On the left hand side
are the smoothed solutions and on the right hand side are the redesigned solutions.

The smoothed solutions were meshed using the Tetgen mesh generator8 included in
z88Aurora and subsequently thermal and mechanical calculations were conducted.
The results were compared to results obtained using Comsol. Mesh sizes were cho-
sen appropriately by comparing different discretization levels. The results obtained by
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Figure 5.19: Solutions to problem 7 in objective space. Shown are the structures of
Figure 5.13 found by NSGA-II on a coarse mesh, the smoothed structures and the derived
designs as shown in Figure 5.18. Circle radii correspond to the relative mass of the structure.

8http://wias-berlin.de/software/tetgen/
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z88Aurora are very close to those found by Comsol and are plotted in Figure 5.19
together with the results obtained by NSGA-II. The relative mass is illustrated by the
radii of the circles.
It can be seen that the objective values obtained on a sufficiently fine mesh differ

strongly from those obtained on the rather coarse meshes used in the optimizer. Dis-
placements and contact temperature were estimated too low. This has already been
observed and measured in the previous section. Different from these observations, for
problem 7 the regarded set of trade-off solutions was not non-dominated when further
evaluations were conducted. This may be due to the influence of the smoothing tool. As
already mentioned, even though being the second largest to be optimized in this thesis,
the finite element mesh used is considerably coarse. In this instance the smoothing shows
stronger influence to the later structure. This can also be observed in Figure 5.19, where
the smoothed solutions show significantly decreased relative masses. In Figure 5.20 three
temperature distributions are shown on three exemplary smoothed solutions that were
obtained in Comsol. The decreasing contact temperature can be observed by the color
coding. Further, it can be observed that the supporting material on which the bearing
rests effectively reduces thermal conduction. The thermal resistance rises and much lo-
wer contact temperature is achieved. The reduction of material below the loading force
of course leads to a bigger displacement.

890 K

945 K

1000 K

Figure 5.20: Temperature distribution in side views of bearing mount design propositions.
Top: Three smoothed solutions obtained by NSGA-II. From left to right the stiffness and
the contact temperature decrease. Bottom: Two derived designs. The left design is stiffer
but shows a higher contact temperature than the right design.

The two derived designs presented in Figure 5.18 were also subject to further simula-
tions. Temperature distributions found in Comsol are also presented in Figure 5.20.
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The performance of the derived design propositions in objective space is depicted in Fi-
gure 5.19 next to the proposed Pareto-front obtained by NSGA-II and the performance
of the smoothed solutions. The two designs are not dominated by each other and the-
refore trade-off solutions. It can be observed that the derived designs perform worse
than the Pareto-front would suggest. This is in accordance with previous findings and
probably also an effect of the too coarse mesh. Nevertheless, in terms of domination, the
two designs perform better than the smoothed solutions. This is especially true for the
less stiff solution. This may be due to inaccuracies during the redesigning process. All
in all, it was possible to find trade-off engineering designs and corresponding geometrical
features that influence the performance in objective space.
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In this chapter the methodology and findings described earlier are to be brought into
context and are to be discussed. First, the results of the optimizations are to be revie-
wed and, from that point of view, implications for evolutionary algorithms and multi-
objective optimization in engineering are derived. Finally, an outlook is given towards
which evaluations and which features might provide further insight into the capability
of the presented method.

6.1 Discussion of the Results

The choice of a fitting optimization approach was based on considerations about the
number of individual solutions that are found, their even distribution in objective space
and their proximity to an optimum structure. The decision to choose an evolutionary
algorithm and especially NSGA-II was based on the assumption that accepting solutions
which are probably only near-optimum may be a rewarding compromise, especially when
probabilistic operators are involved. Even for comparably small structures it was never
possible to find the same structure during more than one out of ten independent runs of
the optimizer. Nevertheless, found structures differed only in a comparably small number
of flipped bits. It was found that a large amount of evenly distributed trade-off solutions
can provide better insights into the optimization problem. Evolutionary algorithms
are considered the best performing approaches for multi-objective optimization when
these qualities of the Pareto-set are desired [52]. Interesting insights that were gathered
throughout this thesis concerned geometrical features and their specific influence on the
design’s performance in objective space. Subsequently, reducing the deliberately large
set of trade-off solutions to a clearly arranged set of diverse clustered structures was
found helpful for analyzing the Pareto-optimal structures.

A rough estimate about the approaches computational extensiveness and the required
computing time revealed that even if one would accept near-optimum solutions, a sig-
nificant reduction of the computational effort is to be pursued. The described measures
to reduce the computational effort showed success and the results presented in Section 5
show that the described optimizer is reliably capable of finding sets of generation-wise
improving trade-off structures for problems of diverse physics. The application of a multi-
step genotype-phenotype mapping procedure ensures that the structures meet certain
criteria crucial for engineering application. This is achieved by a heavy reduction of the
permissible parameter space.
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Numerical instabilities that are common for topology optimization were also encountered
during this thesis. Checkerboarding was suppressed right from the start as combinatorial
approaches to generate structures are usually prone to this kind of behavior [5, 7]. The
feasibility filtering and the GEF both efficiently suppress the formation of such patterns.
Non-uniqueness of the solutions was not explicitly dealt with because in complex design
problems it is uncommon [32]. Getting trapped in local optima was avoided intrinsically
by the use of evolutionary algorithms. Nevertheless, statements about the quality of an
optimum could only be made in a comparing manner. Results indicate that often better
minima were found compared to classical approaches.

A numerical issue that was observed frequently and whose occurrence has great in-
fluence on the resulting structure is the mesh dependency. Very coarse meshes had to
be used in order to keep the computational effort on a reasonable level, so minimum
dimensions of any geometrical feature are limited. This is especially an issue when re-
garding unconstrained problems of thermal conduction or very light weight structures
because these can strongly benefit from fine structures. However, the resolution of the
parameter mesh also acts as an additional geometrical constraint preventing convergence
towards micro structures and thus allowing for finely discretized finite element meshes
to be used. By using cubically shaped elements and a structured meshing algorithm
the resulting meshes are also prone to anisotropic behavior because the filter renders
diagonal structures broader. An adequate choice of the parameter mesh is in any case
fundamental for the successful application of the presented method. The definition of
the genotype-phenotype mapping easily allows for arbitrary element types and mesh
structures to be used.
As for all topology optimization approaches that rely on element-wise density distribu-

tions, it is not possible to define surface dependent boundary conditions without further
ado. This is usually less of a problem for solely mechanical design problems but is more
relevant when considering e. g. thermal problems that are subject to convective heat
transfer. If surface dependent effects were to be considered the genotype-phenotype
mapping presented in this thesis would fail because ragged surfaces would be benefi-
cial rather than disadvantageous. Also, non-linearities had to be considered that would
take more computational effort to solve. However, the strict 0-1 distribution simplifies
the distinction between material and void and the definition of surfaces, which may be
beneficial for surface dependent boundary conditions.
While the derived designs for problem 3 could successfully be machined and tested, the

results of an optimization of problem 7 were still far from manufacturing and application.
This is mainly due to problems that any complex topology optimization holds. Solutions
to three dimensional problems can contain complex topologies and advanced additive
manufacturing processes may have to be considered. Also, in the scope of this thesis
only linear models were used. For a universally applicable and reliable development
convection and temperature dependent material behavior have to be considered.
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6.2 Evolutionary Algorithms in Topology Optimization

Apart from the considerations of the preceding section, another important trait of
NSGA-II, as an evolutionary algorithm, is the comparably low number of parameters
that have to be set initially. The user only has to appropriately set the population size
and the number of overall generations. For the population size one might rely on the rule
of thumb that for every binary parameter there should at least be one individual in the
population. Larger populations usually lead to more diversity and a higher probability of
finding global optima [38]. Complex structures, e. g. meandering structures, were found
to benefit from further increased population sizes. Unfortunately, information about the
type of optimum structure is not always available a priori.

A poorly set abortion criterion is usually not critical because further generations can
always be added or conducted later. Working with evolutionary algorithms, in contrast
to converging optimization approaches (in the mathematical sense), more computing
time holds the possibility of finding completely new optima without the need to change
the problem definition or the optimizer’s parameters. However, the decision to accept
the current results as the obtained solution or to add more generations is up to the user
and depends on the user’s experience and knowledge.
It was found that constraint handling works rather well even when relatively simple

constraint handling mechanisms are implemented. It was always possible to find ap-
propriate solutions even to problems with more than one constraining function. This is
not common amongst all optimization algorithms and an important trait of evolutionary
algorithms. Considering this and the relatively easy way to set parameters, the problem
definition is not always trivial. The correct choice of objective functions, constraining
functions and their implementation can be problematic and requires understanding of
the algorithm as well as of the problem’s physics and numerics. Too harsh constraint
handling will lead to a disadvantageous loss of diversity in the parental population.
Therefore, more gentle implementations are to be preferred even if they may require
increased population sizes and more generations.
Considering the demands for universally versatile topology optimization approaches,

given in [33], the presented approach, like evolutionary algorithms in general, performs
well in terms of starting guess independence, constraint handling and applicability to
arbitrary physics. The presented approach requires some insights into the algorithm and
the problem’s physics and numerics but is, apart from that, relatively straight-forward
to use. The approach was also found somewhat prone to mesh dependent effects. The
critical disadvantage that evolutionary algorithms hold is the extensive computational
effort to solve even moderately sized problems. The largest mesh of 2000 elements that
was optimized in the scope of this thesis is considerably bigger than meshes that were
optimized using evolutionary multi-objective optimizers in published literature in this
way before. Nevertheless, the mesh size was too coarse for the finite element analysis to
generate reliable system responses. Considering the fact that the SIMP approach can
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easily handle mesh sizes that are larger by multiple magnitudes, the presented approach
does not pass the crucial demand for efficiency on large scale problems.

6.3 Multi-Objective Optimization in Engineering

Multi-objective optimization in engineering is an issue that has been tackled by various
approaches developed before. Common techniques to consider multiple objectives include
adding up the stiffness of two independent loading cases [31] or combining mathematical
compliance minimization methods and empirical, biomimetic approaches that aim to
find an even stress distribution9. While such approaches efficiently find single Pareto-
optimal structures they are usually less capable of providing the insights that a fully
occupied Pareto-front can offer. As described in Section 5.3, one can gain information
about what geometrical feature influences the designs performance. This could be used
to create a parameterized CAD design that can be subject to further shape optimization
and sizing.
It was found that two dimensional Pareto-fronts were relatively easy to handle and to

gain information from. When a three dimensional Pareto-surface is to be analyzed one
has to rely on advanced plotting techniques and tracking the change of the structure in
dependence of its position in objective space becomes more extensive. A reduction of
the Pareto-front to two objectives was found helpful. Sometimes constraints had to be
reinforced by not only penalizing violating solutions but also to minimize them. Such ob-
jectives may be suppressed in further visualization steps. For more than three objective
functions the output information may be even more overwhelming and a projection of
the Pareto-front to elements of lower dimensionality is inevitable. Sometimes manual
selection of appropriate designs is required, especially when obviously non-optimal solu-
tions are found due to too few generations.
Because the presented method fails to provide near-design solutions and precise ob-

jective estimates, its possible area of application would be in a very early stage of the
designing process. It may give an engineer helpful information about the feasible solution
space and may be a good basis for further more detailed structural optimization.

6.4 Outlook

In this thesis a method for multi-objective optimization using evolutionary algorithms is
presented. The focus lay on reducing the computational effort in order to be able to solve
medium scale problems in reasonable time. Yet, the efficiency of the procedure leaves
much to be desired. Further features may be added in order to account for the specifics
of the regarded problems. Amongst such feature are specialized operators to generate
structures. A mass-conserving crossover operator is presented in [6]. Other approaches

9http://z88.de/z88arion/
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may include element-numbering independent crossover. For improved practicability it
may be helpful to be able to automatically generate the finer mesh from the parameter
mesh and to assign the corresponding boundary conditions. This would also allow for
multi-stage GEF as it is proposed in [46]. Simultaneous optimization of the parameter
bit string and the GEF parameter ε would reduce the influence of its correct setting on
the feature size of the found structures and would allow for finer and bulkier solutions
to be found more easily. The binary representation of the element density allows for
simplification of the finite element program used to gain system responses. For uniform
elements with a binary distribution of the material data only two different element stif-
fness matrices had to be determined before. This would save additional time compared
to determining a stiffness matrix for every element.
Also, one might want to take a deeper look into the general foundation of the multi-

objective optimization strategy. An extensive study of the suitability of the diverse
population based optimizers may reveal even better suited meta-heuristics for multi-
objective optimization. Also for many-objective problems specialized algorithms exist
[22, 30]. Different definitions of the structure or combinations of several optimization
concepts could also be subject of a comparative study. Maybe less promising approaches,
e. g. single-objective methods, can be tuned to outperform the inefficient population
based methods.
Apart from improvements of the procedure itself further studies are to be conducted in

order to determine and demonstrate the limits and capabilities of the presented method.
Superiority in finding global minima over the SIMP approach was indicated by the
results of this thesis but no statement of general validity can be made yet. For this
purpose, the reliability of the results had to be ensured. A very promising approach
would be to use significantly finer finite element meshes while keeping the same coarse
parameter mesh. Large scale parallelization could also boost the efficiency and open the
way for bigger structures to be optimized. This ,however, would not prove industrial
applicability because access to large-scale computer clusters is not common for most
companies yet. To verify the predictions about potential use in industrial engineering,
the method has to be embedded into an existing design process and further tests have
to be conducted considering industrial demands.
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7 Summary

The scope of this thesis was to develop a multi-objective topology optimization method.
An engineering part is optimized with respect to several objective functions. Such an
optimization results in a set of Pareto-optimal solutions that are all trade-off solutions to
the problem. None of these solutions is better than another with respect to all objectives.

The evolutionary algorithm NSGA-II was found the best fitting for this task and
thus implemented. An estimate of the required computational effort showed that even
moderately sized problem could only be solved with great effort. The optimization
tool was therefore extended with an adequate genotype-phenotype mapping and some
minor features. The extensions accelerate the search for optimum structures and ensure
applicability of the structures in engineering. Recommendations for adequat parameter
setting were derived from literature.
To evaluate the performance of the optimizer seven design problems were defined and

solved. Mechanical and thermal objectives were considered and to some extend harsh
constraints were imposed. The optimizer proved to be able to always find large and
evenly distributed solutions sets. The shape of the solutions and influence of geometrical
features were analyzed and discussed. Some design problems were considerably larger
than those presented in literature and could still be solved in a satisfactory manner.
The results indicate that the presented method may find better results than classical
approaches might do. Nevertheless, the computational effort is still too great to really
outperform them.
From the obtained solutions five design propositions for a beam were derived and ma-

nufactured. Deformation of the parts was measured by digital image correlation. Results
showed that it is possible to derive trade-off solutions but also that their performance
stays behind the predictions. This is due to the insufficient discretization of the design
space that is needed to keep the computational effort on a reasonable level. Similar
observations could be made for other derived designs and simulations.
The great computational effort and quantitative error make this method not suitable

as a stand-alone tool. Its versatility with respect to physics and constraint may add to
understanding a design problem in an early stage of the design process.
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8 Zusammenfassung

Ziel der vorliegenden Arbeit war es, eine multikriterielle Topologieoptimierungsmetho-
de zu entwickeln. Dabei wird ein Bauteil nach mehreren gleichrangigen Zielfunktionen
optimiert. Das Ergebnis einer solchen Optimierung ist eine Menge an Pareto-optimalen
Lösungen, die alle verschiedene Kompromisslösungen darstellen. Keine dieser Lösungen
ist in jeder Hinsicht besser als eine andere.

Der evolutionäre Algorithmus NSGA-II wurde als für am besten geeignet befunden
und implementiert. Da eine Abschätzung des Rechenaufwandes ergab, dass selbst mit-
telgroße Probleme nur mit großem Aufwand zu lösen sein würden, wurde das Optimie-
rungstool um ein problemspezifisches Genotyp-Phänotypmapping und mehrere kleinere
Features erweitert. Diese beschleunigen einerseits die Suche nach optimalen Strukturen
und andererseits stellen sie sicher, dass diese Strukturen einen gewissen Wert für die
ingenieurtechnische Anwendung haben. Es konnten darüber hinaus Empfehlungen für
eine korrekte Parameterwahl aus der Literatur abgeleitet werden.
Um die Performance der Optimierungsmethode zu testen, wurden sieben Probleme

definiert und gelöst. Die Probleme wurden nach mechanischen und thermischen Ziel-
funktionen optimiert und waren teilweise deutlichen Beschränkungen unterworfen. Es
konnte gezeigt werden, dass der evolutionäre Algorithmus immer in der Lage ist, große
und gleichmäßig besetzte Lösungsmengen zu finden. Die Gestalt und der Einfluss ein-
zelner geometrischer Substrukturen der Lösungen wurden analysiert und diskutiert. Die
untersuchten Probleme waren teilweise deutlich größer als die in der Literatur darge-
stellten und es konnten trotzdem zufriedenstellende Ergebnisse gefunden werden. Die
Ergebnisse legen den Schluss nahe, dass die vorgestellte Methode in der Lage ist, deut-
lich bessere Lösungen zu finden als klassische Ansätze. Der Rechenaufwand ist jedoch
noch immer deutlich zu groß, um diesen ernsthaft Konkurrenz machen zu können.
Aus den gefundenen Lösungen wurden fünf Pareto-optimale Entwürfe für einen Balken

abgeleitet und hergestellt. Mit Hilfe von digitaler Bildkorrelation wurden die Verformung
der Teile gemessen. Die Ergebnisse zeigten, dass es mit dem vorgestellten Tool möglich
ist, Kompromisslösungen zu erhalten. Die tatsächlichen Werte der Zielfunktionen reichen
jedoch nicht an die vorhergesagten heran. Das liegt an der ungenügenden Diskretisierung
des Bauraums, die nötig ist, um den Rechenaufwand auf einem tolerierbaren Niveau zu
halten. Ähnliches wurde bei weiteren abgeleiteten Entwürfen und Simulationen beob-
achtet.
Der große Rechenaufwand bei gleichzeitigen quantitativen Fehlern führt dazu, dass die

Methode kaum als alleinstehende Anwendung tauglich ist. Die Vielseitigkeit im Bezug auf
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physikalische Modelle und Beschränkungen könnte jedoch in einem frühen Stadium des
Konstruktionsprozesses zu zusätzlichem Kenntnisgewinn über das Problem beitragen.
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Appendix

NSGAII.ctrl

#OBJECTIVE FUNCTIONS AND CONSTRAINTS

OBJECTIVE = TEMPERATURE # objective 1

iparam1 = 1492 # node number

max = 200 # constraint

OBJECTIVE = DISPLACEMENT # objective 2

iparam1 = 1492 # node number

iparam2 = 2 # z-direction

max = 5 # constraint

OBJECTIVE = MASS # objective 3

max = 0.75 # constraint

min = 0.25 # constraint

OBJECTIVE = MAX_STRESS # additional constraint

max = 200 # constraint

#MATERIAL PARAMETERS

E = 70000 # elastic modulus

nu = 0.33 # poisson’s ratio

lambda = 0.2 # thermal conduction

#ALGORITHM PARAMETERS

number_of_objectives = 3 # minimize first 3 objectives

population_size = 300

number_of_generations = 300

cross_over_probability = 0.95

mutation_probability = 0.01

rel_cluster_distance = 0.1

gef_param = 0.1

filter = ON
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Implemented Objectives
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Appendix

Folder and File Structure
NSGA-II

nsga2.exe

input

NSGA2.ctrl

z88i1.txt

z88i2.txt

(fix.txt)

(pareto.txt)

(parents.txt)

(archive.txt)

output

generation

log.txt

pareto.txt

cluster.txt

archive.txt

parents.txt

temp

logX.txt

temperatureX.txt

volumeX.txt

displacementX.txt

stressX.txt

z88matX.txt

Z88Opt

z88i1.txt

z88i2.txt

z88ti2.txt

Z88Opt.exe
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Design Problems
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Appendix

Data Sheet AlCuMgPb
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Camera Views
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Manufactured Specimen
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