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Summary 

 

Crystal defects such as vacancies, dislocations and grain boundaries are central in 

controlling the rheology of the Earth’s upper mantle. Their presence influences element 

diffusion, plastic deformation and grain growth, which are the main microphysical 

processes controlling mass transfer in the Earth’s lithosphere and asthenosphere. 

Although substantial information exists on these processes, there is a general lack of 

data on how these defects interact at conditions found in the Earth’s interior. A better 

understanding of processes occurring at the grain scale is necessary for increased 

confidence in extrapolating from laboratory length and time scales to those of the 

Earth. This would improve our knowledge of large-scale geodynamic processes and 

interpretations of geophysical observations such as electrical conductivity and seismic 

anisotropy.  

In this work, I examined the evolution of olivine grain boundaries during experimental 

deformation and their impact on deformation in the dislocation-accommodated grain-

boundary sliding (disGBS) regime. Previous studies suggest that disGBS may be the 

main deformation mechanism for olivine in most of Earth’s upper mantle. I used 

electron backscattered diffraction and transmission electron microscopy data to 

investigate the micromechanics involved in disGBS, with a focus on the interactions 

between dislocations and grain boundaries. These interactions are to date only poorly 

understood and not yet quantitatively investigated in olivine. The results presented 

here suggest that grain boundaries play a major role in moderating deformation in the 

disGBS regime. I present observational evidence that the rate of deformation is 

controlled by assimilation of dislocations into grain boundaries. I also demonstrate that 

the ability for dislocations to transmit across olivine grain boundaries evolves with 

increasing deformation. Finally, I show that dynamic recrystallization of olivine creates 

specific grain boundaries, which are modified as deformation progresses.  

The effective contribution of grain-boundary processes on the rheology of the upper 

mantle is correlated to the amount of grain boundaries in upper mantle rocks, that is, 
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their grain-size distribution and evolution. The grain-size distribution in the Earth’s 

mantle is controlled by the balance between damage (recrystallization under a stress 

field) and healing (grain growth) processes. However, grain growth, one of the main 

processes controlling grain size, is still poorly constrained for olivine at conditions of 

the upper mantle. Experimental data on grain growth kinetics of olivine is to date 

restricted to pressures of up to 1.2 GPa. To evaluate the effects of pressure on grain 

growth of olivine, I performed grain growth experiments at pressures ranging from 1 to 

12 GPa using piston-cylinder and multi-anvil apparatuses. I found that the olivine grain-

growth rate is reduced as pressure increases. The results presented here suggest that 

grain-boundary diffusion is the main process of grain growth at high pressure. Based 

on the experimental results, I present an equation which includes the effect of an 

activation volume on the grain growth of olivine. The results indicate that at deep upper 

mantle conditions (depths of 200 to 410 km), the effect of pressure on inhibiting grain 

growth counteracts the effect of increasing temperature. I present estimations of 

viscosity as a function of depth considering the grain-size evolution predicted here. 

They indicate that the viscosity is approximately constant at the deep upper mantle 

conditions. 

Zusammenfassung  

Kristalldefekte wie Leerstellen, Versetzungen und Korngrenzen beeinflussen die 

rheologischen Eigenschaften des oberen Erdmantels entscheidend. Sie bestimmen 

die Diffusion von Elementen in Mineralen, deren plastische Verformung und deren 

Kornwachstum, welche die wichtigsten mikrophysikalischen Prozesse des 

Massentransfers in der Lithosphäre und Asthenosphäre der Erde darstellen. Obwohl 

es umfangreiche Informationen zu diesen Prozessen gibt, sind die Wechselwirkungen 

zwischen den verschiedenen Kristalldefekten bei Bedingungen des Erdinneren 

weitgehend unbekannt. Ein besseres Verständnis der auf Korn-Maßstab ablaufenden 

Prozesse ist erforderlich, um die im Labor untersuchten Parameter und Prozesse mit 

größerer Sicherheit auf die Erde zu extrapolieren. So verbessert sich auch das 

Verständnis geodynamischer Prozesse auf großem Maßstab sowie die Interpretation 
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geophysikalischer Beobachtungen, wie zum Beispiel elektrische Leitfähigkeit und 

seismische Anisotropie.  

In dieser Arbeit habe ich die Entwicklung der Olivinkorngrenzen während der 

experimentellen Deformation und ihre Rolle bei der Deformation im disGBS-Regime 

(dislocation-accommodated grain-boundary sliding, versetzungsbedingtes 

Korngrenzgleiten) untersucht. Frühere Studien legen nahe, dass disGBS der 

Hauptverformungsmechanismus für Olivin im überwiegenden Teil des oberen 

Erdmantels sein könnte. Um die Mikromechanik von disGBS zu untersuchen, habe ich 

Elektronenrückstreubeugung und Transmissionselektronenmikroskopie verwendet. 

Der Schwerpunkt lag dabei auf den Wechselwirkungen zwischen Versetzungen und 

Korngrenzen. Diese Wechselwirkungen sind bisher nur wenig verstanden und in Olivin 

noch nicht quantitativ untersucht worden. Die hier vorgestellten Ergebnisse deuten 

darauf hin, dass Korngrenzen eine wichtige Rolle bei der Deformation im disGBS-

Regime spielen. Ich präsentiere den ersten Beobachtungsnachweis, dass die 

Verformungsrate durch Assimilation von Versetzungen in Korngrenzen gesteuert wird. 

Ich präsentiere auch zum ersten Mal, dass sich die Fähigkeit von Versetzungen sich 

über Olivinkorngrenzen hinweg fortzusetzen mit zunehmender Verformung 

weiterentwickelt. Schließlich zeige ich, dass die dynamische Rekristallisation von 

Olivin spezifische Korngrenzen erzeugt, die sich mit fortschreitender Deformation 

verändern.  

Der effektive Beitrag der Korngrenzen zur Rheologie des oberen Mantels korreliert mit 

ihrem Anteil in den Gesteinen des oberen Mantels. Dieser Anteil wird durch die 

Korngrößenverteilung bestimmt. Die Korngrößenverteilung im Erdmantel wird durch 

das Gleichgewicht zwischen Verkleinerungsprozessen (Rekristallisation in einem 

Spannungsfeld) und Ausheilungsprozessen (Kornwachstum) gesteuert. Das 

Kornwachstum ist jedoch für Olivin unter Bedingungen des oberen Mantels immer 

noch wenig erforscht. Experimentelle Daten zur Kinetik von Olivin-Kornwachstum sind 

bisher auf Drücke von bis zu 1.2 GPa beschränkt. Um die Auswirkungen des Drucks 

auf das Kornwachstum von Olivin zu bewerten, habe ich Experimente bei Drücken im 

Bereich von 1 bis 12 GPa unter Verwendung von Stempel-Zylinder-Pressen und 

Vielstempel-Pressen durchgeführt. Die Ergebnisse zeigen, dass die Wachstumsrate 

von Olivinkristallen mit zunehmendem Druck abnimmt. Außerdem weisen die 

Ergebnisse darauf hin, dass die Korngrenzendiffusion der Hauptprozess für 

Kornwachstum bei hohem Druck ist. Basierend auf den experimentellen Ergebnissen 
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präsentiere ich eine Gleichung, die die Auswirkung eines Aktivierungsvolumens auf 

das Kornwachstum von Olivin berücksichtigt. Die Ergebnisse zeigen, dass unter 

Bedingungen des tiefen oberen Mantels (Tiefen von 200 bis 400 km) die Auswirkung 

des Drucks auf die Hemmung des Kornwachstums der Auswirkung einer 

Temperaturerhöhung mit zunehmender Tiefe entgegenwirkt. In dieser Arbeit zeige ich 

Abschätzungen der Viskosität als Funktion der Tiefe unter Berücksichtigung der hier 

vorhergesagten Korngrößenentwicklung. Die Abschätzungen zeigen an, dass die 

Viskosität unter den Bedingungen des tiefen oberen Mantels ungefähr konstant ist. 
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 Introduction 
The Earth’s interior produces a great amount of heat, mainly due to the energy 

accumulated during the accretionary process (accretionary heat) and due to the decay 

of radioactive elements such as thorium, uranium and potassium (e.g., Jaupart et al., 

2007). For this reason, temperatures inside the Earth approach 7000 K. In contrast, 

the temperature in outer space is close to 0 K. This temperature difference creates a 

heat flux within the Earth which is associated with a convective flow of matter, one of 

the main processes behind tectonics (Bercovici, 2003; Condie, 1997). Tectonic plates 

are formed by the Earth’s crust and the uppermost mantle (Figure 1.1). These layers 

form a mechanically distinct portion of the Earth: the lithosphere. The lithosphere, cold 

and rigid, superposes the asthenosphere, a weaker and warmer portion of the Earth. 

As the asthenosphere convects, the negatively buoyant plates above it are consumed 

at subduction zones, whereas oceanic crust is created at spreading centres. The 

knowledge of these ongoing dynamic processes that drive plate tectonics is based on 

multiple sources of information. Geophysical observables such as global seismicity, 

magnetotellurics, and geodesy provide insight into the Earth’s structure and its 

electromagnetic and gravity field, respectively, while geochemistry and mineral physics 

provide constraints on the interpretation of remote data.  

Plate tectonics have a major role on how Earth and its biosphere evolved throughout 

its 4.54 Ga of history. For instance, volcanism is associated with the creation and 

maintenance of Earth’s atmosphere and climate, which allowed the thriving of life in 

our planet (Nisbet and Sleep, 2001). Furthermore, as supercontinents were formed 

and broken apart, mountains and basins evolved and contributed to diversify life as we 

know it today (e.g., Raven and Axelrod, 1972). Plate tectonics is also the main cause 

of natural hazards such as earthquakes and volcanic eruptions, which triggered mass 

extinctions during Earths’ history (e.g. Wignall et al., 2009).  
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Figure 1.1: Earth’s structure and mantle convection (indicated by arrows). Modified from 
USGS (1999). 

 

One key ingredient of plate tectonics is rheology, the study of how matter deforms in 

response to stresses. Viscosity, a measure of the resistance of a material to 

deformation, is a fundamental parameter controlling several processes occurring in the 

Earth’s interior and surface, such as rock exhumation, ocean spreading, magma 

ascent, etc. The estimation of the viscosity in the Earth’s interior relies on the analyses 

of seismic-wave attenuation, post-glacial rebound, and gravity anomaly data (Karato, 

2012). These results are interpreted in the light of experimental measurements and 

modelling of time-dependent deformation of rocks. On this basis, microphysical 

processes operating at the grain to atomic scale during rock deformation must be first 

understood and quantified for a sensible extrapolation of lab data to natural conditions.  

Rocks are polycrystalline, which means that they are composed of crystallites joined 

together by grain boundaries. Studies focusing on grain-boundary effects on rock 

viscosity are still scarce, although different studies indicate that grain boundaries 

greatly affect deformation (e.g., Hansen et al., 2019, 2011; Hirth and Kohlstedt, 2003). 

Particularly for the upper mantle, the strength of olivine single crystals (e.g., Bai et al., 

1991) differs significantly from the strength of polycrystalline aggregates of olivine with 

deformation accommodated by dislocation creep (Raterron et al., 2019; Tielke et al., 

2016). Since dislocation creep is argued to be one of the main deformation 

mechanisms in the Earth’s upper mantle (Karato and Wu, 1993), this difference 

suggests that grain boundaries play a critical role in moderating the macroscopic 

mechanical properties of this region. For instance, grain boundaries affect deformation 

by allowing grain-boundary sliding to occur (e.g., Lim and Raj, 1985). Dislocation-

accommodated grain-boundary sliding (DisGBS), is predicted to be a major creep 

mechanism in the upper mantle (Hansen et al., 2011; Kohlstedt and Hansen, 2015; 

Ohuchi et al., 2015). Nevertheless, only scarce data on the microphysical process 
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behind disGBS in olivine is available. In particular, there is a lack of information on how 

grain boundaries moderate deformation in this regime. For example, disGBS requires 

the interaction of crystal defects, such as dislocations and vacancies, with grain 

boundaries (Langdon, 2006, 1994, 1970). However, these interactions during olivine 

deformation are not yet understood. In Chapter 4, I investigate how olivine grain 

boundaries evolve during deformation in the disGBS regime and how the interactions 

between grain boundaries and dislocations affect deformation of olivine. 

The effective contribution of grain-boundary processes in the Earth’s interior ultimately 

depends on the amount of grain boundaries, that is, on grain size. The grain-size 

evolution in the Earth’s mantle plays an important role in the Earth’s heat flux and its 

thermal evolution (Hall and Parmentier, 2003; Rozel, 2012; Solomatov, 2001), it 

moderates chemical mixing and the formation of chemical heterogeneities in the 

Earth’s mantle (Solomatov and Reese, 2008), controls the dynamics of subducting 

slabs and plumes (Dannberg et al., 2017) and the localization of deformation in shear 

zones (Mulyukova and Bercovici, 2019; Thielmann, 2018; Thielmann et al., 2015). 

Grain size also affects our interpretation of geophysical observations such as seismic 

attenuation (Dannberg et al., 2017; Jackson et al., 2002; Tan et al., 2001) and electrical 

conductivity (Pommier et al., 2018; ten Grotenhuis et al., 2004). Grain size evolution in 

the Earth’s deep interior is controlled by grain size reduction (damage) and grain 

growth (healing) processes (e.g., Bercovici and Ricard, 2012; Dannberg et al., 2017; 

Solomatov and Reese, 2008). Grain size reduction occurs when deformed grains 

reduce their total elastic energy introduced by dislocations by recovering into new 

(smaller) grains, free of dislocations (e.g., Urai et al., 1986). The new grain size is 

dependent on the density of dislocations being produced, which in turn is dependent 

on the applied shear stress (e.g., Kohlstedt and Weathers, 1980; Takeuchi and Argon, 

1976). In contrast, grain growth occurs in order to minimize the excess free energy 

associated with grain boundaries (e.g., Evans et al., 2001) or dislocations (e.g., 

Gottstein and Shvindlerman, 2009). At deeper portions of the upper mantle, 

seismological observations indicate that shear stresses are significantly reduced 

(Kohlstedt and Hansen, 2015). Thus, grain growth has a major role on defining grain 

sizes in this region. Although grain growth of olivine has been experimentally 

investigated by several authors, no studies have investigated the effect of pressure on 

grain growth. Therefore, additional experimental data is needed to improve estimations 

of grain-size evolution in the upper mantle. In Chapter 5, I therefore, investigate how 
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pressure affects grain growth of olivine at pressure and temperature conditions of the 

Earth’s upper mantle. 

Pressure influences the operating deformation mechanisms in minerals. Increasing 

pressure leads to changes in olivine’s unit cell dimensions (e.g., Yagi et al., 1975), 

which might affect its creep strength (e.g., Shun-ichiro Karato, 1989), and change the 

activity of its slip systems (Couvy et al., 2004; Li et al., 2003; Mainprice et al., 2005; 

Raterron et al., 2007). Pressure also has a major role in vacancy formation, which by 

its turn affects element diffusion and climb of dislocations (e.g., Karato, 2012), which 

are essential processes in high-temperature deformation. Furthermore, recent 

experimental data shows that increase of pressure favours deformation of olivine in 

the disGBS regime, which has been argued to be its dominant deformation mechanism 

at middle upper mantle conditions and below (Ohuchi et al., 2015). We recently 

demonstrated through direct observation of microstructural development that intra- and 

intergranular mechanisms operate simultaneously during deformation in the disGBS 

regime at pressures between 3.5 and 5 GPa (Bollinger et al., 2019). Furthermore, we 

observed that grain-boundary processes increase their relevance at high temperatures 

(T>1100 ºC), which indicates a link between thermally-activated processes (such as 

element diffusion) and grain-boundary sliding. However, there is a lack of experimental 

data investigating the microphysical process behind disGBS during deformation at 

higher pressures. In Chapter 6, I thus present technical developments towards the 

investigation of grain-size sensitive deformation of olivine under deep upper mantle 

conditions (P = 7-10 GPa, T =1400 ºC) using a cubic 6-ram press.  

The structure of grain boundaries is one of the main factors controlling grain boundary 

properties such as its energy and mobility (e.g., Watanabe, 1988). In order to quantify 

relations between grain boundary structure and its properties, the characterization of 

the grain boundary crystallography is necessary. A three-dimensional representation 

of a grain boundary plane requires the crystal orientation of the neighbouring grains 

and the orientation of the grain boundary plane. The grain boundary plane and 

character distribution technique allows the statistical characterization of grain 

boundary planes based on electron backscatter diffraction data (Rohrer et al., 2004; 

Saylor and Rohrer, 2002). Hitherto, the use of this technique was only possible in 

proprietary software and required the use of a command-line interpreter, which is 

unfamiliar for many (possible) users. In Chapter 7, I present a MATLAB® toolbox for 
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the automation of grain boundary plane and character distribution tasks and for data 

visualization. 

In summary, this study aims to: 

1. Investigate the role of grain boundaries during deformation of olivine in the 

disGBS regime, with focus on their interaction with dislocations; 

2. Explore the effect of pressure on the grain growth of olivine and its implications 

for the viscosity of the upper mantle; 

3. Introduce new designs of high-pressure deformation assembly and anvils for 

experimental studies at deep upper mantle conditions;  

4. Present a new MATLAB® toolbox for the analysis of grain boundaries from 

EBSD data. 

 

1.1. Olivine: Structural data, deformation mechanisms 
and influence on the rheology of the upper mantle 

 

Olivine is a nesosilicate mineral presenting a solid solution between forsterite 

(Mg2SiO4) and fayalite (Fe2SiO4) end-members (Figure 1.2). It crystallizes in the 

orthorhombic symmetry (a= 4.762, b= 10.225, c= 5.994 and α=β=γ=90º) and space 

group Pbnm (Birle et al., 1968).  

 

Figure 1.2: Olivine crystal structure and deformation mechanisms: a) Olivine crystal structure 
and sound velocities through [100], [010], [001] axes. b) Olivine slip systems. 
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Natural olivine is commonly found in xenoliths within volcanic rocks or in exhumed 

peridotite rocks. Olivine is formed at upper mantle conditions, at depths ranging from 

a few km down to approximately 410 km, where a mechanical discontinuity marks the 

upper limit of the transition zone. Under these conditions, olivine is stable for 

temperatures spanning from 1100 ºC to 1400 ºC and pressures up to 13 GPa (Cordier, 

2002). Olivine is the main phase in the Earth’s upper mantle comprising around 60% 

of its weight (Ringwood, 1975). This knowledge is based on direct observation of 

natural outcrops of mantle rocks and xenoliths, and by coupling large-scale 

geophysical observations to lab measurements of the physical properties of minerals, 

such as elasticity. Olivine is an elastically anisotropic mineral. P-wave velocities in 

olivine single crystals are faster along the [010] direction and slower in the [100] 

direction (Figure 1.2a). Since olivine is the most abundant mineral of the upper mantle, 

the development of lattice preferred orientation (LPO), usually attributed to dislocation 

creep (see Section 1.2.1), leads to large-scale seismic anisotropy in this region (e.g., 

Christensen and Crosson, 1968; Karato et al., 2008; Ribe, 1989). LPO, together with 

seismic anisotropy data, can thus be employed to analyse the dynamical behaviour of 

the deep Earth. For instance, in a large extent of the upper mantle, the flow direction 

is characterized by high velocities of compressional and Rayleigh waves and by faster 

velocities of horizontally than vertically-polarized shear waves (Karato and Wu, 1993; 

Ribe, 1989). Thus, the LPO development of olivine is of great interest. Several studies 

were performed in order to characterize LPO development of olivine in natural 

environments, through experiments or modelling (e.g., Ave’lallemant and Carter, 1970; 

Karato and Wu, 1993; Tommasi et al., 2000; Turner, 1942; Wenk, 1985). These studies 

demonstrate that in the shallow portion of the upper mantle (⪅ 210 km), dislocation 

creep is the major mechanism to influence LPO development. The highly elastic 

anisotropic character of olivine is followed by viscoplastic anisotropy. Only a few slip 

systems are found to become active during deformation: [100] (010), [001] (010) and 

[100] (001) (Figure 1.2b). Furthermore, analyses of samples from distinct geodynamic 

environments reveal that the vast majority of natural LPO patterns can be explained 

by the activity of the (010)[100] slip system alone (Ismaı̈l and Mainprice, 1998). 

Nonetheless, since olivine lacks five independent slip systems, plastic flow cannot be 

fully accommodated by dislocation creep, according to the Von Mises Criterion (Mises, 

1928). This criterion can be relaxed if other deformation mechanisms are also active. 

For instance, Cordier et al. (2014) proposed the motion of disclinations, i.e. rotational 
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defects, as an additional mechanism allowing for plastic flow. Alternatively, grain-

boundary sliding accommodated by dislocation creep (disGBS; see Section 1.2.3) has 

been proposed as a deformation mechanism for olivine in the upper mantle (Hansen 

et al., 2011; Hirth and Kohlstedt, 1995; Ohuchi et al., 2015). In addition, other studies 

(Maruyama and Hiraga, 2017; Miyazaki et al., 2013) have suggested that deformation 

by grain-boundary sliding accommodated by diffusion creep (difGBS) would also result 

in olivine crystal alignment and, consequently, contribute to seismic anisotropy. At deep 

portions of the upper mantle (~210 km), the rapid decrease of seismic anisotropy is 

believed to mark a transition from dislocation to diffusion creep or superplasticity (see 

Section 1.2.2) as the dominant deformation mechanism (Boullier and Nicolas, 1975; 

Karato, 1992; Karato and Wu, 1993). This would reduce the LPO strength of olivine 

aggregates creating a near isotropic visco-elasto-plastic medium. Alternatively, 

Mainprice et al. (2005) and Raterron et al. (2007) argue that the increase of pressure 

enhances the activity of the [001](hk0) slip system. As multiple slip systems become 

active, the bulk LPO strength is reduced. This resulting low seismic anisotropy of 

aggregates would, therefore, explain the seismological observations. 

 

1.2. Grain boundaries and their role on deformation 
and grain growth 

A grain boundary is commonly defined as an interface between grains of the same 

phase with a misfit between their lattice orientations (misorientation), caused by a 

planar defect (Gottstein and Shvindlerman, 2009; Lejcek, 2010; Sutton and Balluffi, 

1995). A boundary separating different phases is defined as an interphase boundary. 

A grain boundary differs from the crystal interior for having a less ordered structure and 

a stress field associated to it, which confers to grain boundaries different properties to 

those of the crystal lattice. Grain boundaries have been more recently recognized as 

interfaces presenting thermodynamically-stable states (Cantwell et al., 2014; Dillon 

and Harmer, 2007). These interface-stabilized “phases” known as complexions, 

present different composition and structure from the bulk material. 

A first step to correlate the grain boundary structure to its properties is to classify them. 

Grain boundaries can be broadly separated into two groups in respect to their 

misorientation angles: Low and high-angle boundaries. Low-angle boundaries are 

accommodated by an array of dislocations (Read and Shockley, 1950). These 



 8 
 

dislocations can be of two main types: Edge dislocations, forming tilt boundaries, and 

screw dislocations, forming twist boundaries (Burgers, 1940). Tilt boundaries might be 

further classified into symmetric or asymmetric tilt boundaries whether or not the grain 

boundary planes of the neighbouring grains have the same indices. High-angle 

boundaries are usually named general or random boundaries, mainly because no 

specific physical property is linked to them. Particularly, however, some high-angle 

boundaries can be further classified into Coincident Site Lattice (CSL) boundaries, 

which are interfaces between grains that share a lattice site (Randle, 1996). They are 

commonly represented by the Σn notation, where n refers to the reciprocal density of 

coincident sites. For instance, a Σ3 boundary is a twin relationship in a bicrystal where, 

for each 3 atoms, 1 is shared between the adjoining lattices. CSL boundaries are often 

called special boundaries because their presence, especially those with low Σ, might 

increase the performance of materials by improving bulk material properties such as 

strength and corrosion resistance (e.g., Davies and Randle, 2001; Gleiter, 1985; 

Randle, 2006, 1996; Randle and Ralph, 1988; Watanabe, 1984, 1988, 2011). This is 

attributed to the lower energy of these grain boundaries in comparison to general 

boundaries. Nonetheless, the CSL classification does not provide direct information on 

the crystallography of the grain boundaries and, therefore, a correlation between grain 

boundaries and properties is not unambiguously defined (Randle, 1996; Rollett et al., 

2007a). The macroscopic geometrical relationship between two neighbouring grains 

can, however, be uniquely defined by five independent parameters, thus five 

macroscopic degrees of freedom are available: The misorientation between two 

adjacent crystals is described using three Eulerian angles given with respect to the 

crystal lattice of one crystal, conventionally: 𝜑𝜑1,𝛷𝛷,𝜑𝜑2 (Wenk, 1985). The two remaining 

degrees of freedom describe the grain boundary plane orientation using two radial 

angles: 𝜙𝜙 and 𝜃𝜃 (Randle, 1993; Rhines, 1970). This description provides the basis of 

the grain boundary plane distribution technique, which is further discussed in Chapter 

4. 

Grain boundaries influence rheology by various ways. In the following sections, the 

effect of grain boundaries in specific deformation mechanisms and on grain growth is 

discussed.  
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 Dislocation creep 

Dislocation creep involves shearing of a crystal through the motion of linear defects 

called dislocations. As the dislocations progresses, atomic bonds are broken and 

reconnected. The motion of dislocations occur in a defined crystallographic plane (slip 

plane) along a crystal direction (slip direction), which define a slip system (Figure 1.3). 

In a polycrystalline material, as the dislocations reach the grain boundaries, different 

types of interactions might occur depending on the structure of the dislocations and of 

the grain boundaries as well as the environmental properties (e.g., temperature, shear 

stress, strain rate, etc.). During deformation at low temperature, grain boundaries may 

introduce obstacles for the motion of dislocations. Stress concentration and 

magnification due to dislocation pile-up in the vicinity of the grain boundaries leads to 

bulk mechanical hardening (Hirth, 1972). With decreasing grain size, the density of 

grain boundaries and thus obstacles increases, rendering the material harder. This 

relation is known as the Hall-Petch effect (Hall, 1951; Petch, 1953). 

 

Figure 1.3: Deformation through dislocation creep. Dislocation creep involves the movement 
of dislocations on a specific plane (slip plane) along a certain direction (slip direction). 
Modified from Noels and Cdang (2020). 

 

Another possible interaction between grain boundaries and dislocations is the transfer 

of dislocations across individual grain boundaries (slip transfer/ transmission), a central 
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process by which grain boundaries moderate macroscopic deformation at high 

temperatures. The geometrical configuration of the grain boundaries may influence slip 

transmission in different ways. Although a continuum of possibilities exist, three cases 

are exemplified (Bieler et al., 2014; Priester, 2013; Shen et al., 1988): 

1. slip transfer occurs through the grain boundary in a (near) direct transmission 

of dislocations (Figure 1.4a); 

2. slip progress to the next grain with only partial continuity, leaving residual grain-

boundary dislocations (Figure 1.4b); 

3. or the grain boundary is impenetrable and the dislocation is assimilated or 

dissociated into the grain boundary. Indirect transmission might occur when 

local stresses activate dislocations sources on the neighbouring grain (Figure 

1.4c). 

 

Figure 1.4: Slip transfer across grain boundaries: a) Direct transmission of slip across the 
grain boundary (GB). b) Indirect transmission of slip: Incoming and outcoming slip systems 
have a different Burgers Vector (black arrows). Residual boundary dislocations (red arrows) 
are originated. c) No transmission occurs: The grain boundary acts as a barrier for slip 
transfer. Dislocation pile-up leading to heterogeneous stress distribution near the grain 
boundaries. Modified from Sutton and Balluffi (1995). 

 

This interaction has been discussed extensively for metals, alloys and ceramics (e.g., 

Dingley and Pond, 1979; Head, 1953; Kacher et al., 2014; Shen et al., 1988). 

Experiments (Kacher et al., 2011; Kondo et al., 2016; Lee et al., 1990, 1989; Oh et al., 

2009; Shirokoff et al., 1993) and modelling (de Koning et al., 2003; Sangid et al., 2011; 

Spearot and Sangid, 2014; Zeng et al., 2008; Zheng et al., 2018) of these interactions 

provided useful information about the mechanisms involved. The transmission, 

annihilation or reaction of dislocations with interfaces depends on many characteristics 

of the interface including the composition, structure, energy and free volume, the 

applied and local stresses, the dislocation types and the dislocations mutual 

interactions (e.g. Bayerschen et al., 2016; Kacher et al., 2014). Additionally, the 
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geometric relationships between the grain boundary and dislocations are shown to 

have a great effect on slip transfer in metals and alloys (see reviews of Bayerschen et 

al., 2016; Hunter et al., 2018). Thus, the distribution of geometrical configurations of 

grain boundaries is critical for predicting the macroscopic influence of grain boundaries 

on deformation in the dislocation-creep regime.  

 

 Diffusion creep 

Diffusion creep involves the flux of atoms in polycrystalline materials. The driving force 

for this diffusional process is the change in equilibrium (concentration) of vacancies or 

interstitial atoms due to an imposed shear stress (Herring, 1950). Deformation is thus 

achieved by the shape modification of individual crystals due to mass transfer (Figure 

1.5). Two main mechanisms for diffusion creep can be distinguished: Nabarro-Herring 

creep (Figure 1.5a), which involves defect diffusion within a crystal lattice (Herring, 

1950; Nabarro, 1948), and Coble creep (Figure 1.5b), which involves defect diffusion 

along the grain boundaries (Coble, 1963). As grain boundaries possess a less ordered 

structure than the lattice, the grain-boundary diffusion rate is usually faster than the 

lattice diffusion rate. This is related to a larger amount of defects in grain boundaries 

in comparison to the lattice, rather than an increase in their mobility (Uberuaga et al., 

2015). Independent of the diffusion path, grain boundaries act as sources or sinks for 

vacancies. This explains the grain-size sensitivity of diffusion creep and the major 

control of grain boundaries on the deformation rate in this deformation regime. 

Furthermore, in order to maintain material continuity, diffusion creep must always occur 

together with grain-boundary sliding (Stevens, 1971), another deformation process 

involving grain boundaries.  
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Figure 1.5: Deformation through diffusion creep: a) Nabarro-Herring creep (bulk diffusion) b) 
Coble creep (grain boundary diffusion). Dashed polygon indicates the change in the shape of 
a grain due to transfer of matter from compression to tension regions. Arrows indicate the 
flow of matter (atomic diffusion). Motion of vacancies occurs in the opposite sense of the 
arrows.  

 

 Grain-boundary sliding 

Deformation by grain-boundary sliding involves the relative motion between grains 

parallel to their grain boundaries (Figure 1.6). The main mechanism for grain-boundary 

sliding was proposed to be the motion of grain-boundary dislocations (Ishida and 

Brown, 1967; Lim and Raj, 1985; McLean, 1971; Pond et al., 1978a; Pshenichnyuk et 

al., 1998). In this model, grain-boundary sliding occurs as a result of a mixture of 

climbing and gliding of dislocations in the grain boundary, causing relative motion 

and/or rotation of the grains (Ishida and Brown, 1967). Dislocation glide in the grain-

boundary plane requires the Burgers vectors of those dislocations to be parallel to the 

grain-boundary plane, and thus dissociation of the dislocations is usually necessary as 

dislocations enter the grain boundaries. If the Burgers vector of a dislocation is not 

parallel to the grain boundary, the movement of the dislocation requires climb and thus 

absorption and/or emission of vacancies. This process is diffusion-controlled and 

therefore thermally activated. Langdon (1994) proposed two distinct types of grain-

boundary sliding: Rachinger sliding, in which grain-boundary sliding (GBS) is 
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accommodated by intragranular movement of dislocations (disGBS; Figure 1.6a), and 

Lifshitz sliding, in which GBS is accommodated by the diffusion of vacancies (difGBS; 

Figure 1.6b). For Rachinger sliding, Langdon (1994) proposed that the rate of sliding 

is dictated by the climbing rate of lattice dislocations at obstacles such as grain 

boundaries or subgrain boundaries. Therefore, the overall strain rate and the 

macroscopic response would depend on the total number of dislocation-boundary 

interactions (Langdon, 2006, 1994, 1970). For Lifshitz sliding, Raj and Ashby (1971) 

proposed that the stresses developed due to sliding in a non-perfectly planar boundary 

create a concentration gradient of vacancies in a boundary. This results in a diffusional 

process which might be the rate-controlling mechanism during deformation. As 

highlighted by Raj and Ashby (1971), the generation of local stresses, being the driving 

force for difGBS, is highly dependent on the grain-boundary geometry. 

 

Figure 1.6: Deformation through grain-boundary sliding: a) Dislocation-accommodated grain-
boundary sliding (disGBS) b) Diffusion-accommodated grain-boundary sliding (difGBS). 
Arrows indicate relative motion between grains.  
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 Grain-boundary migration and grain growth 

Grain growth is an important part of the sintering and densification processes in 

crystalline materials. Grain growth in polycrystalline materials occurs by the migration 

of grain boundaries (Atkinson, 1988; Burke and Turnbull, 1952; Evans et al., 2001). 

Grain growth occurs by the growing of larger grains at the expense of smaller ones, 

leading to a modification of the overall grain-size distribution towards larger grain sizes. 

Driving forces for grain growth include gradient in dislocations (strain-driven grain-

boundary migration), grain-boundary curvature (static grain growth) and magnetic 

fields. Normal (static) grain growth occurs by the minimization of the excess Gibbs-free 

energy associated with grain boundaries in comparison to a crystal lattice. In other 

words, grain growth towards a single-crystal material is energetically favourable over 

maintaining a polycrystal. In reality, however, grain growth is limited by several factors, 

such as: 

1. The bulk energy reduction of the system lessens with increasing average grain 

size; 

2. Impurities impeding grain growth, i.e., solute drag (e.g., Liu and Kirchheim, 

2004); 

3. Grain-boundary smoothing (e.g., Holm and Foiles, 2010). 

Grain-boundary migration rates are not only a function of the driving force but also its 

mobility. The grain-boundary mobility, in turn, is highly dependent on the structure and 

the composition of the grain boundaries (Gottstein and Shvindlerman, 2009).  

When a second phase exists, grain growth of the primary phase is hindered by a drag 

force caused by the second phase. This effect is known as Zener drag or Zener pinning 

(e.g., Nes et al., 1985). When grain growth of the second phase also occurs, the grain 

growth processes is called coalescence (Hillert, 1965). The presence of a second-

phase particle might lead to abnormal grain growth, where certain grains grow 

abnormally larger than the average grain size. Another motivation for abnormal grain 

growth is the presence of grain boundaries with different (anisotropic) mobilities (e.g., 

Rollett and Mullins, 1997). 
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1.3. Olivine grain boundaries: structure and 
composition 

Processes occurring at the grain boundaries such as the motion of dislocations and 

vacancies are highly dependent on the structure and composition of the grain 

boundaries (Sutton and Balluffi, 1995). The structure and composition of olivine-

dominated rocks have been subject of several studies, as reviewed by Marquardt and 

Faul (2018). The thickness of grain boundaries is an important aspect of the structure 

of grain boundaries, as it controls grain-boundary segregation and diffusion (Carter 

and Sass, 1981). Olivine grain boundaries typically show a structural width (distance 

between two neighbouring lattices) on the order of 0.5 - 1 nm (Ricoult and Kohlstedt, 

1983).  

Another important aspect controlling processes at the grain boundaries is the 

crystallography of grain boundary planes (e.g., Atkinson, 1985; Watanabe, 1988). 

Previous studies show that specific grain boundaries of olivine are preferentially 

developed during static grain growth (Marquardt et al., 2015; Marquardt and Faul, 

2018). Marquardt et al. (2015) found that the distribution of grain boundary planes in 

forsterite with a small amount of Al are dominated by (100), (010) and (001) grain 

boundary planes, while Marquardt and Faul (2018) found that highly pure forsterite 

aggregates show a dominance of (001) GB planes. These results suggest that grain 

boundaries with low energy, such as (100), (010) and (010) in olivine (Adjaoud et al., 

2012), are preferentially developed. This inverse correlation between grain-boundary 

energy and population was previously demonstrated in ceramic materials such as MgO 

(e.g., Rohrer, 2011; Saylor et al., 2002). 

The presence of preferential grain boundaries of olivine might have a great effect on 

the rheology of the upper mantle and its interpretation from geophysical 

measurements. For example, Miyazaki et al. (2013) suggest that grain-boundary 

sliding occurs preferentially along low-energy grain boundaries (e.g. (001) and (010) 

planes). The authors suggest that the development of these grain boundaries would 

influence the development of CPO in olivine, leading to the observed seismic 

anisotropy in the Earth’s upper mantle. Different grain boundaries might have different 

grain-boundary diffusivities, which by its turn affects diffusion creep and grain growth. 

For instance, molecular-dynamic simulations demonstrate that Si, O and Mg ions in a 

melt with composition close to MgSiO3 have higher self-diffusion coefficients in the 
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vicinity of (010) grain boundaries of Forsterite when compared to (100) and (001) grain 

boundaries (Gurmani et al., 2011). Grain boundaries presenting higher diffusivities are 

also more electrically conductive, if the mechanism controlling the transport of charges 

is the diffusion of vacancies or interstitials at the grain boundaries (Misener, 1973; ten 

Grotenhuis et al., 2004). In fact, Pommier et al. (2018) demonstrated that the alignment 

of olivine grain boundaries increases electrical conductivity in experimentally-deformed 

samples. The authors suggested that, during deformation in the dislocation creep 

regime, specific grain boundaries presenting higher conductivity were created, greatly 

increasing bulk conductivity when compared to undeformed aggregates. Thus, the 

study of processes that lead to the development of olivine grain boundaries is essential 

for an improved interpretation of geophysical measurements of electrical conductivity 

of the Earth’s upper mantle. 
Grain boundaries in upper mantle rocks are also subject to study due to its capacity to 

store and mobilize chemical elements which are incompatible in the lattice structure. 

This has motivated several studies on the composition of grain boundaries, which were 

mostly focused on the characterization of non-stoichiometric impurities (including 

volatiles) at grain boundaries such as C, Ca, Al, Sr, and H2O (e.g., De Hoog et al., 

2010; Demouchy, 2010; Hayden and Watson, 2008; Hiraga et al., 2002, 2003, 2004; 

Bachhav et al., 2015). The effect of H2O (as H+ or OH-) in olivine either at grain 

boundaries or within the lattice is a subject of great discussion (e.g., Bai and Kohlstedt, 

1992; Berry et al., 2005; Bolfan-Casanova, 2005; Demouchy, 2010; Demouchy and 

Bolfan-Casanova, 2016; Gardés et al., 2012; Hirth and Kohlstedt, 1996; Karato and 

Jung, 1998; Karato, 2003; Karato et al., 1986; Kohlstedt et al., 2012, 1996; Mackwell 

and Kohlstedt, 1990; Nicholls and Ringwood, 1973; Ohtani, 2005; Wang et al., 2006). 

The presence of water reduces the melting temperature (solidus) of mantle rocks (Hirth 

and Kohlstedt, 1996), controls phase transformations (e.g., Frost and Dolejš, 2007), 

and is argued to lower the creep strength while increasing chemical diffusivity in olivine-

dominated rocks (Jung, 2001; Jung et al., 2006; Karato et al., 1986; Mackwell et al., 

1985; S Mei and Kohlstedt, 2000; S. Mei and Kohlstedt, 2000). However, more recent 

studies suggest that water has little or no effect on the upper mantle rheology, 

assuming that creep is rate-limited by dislocation climb (Fei et al., 2014, 2013). All the 

same, grain boundaries are argued to be an important deposit of incompatible 

elements, such as potassium, thorium and uranium, that are transported and 

concentrated at shallower portions of the Earth during melt percolation (Hiraga et al., 
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2004). According to these authors, chemical segregation has a large impact on grain-

boundary processes such as grain-boundary diffusion, sliding, fracture and migration. 

For instance, Yabe et al., (2020) found that the segregation of Ca and Al at the grain 

boundaries of olivine enhances the rates of interface-controlled creep and diffusion 

creep. This leads to contrasting physical properties between these aggregates and 

pure olivine, thus changing our understanding of the physical properties of the Earth’s 

mantle. 
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 Methods 
2.1. Sample preparation 

Polycrystalline aggregates composed of olivine with small amounts of orthopyroxene 

(corresponding to dunite and lherzolite) were produced by two different methods: 

Grinding olivine crystals and by synthesizing through the solution-gelation method. The 

first method involves selecting single crystals of olivine which are optically free of 

inclusions. The crystals were then ground in an agate mortar and hot pressed using 

the piston cylinder for 12 hours at 1200 °C and 0.7 GPa. As this method involves 

natural samples, a greater control on the purity of the sample cannot be ensured. On 

the other hand, the solution-gelation (sol-gel) method is an effective technique to 

create chemically pure and homogeneous solids (Hench and West, 1990). The sol-gel 

method involves the formation of a colloidal solution from inorganic and/or organic 

reactants, the gelation of the solution and the removal of the solvent (Brinker and 

Scherer, 2013). The sol-gel method can be employed for the preparation of starting 

materials of different compositions, including ceramic materials such as SiO2, Al2O3, 

K20, NaO, CaO, MgO and FeO, which are constituents of most of the rock-forming 

minerals present in the Earth’s crust and mantle. When compared to other methods of 

fabrication of starting material such as glass fabrication, mixing of oxide powder and 

mineral/rock grinding, the sol-gel method produces materials with very small grain 

sizes in a narrower grain-size distribution. Because of these characteristics, the sol-

gel method was employed in this study. The preparation technique used here is based 

on the method B of Edgar (1973, p. 57) and the olivine sol-gel preparation described 

by Tan et al. (2001), Jackson et al.(2004) and Faul & Scott (2006). The precursors 

used as source of SiO2, MgO and FeO were respectively tetraethyl orthosilicate 

(TEOS, Si(OC2H5)4, Sigma-Aldrich, purity ≥ 99.0%), magnesium nitrate hexahydrate 

(Mg(NO3)2 · 6H2O, Roth, purity ≥ 99.999%) and Iron (III) nitrate nonahydrate 

(Fe(NO3)3 · 9H2O, Sigma-Aldrich, purity ≥ 98%). The yielding of each reactant was 

first analysed. The yield of SiO2 and MgO reactants were estimated by gravimetric 

analyses and the yield of FeO by titration. The amount of source material was then 
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calculated to obtain olivine with a Mg/Fe mole ratio of 9:1, that is, of Fo90 composition. 

An excess of ~5 wt.% SiO2 was included to buffer Si activity, creating a small 

percentage of orthopyroxene with similar Mg/Fe mole ratio of olivine, that is of En90 

composition. For an increasing amount of pyroxene, smaller average grain sizes of 

olivine and pyroxene are produced (e.g., Nakakoji and Hiraga, 2018; see also Chapter 

5). In this study, two batches of aggregates were created containing 6 vol.% (FSG4 

batch) and 13 vol.% of pyroxene (FSG5 batch). The average grain size of olivine after 

sintering was 2.6 µm and 3.1 µm for the batches FSG4 and FSG, respectively (see 

Section 5.3.1). 

The synthesis process was started by weighing the required Fe and Mg nitrates. The 

nitrates were mixed in a beaker with a solution of 1:1 distilled water/ HNO3, just enough 

that the nitrates were completely dissolved and no supernatant product is visible. Any 

excess of HNO3 should be evaporated before adding TEOS/ ethanol, as the reaction 

with ethanol is highly exothermic. The required TEOS was weighed and mixed with 

ethanol with a volume twice of that of TEOS. The TEOS/ethanol is added into the 

beaker and the solution was constantly stirred until a homogeneous solution is 

obtained. Ammonia (NH4OH) was then added drop-wise to the solution while stirring 

until a stiff gel was obtained. The solution was then left for 12 hours at room 

temperature to ensure a complete gelation process. The gel was heated slowly in a 

hot plate under a fume hood up to 70 °C, and left until it was dry (Figure 2.1a). The gel 

was then grounded and placed in a platinum crucible. The gel was subsequently 

heated for 24 hours at 110 °C in a furnace under a fume hood. The temperature was 

then increased at a rate not higher than 60 °C/hour up to 400 °C. The gel was dried at 

this temperature for one more day or until all the fumes of N-oxides disappear. The 

resulting powder was left to cool down and then grounded in an agate mortar with 

ethanol for at least 15 minutes. The fine powder was then dried under infrared light for 

approximately 10-30 minutes. The powder was later cold pressed into pellets in a 

stainless-steel die together with a few drops of ethanol at a confining pressure of 

approximately 150 MPa, for 3 minutes. The pellets were removed from the pressure 

vessel and left to dry: first at room temperature and then for at least 1 hour at 125 °C. 

The pellets were then placed in a Pt cage for sintering at controlled oxygen fugacity in 

a gas-mixing furnace. The oxygen fugacity (𝑓𝑓𝑂𝑂2) in the gas-mixing furnace is controlled 

by mixing CO and CO2 gases, which react according to the following equation: 
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CO + 0.5O2 ⇆ CO2.                   (2.1) 

At chemical equilibrium, the oxygen fugacity is given by (Fegley Jr, 2012): 

𝑓𝑓𝑂𝑂2 = 𝐾𝐾𝑃𝑃−2 � 
𝑋𝑋𝐶𝐶𝐶𝐶2
𝑋𝑋𝐶𝐶𝐶𝐶

�
2

𝑒𝑒𝑒𝑒
                  (2.2) 

where KP is the temperature-dependent equilibrium constant and 𝑋𝑋𝑛𝑛 the mole fraction 

of the reacting gases. The temperature in the gas mixing furnace, monitored by a 

thermocouple, was increased from 700 °C to 1400 °C at a rate not higher than 

300 °C/hour. As the temperature increases, the gas mixing ratio was adjusted to keep 

olivine in its oxygen fugacity stability field (Nitsan, 1974).  

The final calcination temperature and gas mixing ratio was kept for 12 hours to ensure 

complete reaction. The furnace power was then turned off. As the temperature 

decreases, the gas-mixing ratio was continuously adjusted to keep the sintered olivine 

in its oxygen-fugacity stability field. When the temperature reached 700 °C, the supply 

of CO gas was turned off and the pellets were removed from the furnace, while being 

flushed by CO2 gas. The pellets were left to cool down, their surface slightly ground 

with a paper filter to remove the oxidation layer and/or carbon deposition at the surface, 

re-ground in an agate mortar and kept in an oven at ~ 125 °C or in a desiccator until 

use. Olivine was sintered in a piston-cylinder apparatus at a confining pressure of 0.7 

GPa and temperature of 1200 °C for 2 hours. The samples were then cored in 

dimensions to be used for the static (multianvil) and deformation experiments (Figure 

2.1b). To ensure that the samples were dry, the cores were fired in the gas mixing 

furnace for 1 hour at 1000 °C in a controlled atmosphere before encapsulating. 
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Figure 2.1: Olivine sol-gel preparation: a) Gel obtained after the drying of the solvents in a 
hot plate. b) Resulting cores of olivine aggregates prepared for deformation experiments.  

 

2.2. High-pressure techniques 

Experiments at the pressure and temperature conditions of the Earth’s interior can 

nowadays be routinely achieved with the aid of high pressure and temperature 

apparatuses. In these devices, high pressure is created by applying large forces to 

small areas. In this work, we used different apparatuses to synthesize starting 

materials and to conduct static and deformation experiments. Each apparatus used 

here has specific characteristics such as the temperature and pressure range (Figure 

2.2) that make it suitable for a given application. For the deformation experiments, the 

possible geometries of deformation, the maximum amount of strain and the possibility 

to measure differential stresses are also of interest. The main features of each 

apparatus, and how the experiments were carried out in each of them, are described 

in the following sections. 
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Figure 2.2: Pressure and temperature range of the techniques used in this study. The dashed 

line shows the upper mantle geotherm. Pressure and temperature as a function of depth is 

obtained from Dziewonski & Anderson (1981) and Anderson (1980), respectively. 

 

 Piston Cylinder 

The piston-cylinder apparatus consists of a tungsten carbide/ steel pressure vessel 

(Boyd and England, 1960). Pressure is achieved by uniaxially compressing the 

assembly between a tungsten carbide piston surrounded by steel (master ram) at the 

bottom, and a steel ram (end load) at the top. Hydrostatic pressure is reached due to 

the low-strength materials used as pressure media, such as salt or glass. The nominal 

pressure inside the assembly is calculated by measuring the oil pressure applied by 

the hydraulic pump and knowing the cross-sectional area of the piston. A correction is 

applied to account for friction and shear within the assembly and the pressure vessel. 

This correction value is smaller than 5% of the nominal pressure in high-temperature 

experiments (Edmond and Paterson, 1971; McDade et al., 2002). Heating is done by 

supplying electrical power through the pressure vessel to a resistance furnace inside 
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the assembly. The temperature is monitored by a thermocouple with its measuring 

(hot) junction close to the sample. 

In this study, the piston-cylinder apparatus was used for static experiments and to 

prepare the starting material for deformation and static experiments. The piston-

cylinder experiments were conducted using a 19 mm talc/Pyrex® assembly (Figure 

2.3). The starting material powder was hammered into a Ni80Fe20 capsule. The Ni80Fe20 

capsule is used to buffer the oxygen fugacity within the Ni-NiO buffer. The small 

amount of iron in the capsule prevents diffusional exchange between Ni from the 

capsule and Fe from the sample (e.g., Faul et al., 2018). The capsule is welded shut 

and the excess weld tips are grinded. The capsule is tightly fitted into a porous 

(machinable) Al2O3 sleeve, which is surrounded at the top and bottom by tapered 

pistons of porous Al2O3, and radially outwards by a graphite furnace, borosilicate glass 

(Pyrex®) and the talc pressure media, respectively. Temperature was monitored during 

the experiments with an S-type (90%Pt/10%Rh–Pt) thermocouple. The experiments 

were performed by adjusting pressure to the target pressure, heating the sample to 

the target temperature at a 100 ºC/minute rate and maintaining these conditions for 

the duration of the experiment. The samples were quenched by reducing the current 

in the sample heater to achieve a temperature reduction of 300 °C per minute. This 

step reduces thermal shock in the sample and subsequent fracturing of grains. The 

pressure was subsequently reduced over 8 hours. In the experiments performed here, 

uncertainties in pressure for the 19 mm piston-cylinder assembly are on the order of 

0.02 GPa and thermal gradients are around 25ºC within the sample (Watson et al., 

2002). 
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Figure 2.3: Piston-cylinder assembly: a) Cross section of the 19 mm piston cylinder 
assembly. b) Recovered sample after the experiment.  

 

 Multianvil press 

The attainable pressure in the piston-cylinder apparatus is limited due to the 

compressive strength of the pressure vessel materials (e.g., steel). Although multianvil 

presses also rely on uniaxial presses to reach high pressures, the presence of anvils 

provides lateral support to the assembly. This allows multianvil presses to reach 

pressures much higher than the compressive strength of its anvils (Ito, 2007; 

Liebermann, 2011). In this study, I used a 6-8 Kawai-type multianvil, which is capable 

of a load of 5000 ton (Frost et al., 2004).  

The multianvil experiments were performed using second-stage WC anvils of 11 mm 

truncated edge length, acting on a Cr2O3-doped MgO octahedra (Figure 2.4) with an 

edge length of 18 mm. The experiments in the multianvil were performed in analogy to 

the piston-cylinder experiments, except that a longer decompression duration of at 

least 12 hours was necessary. The temperature in the multianvil experiments was 

monitored using a D-type (97%W/3%Re–75%W/25%Re) thermocouple. Uncertainties 

in pressure determination for the 18/11 multianvil assembly for the experiments shown 

here are around 0.5 GPa and thermal gradients in the order of 40 ºC within the sample 
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(Walter et al., 1995). No correction was applied for the pressure effect on the 

electromotive force (emf) of the thermocouple. 

 

 

Figure 2.4: Multianvil assembly: a) Cross section of the 18 mm octahedra . b) Recovered 
sample after the experiment. 

 

 6-ram MAVO press 

The MAVO LPQ6-2400-100 press (Voggenreiter Verlag GmbH) is a large-volume 

multianvil system composed of six independent hydraulic rams (Bollinger et al., 2019; 

Laumonier et al., 2017; Manthilake et al., 2012; Soustelle and Manthilake, 2017; Walte 

et al., 2020). This press is capable of reaching forces up to 8 MN at a maximum oil 

pressure of 630 bar (Manthilake et al., 2012). The six mutually orthogonal rams (Figure 

2.5a) act on second stage anvils made of cylindrical cores of tungsten carbide fitted 

into hardened steel rings, which are surrounded by brass (Figure 2.5b). In the 5/8 

design, the second stage anvils present a 5 mm edge length that acts on a cube with 

an edge length of 8 mm with a square truncation area of 25 mm2 (Figure 2.5b and 

Figure 2.5c). The sample is placed in a Ni capsule filled with NiO at the top and bottom, 

thus limiting the oxygen fugacity of olivine by the Ni-NiO buffer. Alumina pistons are 

placed at the bottom and top of the sample. Porous alumina is used at the bottom to 

minimize deviatoric stresses before the target pressure is reached. The upper alumina 

piston has 4 holes designed to fit a thermocouple with the hot junction sitting on the 

top of the sample. The sample and the pistons are fitted into a pre-sintered MgO 

confining sleeve, surrounded by a graphite furnace. Molybdenum electrodes transmit 

the electrical current from the anvils to the furnace. A ZrO2 sleeve is used for thermal 
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insulation of the assembly. The pressure medium is composed of pre-fired pyrophyllite 

(Al2Si4O10(OH)2). Pyrophyllite gaskets of 2.1 mm thickness are placed between the 

anvils to ensure that hydrostatic pressure is achieved while minimizing friction between 

the anvils. Balsa wood spacers are used for support and alignment of the anvils. A 

type-D thermocouple (97%W/3%Re–75%W/25%Re) was used to measure the 

experimental temperature. The second-stage anvils and assembly are placed in an 

aluminium cage and centred with the first-stage anvils.  

The deformation experiments are carried out by first reaching the target pressure. 

During this initial compression stage, the hydrostatic pressure is increased linearly over 

a duration of 30 to 60 minutes. This is achieved by the advancement of the master ram 

(e.g. ram 1) following the assigned pressure profile, while the remaining rams advance 

towards the deformation assembly, maintaining the cubic geometry of the assembly. 

The position of the anvils is measured by displacement sensors with an accuracy of 

0.001 mm. This procedure minimizes deviatoric stress and deformation of the 

assembly during the initial compression. Subsequently, the sample is heated to the 

target temperature at a rate of 100 ºC/minute. The sample is kept at the target pressure 

and temperature for 20 minutes. This procedure allows for microstructural recovery 

before the deformation experiment is started.  

The deformation experiment is conducted during an experimental duration, t, which is 

the time needed to reach a total (engineering) strain 𝜀𝜀, at a given strain rate, 𝜀𝜀 ,̇  given 

by: 

𝑡𝑡 =  𝜀𝜀
�̇�𝜀
                     (2.3) 

The deformation of the assembly in a pure-shear geometry is done by simultaneously 

pushing two opposing anvils towards the sample along the compression axis (e.g., 

rams 3 and 4) and retracting two other opposing anvils (e.g., rams 5 and 6) away from 

the deformation assembly, while the last pair (e.g., rams 1 and 2) maintains the 

confining pressure. The position of the anvils is computer-controlled to maintain a 

constant anvil-displacement rate (i.e., constant strain rate). The displacement rate (ℎ̇) 

is calculated using the following relation: 

ℎ̇ =  ∆𝑙𝑙
𝑡𝑡
                    (2.4) 

where ∆𝑙𝑙 is the shortening length given by: 
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∆𝑙𝑙 =  𝜀𝜀 ×  𝑙𝑙0                    (2.5) 

where 𝑙𝑙0 is the initial sample dimension along the compression axis. 

The experiment is finished by stopping the deformation, quenching the experiment and 

decompressing. During decompression, further deformation of the sample is 

minimized by reducing the load applied by the master ram (e.g. ram 1) over a period 

of at least 8 hours. The remaining rams retract at the same rate as the master ram, 

keeping the final geometry of deformation.  

Because the different parts of the assembly partially accommodate the total 

deformation, the actual strain rate, 𝜀𝜀̇, experienced by the sample is equal or smaller 

than the anvil displacement rate, ℎ̇. The total shortening length is calculated by 

measuring the sample before the experiment using a calliper and after the experiment 

via SEM images. The measurement uncertainty of the calliper is of 0.005 mm, which 

places the uncertainty in the shortening length determination of 0.7% for a typical 𝑙𝑙0 of 

0.7 mm. The applied (steady-state) stress might be estimated through empirical 

calibrations. For instance, the differential stress (𝝈𝝈) is related to the density of 

dislocations (𝜌𝜌), through the following relation (Takeuchi and Argon, 1976): 

𝝈𝝈 =  𝛼𝛼𝛼𝛼𝛼𝛼𝜌𝜌1 2⁄                     (2.6) 

where 𝛼𝛼 is a material’s constant, 𝛼𝛼 is the shear modulus and b is the Burgers vector, 

which for olivine equals to 3, 60 GPa and 0.5 nm, respectively (Durham et al., 1977; 

Kohlstedt and Weathers, 1980). The density of dislocations in olivine can be assessed 

by various methods such as TEM imaging (e.g. Goetze and Kohlstedt, 1973), EBSD 

(e.g., Wallis et al., 2016), and by optical or scanning electron microscopy after oxidation 

decoration of Fe-bearing olivine (e.g., Kohlstedt et al., 1976). Other paleostress scales 

for olivine include recrystallized grain and subgrain sizes (e.g. Jung and Karato, 2001; 

Twiss, 1977; Van der Wal et al., 1993).  
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Figure 2.5: Deformation experiments using a MAVO press: a) Cubic arrangement of rams 
with the deformation assembly at the centre. b) Deformation assembly surrounded by the 
second-stage anvils. The second stage-anvils are consist of a tungsten carbide core (I) 
surrounded by hardened steel (II)  and brass (III). c) Schematic drawing of the deformation 
assembly used for pure shear experiments at the MAVO press. 

 

 Paterson apparatus 

Although experimental deformation using solid pressure media (as in section 2.2.3) 

has the advantage of providing large hydrostatic pressures, retrieving rheological 

information might not be straightforward. For example, estimations of shear stress 

requires either ex-situ analyses of resulting microstructure (e.g., Kohlstedt et al., 1976) 

or the use of synchrotron light (e.g., Li et al., 2004). The Paterson apparatus (Paterson, 

1970; Paterson and Olgaard, 2000) involves the pressurization of a sample in an inert 

gas medium (such as Argon). As friction is reduced between the gas-solid interface, 

shear stresses can be directly calculated from the applied load (uniaxial compression) 

or torque (torsion). The Paterson apparatus consists of a pressure vessel oriented 
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vertically, where the torque and axial forces are transmitted to the sample via external 

actuators (Figure 2.6). Experiments in torsion geometry, as reported in Chapter 4, can 

be performed under displacement control (constant strain rate) or torque control 

(constant stress). This is done by using a servo-motor to control the twist rate and the 

torque applied to a cylindrical sample. The strain, 𝛾𝛾, increases linearly from the torsion 

axis centre towards the outside surface of the sample. At a given radius, 𝑟𝑟, the strain 

is given by: 

𝛾𝛾 =  𝑟𝑟 𝜃𝜃
𝑙𝑙

                    (2.7) 

where 𝜃𝜃 is the angular displacement (twist amount) and 𝑙𝑙 is the sample’s length (Figure 

2.6). The displacement or twist rate, �̇�𝜃, is related to the maximum strain rate, �̇�𝛾𝑚𝑚𝑚𝑚𝑚𝑚, 

experienced by a sample through: 

�̇�𝜃 =  �2𝑙𝑙
𝑑𝑑
�  �̇�𝛾𝑚𝑚𝑚𝑚𝑚𝑚                   (2.8) 

where 𝑑𝑑 is the sample’s diameter. The torque, M, by its turn, is related to the shear 

stress, 𝜏𝜏, by the following relation for a solid cylinder during power-law creep with a 

stress exponent n: 

𝑀𝑀 =  𝜋𝜋 𝑑𝑑3 𝜏𝜏
4(3+1 𝑛𝑛⁄ )

                    (2.9) 

The samples analysed in Chapter 4 were obtained from the experiments PT0535 

(starting material) and PT0499 (deformed sample) performed by Hansen et al. (2012a, 

2012b) at the University of Minnesota, USA. The starting material for these 

experiments, Fo50 (MgFeSiO4), was prepared by hot-pressing mixtures of synthetic 

Fayalite (Fe2SiO4) and San-Carlos olivine (Mg1.82Fe0.18SiO4) at 1250 ºC and 0.3 GPa 

for 8 h. The PT0499 sample was deformed at 1200 ºC, confining pressure of 0.3 GPa, 

under constant stress of 97 MPa, and maximum strain of 10.9. Uncertainties in 

temperature, pressure, and shear stress determination are of 2ºC, 1 MPa and 3 MPa, 

respectively. 



 31 

 

 

Figure 2.6: Schematics of the Paterson apparatus and geometric parameters of a sample 
deformed in torsion. Modified from Paterson & Olgaard (2000) 

 

2.3. Analytical techniques 

Rheology is a complex function of the ambient conditions during deformation (e.g., 

temperature, pressure, stress, strain rate) and the structure and composition of a 

material. For example, the composition (including the presence of fluids), and 
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arrangement of minerals (i.e., microstructure) dictates the processes and rates of rock 

deformation in the Earth’s crust and mantle (e.g., Bürgmann and Dresen, 2008; Hirth 

and Kohlstedt, 2003). Hence, various analytical techniques are employed to 

characterize samples and to evaluate the effect of different variables on rock 

deformation. Here we use electron microscopy and spectroscopy techniques to 

investigate microstructures down to a nanometre scale, as well as the water content 

and chemical composition of the samples. In the next sections, I describe the analytical 

techniques employed in this work and how the analyses were performed.  

 

 Electron-backscatter diffraction 

Electron-backscatter diffraction (EBSD) is a scanning electron microscopy (SEM)-

based technique that allows the analyses of crystal orientations of a single crystal or 

polycrystalline materials. In a SEM, an electron beam is accelerated towards a sample 

and multiple interactions between the electron beam and the sample’s atoms might 

occur (Goldstein et al., 2018; Prior et al., 1999). Electrons interact with the sample and 

deviate from their initial trajectory (scatter) elastically or inelastically. During elastic 

scattering, the energy of the electron beam is mostly maintained, while it is significantly 

reduced during inelastic scattering. Elastic scattering occurs due to the interaction of 

the incident electrons with the nucleus (Rutherford scattering) and with the electron 

cloud of the target atom. Due to the attracting forces between opposing charges 

(Coulombic attraction), electrons that travel close to the nucleus of the target atom are 

scattered at a higher angle than the ones farther away. The electrons that interact with 

a lattice plane and scatter at an angle 𝜃𝜃 will form three-dimensional cones of high-

intensity electrons named Kossel cones (Figure 2.7) that satisfy Braggs’ law:  

 𝑛𝑛𝑛𝑛 =  2 𝑑𝑑 𝑠𝑠𝑠𝑠𝑛𝑛(𝜃𝜃)                 (2.10) 

where n is the diffraction order, 𝑛𝑛 is the wavelength of the electron beam and d the 

interplanar spacing. The Kossel cones intercept a phosphor screen positioned near 

the sample, forming so-called Kikuchi bands. As the electron beam interacts with 

different lattice planes within a depth of approximately 50-100 nm, several bands are 

formed, giving rise to the electron backscatter pattern (EBSP). 



 33 

 

Figure 2.7: Formation of an electron backscatter pattern (EBSP): The electron beam hits a 
sample and different interactions occur, (e.g.,  electron scattering). The backscattered 
electrons that satisfy the Bragg equation forms cones with an opening angle θ. A phosphor 
screen, positioned near the sample, captures these cones as lines named Kikuchi bands. 
The interaction of the beam with different lattice planes create an EBSP. 

 

Each Kikuchi band is a gnomonic projection of a crystallographic plane and thus the 

crystal orientation can be assigned by knowing the orientation of different 

crystallographic planes with respect to each other. This is done by first capturing the 

EBSP with a camera and converting the pattern to a digital image (Figure 2.8a). The 

resulting image is corrected to remove the background noise and increase the contrast 

of the bands. The position and intensities of an EBSP (i.e., the pixel coordinates and 

their grayscale levels) are then transformed from a Cartesian to a Hough space, which 

has polar coordinates that indicate the angle (θ) and distance (ρ) of the bands to the 

EBSP centre (Figure 2.8b). Pixels of high intensity in the EBSP (e.g., zone axes) will 

interfere constructively in the Hough space and appear as bright spots, while low-

intensity pixels or noise will appear darker (Figure 2.8c). The positions of the bands 
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are identified (Figure 2.8d) and interplanar angles between several (commonly 5-15) 

Kikuchi bands calculated. The interplanar angles between the Kikuchi bands are 

subsequently compared with those calculated between the most intense reflectors 

(i.e., those with a higher structure factor). The set of crystallographic planes which best 

fit the experimental pattern is assigned to the bands (Figure 2.8e). Finally, a crystal 

orientation is given by the rotation that brings the crystal-reference frame (e.g., [a], [b] 

and [c] axes) to an external-reference frame (e.g. X, Y and Z axes of a sample; Figure 

2.8f). The movement of the microscope stage and/or deflection of the electron beam 

by magnetic scan coils allows for the acquisition of crystal orientations over an area 

range.  

The resulting EBSD data includes the spatial coordinates and crystal orientations given 

by a triplet of Euler angles: 𝜑𝜑1,𝛷𝛷,𝜑𝜑2 (Wenk, 1985). This allows the representation of 

the data in different forms. Maps of crystallographic orientation allow the spatial 

visualization of crystal orientations. The presence of preferential crystallographic 

orientations (e.g., those formed by deformation in the dislocation creep regime) can be 

visualized through pole figures (PFs) or inverse pole figures (IPFs). PFs are 

stereographic projections of a defined crystallographic plane or direction in relation to 

an external reference frame. IPFs, in contrast, are projections of the different 

crystallographic planes or directions parallel to a defined external direction. 

The relation between different crystallographic orientations is also of interest. The 

rotation to bring into coincidence one orientation into another is called misorientation, 

which is defined by a rotation axis and a rotation angle. The misorientation analysis 

allows the investigation of operative deformation mechanisms. For example, the 

analysis of intragranular misorientation, such as the kernel average misorientation 

(KAM) and misorientation to the grain mean orientation (mis2mean), allows the 

correlation between lattice distortion (e.g. those caused by dislocation structures) with 

crystal directions. The KAM is given pixel-wise by the average misorientation of a 

kernel defined by its n-order neighbours. The mis2mean is given by the misorientation 

between a pixel contained in a grain and the grain’s average orientation. 
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Figure 2.8: Indexing of an EBSP: a) A raw EBSP is captured and different image processes 
are applied to remove background noise. b-c) Feature recognition of the EBSP’s Hough 
transform allows the determination of the Kikuchi bands. d) Interplanar angles are calculated 
for different combinations of bands and compared with a lookup table with theoretically 
calculated values. e) Error minimization routines are used to calculate the best-fit crystal 
orientation. f) A crystal orientation is assigned to the EBSP. 

 

In this study, the samples were prepared by polishing the surface of interest with 

diamond particles down to 0.25 µm and finally with colloidal silica. The samples were 

cleaned in ultrasonic bath, dried and coated with a carbon layer of 3-4 nm to ensure 

electron conduction in the SEM. EBSD data were acquired using an FEI Scios Dual-

Beam SEM, coupled with an EDAX DigiView 5 EBSD detector. Operating conditions 

of the SEM are acceleration voltage of 20-30 keV and a beam current of 3.2- 6.4 nA. 

Raw EBSD data were processed using EDAX OIM Analysis™ software. Processed 

EBSD data were further analysed with the MTEX toolbox for texture analyses in 

MATLAB® (Hielscher and Schaeben, 2008).  
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 Energy and wavelength-dispersive spectroscopy 

In contrast to elastically scattered electrons, the electrons from the beam that scatter 

inelastically after interacting with a sample, transfer their energy to the atoms of the 

sample. This results in the generation of different signals that can be used to probe the 

compositional information of a specimen, for example by the emission of characteristic 

X-rays (Goldstein et al., 2018). Characteristic X-rays are formed when the electron 

beam interact with an inner shell of an incident atom. If an electron in this shell is 

sufficiently excited by the electron beam, it is ejected from the atom, leaving the atom 

in an energized state (ionization). An electron of an outer shell (with higher energy) fills 

the electron gap left, returning the atom to its ground state (de-excitation). The excess 

energy of this electron is then emitted as X-ray photons. This excess energy is 

characteristic for each element. The X-ray photons are captured by a detector 

(spectrometer), which measures its intensity (as counts per time per amp) as a function 

of their energy. This characteristic energy can then be used to identify elements 

present in a sample through energy-dispersive spectroscopy (EDS) or their specific 

wavelength through wavelength-dispersive spectroscopy (WDS). Quantitative 

elemental analysis of specimens from measured X-ray energy intensity is based on 

the assumption that the ratio of concentration of the element 𝑠𝑠 between a specimen 

and a standard (𝐶𝐶𝑖𝑖 and 𝐶𝐶(𝑖𝑖), respectively) is equal to the ratio of X-ray intensity from 

the unknown specimen (𝐼𝐼𝑖𝑖) and the standard (𝐼𝐼(𝑖𝑖)), that is (Castaing, 1951; Goldstein 

et al., 2018): 

𝐶𝐶𝑖𝑖
𝐶𝐶(𝑖𝑖)

 = 𝐼𝐼𝑖𝑖
𝐼𝐼(𝑖𝑖)

.                   (2.11) 

The scattering of the electron beam differs for each element present in a sample. Thus, 

a change of intensity due to a combination of elements occurs, which is known 

collectively as matrix effects. Matrix effects include the contribution of the electron 

scattering and retardation due to the different atomic numbers (Zi), X-ray absorption 

(Ai) and X-ray fluorescence (Fi) of each element i. Thus, the equation 2.11 can be 

rewritten as: 

𝐶𝐶𝑖𝑖
𝐶𝐶(𝑖𝑖)

 = [𝑍𝑍𝑍𝑍𝑍𝑍]𝑖𝑖
𝐼𝐼𝑖𝑖
𝐼𝐼(𝑖𝑖)

.                 (2.12) 

Therefore, matrix corrections (e.g., ZAF or 𝜙𝜙(𝜌𝜌𝜌𝜌) corrections), must be applied in order 

to correlate X-ray intensities to element concentration. 
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The sample preparation for the EDS and WDS analyses was similar to the one for 

EBSD, although a thicker carbon coating of 10 nm was applied. EDS data were 

acquired using an FEI Scios Dual-Beam SEM, coupled with an EDAX Octane Super 

detector. The SEM was operated with an acceleration voltage of 20-30 keV and beam 

current of 1.6 - 6.4 nA. The WDS analyses were performed in an JEOL JXA-8200 

electron microprobe. The data was collected with an electron beam voltage and current 

of 15 keV and 15 nA, respectively. Counting time was of 20 seconds per element peak 

acquisition and 10 seconds for background collection.  

 

 Transmission electron microscopy 

The transmission electron microscope consists fundamentally of an electron source 

and a series of electromagnetic lenses along a column, from top to bottom: condenser, 

objective, intermediate and projector lenses (Figure 2.9). The condenser lenses focus 

the electron beam originated from the electron gun into the object sample. The 

objective lens is used to focus and magnify the image, while further magnification is 

provided by the intermediate and projector lenses. The resulting magnified object (or 

diffraction pattern) is finally projected on a phosphor screen positioned at the end of 

the column. Two operating modes are possible in a TEM: imaging and diffraction mode. 

In the imaging mode, two types of analyses are possible (Williams and Carter, 2009): 

bright field (BF) and dark field (DF) imaging. In the BF mode, the transmitted (direct) 

beam is chosen in a selected area diffraction pattern (SADP) by inserting an aperture 

in the image plane. In contrast, in the DF mode, the transmitted beam is blocked and 

a diffracted beam (scattered electrons) is used for imaging. In the diffraction mode, a 

selected area aperture is used for the collection of a diffraction pattern at a previously 

selected area in the imaging mode. 

In this study, the samples used in TEM analyses were prepared from doubly-polished 

thin sections with a thickness of 30 μm. The samples were glued on a Cu mesh grid 

using Araldite® resin. Samples were further thinned to obtain electron-transparent 

areas using a Gatan precision ion-polishing system (PIPS) model 691. The samples 

were carbon-coated before TEM analyses to ensure electron conduction. Additional 

samples of specific grain boundaries were prepared using an FEI Scios focused ion 

beam (FIB) system. TEM lamellae of approximately 20, 15, and 0.1 μm in width, height, 
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and thickness, respectively, were prepared using a Ga+ beam in the FIB. TEM analyses 

were performed with an FEI Titan with a field emission source operating at 200 keV. 

Indexing of SADP were performed using the interface diffractGUI of the Crystbox 

software (Klinger and Jäger, 2015). Contrast-limited adaptive histogram equalization 

(Zuiderveld, 1994) was applied to TEM images using a Rayleigh distribution.  

 

 

Figure 2.9: Schematic model of image (left) and diffraction pattern (right) formation in a TEM. 
Modified from McLaren (2005). 
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 Fourier-transform infrared spectroscopy 

Infrared spectroscopy is an analytical technique of identification and quantification of 

molecules, based on their characteristic vibrational frequency, that is, the stretching 

and bending of interatomic bonds (Stuart, 2004). Infrared radiation is absorbed by a 

molecule in the wavelength range which corresponds to the frequency of its vibration. 

This range is commonly defined as infrared absorption bands. Typical instrumentation 

for infrared spectroscopy includes an infrared source, an interferometer, a detector, a 

signal amplifier and a converter. For Fourier-transform infrared (FTIR) spectroscopy, a 

Michelson interferometer (Figure 2.10) is commonly used. The Michelson 

interferometer consists fundamentally of a pair of mirrors (one stationary and one 

mobile), a beamsplitter and a photodetector. The process of acquiring a FTIR spectrum 

involves the emission of radiation in the infrared range that passes through a semi-

reflective surface (beamsplitter). Half of the incident radiation is redirected towards the 

static mirror while the other half is transmitted through the beamsplitter to the mobile 

mirror. The beam reflection from the two mirrors will create two distinct beams. As the 

mirror moves, the beam reflected by the mobile mirror moves at a different distance 

from the second beam. This distance is known as optical-path difference (OPD). As a 

result of the OPD, a difference in wavelength is created between the two beams. When 

the two beams return to the beamsplitter they will interfere and give rise to an 

interference pattern (interferogram). This signal is subsequently amplified and 

converted to a digital form. A Fourier transform is then applied, which converts from an 

intensity as a function of the OPD space (interferogram) to an intensity as a function 

of wavenumber space (FTIR spectrum).  

The quantification of FTIR spectra is based on the Beer-Lambert law, which correlates 

light absorbance (𝑍𝑍) to concentration of a substance (𝑐𝑐) by: 

𝑍𝑍 = 𝜀𝜀𝑐𝑐𝑙𝑙                 (2.13) 

where 𝑙𝑙 is the pathlength of the sample and 𝜀𝜀 is a constant of proportionality known as 

molar absorptivity. Considering 𝑍𝑍 as the logarithm of the ratio between the light 

intensity when entering the sample, 𝐼𝐼0, and after being transmitted through the sample 

𝐼𝐼, and transmittance, 𝑇𝑇, as the ratio between 𝐼𝐼 and 𝐼𝐼0, the equation 2.13 can be 

rewritten as:  

log �𝐼𝐼0
𝐼𝐼
� = − log𝑇𝑇 = 𝜀𝜀𝑐𝑐𝑙𝑙                                                           (2.14) 
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Different calibrations based on the Beer-Lambert law exist for the quantification of the 

water content in olivine (e.g., Bell et al., 2003; Paterson, 1982; Withers, 2013). In this 

work we performed unpolarized FTIR of doubly polished polycrystalline samples of 200 

µm thickness. The spectra were acquired under atmospheric conditions, using an 

aperture of 100 µm and a resolution of 2 cm-1. The water contents from FTIR 

absorbance spectra were calculated using the calibration of Paterson (1982). The 

spectrum baseline was fitted to a spline curve estimated using the function msbackadj 

from MATLAB®. The numerical integration of the spectrum area over the baseline in 

the range of 2950 cm-1 to 3780 cm-1 was done via the trapezoidal method (using the 

function trapz) using MATLAB®. 

 

Figure 2.10: Simplified model of an interferometer used in FTIR spectroscopy. Modified from 
Stuart (2004) 
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 Synopsis 
This chapter summarizes the main findings of this study which aimed to answer the 

questions presented in Chapter 1. The Chapter 4, published as Ferreira et al. (2021), 

is focused on the evolution of grain boundaries during deformation of olivine and the 

interactions of grain boundaries with dislocations. The Chapter 5, submitted to the 

Journal of Geophysical Research: Solid Earth, discusses the effect of pressure on the 

grain growth of olivine. The Chapter 6, which has been prepared for submission, 

presents a new high-pressure deformation assembly and discusses the effect of grain 

boundaries during deformation of olivine at high pressure and temperature. The 

Chapter 7, which has also been prepared for submission, presents a new toolbox for 

the analyses of grain boundaries using EBSD data. The contribution of co-authors to 

this study is presented at the end of this chapter. The computer scripts used in this 

Thesis are available at: https://doi.org/10.5281/zenodo.5344419. 

 

3.1. The effect of grain boundaries on plastic 
deformation of olivine 

Previous studies (e.g., Hansen et al., 2011; Kohlstedt and Hansen, 2015; Ohuchi et 

al., 2015) demonstrate that dislocation-accommodated grain-boundary sliding 

(disGBS) is likely the main deformation mechanism for olivine in most of Earth’s upper 

mantle. In Chapter 4, we used electron backscattered diffraction (EBSD) and 

transmission electron microscopy (TEM) data to investigate the micromechanics 

involved in the deformation of olivine deformed experimentally in the disGBS regime. 

We evaluated the evolution of grain boundaries using the grain-boundary plane 

distribution (GBPD) technique. The interaction between dislocations and grain 

boundaries were investigated using misorientation data and through the evaluation of 

potential slip transfer through the m’ factor (e.g., Luster and Morris, 1995). 
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The results shown in Figure 3.1 illustrate the evolution of grain boundaries as a function 

of strain. We demonstrated that the grain boundary planes evolve from an uniform 

distribution, for the starting material, to (hk0) planes at deformed samples. At the 

highest strain interval investigated, 𝛾𝛾 ≈ 10, the (010) and (010) planes are the most 

abundant. We propose a model where the grain boundaries are formed as a result of 

dislocation creep predominantly along the (010) [100] slip system (Figure 3.2).  

 

Figure 3.1: GBPDs of olivine for all, high-angle (misorientation angle higher than 20º) and 
low-angle grain boundaries (misorientation angle between 2º and 20º) for the starting 
material and for increasing strain. The pole figures within the red bounding area are scaled to 
have a maximum MUD of 1.5 (left side of the color scale) while the remaining pole figures 
are scaled to have a maximum MUD of 3.4 (right side of the color scale). The number of 
boundary segments (n) is given below each plot. Pole figures are upper hemisphere 
projections. The bottom row illustrates the average crystal shape estimated from the grain-
boundary plane distribution of all boundaries. 
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Figure 3.2: Schematic model of the proposed grain-boundary formation mechanism and its 
influence on grain boundary sliding. a) A dislocation with line direction u glides through the 
crystal on the [100](010) slip system, shearing the crystal by one Burgers vector, b. b) 
Progressive deformation leads to continuous shearing of the crystal. c) As a result of the 
general shape change of the crystal, the grain boundaries become parallel to approximately 
(140). The continuous absorption of dislocations into the grain boundaries leads to relative 
rotation between grains d) and e), which progresses until the neighboring grains are oriented 
in such a manner that f) dislocations are easily transferred to the neighboring crystal. This 
transfer occurs when the burgers vectors of the active dislocations in neighboring lattices are 
close to parallelism. 

 

Pommier et al. (2018) suggested that certain grain boundaries with higher electrical 

conductivity could be responsible for creating electrical anisotropy in the Earth’s 

mantle. Our results suggest that the activation of different slip systems would result in 

the development of different grain-boundary populations. This would lead to varied 

geophysical responses throughout the upper mantle, as multiple slip systems of olivine 

are likely activated in this region (e.g., Jung et al., 2006). 

Misorientation data and the slip transfer analyses indicate that the grain boundaries 

are not strong barriers for the motion of dislocations, and no widespread pile-up of 
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dislocations occur near the grain boundaries . Our results suggest that the dislocations 

are either transmitted through the grain boundaries or assimilated as grain-boundary 

dislocations. The motion of grain-boundary dislocations modifies the grain-boundary 

structure and allow grain-boundary sliding to occur. This process would ultimately 

control the strain rate of olivine deformed in the disGBS regime, and thus be an 

important processes controlling mass and heat flow in the Earth’s upper mantle. 

 

3.2. Pressure dependence of olivine grain growth at 
upper mantle conditions 

The grain size evolution in the mantle influences the predominant deformation 

mechanism and thus has a great effect on the viscosity in this region. Grain sizes in 

the upper mantle are controlled by grain-size reduction, trough static or dynamic 

recrystallization, and grain growth. Grain growth of olivine, the major phase of the 

upper mantle, has been extensively studied (e.g., Faul and Scott, 2006; S. Karato, 

1989; Nakakoji and Hiraga, 2018; Nichols and Mackwell, 1991), although no studies 

investigated how does pressure conditions at the middle and at the deep upper mantle 

affect the grain growth of olivine. In Chapter 5, we investigated the grain growth of 

olivine through experiments performed using piston cylinder and multianvil apparatus 

at pressures ranging from 1 to 12 GPa and temperatures ranging from 1323 K 1793 K. 

The resulting grain sizes after each experiment were measured using EBSD and are 

shown in Figure 3.3 as log-normal distributions fitted to the grain-size data.  

Our results demonstrate that the grain-growth rate of olivine decreases as pressure 

increases. Grain-boundary diffusion was proposed to control grain growth and diffusion 

creep of olivine (Nakakoji and Hiraga, 2018). Fei et al., (2016) demonstrated that the 

grain-boundary diffusion coefficient of Silicon, the slowest diffusing species in olivine 

(Farver and Yund, 2000), decreases for increasing pressure. We suggest therefore 

that the decrease in the grain-growth rate of olivine might be explained by the decrease 

in the rates of Si grain-boundary diffusion for increasing pressures. 

Non-linear least-squares fitting of our grain size data at 1673 K and 13 vol.% Px to a 

normal grain growth equation gives 𝑘𝑘0 = 2.11 x 10-7 (m3.88s-1), n = 3.88, 𝑉𝑉∗ = 4.30 x 10-

6 (m3/mol) and 𝐸𝐸∗ = 607 (kJ/mol). Extrapolation of these results to geological durations 

(e.g. 1-100 Ma), considering existing olivine flow laws (Goetze et al., 1978; Hansen et 
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al., 2011; Hirth and Kohlstedt, 2003) and assuming that shear stresses are on the order 

of 0.1-1 MPa at a depth of ~210 km (P ≈ 7 GPa) (Kohlstedt and Hansen, 2015), olivine 

is expected to deform in a grain-size sensitive rheology at these conditions. Thus, our 

results indicate that a change to a Newtonian rheology at deeper parts of the upper 

mantle (e.g. Karato and Wu, 1993) may be influenced by the slower grain growth rate 

of olivine, preserving smaller grain sizes than previously expected for the middle to 

deep upper mantle (e.g., S. Karato, 1989). 

 

Figure 3.3: Lognormal fit to the grain-size distributions: The upper row (a-c) shows a time 
series of experiments performed at 1673 K and pressures of a) 1 GPa and b) 7GPa. c) Mode 
of the of the fit to the grain-size distribution as a function of time. The middle row (d-f) shows 
the temperature series of experiments performed for 24 hours at pressures of d) 1 GPa and 
e) 7GPa. f) Mode of the of the fit to the grain-size distribution as a function of temperature. 
The bottom row (g-i) shows the pressure series of experiments performed at 1673 K for 24 
hours for samples containing g) 6 vol.% and h) 13 vol.% of pyroxene. i) Mode of the fit to the 
grain-size distribution as a function of pressure for samples with a Pyroxene content of 6 
vol.% and 13 vol.%. 
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The impact of an activation volume for grain growth on the deep upper-mantle viscosity 

is illustrated in Figure 3.4. The expected viscosities when considering an activation 

volume of 4.3 x 10-6 m3/mol are approximately one order of magnitude lower than when 

no activation volume (0 m3/mol) is considered. These results suggest that, with 

increasing depths in the Earth’s upper mantle, the reduction of grain-growth rates of 

olivine due to increasing pressure may offset the temperature effect. Based on these 

observations, we suggest that upper mantle viscosities may be lower at increasing 

pressures than previously expected. 

 

Figure 3.4: Viscosity estimation at deep upper mantle conditions: a) Average temperature 
profile of the deep upper mantle (Katsura et al., 2004). b) Expected grain sizes at 1 Ma 
(dashed lines) and 10 Ma (dotted lines) at the conditions of the geotherm shown in figure a, 
considering an initial grain size 𝑑𝑑0= 10 µm, an activation volume of V* = 0 m3/mol (blue lines) 
and V* = 4.3 x 10-6 m3/mol (orange lines). Resulting viscosity profile of the deep upper 
mantle considering the grain size evolution shown in b, for a constant shear stress of 1 MPa 
and strain rates from experimental flow laws of diffusion creep (Hansen et al., 2011; Hirth 
and Kohlstedt, 2003), disGBS (Hansen et al., 2011), and dislocation creep (Hirth and 
Kohlstedt, 2003).  

 

3.3. Towards the investigation of the grain-boundary 
effects in the plastic deformation of olivine at high 
pressures 

Information on the natural deformation of olivine under the conditions Earth’s deep 

upper mantle (depths>200 km) is limited. Thus, the microphysical processes operating 

at depths are mostly inferred from geophysical observations coupled with experimental 

data. However, experimental data on deformation of olivine at high pressures is limited 

and great uncertainty still exists about the deformation mechanisms operating at large 



 47 

depths. Here, we investigate the effect of grain boundaries on the strength of olivine-

dominated aggregates at deep upper mantle conditions (7-10 GPa, 1623 K). We 

present a new set of deformation anvils and assembly (8-5) used to investigate the 

simultaneous deformation of coarse (reconstituted San Carlos olivine) and fine-grained 

(sol-gel) olivine aggregates. The experiments were performed in pure-shear geometry 

using a MAVO-6 press (Max Voggenreiter GmbH). Recovered samples after the 

deformation experiments were analyzed using EBSD.  

Figure 3.5 shows secondary-electron images of the recovered samples from 

experiments performed at 7 GPa. The fine-grained olivine aggregates deformed almost 

an order of magnitude faster than the coarse-grained aggregates. Figure 3.6 illustrates 

intragranular misorientations found in the fine-grained samples after deformation. The 

presence of sub-grain structures even in the smallest grain-size fraction indicate that 

dislocation creep was operative. These results suggest that deformation by dislocation 

creep in fine-grained olivine is faster than for coarse-grained olivine in our experiments. 

Our results differ to those observed for low-temperature deformation of olivine, where 

an increase in grain boundaries correlate to a decrease in strain rates (e.g., Hansen et 

al., 2019; Kumamoto et al., 2017). During low-temperature deformation, grain 

boundaries act as barriers for dislocation motion, leading to strain hardening (Hall, 

1951; Petch, 1953). At high-temperature deformation, however, diffusive processes 

take place, allowing dislocations to climb obstacles such as grain boundaries 

(Weertman, 1957), or to be assimilated within the grain boundary (see Chapter 4). The 

motion of grain-boundary dislocations is one of the main mechanisms controlling grain-

boundary sliding (e.g., Ishida and Brown, 1967; Langdon, 1970). Consequently, an 

increase in the amount of grain boundaries would allow more incorporation of 

dislocations and subsequent sliding. Therefore, smaller average grain sizes lead to 

faster strain rates, that is, strain weakening.  

Experiments performed at pressures of 10 GPa (see Figure 6.7) show widespread 

fracturing and faulting, when plastic deformation was expected. At large confining 

pressures, fracturing should be inhibited (e.g., Byerlee, 1968; Lockner and Beeler, 

2002) and its occurrence is unclear. Possible explanations include failure due to 

localized heating, phase transitions, thermal contraction, and release of elastic energy 

from the anvils or assembly parts (i.e. blow out). The use of acoustic-emission 
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measurements during the experiments (e.g., Ohuchi et al., 2017; Wang et al., 2017) 

could provide important information of the mechanisms involved in this process. 

 

Figure 3.5. Secondary electron images of recovered samples after deformation at a confining 
pressure of 7 GPa: a) Experiment HH221. b) Experiment HH222. The direction of maximal 
compression, 𝜎𝜎1, is vertical and the direction of minimal compression, 𝜎𝜎3, horizontal.  
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Figure 3.6: Intergranular misorientation of fine-grained olivine in experiment HH222. EBSD 
data are colour-coded by the angular misorientation to the mean orientation of the grains, 
from 0º (dark blue) to 10º (light yellow). Arrows in b-d) indicate sharp misorientation bands in 
very small grains (<10 µm). Insets dimensions are 100 µm x 100 µm.  

 

3.4. A MATLAB®/MTEX toolbox for grain boundary 
plane and character distribution 

 

Many properties of polycrystalline materials are directly correlated with the structure of 

grain boundaries (Sutton and Balluffi, 1995). Therefore, the characterization of grain 

boundaries is needed in order to understand macroscopic processes such as plastic 

deformation, fracture, corrosion, segregation and diffusion in materials (Watanabe, 

2011). The grain boundary plane and character distribution (GBPD and GBCD) 

calculated from 2-D EBSD data are cost-effective and fast techniques to obtain a 

macroscopic description of grain boundaries. Computer programs written in FORTRAN 

language by Rohrer and collaborators (Saylor et al., 2002; Saylor and Rohrer, 2002) 

allow the calculation of the GBPD and GBCD from EBSD data. Nonetheless, tools for 
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importing, visualizing, treating and exporting EBSD-related data in proprietary software 

packages are still limited. In Chapter 7, we provide a toolbox written in MATLAB® to 

extract grain-boundary information from EBSD data, execute the GBPD and GBCD 

programs and plot the results. We also compare the output data from our toolbox with 

commercially available alternatives such as the EDAX OIM™ software. 

The toolbox that we provide can be easily combined with the MTEX toolbox for 

MATLAB® (Hielscher and Schaeben, 2008). MTEX is an open-source toolbox that 

allows EBSD data from several vendors or any generic spatial/crystal orientation data 

to be imported and analysed. MTEX provide functions to access and classify grain 

boundaries according to their properties, or any other user-defined criteria. This allows 

for better control on the exported grain-boundary segments and improved 

understanding of grain-boundary types and populations. 

Furthermore, our toolbox provide important advantages when compared to existing 

proprietary software such as EDAX OIM™. The OIM™ software create segments by 

connecting triple junctions following the calculated grain boundaries. Using the grain-

boundary segmentation and smoothing methods provided by MTEX, we are able to 

better define complex grain geometries and avoid segmentation artifacts such as stair-

casing (Figure 3.7).  

In contrast to EDAX OIM™, our toolbox also allows the analyses of grains within other 

grains. This distinction is of great importance for the analyses of geological samples, 

as inclusions, overgrowth and twinning microstructures are common features in rocks 

(e.g., Vernon, 2004). Lastly, the provided toolbox is open source, which allows for 

continuous improvement and increasing number of functions.  

 



 51 

 

Figure 3.7: Comparison of segments (black lines) exported from a) EDAX OIM™ and MTEX 
for b) no smoothing and increasing number of smoothing iterations of c) 1, d) 2, e) 5 and f) 
10 iterations. 

 

 

a) b) c) 

d) e) f) 
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Abstract 

The plastic deformation of olivine has been studied for decades. However, the precise 

role of grain boundaries during deformation in, for example, the dislocation-

accommodated grain-boundary sliding regime, remains poorly understood. 

Specifically, we lack knowledge regarding the manner in which grain boundaries 

interact with other defects, such as dislocations, during deformation. To investigate the 

interaction of dislocations and grain boundaries, we analyzed the structure and 

distribution of grain boundaries in a polycrystalline aggregate of Fo50 deformed in 

torsion (Hansen et al., 2012a). We characterized the microstructure of the aggregate 

using electron-backscatter diffraction and transmission electron microscopy in three 

perpendicular directions. An increase in plastic strain is associated with the 

development of a strong crystallographic preferred orientation and a grain-boundary 

plane distribution that evolves from a uniform distribution to one dominated by (010)-

type planes. We use the m’ factor, to evaluate the potential for transmission of 

dislocations across grain boundaries based on the relative orientations of slip systems 

between neighboring grains. With progressive deformation, our analysis indicates an 

increase in abundance of apparently slip-transparent boundaries until moderate strains 

(𝛾𝛾=4) are reached. Based on these observations, we propose that specific types of 

grain boundaries are created by dislocation activity and that the input of dislocations 

into grain boundaries facilitates grain-boundary sliding. Our results provide insight into 

the microphysics of olivine deformation and highlight the importance of the coupled 

study of inter- and intragranular mechanisms during rock deformation. 
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4.1. Introduction 

The mechanical properties of Earth’s upper mantle affect large-scale geophysical 

phenomena such as long-term flow of the asthenosphere and intermediate- to short-

term deformation of the lithosphere. Viscous deformation of the mantle is central to 

mantle convection (e.g., Hess, 1964), vertical motion of the lithosphere in response to 

changes in surface loads (e.g., Christensen, 1987), the evolution of stresses at the 

base of major seismogenic faults (e.g., Freed, 2004), and the localization of 

deformation to form new plate boundaries (e.g., Bercovici, 2003; Tackley, 2000). 

Unfortunately, constitutive models for the viscous deformation of olivine, the primary 

mineral in the upper mantle, are in part empirical and require calibration through 

experiments. Thus, extrapolation of those models to geological conditions relies 

heavily on the quality of the calibration. In general, confidence in extrapolation 

increases if models are based on the microphysical processes facilitating deformation. 

Consequently, we aim to elucidate a key process in deforming rocks, the interaction of 

dislocations and grain boundaries, with a specific focus on the evolution of grain 

boundaries during deformation.  

 

Previous studies demonstrate that grain boundaries can influence the deformation of 

Earth’s mantle through the activation of grain-boundary sliding, and this sliding appears 

intimately associated with the generation and motion of lattice dislocations. In 

dislocation-accommodated grain-boundary sliding (disGBS), stress concentrations 

produced by grains sliding past their neighbors are relaxed by dislocation motion. This 

process is predicted to be a major creep mechanism in the upper mantle (e.g., Bollinger 

et al., 2019; Hansen et al., 2011; Kohlstedt and Hansen, 2015; Ohuchi et al., 2015). 

Alternatively, in diffusion-accommodated grain-boundary sliding, stress concentrations 

are relaxed by diffusion of point defects, which may also be highly relevant in the upper 

mantle (e.g., Maruyama and Hiraga, 2017; Miyazaki et al., 2013). 

 

In addition, disGBS likely relies on the motion of grain-boundary dislocations. The role 

of grain-boundary dislocations in facilitating the actual sliding process has been 

discussed previously in numerous studies (e.g., Ishida and Brown, 1967; Lim and Raj, 

1985; Pond et al., 1978b; Pshenichnyuk et al., 1998). Ishida and Brown (1967) 

proposed that grain-boundary sliding occurs as a result of a mixture of climbing and 
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gliding of dislocations in the grain boundary, causing relative motion and/or rotation of 

the grains. Dislocation glide in the grain-boundary plane can only occur if the Burgers 

vectors of these dislocations is parallel to the grain-boundary plane. Consequently, 

most types of dislocations must dissociate to glide within the boundary. If the Burgers 

vector of a dislocation is not parallel to the grain boundary, the movement of the 

dislocation requires climb and thus absorption and/or emission of vacancies. 

Therefore, the ease of grain-boundary sliding likely depends on the availability of grain-

boundary dislocations and the structure of the grain boundary itself.  

One source of grain-boundary dislocations is lattice dislocations that interact with the 

grain boundary. A popular model for the role of disGBS in moderating rheological 

behavior comes from Langdon (1994), who proposed that the overall macroscopic 

strain rate depends on the rate at which lattice dislocations climb and are incorporated 

into grain boundaries. It is those newly incorporated dislocations that then give rise to 

grain-boundary sliding. Therefore, the overall rheological behavior hypothetically 

depends on interaction among the incorporation of lattice dislocations into boundaries, 

the structure of the grain boundaries, and the motion of the grain-boundary dislocations 

that lead to sliding. Because this interaction should involve a link between grain-

boundary structure and dislocation-boundary interaction, we aim to elucidate the 

microphysics of disGBS in olivine by studying the evolution of the grain-boundary plane 

population and the influence of specific types of grain boundaries on dislocation 

motion. To this end, we employed electron-backscatter diffraction and statistical 

analyses on more than one million grain boundaries. 

 

4.2. Methods 

 

 Sample 

Here we analyze microstructural features in an olivine (Fo50) aggregate deformed in 

torsion at constant torque in a Paterson apparatus at the University of Minnesota 

(sample PT-0499; Hansen et al., 2012a). Fo50 was implemented in this deformation 

experiment because it is significantly weaker than olivine with lower Fe contents (e.g., 

Fo90). Although this material has a much higher Fe content than olivine in Earth’s upper 

mantle, previous studies reveal that similar deformation mechanisms (Hansen et al., 
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2012a, 2012b; Zhao et al., 2009) and microstructural evolution (Hansen et al., 2014) 

occur in Fo90 and Fo50 olivine, despite the difference in the homologous temperature 

of the experiments (e.g., at the experimental conditions of PT-0499, T = 1473 K and P 

= 300 MPa, T/Tm = 0.67 for Fo90 and T/Tm = 0.83 for Fo50 (Wang, 2016)). As described 

in Hansen et al., (2012a), the starting material was obtained by first calcining mixtures 

of San Carlos olivine (Fo91) and Fe2SiO4 to produce Fo50. Fo50 powders were then hot-

pressed in a Paterson apparatus at 1523 K (T/Tm = 0.86) and 300 MPa. The starting 

material has an average grain size of ~40 µm. The microstructure and crystallographic 

preferred orientation (CPO) of the starting material (sample PT-0535) are presented in 

Figure A.3.1. The sample was deformed at a shear stress, 𝜏𝜏, of 168 MPa, temperature, 

𝑇𝑇, of 1473 K, and shear strain rate, �̇�𝛾, of 5x10-4 s-1. Deformation was carried out to a 

maximum shear strain at the outer radius of the sample, 𝛾𝛾max, of 10.9. Further 

description of sample preparation and deformation conditions and the mechanical 

results are presented in Hansen et al. (2012a). Along a radial section (Figure 4.1), the 

finite shear strain, 𝛾𝛾, increases linearly with the sample radius, r, from the center 

towards the outer edge, 𝑟𝑟max, according to (Paterson and Olgaard, 2000) 

𝛾𝛾 = 𝑟𝑟𝛾𝛾max
𝑟𝑟max

.            (1) 

Analysis of the radial section therefore allows the microstructure to be characterized 

over a range in shear strain. 
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Figure 4.1: Geometry of deformation and orientation map of a radial section of the sample. 
Orientations are colored with respect to the X direction as indicated in the inverse pole figure. 
The bottom axis of the map indicates the sample radius, and the upper axis indicates the 
accumulated shear strain. Shear sense is top into the page, as indicated by the arrow on the 
bottom left diagram and at the right side of the orientation map. The torsion axis is parallel to 
Z and the mapped section is parallel to the YZ plane and colored blue on the bottom left 
diagram. EBSD maps were also acquired on the red and green sections in the bottom left 
diagram. The green sections are normal to the YZ plane and parallel to the Z axis, although 
they do not contain the Z axis. We refer to these sections as XZ’, XZ’’ and XZ’’’. The red 
section is normal to the Z axis, which we refer to as the XY plane. TEM data were acquired in 
planes XZ’, XZ’’ and XZ’’’.  

 

 EBSD data acquisition and treatment 

Electron backscatter diffraction (EBSD) data were acquired using an FEI Scios Dual-

Beam Scanning electron microscope with a 20 keV beam energy and 3.2 nA beam 

current, coupled with an EDAX DigiView 5 EBSD detector. EBSD data were acquired 

from three mutually orthogonal surfaces according to the deformation geometry (Figure 

4.1). These sections consist of a radial section parallel to and containing the torsion 

axis (YZ plane), a transverse section normal to the torsion axis (XY plane), and a 

tangential section parallel to the torsion axis but not containing it (XZ’, XZ’’, or XZ’’’ 

plane). Mapping was conducted at a step size of 1 μm using a hexagonal grid. The 

chosen step size is at least 20 times smaller than the average grain size. Raw EBSD 

data were processed using EDAX OIM Analysis™ software. We refrained from 

computationally expensive routines such as dictionary indexing (Callahan and De 
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Graef, 2013; Marquardt et al., 2017; Roşca and Graef, 2013; Singh and Graef, 2016) 

or Neighbor Pattern Averaging and Re-indexing (Wright et al., 2015), as the standard 

cleaning routines outlined in the following proved to be sufficient. Indexed points were 

each assigned a confidence index, which is the difference in the number of votes 

received by the highest and second highest ranking possible solutions divided by the 

number of total possible votes. Thus, a confidence index of 1 indicates that a unique 

solution was found for all indexed Kikuchi bands. A confidence index close to 0 

indicates that many possible solutions were found, and thus the indexing has a large 

uncertainty. For each EBSD map, 75 to 95% of the data had a confidence index higher 

than 0.1. Pixels with lower confidence indices are mainly associated with 

decompression cracks. Data with a confidence index smaller than 0.1 were deleted. 

Not-indexed or deleted pixels were not further considered. Grain boundaries were 

defined by misorientation angles higher than 20º bounding continuous regions of 

similar orientation that include more than 20 indexed pixels. Larger regions of not-

indexed pixels associated with decompression cracks were excluded from the EBSD 

data based on the ratio between the number of pixels in the region and its boundary 

length. Regions of not-indexed pixels with a ratio smaller than 0.8 were removed. Low-

angle grain boundaries were defined by misorientation angles ranging from 2 to 20º. 

The cutoff at 20° was chosen based on the observations of Heinemann et al. (2005) of 

low-angle grain boundaries in forsterite. Misorientation angles smaller than 2º are not 

considered here. The grain-boundary traces were reconstructed by connecting triple 

points using the EDAX OIM Analysis™ software ensuring the best-fit trace did not 

deviate from the mapped grain boundary by more than twice the step size (Wright and 

Larsen, 2002). EBSD data were further analyzed with the MTEX toolbox for texture 

analyses in MATLAB® (Hielscher and Schaeben, 2008). Orientation distribution 

functions were calculated from orientation data using a half width of 8º for all analyses. 

Orthopyroxene, which buffers SiO2 activity, is present in ~1% of the sampled area, 

however, we only present data for olivine and olivine grain boundaries. 

 

 Transmission Electron Microscopy 

Three areas were selected for transmission electron microscopy (TEM). The areas of 

interest were selected from low, intermediate, and high-strain regions of the sample in 

the XZ’, XZ’’ and XZ’’’ planes (Figure 4.1), respectively. Doubly polished thin sections 
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mounted in resin were prepared with a thickness of 30 μm. The samples were glued 

on a copper mesh grid using Araldite® resin. Samples were further thinned to obtain 

electron-transparent areas using a Gatan precision ion polishing system model 691. 

Samples were carbon coated before TEM analyses to ensure electron conduction. 

Additional samples of specific grain boundaries were prepared using an FEI Scios 

focused ion beam system. TEM lamellae of approximately 20, 15, and 0.1 μm in width, 

height, and thickness, respectively, were prepared using a Ga+ beam. TEM analyses 

on all samples were performed in an FEI Titan operating at 200 keV. Contrast-limited 

adaptive histogram equalization was applied to TEM images using a Rayleigh 

distribution. 

 

 The grain-boundary character distribution 

A ‘five parameter’ description of grain boundaries has been in use for several decades 

to describe the character of grain boundaries in polycrystalline materials (e.g., Read 

and Shockley, 1950; Rhines, 1970; Watanabe, 2011). The five parameters fully 

characterize a grain boundary. The grain-boundary character and grain-boundary 

plane distributions can be determined stereologically based on the work of Saylor and 

Rohrer (2002) and Rohrer et al. (2004). Two parameters define the axis and one the 

angle of misorientation (Figure A.3.2a). The description of the plane normal requires 

two spherical angles, the radial angle, 𝛼𝛼, and the azimuthal angle in relation to the 

section surface, 𝛽𝛽 (Figure A.3.2b). 

However, acquiring enough measurements of these parameters has traditionally been 

unfeasible. Progress in the automated indexing of electron channeling patterns and 

electron backscatter patterns (EBSP) made the determination of the grain-boundary 

character distribution technically feasible (Watanabe, 1984). This process has been 

further simplified through automated EBSP collection, i.e., EBSD (Wright and Adams, 

1992). Geometrical aspects of grains, and therefore grain boundaries, can then be 

derived. Three types of analyses of the grain-boundary character distribution can be 

performed: 2-D, pseudo-3-D, or 3-D. 3-D analyses require serial sectioning of the 

sample by automated ion milling (e.g., Kelly et al., 2016) or by serial polishing (e.g., 

Khorashadizadeh et al., 2011). Pseudo-3-D analyses require two orthogonal surfaces 

intersecting at a sharp edge, at which the full orientation of individual boundaries can 

be analyzed (e.g., Randle and Dingley, 1989). 2-D analyses require only a single 
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surface and have the main advantage of sampling a larger number of boundary 

segments in less time with simpler sample preparation. 2-D analyses use the 

determined crystal orientations and the grain-boundary segment orientation, which is 

rotated into the crystal reference frame (Figure A.3.2c). Although the actual grain-

boundary plane is unknown, it must be contained in a set of planes whose poles are 

orthogonal to the grain-boundary segment. This set of possible planes can be 

represented in a stereographic projection by a great circle normal to the line segment 

and weighted by the probability of intersecting with the planar surface. Planes that are 

parallel to the section are less likely to be sampled than the ones perpendicular to the 

section (Figure A.3.2d). If enough boundaries are observed, the intersection of the 

great circles gives rise to the position of the most common grain boundaries. Since 

non-habit planes will be sampled with a lower probability, their statistical relevance will 

be considerably smaller (Saylor and Rohrer, 2002). 

The grain-boundary plane distributions (GBPDs) presented here are calculated from 

EBSD data acquired in three mutually orthogonal surfaces (Figures 4.1 and 4.2), 

considering the same minimum number of boundary segments for all surfaces. 

Orthogonal surfaces are frequently used for the stereological analyses of textured 

samples (Howard & Reed, 2004). The validity of using orthogonal surfaces to 

reconstruct 3-D microstructures from textured samples has been demonstrated by 

several theoretical and experimental studies (e.g., Larsen and Adams, 2004; Rollett et 

al., 2007b; Saylor et al., 2004). The GBPD was calculated with an angular resolution 

of 10º (9x9 binning). Crystal shapes were constructed considering that the GBPD 

provides an estimate of the average area of the grain-boundary plane for each type of 

boundary. We extracted the multiples of uniform distribution from the GBPD using a 

grid of 288 potential habit plane orientations (15º angular resolution of the GBPD). The 

software WinXMorph (Kaminsky, 2005) was used to reconstruct the apparent crystal 

shapes. The shapes were built considering that multiples of uniform distribution 

obtained from the GBPD are directly related to the relative area of grain-boundary 

planes and that the area of a given habit plane is the inverse of its distance to the 

center (origin) of the crystal (see Rheinheimer et al., 2015; Saylor and Rohrer, 2002). 

The crystal shapes allow for comparison with average crystal shapes obtained from 

numerical models and allows for correlation with interface properties such as grain 

boundary energy (e.g., Salama et al., 2020). 
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To date, only the GBPD resulting from surface-energy minimization via grain growth 

has been analyzed in olivine (Marquardt et al., 2015; Marquardt and Faul, 2018). 

However, the GBPD can also be influenced by dynamic processes such as 

deformation. Here we examine the GBPD of deformed olivine to investigate the 

interaction of dislocations with grain boundaries and the relationship of that interaction 

to the evolution of the GBPD.  

 

Figure 4.2: Example of microstructures observed in the torsionally deformed sample: EBSD 
image quality maps for different mapped surfaces and strain intervals. Lighter pixels indicate 
diffraction patterns with higher contrast. Maps are 200 x 200 μm. The shear sense is 
indicated by the arrows. 

  



 65 

 

 Slip-transfer analyses 

The potential transfer of dislocations across individual grain boundaries (slip transfer/ 

transmission) is a significant process by which grain boundaries moderate 

macroscopic deformation (e.g., Dingley and Pond, 1979). Slip-transfer analyses are 

based on the hypothesis that transfer of dislocations from one grain to an adjacent 

grain requires geometric compatibility between their slip systems. Transmissibility is 

increased for smaller angles between the slip plane normals, 𝜓𝜓, and for smaller angles 

between the slip directions, 𝜅𝜅, of the incoming (𝐼𝐼) and outgoing (𝐼𝐼𝐼𝐼) slip systems (Figure 

4.3). This relation is described by the m’ factor (Equation 4.2), which ranges from 0 for 

a boundary that is unfavorable for dislocation transfer, to 1, for a boundary that is 

favorable for dislocation transfer (Luster and Morris, 1995).  

𝑚𝑚′ = (𝑛𝑛A ∙ 𝑛𝑛B)(𝛼𝛼A ∙ 𝛼𝛼B) = 𝑐𝑐𝑐𝑐𝑠𝑠 (𝜓𝜓) ∙ 𝑐𝑐𝑐𝑐𝑠𝑠 (𝜅𝜅)               (4.2) 

The orientation of the slip plane normal, 𝑛𝑛, and slip direction, 𝛼𝛼, in the crystal reference 

frame are defined as 

𝑛𝑛A,B = 𝑔𝑔A,B.𝑛𝑛I,II                  (4.3) 

𝛼𝛼A,B = 𝑔𝑔A,B. 𝛼𝛼I,II,                  (4.4) 

where 𝑔𝑔 is the mean orientation of the neighboring grains (A, B).  

Note that equations 4.2-4.4 do not include any parameter describing the geometry of 

grain boundaries, for example grain boundary orientation, as in other models for slip 

transmission (e.g., Bayerschen et al., 2016). Thus, the m’ factor is independent of the 

smoothing of grain boundaries and the EBSD step size. 

For slip transfer to occur, the resolved shear stress acting on the slip systems in each 

grain should be maximized (Lee et al., 1989; Luster and Morris, 1995). The slip system 

considered to be best aligned for creep within each grain is the one with the highest 

resolved shear stress, 𝜏𝜏𝑟𝑟, given by 

𝜏𝜏r = 𝑀𝑀𝑖𝑖𝑖𝑖 ⊗ 𝜎𝜎𝑖𝑖𝑖𝑖,                   (4.5) 

where 𝜎𝜎𝑖𝑖𝑖𝑖 is the applied stress, and 𝑀𝑀𝑖𝑖𝑖𝑖 is the Schmid tensor,  

𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑖𝑖 ⊗ 𝛼𝛼𝑖𝑖.                  (4.6) 
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For a tangential section of a sample deformed in torsion with a top-to-the-left sense of 

shear on the YZ plane, and assuming a simple-shear geometry, the stress tensor is 

given by  

𝜎𝜎𝑖𝑖𝑖𝑖 = �
𝑃𝑃 0 0
0 𝑃𝑃 𝜏𝜏
0 𝜏𝜏 𝑃𝑃

�,                  (4.7) 

where 𝑃𝑃 is the confining pressure and 𝜏𝜏 is the shear stress. For simplicity, we consider 

the local stress state at each point in the microstructure to be equal to this macroscopic 

stress state, although we recognize that local variations in stress can be significant 

(e.g., Wallis et al., 2019). 

 

 

Figure 4.3: a) Schematic of slip transfer across a grain boundary. b is the slip direction 
(Burgers vector), n is the slip plane normal, and 𝜅𝜅 and 𝜓𝜓 are the angles between the slip 
direction and slip plane normal of the neighboring crystals, respectively. b) Slip transfer is 
predicted to occur when both 𝜅𝜅 and 𝜓𝜓 are small, which corresponds to an m’ factor close to 
1. 

For our analysis of slip transfer in olivine, we consider the set of slip systems listed in 

Table 4.1. As reviewed by Tommasi et al. (2000), these slip systems represent the most 

often identified slip systems in olivine over a wide range of conditions. We also included 

slip systems identified in olivine deformed at low-temperature and high-stress 

conditions (Mussi et al., 2014, 2015).  
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Table 4.1: Olivine slip systems 

Slip plane (n) Slip direction (b) 

(0 1 0) [1 0 0] 

(0 1 0) [0 0 1] 

(1 0 0) [0 0 1] 

(0 0 1) [1 0 0] 

{0 1 1} [1 0 0] 

(1 1 0) [0 0 1] 

(1 3 0) [0 0 1] 

 

4.3. Results 

The CPO evolution in our sample is presented as a function of increasing strain in 

Figure 4.4. As previously demonstrated for this sample and other similar samples 

(Hansen et al., 2014), the [100] axes progressively align with the shear direction. The 

distribution of [010] axes gradually changes from a girdle to a cluster normal to the 

shear plane. Similarly, after moderate strains (𝛾𝛾 ≈ 5), the distribution of [001] axes 

changes from a girdle to a cluster perpendicular to the shear direction and within the 

shear plane.  

 

Figure 4.4: Crystallographic preferred orientations illustrated with pole figures contoured for 
multiples of uniform distribution (MUD). The stereographic projections are plotted in the lower 
hemisphere. Shear sense is top into the page, as indicated at the right side of the image. 
Three sets of pole figures are presented for three different ranges of shear strain. 

 

To obtain a first approximation of the evolution of the 2-D shape of grains, we fit an 

ellipse to each grain and calculated the angle, θ, between the major axis and the shear 

direction (Figure 4.5). Figure 4.5a and 4.5b present grains colored by the angle θ at 
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strains of γ ≈ 5.6 and γ ≈ 9, respectively. Figure 4.5c and 4.5d present the θ distribution 

(rose diagram) of both samples. Figure 4.5.e presents the average shape of the fitting 

ellipses at strains of γ ≈ 5.6 (yellow) and γ ≈ 9 (red). The average 𝜃𝜃 for γ ≈ 5.6 is 𝜃𝜃 = 

23º and for γ ≈ 9 is 𝜃𝜃 = 31º. 

 

Figure 4.5: Fit of ellipses to a subset of grains on the XZ’’ (γ ≈ 5.6) and XZ’’’ (γ ≈ 9) sections. 
Grains are colored by the angle, θ, between the major axis of the best-fitting ellipse and the 
shear direction at a) γ ≈ 5.6 and b) γ ≈ 9. Shear sense is top to the right. Polar histograms 
indicate the angle distribution at c) γ ≈ 5.6 and d) γ ≈ 9. e) Average shape of grains at γ ≈ 
5.6 (yellow) and γ ≈ 9 (red). 
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To investigate the evolution in the abundance of different types of grain boundary, the 

grain-boundary plane distribution (GBPD) was calculated. The GBPD is presented in 

Figure 4.6 as a function of increasing strain. The GBPDs are divided into distributions 

of either high-angle or low-angle grain boundaries. Additionally, the GBPD of the 

starting, undeformed material is displayed in the left column. Figure A.3.3 presents a 

more complete representation of the crystal planes. The bottom row of Figure 4.6 

illustrates the average crystal shapes estimated from the grain-boundary plane 

distribution, considering both high- and low-angle boundaries, although the 

distributions are dominated by the high-angle boundaries.  

The starting material exhibits a relatively uniform distribution of grain boundaries with 

multiples of uniform distribution (MUD) in the range of 1 to 1.3. In other words, the data 

indicate no clear preference of grain boundaries for any specific crystal plane. High-

angle grain boundaries (HAGBs) comprise most (75%) of the total grain boundary area 

and thus exhibit a similar distribution to the GBPD of all grain boundaries. Distributions 

of low-angle grain boundaries (LAGBs) exhibit isolated clustering of plane normals. 

This latter result, however, is likely due to an insufficient number of boundary segments 

in the analyzed maps (Figure A.3.4 and Rohrer et al. (2004)). 

The first strain interval (𝛾𝛾 = 0 - 3.6) results in a GBPD with weak clusters (1 to 2.1 MUD) 

of {hk0} type interfaces. This clustering is primarily due to HAGBs, which represent 

62% of all segments. The distribution of LAGBs is essentially uniform.  

The second strain interval (𝛾𝛾 = 3.6 - 7.3) results in a stronger clustering of (100) with 

MUD up to 3.4. The LAGB population increases for this strain interval, comprising 43% 

of the total. LAGBs reveal a weak girdle distribution close to {hk0}. 

The highest strain interval (𝛾𝛾 = 7.3 - 10.9) results in a clustering (MUD up to 3.1) of 

planes close to (hk0), especially near (010) and (110). The same distribution is 

observed for HAGBs. From low to high strain, the relative amount of LAGBs 

continuously increases, accounting for approximately 50% of all grain boundaries in 

the range of strains from 7.3 to 10.9 (see also Figure 4.7). LAGBs exhibit a clustering 

around (010)-type boundaries with MUD values up to 2.7. Planes close to (001) are 

essentially absent for this strain interval. 
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Figure 4.6: GBPDs of olivine for all, high-angle (misorientation angle higher than 20º) and 
low-angle grain boundaries (misorientation angle between 2º and 20º) for the starting 
material and for increasing strain. The pole figures within the red bounding area are scaled to 
have a maximum MUD of 1.5 (left side of the color scale), while the remaining pole figures 
are scaled to have a maximum MUD of 3.4 (right side of the color scale). The number of 
boundary segments (n) is given below each plot. Pole figures are upper hemisphere 
projections. The bottom row illustrates the average crystal shape estimated from the grain-
boundary plane distribution of all boundaries. 
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Figure 4.7: Misorientation distributions from the YZ plane of sample PT-0499 as a function of 
strain. (left column) Misorientation-angle distributions. Bars represent the distribution of 
misorientations between neighboring grains, and the red line provides the uniform 
misorientation-angle distribution for reference. (right column) Misorientation-axis 
distributions: Misorientation axes are presented in the crystal reference frame in intervals of 
20 degrees from 0 to 120º. The location of maximum density of misorientation axes is 
indicated with a red circle, and annotations denote the corresponding axes.  
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In association with the evolution of grain-boundary types, the calculated values of the 

m’ factor (Figure 4.9) indicate that the fraction of grain boundaries connecting grains 

with similarly oriented slip systems increases as deformation increases. Figure 4.9 

presents the spatial distribution of grain boundaries in the YZ plane colored for the m’ 

factor, which ranges from 0 to 1 as slip systems of adjacent grains are better aligned. 

The potential ease of slip transmission, as estimated by the m’ factor, is predicted to 

increase until an accumulated shear strain of 𝛾𝛾=4 and remain approximately constant 

at higher strains. The rapid initial increase of the m’ factor is correlated with an increase 

in the number of grains oriented to favor activation of the [100] (010) slip system (Figure 

4.10), assuming a homogeneous stress state. The [100] {011} slip system is predicted 

to be highly active, although the apparent resolved shear stress on this system is 

highest at lower strains and significantly reduced at 𝛾𝛾>3.  

To supplement information on the potential transfer of dislocations through grain 

boundaries and other possible dislocation-boundary interactions in greater detail, we 

performed TEM analyses (Figure A.3.5). The TEM analyses were performed in the XZ’, 

XZ’’, and XZ’’’ sections (see Figure 4.1), which allow observation of dislocations of the 

most likely slip system [100](010) due to the strong texture in the sample. In these 

sections, most grains have [001] pointing out of the plane, and thus parallel to the 

incident electron beam. For individual grains, the orientation was confirmed by indexing 

TEM diffraction patterns. Figure A.3.5 illustrates the contrasting behavior of different 

olivine grain boundaries. On the one hand, low-angle grain boundaries (i.e., dislocation 

walls) are intersected by dislocation arrays, apparently without acting as significant 

barriers to dislocation motion (Figure A.3.5a, b, c). On the other hand, grain boundaries 

with a higher misorientation truncate dislocation arrays, apparently acting as barriers 

for dislocation propagation (Figure A.3.5d, e, f). 
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Figure 4.8: Grain size and texture strength evolution as a function of strain. Grain size is 
given by the longest distance between any two vertices of the grains. Texture strength is 
given by the M-index, which ranges from 0 (random fabric) to 1 (single-crystal orientation), 
and by the J-index which ranges from 1 (random fabric) to infinity (single-crystal orientation). 

 

 

Figure 4.9: a) Grain-boundary map in the YZ plane colored according to the m’ factor. The 
magnitude of the shear strain increases from left to right. Slip transfer is predicted to be 
easier as grains align with increasing strain. Insets 1, 2, and 3 are magnified in b (𝛾𝛾 ≈1.8), c 
(𝛾𝛾 ≈5.6) and d (𝛾𝛾 ≈ 9), respectively. Insets are 250 x 250 μm. Shear sense is top into the 
plane of the figure. The m’ factor ranges from 0 for an impenetrable boundary (dark blue), to 
1 for a transparent boundary (pale yellow). 
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Figure 4.10: Slip-system activity and m’ factor evolution for increasing strain. The data are 
presented for 8 sections of equal area along the YZ surface (see Figure 4.1). The apparent 
slip-system activity is given by the ratio between the number of grains in a favorable 
orientation for activation of a given slip system (that is, with the highest Schmid factor) and 
the total number of grains. The given m’ factor is the calculated average of each section. The 
m’ factor ranges from 0 for an impenetrable boundary, to 1, for a transparent boundary. 

 

Although TEM data provide important information on the dislocation distribution, the 

scale of the observations prevents statistical rigor. Therefore, we focus our work on 

EBSD analyses to investigate the spatial distribution of lattice distortions in proximity 

to grain boundaries. Geometrically necessary dislocations induce gradients in the 

elastic and plastic distortion of the crystal (Ashby, 1970). Gradients in the distortion 

can be estimated from EBSD data as local variations in the lattice orientation (e.g., 

Wilkinson and Randman, 2010). We used the kernel average misorientation (KAM) to 

quantify the misorientation over a 3x3 kernel for a maximum misorientation angle of 

8º, and then investigate the magnitude of local misorientation as a function of distance 

to the grain boundary (Figure 4.11). This approach yields a qualitative proxy for the 

density of geometrically necessary dislocations. The grain boundaries used in the 

calculations include low- and high-angle grain boundaries. If the grain boundaries were 

to impose obstacles for the transfer of dislocations, we expect lattice distortion to 

increase near the grain boundaries (e.g., see Fig. 4d in Wallis et al. (2018)). However, 

a correlation between the distance to the grain boundary and the local misorientation 

is not observed. KAM values follow similar distributions for the three considered data 
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sets from low-, moderate-, and high-strain portions of the sample (Figures 4.11 a, b, 

and c, respectively).  

 

Figure 4.11: Kernel Average Misorientation (KAM) as a function of distance to the nearest 
grain boundary for strains intervals of a) 0 to 3.6, b) 3.6 to 7.3 and c) 7.3 to 10.9. Probabilities 
are calculated for each map pixel at the given distance to the grain boundary (i.e., on a 
column-by-column basis) to account for the higher likelihood for any given pixel to be near a 
boundary rather than in the center of a grain. Measurements were made in the transverse 
section (XY plane of Figure 4.1). 

 

Note that the ability of the KAM measurement to detect geometrically necessary 

dislocations is limited by the angular and spatial resolution of the EBSD data. The 

minimum detectible dislocation density, 𝜌𝜌, is given by  

𝜌𝜌 = 𝜃𝜃
𝑏𝑏𝑏𝑏

 ,                    (4.8) 

where 𝜃𝜃 is the angular resolution of the EBSD measurement, 𝛼𝛼 is the magnitude of the 

Burgers vector, and 𝑛𝑛, is the step size in the EBSD map (Wilkinson and Randman, 

2010). The angular resolution of standard-resolution EBSD performed on olivine is on 

the order of 5x10-3 radians (Wallis et al., 2019). Given a Burgers vector of 5 nm and a 

step size of 1 µm, the minimum dislocation density that would produce misorientations 

we can detect is ~1013 m-2 (10 µm-2), which is comparable to the density of dislocations 

next to the boundary imaged by TEM in Figure A.3.5d. Therefore, if dislocation pileups 

at boundaries are in abundance, they are limited to densities less than or equal to 

those in Figure A.3.5d. 

 

4.4. Discussion 

The sample analyzed here and others deformed in similar conditions were previously 

studied by Hansen et al. (2012a, 2012b, 2011). Based on the flow laws obtained from 

the torsion tests and the microstructural evidence, the authors interpreted the main 
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deformation mechanism to be dislocation-accommodated grain-boundary sliding. This 

mechanism was demonstrated to have a measurable grain-size sensitivity (i.e., 

samples are weaker for smaller grain sizes) and to produce strong CPOs. The total 

observed weakening of the material during torsion was attributed to both grain-size 

reduction and geometric softening (i.e., rotation of grains into an easy orientation for 

dislocation slip) associated with CPO development. As discussed by Hansen et al. 

(2012a, 2012b, 2011) and illustrated in Figure 4.4, the olivine CPO is consistent with 

dislocation motion on the [100](010) slip system, with [100] axes parallel to the shear 

direction and (010) planes parallel to the shear plane. 

The most frequent grain-boundary planes at low strains are of the {hk0} type. This type 

of grain-boundary plane increases in abundance as strain increases (Figure 4.6). 

Specifically, (hk0)-type planes dominate the GBPD at the maximum strain reached. 

This distribution is notably different from the GBPD that results from normal grain 

growth (Marquardt et al., 2015; Marquardt and Faul, 2018). Marquardt and Faul (2018) 

found that, for Fo90, the (001) and (0kl) planes dominate the average crystal habits 

during normal grain growth.  

We suggest the observed modification of the GBPD during deformation arises from the 

interaction of dislocations with grain boundaries. Associated with the strong CPO are 

high values of the average m’ factor, which indicates most boundaries are between 

grains with similar orientations of their most favorable slip system. The proportion of 

boundaries with high values of m’ initially increases rapidly with increasing strain 

(Figures 4.9, 4.10) and becomes approximately constant after moderate strains (𝛾𝛾≥4), 

similar to the CPO strength (Figure 4.4 and Figure 4.8).  

However, even though grain orientations are favorable for dislocation transmission, our 

TEM analysis provides no evidence of dislocations being transmitted across high-angle 

grain boundaries. Thus, it seems likely that the dislocations interact intimately with the 

high-angle grain boundaries. Figure A.3.5d illustrates that the dislocation spacing is 

reduced near the grain boundary on the left side, consistent with a model of 

dislocations piling up against a grain-boundary that act as a barrier (e.g., Hirth (1972)). 

However, lattice distortion measured with EBSD suggests dislocation pile-ups near 

grain boundaries are not widespread, even at low strains (Figure 4.11a), for which there 

is a greater abundance of grain boundaries with low values of m’ (Figure 4.9 and Figure 

4.10).  
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A possible explanation for the discrepancy between observations of pileup in TEM and 

observations of low KAM observed more broadly is that dislocations are constantly 

absorbed by grain boundaries. It is possible that long-range stresses (i.e., related to 

the extrinsic dislocations already inside the grain boundary) could prevent the 

continuous incorporation of dislocations (Dingley and Pond, 1979). However, as 

pointed out by Shirokoff et al. (1993), these long-range stresses are reduced if, once 

the dislocations enter the boundary, they become mobile in the grain-boundary plane, 

a process identified to promote grain-boundary sliding (e.g., Ishida and Brown, 1967; 

Pond et al., 1978b). As the new grain-boundary dislocations dissociate into partial 

dislocations with smaller Burgers vectors, the elastic energy of the dislocation is 

reduced (Dingley and Pond, 1979; Ishida and Brown, 1967; Pond and Smith, 1977). 

The process of dissociation of grain-boundary dislocations was previously predicted to 

occur in olivine by atomistic simulations (Adjaoud et al., 2012). It is reasonable to 

assume that grain-boundary sliding in olivine is intimately coupled to the incorporation 

of lattice dislocations into the boundary and their dissociation into mobile grain-

boundary dislocations. 

This process of incorporation and dissociation of dislocations into the boundary is 

compatible with existing models of disGBS that seek to explain the basic observation 

that more grain boundaries lead to higher strain rates. Langdon (1994) suggested that 

sliding on boundaries leads to stress concentrations at grain-boundary ledges or grain-

boundary triple junctions, which act as sources for lattice dislocations. A larger number 

of boundaries provides more dislocation sources, more sliding, and faster strain rates, 

but the overall rate is dictated by the rate of incorporation of dislocations into distant 

boundaries after the dislocations traverse the grain. Notably, the incorporation rate is 

likely limited by the rate of dissociation and climb of dislocations already in the 

boundary. Indeed, in a set of early models, Gifkins (1976) suggested that the overall 

strain rate is limited by the dissociation and movement of grain-boundary dislocations. 

Those grain-boundary dislocations are thought to pileup in the boundary, and their 

mutual annihilation by climb within the boundary limits the rate of sliding. Pshenichnyuk 

et al. (1998) later provided a model that incorporates all of these processes in which 

sliding requires lattice dislocations to enter the boundary, but the rate at which lattice 

dislocations are incorporated is ultimately limited by the climb and annihilation of grain-

boundary dislocations. This model is consistent with the observations of Yoshida et al. 

(2004), in which zirconia bicrystals exhibit faster rates of sliding if lattice dislocations 
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are more active. Although we cannot discuss the influence of this process on the 

overall strain rate in olivine, our data suggest that dislocation incorporation into grain 

boundaries is a key process.  

Our observations have implications for the process of formation of new grain 

boundaries in olivine during deformation. As a starting point, our data support that, with 

increasing strain, the glide and climb of lattice dislocations form LAGBs (Read and 

Shockley, 1950), consistent with the microstructures associated with dynamic 

recrystallization frequently observed in minerals (e.g., Lloyd et al., 1997; Urai et al., 

1986). As illustrated in Figure 4.12 a-c, we suggest that, as new HAGBs are formed 

from LAGBs, progressive shape change of the crystal associated with the most active 

slip system will lead to tilting the high-angle boundary around a misorientation axis in 

the glide plane and normal to the Burgers vector (akin to tilt-wall formation). Therefore, 

we argue that the character of grain boundaries produced during deformation is 

intimately linked to interactions with dislocations of the dominant slip system.  

In summary, the key observations and interpretations are: 

1. The fraction of potentially slip-transparent boundaries, as measured by the m’ 

factor, increases with strain. 

2. TEM data indicate that low-angle boundaries are not efficient barriers for slip 

transfer. In contrast, based on the m’ factor, high-angle boundaries are inferred 

to be strong barriers for dislocation motion, but we did not observe an 

abundance of lattice distortion near those boundaries. This observation 

suggests that dislocations are absorbed by high-angle grain boundaries. The 

incorporation of dislocations into grain boundaries provides a recovery 

mechanism for intragranular deformation.  

3. High-angle boundaries are dominated by (hk0)-type planes, which we suggest 

results from continued absorption of dislocations on the [100](010) slip system 

into the LAGB and simultaneous competing grain growth. The formation of new 

grain-boundary planes in this fashion must be associated with grain rotation, 

which inherently involves grain-boundary sliding (e.g., Lim and Raj, 1985; Pond 

et al., 1978b) 

4. The mechanical data presented in Hansen et al. (2012a) demonstrate 

mechanical weakening with decreasing grain size, which they interpreted to 

reflect increasing rates of deformation in the disGBS regime. Our observations 

suggest that the rate of grain-boundary sliding and therefore, the overall strain 
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rate, will depend on the rate at which dislocations are delivered to and 

assimilated into the boundaries, consistent with existing models of disGBS. 

Our extension of existing models allows us to predict the grain-boundary types 

potentially resulting from different slip system activities (Figure 4.13). For example, the 

HAGBs in this sample are dominated by (hk0)-type planes (Figure 4.6). Based on the 

indices of these planes and the available slip systems for olivine, we suggest these 

HAGBs are produced mainly through slip on the [100](010) slip system (Figure 4.13), 

which is also consistent with the slip system predicted by the Schmid analysis to be 

most active in this experiment (Figure 4.10). This prediction is similar to the criterion 

established by Signorelli and Tommasi (2015, see their equation 4) for the formation 

of new LAGBs. The large population of (hk0)-type boundaries (Figure 4.6) is consistent 

with these grain boundaries forming from LAGBs as a result of continued [100](010) 

slip (Figure 4.12 d-e). The input of dislocations into the grain boundary continuously 

induces small rotations of the grain-boundary plane. This change in the grain-boundary 

plane orientation induces stresses in adjacent grains. If the neighboring grain does not 

have a slip system oriented favorably for dislocation transfer (Figure 4.12 f), this stress 

either causes nucleation of new dislocations or induces a rotation on the neighboring 

grain. In order to rotate, a sliding motion at the interface is required (e.g., Lim and Raj, 

1985; Pond et al., 1978b). 
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Figure 4.12: Schematic model of the proposed grain-boundary formation mechanism and its 
influence on grain-boundary sliding. a) A dislocation with line direction u glides through the 
crystal on the [100](010) slip system, shearing the crystal by one Burgers vector, b. b) 
Progressive deformation leads to continued shearing of the crystal. c) As a result of the 
general shape change of the crystal, the grain boundaries become parallel to approximately 
(140). The continuous absorption of dislocations into the grain boundaries leads to relative 
rotation between grains d) and e), which progresses until the neighboring grains are oriented 
in such a manner that f) dislocations are easily transferred to the neighboring crystal. This 
transfer occurs when the burgers vectors of the active dislocations in neighboring lattices are 
close to parallelism. 
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Figure 4.13: Equal-angle stereographic projection illustrating the formation of high-angle 
grain boundaries due to dislocation creep, assuming that only edge dislocations from the slip 
systems provided in Table 4.1 are involved and that only one single slip system is active in 
each case. The poles to the grain boundaries are marked with blue dots. The arrows indicate 
the evolution of low-angle grain boundaries (blue) to high-angle grain boundaries (red). 

 

Based on the discussion above, a sustained input of dislocations into HAGBs would 

imply continuous rotation of the boundaries. This rotation of the boundary plane would 

also be associated with an increase in boundary area, and therefore an increase in 

surface energy. Note that dynamic recrystallization does involve a reduction in strain 

energy due to the formation of LAGBs, which have lower energies compared to the 

same amount of dislocations distributed in the crystal lattice (Read and Shockley, 
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1950). In contrast, it has been previously suggested that, in static systems, grain-

boundary energy reduction is dominated by reduction of single-crystal surface 

energies, promoting boundaries with low-index planes and low energy and resulting in 

a GBPD inversely related to the anisotropic grain-boundary energy (e.g., Rohrer, 

2011). Correspondingly, Marquardt et al., (2015) found that (010) and (001) planes in 

olivine are the most abundant planes formed during normal grain growth.  

We suggest that both of these processes are operating in our experiment. The increase 

in boundary area resulting from the incorporation of dislocations (dynamic 

recrystallization) competes with the process of energy minimization due to grain-

boundary area reduction (grain growth), leading to the emergence of a stable, 

statistically preferred boundary plane in the proximity of (hk0).  

The predominance of the (hk0)-type boundary might also be influenced by the 

kinematic framework. For example, our analyses of the shape-preferred orientation 

(Figure 4.5) indicate that the long axes of grains align with the instantaneous stretching 

axes and their preferred direction does not evolve significantly with strain. This stable 

shape-preferred orientation is consistent with the balance of processes described 

above. Furthermore, the combination of a stable shape-preferred orientation and a 

stable CPO clearly suggest that the dominant grain-boundary plane will be stable. 

However, kinematic frameworks other than simple shear should result in a different 

relationship between the grain long axes and the CPO, and therefore a different GBPD, 

which is a hypothesis to be tested by future work. Interestingly, Miyazaki et al. (2013) 

did not observe a difference in dominant grain-boundary plane between experiments 

on forsterite conducted in compression and extension, observing that (010) and (001) 

were the most prevalent boundaries regardless of the kinematics. These experiments 

were in the diffusion creep regime, and therefore, we further hypothesize that 

dislocation-dominated mechanisms couple the GBPD to the kinematics whereas 

diffusion-dominated mechanisms do not. 

The model for grain-boundary evolution proposed here can help predict the 

predominant type of grain boundary in Earth’s upper mantle. Hansen et al. (2011) 

provided evidence of disGBS as a dominant mechanism for olivine deformation in 

lithospheric shear zones. Supporting evidence provided by Kohlstedt and Hansen 

(2015) from calculations based on laboratory data and by Ohuchi et al. (2015) from 

experiments at conditions of the middle of Earth’s upper mantle, suggests that disGBS 

might be the main mechanism of olivine deformation throughout much of the upper 
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mantle. Our results support the inference that the evolution of the grain boundary 

population is a key feature of deformation in this regime. Thus, the microstructural 

evolution we observe may characterize the microstructural evolution throughout the 

upper mantle. Specifically, we demonstrate here that certain grain boundaries (i.e., 

(hk0)-type boundaries) form and evolve as a result of deformation and activation of a 

specific slip system. If our model for the evolution of the GBPD is characteristic of the 

upper mantle, then the activation of different slip systems will result in different GBPDs. 

Therefore, the GBPD could also be sensitive to thermochemical conditions. Different 

effects of varying grain boundary types on a wide range of geophysical properties are 

to be expected. For example, the existence of certain grain boundaries with higher 

electrical conductivity was suggested by Pommier et al. (2018) and cited as a key 

mechanism for generating electrical anisotropy in Earth’s interior.  

We emphasize that our study only investigates grain-boundary dynamics in a single 

sample deformed under a single set of conditions, yet we observe a markedly different 

GBPD than observed in static systems (e.g. Marquardt et al., 2015; Marquardt and 

Faul, 2018). Further understanding of the specific role of grain boundaries in olivine 

deformation should investigate the effects of grain size, strain rate, geometry and 

magnitude of stress, water content, melt fraction, segregated elements at the grain 

boundaries, interphase boundaries, and the activity of specific grain-boundary 

dislocations. Bicrystal experiments seem particularly well suited to these future studies 

since they allow direct correlation of grain-boundary structure to macroscopic 

properties (e.g., Dingley and Pond, 1979).  

 

4.5. Conclusions 

The role and evolution of olivine grain boundaries during plastic deformation was 

investigated using EBSD analysis of a polycrystalline sample of olivine (Fo50) deformed 

in the disGBS regime. Our results suggest that grain boundaries act to promote 

deformation through interaction with dislocations via grain-boundary sliding. In 

disGBS, grain boundaries evolve as a consequence of dislocation interaction with the 

grain boundaries. The formation of specific grain-boundary plane distributions can be 

linked to specific dynamic processes, in our case a combination of normal grain growth 

and dynamic recrystallization in the presence of a dominant slip system, [100](010). It 

has been demonstrated that anisotropy in grain-boundary energy affects grain growth 
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rates (Salama et al., 2020). The formation of low-angle grain boundaries and their 

evolution into high-angle grain boundaries involves crystal rotation, which 

geometrically requires grain-boundary sliding. We found evidence of dislocations being 

transmitted across low-angle grain boundaries but not across high angle grain 

boundaries. For grains separated by a high misorientation (low m’ factor), our data 

suggests that the dislocations are instead absorbed into the grain boundaries, causing 

the grain-boundary plane orientation to change and neighboring grains to rotate. 

During simple shear of fine-grained olivine (Fo50) in the disGBS regime, dislocation 

creep on the [100](010) slip system causes CPO development and controls the 

formation of (hk0)-type grain boundaries, especially those close to (010) and (110) at 

higher strains. Consequently, we suggest that if different dislocation systems are 

activated, different types of grain boundaries will be created. Because different grain 

boundaries have different physical properties (Sutton and Balluffi, 1995), grain-size 

sensitive geophysical observables, such as electrical conductivity (Pommier et al., 

2018; ten Grotenhuis et al., 2004) and seismic attenuation (Jackson et al., 2002) may 

exhibit variable responses accordingly.  
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Abstract 

The grain size of olivine influences several processes in the Earth’s upper mantle such 

as mass and heat flux. However, grain growth, one of the main processes controlling 

grain size, is still poorly constrained for olivine at upper mantle conditions. 

Experimental data on grain-growth kinetics of olivine is to date restricted to pressures 

of up to 1.2 GPa (corresponding to depths ≈ 50 km). To evaluate the effects of pressure 

on grain growth of olivine, we performed annealing experiments using hot-isostatically-

pressed synthetic aggregates of olivine plus 6 and 13 vol.% of pyroxene. The 

experiments were performed at pressures ranging from 1 to 12 GPa and temperatures 

from 1323 to 1793 K, using piston cylinder and multianvil apparatus. We determined 

grain-size distributions for all experimental run products using Electron backscatter 

diffraction. The best fit to the resulting data requires an activation volume of 4.3x10-6 

m3/mol. This value is similar to previously reported activation volumes for silicon grain-

boundary diffusion at high pressures. This indicates that grain growth of dry, melt-free 

olivine in the upper mantle is likely controlled by silicon grain-boundary diffusion. 

Notably, our data show that the olivine grain-growth rate is reduced as pressure 

increases. These results suggest that with increasing depths in the Earth’s upper 

mantle, the reduction of grain-growth rates due to increasing pressure may offset the 

temperature effect. In consequence, this may result in smaller average grain sizes and 

thus promote a transition from grain-size insensitive dislocation creep to grain-size 

sensitive diffusion creep at shallower depths than previously expected. 

Plain language summary 

The grain size of olivine, the major mineral phase in the Earth’s upper mantle, 

influences several processes in this region such as mass and heat flux. However, we 

lack information on how pressure affects grain growth, one of the main processes 

controlling grain size. Experimental data on grain-growth of olivine is to date restricted 
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to pressures of up to 1.2 GPa (corresponding to depths ≈ 50 km). To evaluate the 

effects of pressure on grain growth of olivine, we performed grain-growth experiments 

using synthetic aggregates of olivine and pyroxene. The experiments were performed 

at pressures ranging from 1 to 12 GPa and temperatures from 1323 to 1793 K, using 

high-pressure apparatus. After the experiments, we determined the grain-size 

distributions using electron microscopy. Our data demonstrate that the olivine grain-

growth rate is reduced as pressure increases. With increasing depths in the Earth’s 

upper mantle, the increase in temperature leads lo increasing grain-growth rates. 

However, our results suggest that the reduction of the grain-growth rate of olivine due 

to increasing pressure may offset the temperature effect. In consequence, smaller 

average grain sizes could be maintained in the middle to deep upper mantle, promoting 

deformation mechanisms that are dependent on grain size. 

 

5.1. Introduction 

Grain size is one of the main factors affecting rock viscosity and therefore plays an 

important role in different geodynamic processes. Through its influence on rock 

viscosity, grain size impacts the Earth’s heat flux and thus its thermal evolution (Hall 

and Parmentier, 2003; Rozel, 2012; Solomatov, 2001), the Earth’s chemical mixing and 

the formation of heterogeneities in the Earth’s mantle (Solomatov and Reese, 2008), 

the dynamics of subduction slabs and plumes (Dannberg et al., 2017) and localization 

of deformation (Mulyukova and Bercovici, 2019; Thielmann, 2018; Thielmann et al., 

2015). Grain size also has a strong effect on the interpretation of geophysical 

observations such as seismic attenuation (Dannberg et al., 2017; Jackson et al., 2002; 

Tan et al., 1997) and electrical conductivity (Pommier et al., 2018; ten Grotenhuis et 

al., 2004). The grain size in the Earth’s mantle is controlled by a few factors: grain-size 

reduction via dynamic or static recrystallization, grain growth and phase transitions 

(Solomatov and Reese, 2008). When considering deeper parts of the upper mantle 

(depths > 200km), static and dynamic recrystallization become less important as shear 

stresses decrease and diffusion creep arguably becomes the main deformation 

mechanism (Karato, 1992). Thus, grain growth is likely the most important factor 

controlling grain sizes in the deep upper mantle.  
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Grain growth is a mechanism driven by the need to minimize the high energy of grain 

boundaries. Grain boundaries have high energy in comparison to crystal lattices. Thus, 

grains grow to minimize this energy by decreasing their surface area to volume ratio 

via grain-boundary migration. This process is called normal grain growth (Atkinson, 

1988; Burke and Turnbull, 1952; Evans et al., 2001; Humphreys and Hatherly, 2004), 

and is commonly described by the equation: 

𝑑𝑑𝑛𝑛 −  𝑑𝑑0𝑛𝑛 = 𝑘𝑘𝑡𝑡                   (5.1) 

where d and d0 are the grain sizes at time = t and 0, respectively, n is the grain growth 

exponent and k is a rate constant given by: 

𝑘𝑘 = 𝑘𝑘0 exp  �− 𝐸𝐸∗+𝑃𝑃𝑉𝑉∗

𝑅𝑅𝑅𝑅
�                 (5.2) 

where 𝑘𝑘0 is a material-dependant pre-exponential constant, 𝐸𝐸∗ the activation energy, 

𝑃𝑃 the pressure, 𝑉𝑉∗ the activation volume, 𝑅𝑅 the gas constant and 𝑇𝑇 the temperature.  

Grain growth is also affected by the presence or absence of a second phase. Particles 

of secondary phases might lead to modifications in grain growth of the major phase 

(matrix) by exerting a retarding force on the migrating boundaries (Humphreys and 

Hatherly, 2004). This effect, known as Zener pinning (here used independent of particle 

size), is dependent on the properties of the moving boundary, such as energy and 

mobility, as well as the properties of the second-phase particles, such as its size, shape 

and distribution (Nes et al., 1985). Another less frequently observed phenomenon 

related to second-phase particles is abnormal or discontinuous grain growth of the 

matrix, i.e. the major phase (Hillert, 1965). Abnormal grain growth might also take place 

due to anisotropic grain-boundary mobility or anisotropic grain-boundary energy 

(Rollett and Mullins, 1997).  

 

Grain growth of olivine, the main phase in the Earths’ upper mantle (Ringwood, 1970), 

has been investigated by several authors (Table 5.1). Karato (1989) investigated the 

grain growth of reconstituted San Carlos olivine aggregates at pressures of 0.1 MPa 

to 1 GPa, at dry and water-saturated conditions. He found that at lower pressures, 

pores act as pinning particles, inhibiting grain growth. The same effect was found for 

water, that, when in excess (i.e., in free-water conditions), fills the pores and also act 

as pinning particles. At lower concentrations, however, water was found to promote 

grain growth. Nichols and Mackwell (1991) investigated the grain growth of San Carlos 
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olivine at atmospheric pressure, for varying oxygen fugacity. They found that the grain-

growth rate increased for increased oxygen fugacity. Faul and Scott (2006) studied the 

effect of melt in the grain growth kinetics of sol-gel olivine and they found that an 

increase in melt content led to a decrease in the grain-growth rate. This suggests that 

melt also inhibits grain growth of olivine in partially molten aggregates. Ohuchi and 

Nakamura (2007a, 2007b) analysed the grain growth of sol-gel forsterite in the 

forsterite-diopside and forsterite-diopside-water systems. They found that abnormal 

grain growth of forsterite was abundant when the secondary phase content (diopside) 

was less than 20 vol.%. Hiraga et al. (2010), Tasaka and Hiraga (2013) and Nakakoji 

and Hiraga (2018) investigated the grain growth of vacuum-sintered forsterite 

aggregates with different amounts of enstatite content. They found that the increase in 

the second phase content reduced the rate of forsterite grain growth due to Zenner 

pinning. Nakakoji and Hiraga (2018) further concluded that grain-boundary diffusion is 

a common mechanism responsible for grain growth and diffusion creep for olivine-

dominated rocks. 

All these above-summarized studies on olivine grain growth were conducted at 

relatively low pressures (up to 1.2 GPa). However, olivine dominates the lithologies of 

the upper mantle to pressures of 14 GPa (e.g. Ringwood, 1970). Here we aim to 

investigate grain growth kinetics of olivine in aggregates containg 6% and 13 % of 

pyroxene (corresponding to dunite and harzburgite, respectively) at temperatures 

spanning from 1323 K to 1793 K and pressures from 1 GPa to 12 GPa. These 

parameters cover pressure and temperature conditions found in most of the Earth’s 

upper mantle.  
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Table 5.1: Summary of experimental conditions for previously reported olivine grain growth 
experiments and the present study. P is pressure in GPa, T temperature in K, t experimental 

duration in hours and fPx is the pyroxene fraction. 

Starting 
material 

P 

(GPa) 

T 

(K) 

t 

(h) 

fO2 / 
Buffer 

Reported 

Water  

content 

Melt  

content 

Porosity 
(%) 

f Px Study 

San Carlos 

olivine 

10-4 – 

1 

1473-

1673 

0.5-

200 

10-5 Pa, 

I-W 

buffer 

water free, 

water 

saturated 

small 

amount 1 

0 - 4,8% 
2 

- 
Karato 

(1989) 

San Carlos 

olivine 
10-4 

1473-

1673 

10-

200 

10 Pa – 

10-6 Pa 
water free - <5% 

very 

small 

amount
3 

Nichols 

and 

Mackwell 

(1991) 

Sol-gel 

olivine 
1 

1523-

1723 

2-

700 

C-CO 

buffer 
water free 

2 wt.%, 4 

wt.% 
- 

small 

amount 

Faul and 

Scott 

(2006) 

Sol-gel 

olivine 
1.2 1473 

2-

763 

Ni-NiO 

buffer 
water free - <1% 

0.1 - 

0.9 

Ohuchi 

and 

Nakamura 

(2007a) 

Sol-gel 

olivine 
1.2 1473 

1.5-

763 

Ni-NiO 

buffer 

water 

added 
- <1% 

0.1 - 

0.9 

Ohuchi 

and 

Nakamura 

(2007b) 

Vacuum 

sintered 

Forsterite 

5 x 

10-12 
1633 

0-

50 
vacuum water free - - 0 - 0.42 

Hiraga et 

al. (2010) 

Vacuum 

sintered 

Forsterite 

10-4 

1533 

– 

1633 

0-

100 
- water free - - 

0.01 - 

0.97 

Tasaka 

and Hiraga 

(2013) 

Vacuum 

sintered 

Forsterite 

10-4 

1322 

- 

1669 

500 - water free - - 0.2 

Nakakoji 

and Hiraga 

(2018) 

Sol-gel 

olivine 
1 -12 

1323-

1793 

8 - 

72 

Ni-NiO 

buffer 
water free - <0.5% 

0.06, 

0.13 
This study 

1 - Glassy phases were found in the samples  

2 - Estimated from density measurements  
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3 - SiO2 originated from abrasion with agate 

mortar 
 

 

5.2. Methods 

 

 Sample preparation 

Here we studied grain growth in olivine and pyroxene aggregates fabricated through a 

solution-gelation method. The solution-gelation (sol-gel) method is an effective process 

to create chemically pure and homogeneous solids (Edgar, 1973; Hench and West, 

1990). The procedure used here for olivine sol-gel synthesis is similar to the one 

previously described by Jackson et al. (2002). The precursors used as source of SiO2, 

MgO and FeO were respectively tetraethyl orthosilicate (TEOS, Si(OC2H5)4, Sigma-

Aldrich, purity ≥ 99.0%), magnesium nitrate hexahydrate (Mg(NO3)2 · 6H2O, Roth, 

purity ≥ 99.999%) and Iron (III) nitrate nonahydrate (Fe(NO3)3 · 9H2O, Sigma-Aldrich, 

purity ≥ 98%).  

Two different batches were fabricated with different amounts of TEOS, creating SiO2 

in excess to produce 6 vol.% (FSG4 batch) and 13 vol.% of pyroxenes (FSG5 batch). 

The reactants were dissolved in ethanol and gelation was reached by adding NH4OH 

(Sigma Aldrich, 25% NH3). The gel was dried at increasing temperatures up to 773 K 

in air. The resulting powder was grounded and pelletized. The green body was then 

sintered in a gas mixing furnace with a controlled oxygen fugacity between the F-MQ 

and I-W buffers, while increasing temperature from 700 to 1673 K at a rate not higher 

than 300 K/hour. The sample was sintered at 1673 K for 8 hours and then slowly 

quenched by turning off the furnace power and waiting until the temperature reached 

973 K, when the sample was removed from the furnace. The sintered olivine was 

reground, and the resulting powder pressed into a Ni80Fe20 capsule, filled at the top 

and bottom with a thin layer of NiO, to buffer the oxygen fugacity to the Ni-NiO buffer. 

The sample was kept in an oven at 423 K for at least 1 day before the capsule was 

weld shut. The sample was subsequently hot-pressed in a piston-cylinder apparatus 

at 0.7 GPa and 1473 K for 2 hours, yielding the starting material for all experiments. 

For the grain-growth experiments in the piston cylinder, the starting material remained 

in the piston cylinder and the pressure and temperature were adjusted to the desired 
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experimental conditions and held for the experimental duration. In preparation for the 

multianvil experiments, the sample pieces were cored out of the starting material and 

fired at 1273 K for 1 hour in a gas-mixing furnace. The firing of the samples at the 

respective temperature and time does not cause noticeable grain growth. These firing 

and annealing steps ensured that olivine aggregates were kept dry during the 

experiments, as water might affect olivine grain growth (S. Karato, 1989; Ohuchi and 

Nakamura, 2007b).  

 

 Grain growth experiments 

The grain growth experiments at 1 GPa were performed in a piston-cylinder apparatus 

and the experiments at higher pressures in a multianvil press. The assemblies were 

designed to reduce any deviatoric stress on the sample during compression. The 

piston-cylinder experiments were conducted using a 19 mm talc/Pyrex assembly 

(Figure 5.1a). The temperature was monitored during the experiments with an S-type 

(90% Pt/10% Rh–Pt) thermocouple. The experiments were performed by adjusting 

pressure to the target pressure, heating the sample to the target temperature at a 100 

K/minute rate and maintaining these conditions for the experimental duration. The 

samples were quenched by reducing the current in the sample heater, to achieve 300 

K temperature reduction per minute. This step reduces thermal shock in the sample 

and subsequent fracturing of grains. The pressure was reduced over 8 hours. The 

multianvil experiments were performed using second-stage WC anvils of 11 mm 

truncated edge length, acting on a Cr2O3-doped MgO octahedra (Figure 5.1b) with an 

edge length of 18 mm. The experiments in the multianvil apparatus were performed in 

analogy to the piston-cylinder experiments, except that longer decompression duration 

of at least 12 hours were necessary. The temperature in the multianvil experiments 

was monitored using a D-type (97% W/3% Re–75% W/25% Re) thermocouple. 

Uncertainties in pressure for the 19 mm piston-cylinder assembly are in the order of 

0.02 GPa and thermal gradients are approximately 25 K within the sample at our 

experimental conditions (Watson et al., 2002). Uncertainties in pressure for the 18/11 

multianvil assembly are around 0.5 GPa and thermal gradients in the order of 40 K 

within the sample at our experimental conditions (Walter et al., 1995). No correction 

was applied for the pressure effect on the electromotive force (emf) of the 

thermocouple. 
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Figure 5.1: Cross-section diagrams of assemblies used in the a) piston cylinder and b) 
multianvil experiments. 

 

 Analytical techniques and grain-size measurements 

Grain sizes were obtained from Electron Backscattered Diffraction (EBSD) data. EBSD 

data were collected with an EDAX DigiView 5 EBSD detector mounted onto an FEI 

Scios Dual-Beam scanning electron microscope. For EBSD data acquisition we used 

an acceleration voltage of 20 to 30 keV and beam current of 3.2 to 6.4 nA. The EBSD 

data was acquired with the EDAX TEAM™ software. The step size chosen for EBSD 

measurements for each sample is at least 10 times smaller than the sample’s average 

grain size and ranged from 0.1 to 0.5 µm. Thus, the uncertainty in grain size 

measurement of olivine for each sample is expected to be smaller than 10% of its 

average grain size. Pyroxene grains are in average 1.6 times smaller than olivine 

grains. Therefore, uncertainties in the EBSD measurements of pyroxene grains are 

higher, especially for smaller grain sizes, where the pyroxene grains are likely smaller 

than 10 times the step size in our EBSD measurements. 

The EBSD data was cleaned using the EDAX OIM Analysis™ software. First, electron 

backscatter patterns were re-indexed using the neighbour pattern averaging (NPAR) 

method (Wright et al., 2015). Subsequently, one iteration of grain dilation processing 

was applied, where pixels with low indexing quality, given by the confidence index, are 

assigned to the orientation of neighbours with a higher indexing quality. Olivine 

presents a pseudo-symmetry misindexing which correlates to a misorientation of 60° 

around the [100] axis (e.g., Marquardt et al., 2017). A pseudo-symmetry correction was 

therefore applied by merging neighbouring grains sharing a boundary with a 
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misorientation axis of [100] and angle of 60º, keeping the orientation of the largest 

grain. Lastly, one more step of grain dilation was performed. Examples of the raw data 

and the effect of the cleaning steps are shown in Figure A.3.6. EBSD data was 

analysed with MTEX (Hielscher and Schaeben, 2008). Grains were defined as 

bounded regions where the misorientation angle exceeds 20°. This choice is based on 

the critical misorientation angle for the occurrence of dislocation arrays in olivine, as 

observed by Heinemann et al. (2005). Grains containing less than 20 indexed pixels 

were not considered.  

Grain size was measured with two different methods: i) the largest dimension between 

any two vertices in a grain, which is the standard diameter function in MTEX, and ii) by 

the mean intercept length (MIL) using a rectangular grid. In the MIL method, the 

average grain size is given by the ratio between the length of a line and the number of 

grains intercepted by it. This method is usually used to measure grain sizes in 

micrographs (e.g., S. Karato, 1989). We adapted this method for use with EBSD 

measurements of a single phase. Unless stated, measurements of grain size, d, 

presented here are obtained using the first method due to faster computation. Although 

the methods provide different results, the results are proportionally correlated (see 

Table 5.3), with the first method providing grain sizes on average 1.5 times larger than 

the second method. However, this highlights the fact that caution should be employed 

when comparing absolute grain size values between different studies. Moreover, grain 

sizes obtained from 2D sections are often converted to 3D grain sizes by multiplying 

by a constant. Nonetheless, the grain sizes from 2D and 3D data are not that simply 

correlated (Panozzo-Heilbronner and Barrett, 2014) and therefore, we did not use any 

conversion factor. The grain size populations were fitted to log-normal distributions, 

which are often used to describe grain-size distributions (e.g., Faul and Scott, 2006; 

Tasaka and Hiraga, 2013).  

Major and minor element chemistry was obtained from an electron microprobe 

equipped with a wavelength-dispersive spectrometer. The data was collected with an 

electron-beam voltage and current of 15 keV and 15 nA, respectively. Counting time 

was 20 seconds per element peak acquisition and 10 seconds for background 

collection. The water content was measured by unpolarized Fourier-transform infrared 

spectroscopy (FTIR), under atmospheric conditions. Doubly polished samples of 200 

µm thickness were used. The spectra were obtained using an aperture of 100 µm and 
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a resolution of 2 cm-1. The spectrum baseline was fitted to a spline curve estimated 

using the MATLAB’s function msbackadj. 

5.3. Results 

 

 Starting material: Microstructure, chemistry, and water content 

The starting material for the grain-growth experiments was characterized for its 

chemistry, microstructure, and water content. The chemical composition of the starting 

material (FSG4 and FSG5 batches) is exhibited in Table 5.2. Olivine and pyroxene 

have a composition of approximately Fo90 and En90, respectively. Pt and Ni impurities 

are related to the crucible and capsule used during the sintering and hot-pressing, 

respectively. The microstructure of the starting material shows olivine and pyroxene 

grains uniformly distributed throughout the sample (Figure 5.2a). The grain size of 

olivine is generally larger compared to pyroxene. Furthermore, olivine grains 

surrounded by other olivine grains are usually larger than the olivine grains surrounded 

by pyroxene grains (Figure 5.2b and Figure 5.2c, respectively). Pyroxene grains 

regularly show nm-sized twinning (Figure 5.2d), causing the indexing of EBSD patterns 

of pyroxene to be difficult for the starting material. Note, that such twins, however, were 

not observed after the grain growth experiments at higher pressures (i.e., P ≥ 1 GPa). 

These polysynthetic twins are likely related to a transition between orthoenstatite 

(Pbca) and clinoenstratite (P21/c) (Ohashi, 1984), probably produced at low 

temperatures (T < 873 K) during quenching. 

The grain-size population shows a narrow log-normal distribution with modes (Mo FIT) 

at 1.9 µm and 2.2 µm for batches FSG4 and FSG5, respectively (Figure 5.2e). The 

porosity of the samples was estimated from secondary electron imaging of the starting 

material. The pores (or inclusions) are mainly found at the grain boundaries and, rarely, 

in a grain’s interior (Figure 5.2d). The pore area, calculated for different samples, 

averages to less than 0.5%. Because grains might be plucked out during grinding and 

polishing of the sample, thus leaving holes that appear as porosity, the actual porosity 

is significantly less. No melt was observed in any of the samples. Cold compression of 

samples using solid pressure media might induce shear stresses within the sample 

(e.g., Liebermann and Wang, 2013; Rubie et al., 1993). The accumulated stresses in 

the sample might lead to modifications in the grain sizes. The effect of grain size 
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modification because of cold compression was evaluated through an experiment in the 

multianvil apparatus at 10 GPa without heating. The results of this experiment, Z1993, 

are compared to its starting material, sample FSG4, in Figure 5.2e. The similar grain-

size distribution between FSG4 and the Z1993 samples, indicates that no grain-size 

reduction during cold compression and decompression occurred. Similarly, neither the 

starting material nor experimental run products from the piston-cylinder based 

experiments show signs of intergranular fracturing or grain size reduction (Figure 5.2a-

d).  

 

Figure 5.2: Starting material microstructure and grain-size distribution: Forescattered electron 
images (a-d) shows olivine grains elevated with respect to pyroxene grains. Holes appear 
dark. a) Olivine grains not in contact with pyroxene (black rectangle, magnified in b)) are on 
average larger than those surrounded by pyroxene (white rectangle, magnified in c)). d) High 
magnification image shows that pores/holes are mostly distributed at the grain boundaries. 
Pyroxene often presents lamellar twinning, as indicated by the white arrowheads. e) Grain-
size distribution of starting material of batches FSG4 (6 vol.% Px) and FSG5 (13 vol.% Px) 
and of sample Z1993 (High pressure experiment without heating). 
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The water content was measured for a sample of the starting material after hot-

pressing in the piston cylinder. The measured water content falls below the detection 

limit of approximately 50 ppm (Figure 5.3), indicating that the aggregates were dry (see 

Figure 5 of Faul & Jackson (2007) for an FTIR spectrum comparison of dry and wet 

olivine aggregates). 

 

Figure 5.3: Representative FTIR spectrum measured for the starting material after sintering. 
Note the absence of sharp peaks in the 2950 cm-1 3750 cm-1 range and of a broad peak 
around 3400 cm-1. The noise is due to atmospheric moisture adsorbed to the sample surface. 

 

Table 5.2: Electron Microprobe chemical analyses. Analyses were done over 178 and 339 
randomly selected points for samples FSG4 (6 vol.% Px) and FSG5 (13 vol.% Px), 

respectively. 

  FSG4 FSG5 

Oxide 
Average 
(wt.%) 

Standard 
Deviation 

Average 
(wt. %) 

Standard 
Deviation 

MgO 48,67 3,15 47,91 3,47 

SiO2 42,89 3,76 43,85 4,19 

FeO 9,21 1,13 9,68 1,00 

PtO 0,07 0,12 0,07 0,12 

NiO 0,02 0,02 0,01 0,02 

 

 Grain-size evolution 

Experimental conditions were chosen to allow investigation of the effect of time, 

temperature, and pressure on grain growth of olivine. Figure 5.4 shows the 

microstructure after the experiments and Figure 5.5 shows the log-normal fit to the 
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grain-size distributions. Histograms of the grain-size distributions are shown in Figure 

A.3.7. In the series of experiments for different annealing times (Figure 5.5a-c) we 

analysed the effect of annealing time on grain growth with experiments performed at 

1673 K, pressures of 1 and 7 GPa and experimental durations of 8 to 72 hours. In the 

temperature series (Figure 5.5d-f) we evaluate the effect of temperature on grain 

growth with experiments performed at an experimental duration of 24 hours, pressures 

of 1 and 7 GPa and temperatures of 1323 K to 1793 K. In the pressure series (Figure 

5.5g-i) we analysed the effect of pressure on grain growth with experiments performed 

at an experimental duration of 24 hours, temperature of 1673 K and pressures between 

1 and 12 GPa for 6 and 13% Px vol.%. Table 5.3 shows a summary of the obtained 

experimental data.  

The grain-size distribution resulting from the series of experiments at different 

annealing times at 1 GPa (Figure 5.5a) demonstrates a flattening and spreading 

compared with the grain-size distribution of the starting material (Figure 5.2e). The 

average grain size for the 8 hours experiment is very similar to the average grain size 

of the 72 hours experiment. Similar flattening and spreading of the grain-size 

distribution occur only after 72 hours for experiments conducted at 7 GPa (Figure 

5.5b). The temperature series of experiments at 1GPa (Figure 5.5d), demonstrates 

grain-size distributions similar to the starting material for the samples annealed at 1323 

K and 1473 K. For the experiment at 1673 K, the grain-size distribution is flattened, 

with its peak shifted towards larger grain sizes. At 7 GPa (Figure 5.5e), a comparable 

effect is only observed for the experiment done at 1793 K.  
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Table 5.3: Experimental Data: P is pressure in GPa, T temperature in K, t experimental 
duration in hours, d average grain size in µm, d MIL the mean intercept length in µm. Mo Fit, µ 
Fit and σ Fit are the mode, mean and standard deviation of the lognormal fit to the grain-size 

distribution, respectively. f Px is the pyroxene fraction as measured by EBSD and n is the 
number of grains analysed for each sample.  

Sample Starting 
Material 

P 
(GPa) 

T 
(K) 

t 
(h) 

 d 
(µm) 

d MIL 
(µm) Mo FIT µ FIT σ FIT 

 f Px 
(EBSD) n 

FSG4 Sol-gel Ol (Fo90)  
+ 6%Px 0.7 1473 2 2.57 1.44 1.91 0.85 0.45 0.01 1046 

FSG5 Sol-gel Ol (Fo90) 
 + 13%Px 0.7 1473 2 3.06 1.91 2.29 1.02 0.44 0.07 1578 

Z1993 FSG4 10 25 1 2.62 1.47 1.96 0.87 0.44 0.02 3850 

Z1962 FSG4 5 1673 24 15.39 10.05 9.76 2.59 0.56 0.06 4185 

Z1965 FSG4 7 1673 24 9.09 5.75 6.44 2.09 0.47 0.02 22315 

Z1968 FSG4 12 1673 24 8.48 5.52 6.07 2.02 0.47 0.01 21069 

A1178 FSG5 1 1673 12 6.94 4.84 4.62 1.8 0.52 0.08 1550 

A1179 FSG5 1 1673 72 6.1 4.43 3.92 1.66 0.54 0.1 2296 

A1182 FSG5 1 1673 8 6.13 4.41 3.88 1.66 0.55 0.1 3335 

B1272 FSG5 1 1673 24 6.49 4.61 4.33 1.73 0.51 0.09 4697 

B1273 FSG5 1 1473 72 4.01 2.75 2.8 1.26 0.48 0.1 6087 

B1274 FSG5 1 1473 24 3.45 2.25 2.55 1.13 0.44 0.08 7146 

B1275 FSG5 1 1323 24 3.16 2.01 2.36 1.05 0.44 0.11 8692 

B1276 FSG5 1 1473 12 3.71 2.35 2.67 1.19 0.46 0.09 9717 

Z2032 FSG5 10 1673 24 3.46 2.16 2.69 1.16 0.41 0.09 14505 

Z2033 FSG5 7 1473 24 3.34 2.1 2.6 1.12 0.41 0.08 8450 

Z2034 FSG5 7 1473 12 2.85 1.67 2.31 0.98 0.37 0.07 11578 

Z2035 FSG5 7 1323 24 3.3 2.09 2.53 1.1 0.42 0.09 9587 

Z2047 FSG5 7 1673 12 4.1 2.57 3.11 1.32 0.43 0.12 3808 

Z2049 FSG5 7 1793 24 11.42 7.76 7.22 2.28 0.55 0.13 5112 

Z2051 FSG5 7 1673 72 5.44 3.89 3.45 1.54 0.55 0.12 5862 

Z2060 FSG5 7 1673 24 3.62 2.25 2.8 1.2 0.41 0.08 4484 

Z2062 FSG5 7 1673 48 4.83 3.31 3.37 1.45 0.48 0.08 5039 

 

The pressure series of experiments for samples with 6 vol.% of pyroxene (Figure 5.5g), 

demonstrates similar distributions for experiments performed at 7 and 12 GPa, while, 

in comparison, the experiment performed at 5 GPa shows more spread in the grain-

size distribution, which is also shifted towards larger grain sizes. The experiments 
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performed with aggregates containing 13 vol.% of pyroxene (Figure 5.5h) present a 

similar effect. While the experiments done at 7 and 10 GPa exhibit similar grain-size 

distributions, larger grain sizes resulted at experiments performed at 1 GPa. 

Figure 5.6b displays the minimum distance between pyroxene grains (see scheme in 

Figure 5.6a) normalized by the mean grain size. In our experiments, we observe that 

this distance increases for increasing pressure. The mean normalized distance 

between pyroxene grains at 7 GPa and 12 GPa is approximately 25% larger than at 1 

GPa (1.23, 1.25 and 0.99, respectively). Figure 5.6c demonstrates the local grain-size 

distribution of olivine grains (FSG5 sample) as a function of the ratio between the 

number of pyroxene neighbours and all neighbours. Olivine grains presenting a high 

neighbour ratio are generally smaller than olivine grains mainly in contact with other 

olivine grains. This effect is independent of pressure, temperature, and duration of 

experiments (see Figure 5.4).  
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Figure 5.4: Microstructure evolution after grain growth experiments. Phase maps show a 
small representative subsection of the areas analysed: a) Time series of experiments b) 
Temperature series and c) Pressure series. Olivine grains are coloured green and pyroxene 
brown. Plot areas are 35 x 35 µm. 

 



 102 
 

 

Figure 5.5: Lognormal fit to the grain-size distributions: The upper row (a-c) shows a time 
series of experiments performed at 1673 K and pressures of a) 1 GPa and b) 7GPa. c) Mode 
of the of the fit to the grain-size distribution as a function of time. The middle row (d-f) shows 
the temperature series of experiments performed for 24 hours at pressures of d) 1 GPa and 
e) 7GPa. f) Mode of the of the fit to the grain-size distribution as a function of temperature. 
The bottom row (g-i) shows the pressure series of experiments performed at 1673 K for 24 
hours for samples containing g) 6 vol.% and h) 13 vol.% of pyroxene. i) Mode of the fit to the 
grain-size distribution as a function of pressure for samples with a Pyroxene content of 6 
vol.% and 13 vol.%. 
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Figure 5.6: Effect of pyroxene on local grain-size distribution: a) Schematic of an aggregate 
containing olivine (coloured green) and pyroxene (coloured brown). Arrows indicate the 
distance between the centroid of pyroxene grains to the nearest pyroxene grain. b) Minimum 
distance between pyroxene grains (as shown by the arrows in figure a) normalized by the 
average grain size. Experiments performed at 1673 K, 24h, and pressures of 1, 7 and 10 
GPa. c) Olivine grain size as a function of ratio between the number of pyroxene grains and 
all neighbour grains for sample FSG5 (starting material, 13 vol% Px). Each column is a 
probability density function.  

 

5.4. Discussion 

Our results show that pressure has a significant effect on olivine grain growth. Figures 

5.4a-b and Figures 5.5a-c demonstrate that grain growth is faster at 1 GPa compared 

to 7 GPa. For instance, at a temperature of 1673 K and annealing time of 24 hours, 

grain growth is approximately 4 times slower at 7 GPa than at 1 GPa (Figures 5.4a 

and 5.5a-c). A comparable effect is observed in the temperature series (Figures 5.4b 

and 5.5d-f): At low temperatures (T≤ 1473 K) olivine grain growth is slow, irrespective 

of the applied pressure. At 1673 K, grains grow rapidly at 1GPa (MoFIT = 4,3 µm), while 

at 7 GPa the grain-size distribution is similar to its starting material (MoFIT = 2.8 µm and 

2.3 µm, respectively). 

It is important to highlight that at pressures smaller than at least 1 GPa, pressure has 

an opposite effect than the one discussed here. That is, because pressure in this range 

acts to reduce porosity, the olivine grain-growth rate increases due to fewer pores 

acting as pinning particles (e.g., S. Karato, 1989). To test this observation, we 

performed grain-growth experiments with vacuum-sintered forsterite +10 vol.% 

enstatite (Koizumi et al., 2010) at 1673 K during 24 h, at atmospheric pressure (0.1 

MPa), using a tube furnace (HV806-HT) and using a piston-cylinder apparatus at 1 

GPa (HV806-HP). The results reported in Table A.4.1 and Figure A.3.8 demonstrate 

that, after 24 hours, grains grow 3 times faster at 1 GPa than at 0.1 MPa. This 
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demonstrates that even a very low number of pores act to highly inhibit grain growth. 

Therefore, studies on grain growth and diffusion creep obtained at environmental or 

low pressures, even for a starting material with very low porosity, must be interpreted 

also considering the porosity effect. 

Figures 5.4c and 5.5g-i demonstrate that the pressure effect on the grain-growth rate 

is more pronounced for pressures between 1 and 7 GPa. For experiments containing 

6 vol.% of pyroxene (Figure 5.5g), grains grow approximately two times more at 5 GPa 

than at 7 and 12 GPa. For experiments containing 13 vol.% of pyroxene (Figure 5.5h), 

grains grow approximately 4 and 5 times more at 1 GPa than at 7 and 10 GPa, 

respectively.  

The results presented in Figure 5.5i indicate that the effect of pressure on slowing 

down grain growth of olivine increases with increasing pyroxene content. One possible 

explanation is that the grain-growth rate of pyroxene is also reduced for increasing 

pressures. With a slower grain-growth rate (for example at pressures higher than 7 

GPa), the pyroxene grains are kept far apart from each other (Figure 5.6b). This results 

in a larger diffusion path, for example of Si, through olivine grain boundaries. This may 

reduce the coalescence of pyroxene grains (Nakakoji and Hiraga, 2018). In other 

words, there is a higher ratio between the number of pyroxene grains and their total 

area, that is, a larger number of small grains. In fact, our results show that, at the same 

temperature, annealing duration and pyroxene content (1673 K, 24 h and 13 vol.% Px, 

respectively), the population density of pyroxene grains at 7 and 12 GPa (0.34 µm-2) 

is more than twice that of at 1 GPa (0.16 µm-2).  

The larger amount of neighbouring pyroxene grains is correlated with smaller olivine 

grain sizes (Figure 5.6c). This result demonstrates that in olivine and pyroxene 

aggregates, grain growth of the primary phase is strongly influenced by the growth of 

the secondary phase (see also Tasaka and Hiraga, 2013, section 2.2). Therefore, a 

slower grain growth of pyroxene at larger pressures also means that olivine grain 

growth is supressed. 

Figure 5.5g and Figure 5.5i demonstrate that the grain-growth rate decreases 

considerably in a narrow range of pressure, between 5 and 7 GPa. Lithostatic 

pressures in this range correspond to depths of approximately 200 km. At this depth, 

a marked seismic discontinuity is observed (Lehmann, 1961, 1959), which has been 

argued to be related to a change in olivine main deformation mechanism, from 
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dislocation creep to diffusion creep for increasing depths (Karato, 1992; Karato and 

Wu, 1993). Our data suggest that smaller grain sizes, resulting from the pressure effect 

on the grain growth, could be maintained at larger depths. This change in grain size 

might influence the variation in the dominant deformation mechanism in this region, 

facilitating grain-size sensitive mechanisms, such as diffusion creep, as depth and 

pressure increases. 

 

Here we presented experimental evidence that the grain-growth rate of olivine in 

aggregates containing olivine and pyroxene decreases for increasing pressures. 

Grain-boundary diffusion was proposed to be the main process controlling grain growth 

and diffusion creep of olivine (Nakakoji and Hiraga, 2018). A possible explanation for 

the observed effect of pressure on grain growth may be the rate of grain-boundary 

diffusion. Si is the slowest diffusing species in both the lattice and at the grain 

boundaries of olivine (Farver and Yund, 2000) and thus limiting the rate of grain-

boundary diffusion. The Si grain-boundary diffusion coefficient was shown to decrease 

for increasing pressure (Fei et al., 2016). Consequently, we propose that the decrease 

in the grain-growth rate of olivine can be explained by the decrease in the rates of Si 

grain-boundary diffusion for increasing pressures. This is further supported by the 

finding that:  

1. An increase in pressure correlates to an increase in the melting temperature of 

olivine. In other words, at the same nominal temperature, the homologous 

temperature is reduced at high pressures. For example, the homologous 

temperatures for forsterite at 1623 K and pressures of 1 GPa, 7 GPa and 12 

GPa are 0.72, 0.63 and 0.58, respectively (Davis and England, 1964; Ohtani 

and Kumazawa, 1981). Lower homologous temperatures would thus explain the 

reduced grain-boundary diffusion kinetics (e.g., Atkinson, 1985). 

2. An increase in pressure correlates with an increase in the energy of formation 

of vacancies. As grain-boundary diffusion is mediated by the motion of 

vacancies (e.g., Balluffi, 1982), a lower concentration of vacancies leads to 

slower grain-boundary diffusion.  

3. Grain-boundary energy anisotropy and the presence of specific grain 

boundaries with low mobility or with high solute segregation rate was found to 

be a relevant mechanism to modify grain-growth rates in metals and ceramics 

(e.g., Bäurer et al., 2013; Gottstein and Shvindlerman, 2009; Rheinheimer et 
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al., 2015). As specific grain boundaries are preferentially developed during grain 

growth in olivine (Ferreira et al., 2021; Marquardt et al., 2015; Marquardt and 

Faul, 2018) and may change with pressure, this could also contribute to the 

decrease in the olivine grain-growth rate reported here. 

 

 

Figure 5.7: Fitting of grain growth data: a) Fitting of data at 1673 K (13 vol.% Px) b) Section 
of the fitting surface at a time t = 24h. Error bars show uncertainties in pressure and grain 
size determination.  

 

Non-linear least-squares fitting of our data at 1673 K and 13 vol.% Px to the equations 

5.1 and 5.2 (Figure 5.7) give 𝑘𝑘0 = 2.11 x 10-7 (m3.88s-1), n = 3.88, 𝑉𝑉∗ = 4.30 x 10-6 

(m3/mol) and 𝐸𝐸∗ = 607 (kJ/mol). These values, however, carry great uncertainty. The 

95% confidence intervals for k0, n, V*, and E* are respectively: [-12.86, 12.86] m3.88s-

1, [-6.168, 13.93], [-2.527 x 10-6, 1.112 x 10-5] m3/mol and [-8.464 x 1011, 8.464e x 1011] 

kJ/mol. Comparison of our grain growth equation with previously published olivine 

grain growth data shows that at 1673 K, 7 GPa and 13 vol.% Px, our results and those 

from by Tasaka and Hiraga (2013) indicate smaller grain sizes than those found by 

Karato (2008, p. 241). This difference is likely related to the low amount of pyroxene in 

the experiments of Karato (2008, p. 241) when compared to our results and those of 

Tasaka and Hiraga (2013). Our results show similar grain-size evolution as predicted 

by Tasaka and Hiraga (2013) at 9 vol.% En and P = 0.1 MPa extrapolated to 1673 K 

(Figure 5.8a-b). Furthermore, the activation volume found in our study is effectively the 

same as found by Fei et al. (2016) for Si grain-boundary diffusion at high pressures 
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(4.0 ± 0.7 cm3/mol). Simple extrapolation of our data to geological time scales (Figure 

5.8b) would indicate that olivine grain sizes (based on grain growth only) at 7 GPa and 

1673 K are expected to reach 0.4 mm in approximately 1 Ma and 1.4 mm in 100 Ma. 

Combining these results with existing olivine flow laws (low-T plasticity: Goetze et al. 

(1978); dislocation creep (dry olivine): Hirth and Kohlstedt (2003), diffusion creep (dry 

olivine): Hirth and Kohlstedt (2003) revised by Hansen et al. (2011); disGBS (dry 

olivine): Hansen et al. (2011)), and considering that shear stresses are on the order of 

0.1-1 MPa at a depth of ~210 km (P ≈ 7 GPa) (Kohlstedt and Hansen, 2015), olivine is 

expected to deform in a grain-size sensitive rheology, between the diffusion creep and 

dislocation-accommodated grain-boundary sliding (disGBS) fields (Figure 5.8c). 

Therefore, the results reported here would indicate that a change to a Newtonian 

rheology at deeper parts of the upper mantle (e.g. Karato and Wu, 1993) may be 

influenced by smaller olivine grain sizes due to a decrease in its growth rate. Nakakoji 

and Hiraga (2018) proposed that grain-boundary diffusion is a common mechanism for 

grain growth and diffusion creep of olivine. As strain rates in the Coble creep regime 

are proportional to the grain-boundary diffusivity, we anticipate that viscosities in the 

upper mantle are increased for increasing pressures, if the deformation of olivine is 

accommodated by grain-boundary diffusion.  

When extrapolating our data to conditions of the Earth (Figure 5.9), two main 

uncertainties are the initial grain size, 𝑑𝑑0, and the annealing time, 𝑡𝑡. Grain sizes of 

approximately 10 µm are the smallest grain sizes observed in xenoliths (e.g., Aupart 

et al., 2018; Falus et al., 2011). However, these grain sizes are likely a result of dynamic 

recrystallisation, and the “initial conditions” are not accessible. The first grains of olivine 

to nucleate, either during downwelling (e.g., Plümper et al., 2017) or upwelling (e.g., 

Satsukawa et al., 2015), are likely nm- to 100s of µm -sized. However, when the 

transformation to olivine is complete (e.g. from dehydration of serpentine at 

downwelling or from transition from wadsleyite at upwelling), the olivine grains grow at 

a fast rate due to the decrease in free energy (e.g. Koizumi et al., 2010; Tasaka and 

Hiraga, 2013). Figure 5.9 demonstrates the grain growth of olivine considering an initial 

grain size of 10 µm. Figure A.3.9 illustrates the effect of different initial grain sizes from 

10 µm to 1mm. The residence time at a certain depth or annealing time is also 

uncertain. Using our grain growth equation, 1 Ma to 10 Ma are necessary to provide 

mm-sized grains as seen in some xenoliths (e.g., Boullier and Nicolas, 1975). 

Furthermore, a rough estimation of a slab moving at 5 cm/year with a dip angle of 35º, 
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would need at least a similar duration, between 5 and 10 Ma, to move from the middle 

of the upper mantle to the transition zone. We thus base our calculations of the grain 

size evolution of olivine considering residence times of 1 and 10 Ma (Figure 5.9).  

The impact of an activation volume for grain growth on the deep upper-mantle viscosity 

is illustrated in Figure 5.9. The parameters used for the viscosity estimations are 

detailed in S.1. Considering the evolution of temperature with depth in the deep upper 

mantle (Figure 5.9a) and an activation volume of 0 m3/mol (i.e., no pressure effect on 

grain growth) the grain-growth rate would increase with depth, due to the increase of 

temperature with depth (Figure 5.9b). Conversely, considering an activation volume of 

4.3 x 10-6 m3/mol, as found here, grain sizes would only change marginally at depth. 

Hence, viscosities are not expected to change significantly due to pressure in the 200-

400 km depth interval (Figure 5.9c). The expected viscosities when considering an 

activation volume of 4.3 x 10-6 m3/mol are approximately one order of magnitude lower 

than when no activation volume is considered. These results suggest that mantle 

viscosities may be lower at increasing pressures than previously expected. This 

interpretation is corroborated by estimations of viscosities in the upper mantle based 

on postglacial rebound observations (e.g. Paulson et al., 2007). 
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Figure 5.8: Grain growth at upper mantle conditions. a) Comparison of experimental data at 
1673 K with grain growth laws of Karato (2008, p. 241) and Tasaka and Hiraga (2013) for 9 
vol.% En, normalized to an initial grain size d0= 2.5 µm. b) Extrapolation of grain growth 
equations to 1 Ga. c) Deformation mechanism map for olivine at 1673 K and 7 GPa. Dashed 
rectangle shows the region for predicted olivine grain sizes after an annealing time between 
1 Ma and 100 Ma and expected differential stresses at approximately 210 km depth (7 GPa). 
The flow laws used in the construction of the deformation mechanism map of olivine are 
from: low-T plasticity: Goetze et al. (1978), dislocation creep: Hirth and Kohlstedt (2003), 
diffusion creep: Hirth and Kohlstedt (2003) revised by Hansen et al. (2011) and disGBS: 
Hansen et al. (2011). 
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Figure 5.9: Viscosity estimation at deep upper mantle conditions: a) Average temperature 
profile of the deep upper mantle (Katsura et al., 2004). b) Expected grain sizes at 1 Ma 
(dashed lines) and 10 Ma (dotted lines) at the conditions of the geotherm shown in figure a, 
considering an initial grain size 𝑑𝑑0= 10 µm, an activation volume of V* = 0 m3/mol (blue lines) 
and V* = 4.3 x 10-6 m3/mol (orange lines). Resulting viscosity profile of the deep upper mantle 
considering the grain size evolution shown in b, for a constant shear stress of 1 MPa and 
strain rates from experimental flow laws of diffusion creep (Hansen et al., 2011; Hirth and 
Kohlstedt, 2003), disGBS (Hansen et al., 2011), and dislocation creep (Hirth and Kohlstedt, 
2003).  

 

5.5. Conclusions 

We investigated grain growth of olivine in dry, melt-free aggregates of olivine plus 6 

and 13 vol.% of pyroxene (dunite and harzburgite, respectively), at pressure and 

temperature conditions of the Earth’s upper mantle. Olivine is the main phase in the 

upper mantle and its grain size plays a major role in controlling viscosity in this region. 

Here we show that the olivine grain-growth rate decreases as pressure increases. We 

propose that this effect is a result of slower grain-boundary diffusion at high pressures 

(Fei et al., 2016). The implications for this finding are two-fold: i) changes in grain size 

due to slower grain growth might influence a transition to a Newtonian rheology in 

deeper parts of the upper mantle, and ii) because grain-boundary diffusion is proposed 

to be also the main mechanism for diffusion creep in olivine (Tasaka and Hiraga, 2013), 

an increase in viscosity in the deep upper mantle as a function of pressure is expected, 

if diffusion creep is the dominant deformation mechanism in this region. We show that 

for increasing depths in the upper mantle, the increase in the grain-growth rate of 

olivine due to an increase in temperature is counteracted by the inhibition of grain 

growth due to an increase in pressure. Estimation of a viscosity profile as a function of 
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depth based on the grain-size evolution of olivine predicted here and existing flow laws, 

indicates that viscosity in the deep upper mantle is lower than previously expected. 
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Abstract 

The microphysical processes that result in ductile deformation of Earth’s deep upper 

mantle (depths>200 km) are still not fully understood. Information on the natural 

deformation of olivine under these conditions is limited and experimental data is 

scarce. Based on laboratory data and interpretation of geophysical observations, 

diffusion creep has been credited to explain the reduced seismic anisotropy in this 

region. However, different studies have challenged this idea. Here, we investigate the 

effect of grain boundaries on the strength of olivine-dominated aggregates at deep 

upper mantle conditions (7-10 GPa,1400 ºC). We present a new set of deformation 

anvils and assembly used to investigate the simultaneous deformation of coarse and 

fine-grained olivine. Under these conditions, fine grained olivine deforms 7-9 times 

faster than coarse-grained olivine. Examination of crystallographic preferred 

orientations and microstructures indicate that deformation was accommodated by 

dislocation creep. These results suggest that grain boundaries promote deformation 

through grain-boundary sliding and that disGBS might also be the main process for 

ductile deformation in the deep upper mantle. 

 

6.1. Introduction 

Olivine is the main mineral phase in the Earth’s upper mantle. Therefore, the 

deformation of olivine has a major control on the rheology of the upper mantle. As 

outcrops of naturally-deformed samples from depths larger than 200 km are extremely 

rare, insights into the deformation mechanisms of olivine at the deep upper mantle 

comes in great part from experimental work. However, experimental deformation at 

deep upper mantle conditions, that is, at confining pressures higher than 6 GPa and 

temperatures higher than 1300 ºC, is technically complex. The first studies to reach 

such conditions used modified assemblies in a multi-anvil apparatus (e.g., Bussod et 

al., 1994; Cordier and Rubie, 2001; Durham and Rubie, 1996; Karato and Rubie, 

1997). The incorporation of synchrotron-radiation techniques later on allowed for the 

real-time monitoring of stress and strain evolution during the experiments (e.g., Couvy 
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et al., 2004; Li et al., 2004, 2003). These studies provide important information on the 

pressure-sensitivity of the activity of slip systems of olivine at high pressure. However, 

these early high-pressure deformation experiments consisted of stress-relaxation 

experiments rather than constant strain rate or constant stress experiments. Therefore, 

obtaining rheological parameters from the resulting mechanical data carried large 

uncertainties. The development of specific high-pressure apparatuses for deformation 

experiments, such as the rotational Drickamer apparatus (RDA; Yamazaki and Karato, 

2001) and the deformation-DIA (D-DIA; Wang et al., 2003), allowed for quantitative 

measurements on the strength of olivine and larger strains to be reached. These 

experimental innovations permitted improved investigation on the microphysical 

process responsible for large-scale geodynamical process such as flow at deep upper 

mantle and transition zone conditions (Kawazoe et al., 2016, 2009), the onset of plate 

tectonics (Amiguet et al., 2012), the origin of deep-focus earthquakes (Schubnel et al., 

2013) and the water circulation in the Earth’s mantle (Précigout et al., 2017). 

Here we present new developments in the study of the olivine deformation at deep 

upper mantle conditions using a cubic multianvil apparatus (Manthilake et al., 2012). 

This apparatus provides more precise controls on strain rate than the RDA and D-DIA 

apparatuses, while its open geometry provides better clearance for in-situ 

measurements such as X-ray and neutron diffraction (e.g., Sano-Furukawa et al., 

2014). This apparatus was previously used for olivine deformation at pressures up to 

5 GPa at 1200 ºC (Bollinger et al., 2019). We present modifications in the second-

stage anvils and deformation assembly that allow for the extension of the pressure and 

temperature range to 7 GPa and 1400 ºC, using a right-cylindrical sample of 1.5 mm 

diameter. We present examples of microstructures and textures of coarse and fine-

grained olivine that developed during high-pressure and temperature deformation 

experiments. Finally we discuss the results while attempting to increase the usage 

range of this assembly to confining pressures up to 10 GPa. 
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6.2. Methods 

 

 Sample preparation 

We fabricated coarsely-grained olivine aggregates from reconstituted San Carlos 

olivine and fine-grained olivine aggregates were synthesized through the solution-

gelation (sol-gel) method. Coarsely-grained aggregates were prepared from San 

Carlos olivine crystals that were optically inspected for homogeneity and ground in an 

agate mortar. The resulting powder was hot-pressed in a piston cylinder at 0.7 GPa 

and 1200 ºC for 12 hours. Hot-pressing allows for densification (i.e. reduction of 

porosity) and grain growth. The grain size after hot-press sintering was approximately 

30 µm. Aggregates of sol-gel olivine were hot-pressed at 0.7 GPa and 1200 ºC for 2 

hours, yielding grain sizes of approximately 2 µm. The SiO2 activity was buffered during 

sintering through the presence of pyroxene grains amounting to 1% and 5%, for the 

coarse and fine-grained aggregates, respectively. The oxygen fugacity during hot-

press was buffered by the Ni-NiO reaction between the Ni80Fe20 capsule and NiO 

powder placed at the top and bottom of the sample.  

   

 Deformation experiments 

The experiments were conducted using the MAVO-6 presses (Max Voggenreiter 

GmbH) at the Deutsches Elektronen-Synchrotron in Hamburg, Germany and at the 

Bayerisches Geoinstitut, in Bayreuth, Germany. The press consists of 6 hydraulic rams 

arranged in a cubic design (MA 6-6; Figure 6.1). The advancement of each ram 

towards the sample is controlled independently through the adjustment of oil 

pressures. The rams act on second stage-anvils made of tungsten carbide doped with 

5% of cobalt (hawedia Ha-5%). The pyramidal second-stage anvils used in our study 

have a squared truncation edge of 5 mm. They act on a truncated cubic assembly, with 

8 mm in the long edge and 5 mm in the short edge (Figure 6.1b). The relation between 

press load and hydrostatic pressure at room temperature was measured by monitoring 

the change in electrical resistance due to phase transitions of Bi, ZnTe and ZnS. The 

pressure points were fitted to an exponential equation of the form: 

𝑃𝑃 = 𝑎𝑎 exp �−𝐹𝐹
𝑏𝑏
� + 𝑐𝑐                         (5.1) 
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where 𝑃𝑃 is the sample pressure in GPa and 𝑍𝑍 the press load in MN. The data points 

were best-fitted using a non-linear-least-squares regression with 𝑎𝑎 = -17.28, 𝛼𝛼 = 2.216 

and 𝑐𝑐 = 17.16 (Figure 6.2). Extrapolation of these results to high temperature include 

uncertainties in the pressure estimation on the order of ± 0.5 GPa (cf., Manthilake et 

al., 2012). 

 

Figure 6.1: Deformation experiments in the MAVO press: a) Six rams are computer-
controlled to provide hydrostatic pressure and differential stresses. b)The rams exert load on 
a cubic assembly with a 5 mm truncated-edge length. 

 

 

Figure 6.2: Pressure calibration for the 8/5 assembly at room temperature. Data points from 
Farla, R. (personal communication). 
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Schematic drawings of the assembly parts, secondary-stage anvil, and gasket used in 

this study are shown in Figures A.3.10-12, respectively. The pyrophyllite pressure 

media and gaskets were pre-fired at 500 ºC for 12 hours. The MgO parts were pre-

fired at 1000 ºC for 12 hours. The experiments were carried out by first hydrostatically 

compressing the samples to the experimental confining pressure. The confining 

pressure is kept constant by the control of oil pressure to a master ram (middle bottom 

ram in Figure 6.1a), and adjusting the pressure of the other rams to keep the cubic 

geometry (i.e., equal distance between the rams). The sample is then heated to the 

experimental temperature and annealed for 30 minutes, which allows for the recovery 

of the microstructure before the deformation experiment. The deformation experiment 

in pure-shear geometry is done by advancing the rams parallel to the assembly 

compression axis (lower right and upper left rams in Figure 6.1a) and retracting the 

rams normal to it in the horizontal plane (lower left and upper right rams in Figure 6.1a), 

while the remaining rams (middle bottom and top rams in Figure 6.1a) maintain their 

relative position. The position of the rams is monitored by linear-displacement 

encoders with a precision of 0.1 µm.  

The experimental conditions of the deformation experiments are summarized in Table 

6.1. The deformation experiments were conducted at confining pressures of 7-10 GPa, 

temperatures of 1100-1400 ºC and constant displacement rate of the rams to achieve 

a nominal constant strain rate of 10-4-10-5 s-1. We performed simultaneous tests with 

coarse-grained and fine-grained olivine inside a capsule, separated by a Ni-foil of 10 

µm thickness. The strain experienced by each sample was calculated individually by 

measuring the samples before deformation with a calliper (uncertainty: 5 µm) and after 

deformation using SEM images (uncertainty smaller than 0.5 µm). The average strain-

rates were then calculated by the ratio between the strain and the duration of the 

deformation experiment. The oxygen fugacity was buffered by the Ni-NiO reaction 

between the Ni-capsule and NiO powder added to the top and bottom of the capsule. 
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Table 6.1: Experimental conditions 

Experiment 
Pressure 

(GPa) 
Temperature 

(ºC) 
Bulk strain 

Bulk strain rate 
(s-1) 

HH221 7 1400 0.1 1.00E-05 

HH222 7 1400 0.3 1.00E-04 

HH224 10 1400 0.2 1.00E-05 

HH225 10 1400 0.3 1.00E-05 

HH226 10 1400 0.3 1.00E-04 

M716 10 1100 0.3 1.00E-05 

 

 EBSD analyses 

Electron Backscattered diffraction data was collected at a step size of 0.5 µm for the 

fine-grained olivine and at 1 µm for coarse-grained olivine. Operation conditions of the 

Scanning Electron Microscope (FEI SCIOS Dual Beam) was 20 kV and 3.2 nA for 

acceleration voltage and beam current, respectively.  

The EBSD data was treated using the EDAX OIM Analysis™ software. EBSD data was 

re-indexed using the neighbour pattern averaging routine (Wright et al., 2015). 

Afterwards, a grain-dilation routine was applied, which assigns the crystal orientation 

of low-quality measurements within a grain to the mean orientation of its neighbours. 

Grains were assigned to areas containing more than 20 indexed pixels and bounded 

by a misorientation angle equal or higher than 20º. A pseudo-symmetry correction was 

applied to olivine, where grains separated by boundaries with a misorientation of 60° 

around the [100] axis are merged together (e.g., Marquardt et al., 2017). Finally, 

another iteration of grain dilation was applied. After the aforementioned cleaning steps, 

at least 95% of the mapped areas were assigned with crystal orientations. The 

remaining not-indexed areas are mainly a result of decompression cracks. The EBSD 

data was subsequently analysed with MTEX (Hielscher and Schaeben, 2008). 
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6.3. Results 

 

 Deformation experiments at 7 GPa 

Two deformation experiments were performed at 7 GPa and 1400 ºC. The HH221 

experiment was carried out at a bulk strain rate of 10-5 s-1 to a total bulk strain of 0.1 

(10% compression). The HH222 experiment was carried out at a bulk strain rate of 10-

4 s-1 to a bulk strain of 0.3 (30% compression). The post-mortem average strain and 

strain rates calculated for the coarse (San Carlos olivine) and fine-grained (sol-gel 

olivine) are presented in Table 6.2 and SEM images are shown in Figure 6.3. The strain 

rate of the fine-grained olivine was substantially higher in both experiments. The fine-

grained olivine deformed approximately 7 and 9 times faster than the coarse-grained 

olivine for experiments HH221 and HH222, respectively. 

 

Table 6.2: Experimental results at 7 GPa 

Experiment Strain  
Coarse-grained 

Strain rate (s-1) 
Coarse-grained 

Strain  
Fine-grained 

Strain rate (s-1) 
Fine-grained 

HH221 0.01 1.43E-06 0.08 8.45E-06 

HH222 0.08 2.62E-05 0.31 1.02E-04 

 

The olivine crystal preferred orientations (CPO) of samples HH221 and HH222 are 

presented in Figures 6.4a and 6.4b, respectively. The pole figures for the fine-grained 

olivine samples for both experiments show an uniform distribution. The pole figures for 

the coarse-grained olivine in both samples show similar distributions, with strong 

clustering of (010) planes parallel to 𝜎𝜎1. The poles to the (100) planes show a girdle 

distribution in the horizontal plane, while the poles to the (001) planes present a rather 

uniform distribution. Intragranular misorientations developed after deformation are 

illustrated in Figure 6.5 for fine-grained olivine and in Figure 6.6 for coarse-grained 

olivine. The presence of sharp misorientation edges within the grains can be observed 

for the coarse and fine-grained samples. These features are also present in grains 

smaller than ~ 10 µm, as indicated in the insets in Figure 6.5. Figure 6.6 also shows 

the presence of a narrow band where a noticeable decrease in grain size occurs.  
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Figure 6.3: Secondary electron images of recovered samples after deformation at a confining 
pressure of 7 GPa: a) Experiment HH221. b) Experiment HH222. The direction of maximal 
compression, 𝜎𝜎1, is vertical and the direction of minimal compression, 𝜎𝜎3, horizontal. 
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Figure 6.4: Olivine pole figures of experiments a) HH221 and b) HH222. One point per grain 
(mean orientation). Lower-hemisphere projection. 
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Figure 6.5: Intergranular misorientation of fine-grained olivine in experiment HH222. EBSD 
data are colour-coded by the angular misorientation to the mean orientation of the grains, 
from 0º (dark blue) to 10º (light yellow). Arrows in b-d) indicate sharp misorientation bands in 
very small grains (<10 µm). Insets dimensions are 100 µm x 100 µm. 
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Figure 6.6: Intergranular misorientation of coarse-grained olivine in experiment HH222. 
EBSD data are colour-coded by the angular misorientation to the mean orientation of the 
grains, from 0º (dark blue) to 10º (light yellow). Arrows in a) indicate a narrow horizontal band 
where extensive grain size reduction occurred. Insets b, c and d shown in a) are magnified in 
b), c) and d), respectively. Insets dimensions are 150 µm x 150 µm. 

 

 Deformation experiments at 10 GPa 

Four experiments were carried out at a confining pressure of 10 GPa. Despite the 

similar assembly configuration and procedure, all experiments at 10 GPa presented 

features of brittle faulting. For example, fault planes at approximately 30-45º from the 

maximum compression direction developed during experiments HH225 (Figure 6.7a) 

and HH226 (Figure 6.7b). Inter-and transgranular microfractures can also be observed 

in similar directions (insets in Figure 6.7). The widespread microfracturing introduced 

a large amount of distortion to the crystals, which impeded the indexing of crystal 

orientations using the EBSD technique. Figure 6.7 also shows that substantial 



 125 

shortening of the samples occurred along the compression direction. This can be seen 

in Figure 6.7b where the fine-grained sample of experiment HH226, for example, 

presents a shortening strain of approximately 0.2.  Furthermore, grain sizes of the fine-

grained olivine (insets in Figure 6.7) shows average grain sizes of approximately 20 

µm, considerably larger than the average grain size of the starting material (~2.5 µm).  

 

 

Figure 6.7: Secondary electron images of recovered samples after deformation at a confining 
pressure of 10 GPa: a) Experiment HH225. b) Experiment HH226. The direction of maximal 
compression, 𝜎𝜎1, is vertical and the direction of minimal compression, 𝜎𝜎3, horizontal. 
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6.4. Discussion 

Experiments performed using a new high-pressure deformation assembly (8/5) in a 

multianvil cubic press (MA 6-6) were successfully performed at a confining pressure of 

7 GPa at 1400 ºC. In these experiments, deformation of fine-grained olivine occurs at 

a faster rate (almost one order of magnitude) than coarse-grained olivine (Figure 6.3). 

These results are opposite to those observed for low-temperature deformation of 

olivine (e.g., Hansen et al., 2019; Kumamoto et al., 2017). At low temperature, the 

recovery of the microstructure is limited. Hence, the dislocations present within the 

grains inhibit further incorporation of dislocations, leading to strain hardening. Because 

in fine-grained aggregates more obstacles for the movement of dislocations are 

present (i.e., grain boundaries), this hardening effect is maximized for decreasing grain 

size (Hall, 1951; Petch, 1953). At higher temperatures, however, dislocations are 

allowed to climb obstacles such as grain boundaries (Goetze and Kohlstedt, 1973; 

Weertman, 1957). Furthermore, dislocations can be incorporated in grain boundaries 

leading to grain-boundary sliding (e.g., Langdon, 1994), as discussed in Chapter 4. 

This results in strain softening for an increasing amount of grain boundaries, that is, 

for decreasing average grain size. This is a possible reason why fine-grained olivine is 

weaker than coarse-grained olivine in experiments HH221 and HH222. Another 

possibility is that diffusion creep was operative. For example, deformation appears to 

be localized in shear bands (Figure 6.6a), where substantial grain size reduction 

occurs. These grains appear free of internal distortion and thus, a grain-size sensitive 

mechanism, such as diffusion creep, might be dominant. However, it is shown here the 

abundance of low-angle grain boundaries and lattice distortion, even for the fine-

grained aggregates (Figure 6.5). These are strong evidences that deformation was 

accommodated by dislocation creep (e.g., Wallis et al., 2016). 

 

The experiments performed at a confining pressure of 10 GPa present brittle 

deformation features. For example, shear fractures are observed crossing the whole 

assembly (Figure 6.7). Microfracturing is also observed across grains and along grain 

boundaries. At such high confining pressures, brittle processes are expected to be 

suppressed (Byerlee, 1968; Lockner and Beeler, 2002). Nonetheless, their occurrence 

in nature might be a source of deep-focus earthquakes (Frohlich, 1989). The 

substantial grain growth of olivine and the shortening of the samples along the 
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compression axis (Figure 6.7), suggest, however, that high-temperature deformation 

was maintained during most of the duration of the experiments. If failure occurred 

during deformation, possible causes include faulting due to localized heating (e.g., 

Hobbs et al., 1986; Ogawa, 1987; Ohuchi et al., 2017; Thielmann, 2018; Zhan, 2020) 

or due to stress-promoted phase transitions (e.g., Burnley et al., 1991; Schubnel et al., 

2013; Wang et al., 2017). However, because the fractures do not show evidence of 

healing, it is probable that failure occurred at the end of the experiments or during 

decompression. If failure occurred at the end of the experiment, one possible reason 

is that the fast quenching led to fast contraction and fracturing of grains. This rapid 

volume change might create widespread fractures that would coalesce at the plane of 

maximum resolved shear stress (i.e. ~ 30 to 45º from the maximal compression 

direction) and allow failure to occur. In this case, a possible solution would be a slower 

quenching rate of the experiment, although this could lead to recovery of the 

microstructure and obliteration of deformation structures. If failure occurred during 

decompression, a possible reason could be the sudden release of stored elastic 

energy by the anvils and/or assembly. Such events might lead to breakage of the anvils 

(i.e., blow out), although they might also remain unnoticed. In-situ monitoring of 

acoustic emissions (e.g., Ohuchi et al., 2017; Wang et al., 2017) could provide valuable 

information of time and source of such failure events, leading to a better understanding 

of the mechanisms involved in this process. Acoustic-emission measurements could 

also potentially reveal whether the brittle events occurred due to brittle failure or as a 

result of thermal runaway.  

 

6.5. Conclusions 

A new assembly was developed that allows deformation of relatively large samples 

(1.5 mm right cylinder) at pressure and temperature conditions of the deep upper 

mantle (e.g. 7 GPa and 1400 ºC). It is shown that fine-grained olivine deforms 

considerably faster than coarse-grained olivine at these conditions, even during 

deformation accommodated by dislocation creep. Similar experiments using this 

assembly at a confining pressure of 10 GPa resulted in deformation in the brittle 

regime, while plastic deformation was expected. Nonetheless, the results presented 

here suggests that high-temperature deformation was achieved during most of the 

duration of the experiments. The reason for brittle deformation is unclear but possible 
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causes include failure due to localized heating, phase transitions, thermal contraction, 

and release of elastic energy from the anvils or assembly parts.  
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Abstract 

Grain boundaries impact the function and performance of polycrystalline materials. The 

characterization of the grain boundary structure is an important step to better 

understand the effects of grain boundaries on bulk properties of materials. The grain 

boundary plane and character distribution (GBPD and GBCD, respectively) are largely-

used techniques to characterise the macroscopic structure of grain boundaries. Here 

we provide a MATLAB® toolbox to extract grain boundary information from electron 

backscatter diffraction (EBSD) data and display the grain boundary plane and 

character distribution. The tools provided here extend the use of the GBPD/GBCD 

techniques to data of multiple EBSD vendors and allows better access and handling 

of the data to be exported and plotted. Furthermore, it provides integration with MTEX, 

which is broadly used for microstructure and texture analyses of EBSD data. 

 

7.1. Background 

Many properties of polycrystalline materials are directly correlated with the composition 

and structure of grain boundaries (Sutton and Balluffi, 1995). Grain boundaries play an 

important role in moderating several bulk mechanical properties such as deformation, 

fracture, corrosion, segregation and diffusion (Watanabe, 2011). Therefore, the 

characterization of grain boundary distributions is of crucial importance for correlations 

between microstructure and properties. The grain boundary plane and character 

distribution (GBPD and GBCD) calculated from 2D EBSD data are cost-effective and 

fast techniques to obtain a macroscopic description of grain boundaries. Computer 

programs created by Rohrer and collaborators (Saylor et al., 2002; Saylor and Rohrer, 

2002) made possible to obtain the GBPD/GBCD from EBSD data. Nonetheless, tools 

for importing, visualizing, treating and exporting EBSD-related data in proprietary 

software packages are still limited. With the increasing number of users migrating to 

open software, an alternative is proposed here to perform these tasks and execute the 

GBPD/GBCD programs using the MTEX toolbox for MATLAB® (Hielscher and 

Schaeben, 2008). MTEX allows EBSD data from several vendors or any generic 
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spatial/crystal orientation data to be imported and analysed. Furthermore, it provides 

a growing number of tools for crystal orientation and symmetry operations. Here we 

aim at presenting a way to easily combine MTEX routines and the GBPD/GBCD 

programs. We will also compare the segments output from MTEX and EDAX OIM™ 

and discuss the minor variations between them. We will show that the scripts presented 

here provides similar results and allows for time optimization and increased range of 

use of the GBPD/GBCD technique.  

Here we provide a toolbox to import the EBSD data, export grain and grain boundaries 

properties to the GBPD/GBCD programs, execute the programs and visualize the grain 

boundary plane and character distribution. Additionally, auxiliary scripts are added and 

being developed to include functionality of MTEX to work with its native grain boundary 

class. 

 

7.2. Methods 

We present here an example from EBSD data obtained from polycrystalline olivine 

synthesized via sol-gel method. Olivine is a nesosilicate with a (Mg,Fe)2SiO4 

composition. Olivine is the most common mineral in the Earth’s upper mantle and 

commonly found in mantle xenoliths. EBSD data was obtained using a step size of 0.5 

μm, using a hexagonal grid. The EBSD data and reconstructed grain boundary-

segments were exported from the EDAX OIM™ v8 software. Grain boundaries were 

defined for a misorientation threshold of 20 degrees and for grains composed of at 

least 10 pixels. EBSD measurements with confidence index smaller than 0.1 were 

deleted. 

The computer scripts were written in the MATLAB® environment. They can be run on 

Linux, MacOS or Windows platforms. The flowchart of the code execution is shown in 

Figure 6.1. The following sections will describe the main functions as well as the 

expected input and output data. 
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Figure 7.1: Flowchart of data import and code execution.  

 

 Extract GBPD/GBCD parameters (getGBCDpar function) 

The getGBCDpar function extracts parameters necessary for the calculation of the 

GBPD and GBCD. They include: the crystal symmetry and the EBSD acquisition step 

size, which can be extracted from the EBSD data, the rotation framework, dependent 

on the EBSD vendor, the unit of Euler angles, in radians or degrees, the resolution, as 

the number of bins per 90º, the activation of segment size analyses, and a small length 

cutoff, as the length of segments in case the segment analyses is activated. These 

parameters are then written in the input files for the calculation of the GBPD and 

GBCD. 

The call for the function is of the form: 

GBCD_par = getGBCDpar(ebsd, cs); 

where the arguments ebsd is a MTEX variable (class EBSD) and cs is the crystal 

symmetry (class crystalSymmetry) for the phase to be analysed. The output 

GBCD_par is an array with double variables of size 1x8. 
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 GBPD/GBCD segments to plot file (segments2dat and 
GBCDsegments2dat functions) 

The segments2dat (GBCDsegments2dat) function runs the GBPD (GBCD) programs. 

The GBPD (GBCD) program output is shown in the MATLAB® command window, 

without the need to open a command-line interface. After the programs are run, a text 

file with a .dat extension is created containing three columns: the polar 

coordinates(𝜃𝜃,𝜙𝜙) of each bin and their respective multiples of uniform distribution 

(MUD) values. The call for the function for GBPD and GBCD, respectively, is of the 

form: 

datFname = segments2dat (GBCDfolder, segFname, GBCD_par); 

and 

datFname = GBCDsegments2dat (ax, ang, GBCDfolder, segFname, GBCD_par); 

where the argument GBCDfolder is a string with the path to the folder containing the 

GBPD/GBCD programs, segFname is a string with the path to the segments file,  

phaseName is a string with the EBSD phase to be analyzed, ax the misorientation 

axes as a MTEX variable (class Miller) and ang the misorientation angles in degrees 

as a double array. The output datFname is a string variable containing the path to the 

exported .dat file. For the GBCDsegments2dat function, multiple misorientation 

axes/angles combinations can be provided as a input and the datFname will contain a 

cell array with the same amount of paths.  

 

 Import GBPD/GBCD plot files (loadGBPD and loadGBCD 
functions) 

The loadGBPD (loadGBCD) function loads the .dat file created with the GBPD (GBCD) 

containing the coordinates and the MUD values. The call for the function for GBPD and 

GBCD, respectively, is of the form: 

gbpd=loadGBPD(datFname);  

and 

gbcd = loadGBCD(datFname); 
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where the argument datFname is a string with the path to the .dat file created in the 

previous step. The output gbpd (gbcd) is a structure variable containing the polar 

coordinates (𝜃𝜃,𝜙𝜙) and the MUD values. For the GBCDsegments2dat function, the 

datFname variable may contain several paths as a cell array of strings. 

 

 Plot GBPD/GBCD (plotGBPD and plotGBCD functions) 

The plotGBPD (plotGBCD) function plots the GBPD (GBCD) in a stereographic 

projection. The data can be visualized as a scatter or interpolated plot. The scatter plot 

is obtained using the flag ‘scatter’. An interpolation using an inverse distance weighing 

is performed using the flag ‘smooth’. 

The call for the function is of the form: 

plotGBPD(gbpd,cs);  

and 

plotGBCD(gbcd,cs, ax, ang) 

where the argument gbpd is a structure containing the polar coordinates (𝜃𝜃,𝜙𝜙) 

coordinates and the MUD values obtained in the previous step and cs is the crystal 

symmetry (class crystalSymmetry) for the phase to be analyzed, ax the misorientation 

axes as a MTEX variable (class Miller) and ang the misorientation angle in degrees as 

a double array. 

 

 

7.3. Results and discussion 

Here we show an application example of the tools provided for the analyses of the 

GBPD and GBCD. The process of obtaining grain-boundary segments from EBSD 

data differs between EDAX OIM™ and MTEX. The OIM™ system method create 

segments by connecting triple junctions following the calculated grain boundaries 

(Figure 7.2a), within a given user defined pixel tolerance (Wright and Larsen, 2002). 

Because of the nature of this method, one important limitation is that inclusions in 

grains are omitted because they do not encompass triple junctions. Furthermore, the 

geometry of grain boundaries might be also oversimplified (Figure 7.2a).  
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MTEX uses a Voronoi tessellation to reconstruct polygons from EBSD measurements 

(Bachmann et al., 2011). This method provides better accuracy to describe the 

geometry of the grain boundaries and allows for grain inclusions to be analysed. Grain 

boundaries are defined in MTEX when at least one of the two criteria are met: 

Measurement points separate different phases or their misorientation angle exceeds a 

defined threshold.  

Because EBSD data is assigned to pixels of square or hexagonal shape, a staircase 

effect would be present when assigning grain boundaries. To address this issue, grain 

boundaries must be smoothed (Figure 7.2). As discussed above, EDAX OIM 

Analysis™ reconstructs boundaries by connecting neighbouring triple points (Figure 

7.2a). MTEX assigns Voronoi cells comprising similar data (orientation and phase). 

The smoothing is done by the MTEX function smooth (class grain2D). The default ‘rate’ 

smoothing method averages the spatial orientation of grain boundaries, except triple 

points. The number of iterations is given by a smooth factor parameter. Figure 7.2 

exemplifies the effect of increasing smoothing iterations. Figure 7.2b shows the grain 

boundary traces calculated without smoothing. The reconstructed grain boundaries 

outline the hexagonal shaped pixels (EBSD measurement points). This staircase effect 

becomes less evident as the grain boundaries are smoothed out, especially after 5 

iterations (Figure 7.2c-f).  
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Figure 7.2: Comparison of segments (black lines) exported from a) EDAX OIM™ and MTEX 
for b) no smoothing and increasing number of smoothing iterations of c) 1, d) 2, e) 5 and f) 
10 iterations. 

 

7.4. Conclusions 

We provide here a toolbox written in MATLAB® to extract grain boundary information 

from EBSD data, execute the grain boundary plane and character distribution 

programs and plot the results. MTEX provide functions to access and classify grain 

boundaries according to their misorientation axis and angle, phase and orientation of 

neighbouring grains, or any other user-defined criteria. This allows for better control on 

the exported grain-boundary segments and improved understanding of grain-boundary 

types and populations. Furthermore, any generic EBSD data can be used, independent 

of acquisition system. 

 

a) b) c) 

d) e) f) 
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Conclusions 
In this work, the effect of grain boundaries in the deformation and grain growth of olivine 

at upper mantle conditions was investigated. The main findings are summarized below: 

• The results presented in Chapter 4 suggest that grain boundaries act to promote 

deformation in the dislocation-accommodated grain-boundary sliding regime 

through the interaction with dislocations. The distribution of grain-boundary 

types evolves as a function of strain. The creation of grain boundaries starts by 

the formation of dislocation arrays (low-angle grain boundaries) that evolve into 

high-angle grain boundaries by crystal rotation via grain-boundary sliding.  

• I show evidence suggesting transfer of dislocations across low-angle grain 

boundaries. For grains separated by a high misorientation angle (> 20º), the 

data suggest that the dislocations are instead absorbed into the grain 

boundaries, also causing grain rotation. This process would change the grain 

boundary plane and involve grain-boundary sliding. 

• In simple shear deformation of olivine, the [100](010) is one of the main active 

slip systems. I show here that dislocation creep in these conditions leads to the 

formation of (hk0) grain boundaries in polycrystalline olivine. The activity of slip 

systems in olivine changes with stress, water content, pressure and 

temperature. Thus, if different dislocation systems are activated, different grain 

boundaries are created. Because different grain boundaries have different 

physical properties (Sutton and Balluffi, 1995), grain-size sensitive geophysical 

observables, such as electrical conductivity (Pommier et al., 2018; ten 

Grotenhuis et al., 2004) and seismic attenuation (Jackson et al., 2002) may 

exhibit variable responses accordingly. 

• Our understanding of the role of grain boundaries in deformation and in the 

interpretation of geophysical observables would greatly benefit from in-situ 

experiments using bicrystals. For example, nanoindentation experiments (e.g., 

Britton et al., 2009) could provide information on the different factors involved in 

the assimilation and transmission of dislocations. Measurements of electrical 

conductivity in bicrystals (e.g., Kim et al., 2019; Osburn and Vest, 1971) would 
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provide valuable information on the effect of (specific) grain boundaries on the 

electrical conductivity of the Earth’s mantle. 

• In Chapter 5, I showed that the olivine grain-growth rate decreases at high 

pressures. I propose that this effect is a result of slower grain-boundary diffusion 

at high pressures. The implications for this finding are two-fold: i) changes in 

grain size due to slower grain growth might influence a transition to diffusion 

creep in deeper parts of the upper mantle, and ii) because grain-boundary 

diffusion is proposed to be also the main mechanism for diffusion creep in olivine 

(Tasaka and Hiraga, 2013), an increase in viscosity in the deep upper mantle 

as a function of pressure is expected if diffusion creep is the dominant 

mechanism, as previously suggested (e.g., Karato, 1992). Experimental studies 

focused on diffusion creep of olivine at high pressures are thus necessary to 

understand the effect of pressure on the rheology of the upper mantle. 

• The grain-size evolution of olivine in the deep upper mantle (depths larger than 

200 km) was estimated based on the grain-growth data presented here. I 

estimate a viscosity profile as a function of depth using the grain-size evolution 

predicted here and existing flow laws. The results indicate that viscosity is 

approximately constant in this region. 

• The inference of mantle viscosity as a function of depth from surface 

measurements, such as post-glacial rebound, is less reliable as depth increases 

(e.g., Milne et al., 1998). Thus, experimental data exploring the factors 

controlling viscosity at large depths, such as reported here, are timely and 

crucial to advance our understanding on the dynamics of the Earth’s mantle. 

• In Chapter 6, I presented a new assembly (8/5) designed for pure shear 

deformation experiments at conditions of the deep upper mantle (e.g. 7 GPa, 

1400 ºC). During experimental deformation at these conditions, olivine 

deformation is accommodated by dislocation creep, with fine-grained olivine 

significantly weaker than coarse-grained olivine. Measurements of the strength 

of olivine at these conditions (e.g., using synchrotron radiation) are necessary 

for quantitative estimations of the effect of grain boundaries on the rheology of 

the upper mantle. 

• Attempts to extend the range of confining pressure of the 8/5 assembly to 10 

GPa resulted in deformation in the brittle regime, while plastic deformation was 

expected. Possible explanations include failure due to localized heating, phase 
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transitions, thermal contraction, and release of elastic energy from the anvils or 

assembly parts. The in-situ monitoring of acoustic emissions could provide 

information on the processes involved and their implications for the 

understanding of deep-focus earthquakes. 

• I introduced in Chapter 7 a toolbox developed to analyse the results of grain 

boundary-plane and character distribution calculations from 2-D EBSD data. 

The scripts are presented in the Appendix A.2. This toolbox simplifies and 

automate tasks and expand the use of these techniques for a great number of 

users. The toolbox is open source, which allows for continuous improvement 

and increasing number of functions.  
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A: Appendix 

A.1. Calculation of viscosity profiles 

Viscosity, 𝜂𝜂, as shown in the viscosity profiles in Figure 9, is given by the ratio between 

the shear stress, 𝜎𝜎, and strain rate, 𝜀𝜀̇, that is: 

𝜂𝜂 = 𝜎𝜎
�̇�𝜀 
                  (A.1.1) 

Our calculations assume 𝜎𝜎 =1 MPa (Kohlstedt and Hansen, 2015), and the strain rate 

is given by the sum of the strain rates of dislocation creep (𝜀𝜀�̇�𝑑𝑖𝑖𝑑𝑑), dislocation-

accommodated grain-boundary sliding (𝜀𝜀�̇�𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) and diffusion creep (𝜀𝜀�̇�𝑑𝑖𝑖𝑑𝑑): 

𝜀𝜀̇ =  𝜀𝜀�̇�𝑑𝑖𝑖𝑑𝑑 + 𝜀𝜀�̇�𝑑𝑑𝑑𝑑𝑑 + 𝜀𝜀�̇�𝑑𝑖𝑖𝑑𝑑               (A.1.2) 

The strain rate for dislocation creep is given by (dry olivine, Hirth and Kohlstedt, 2003): 

𝜀𝜀�̇�𝑑𝑖𝑖𝑑𝑑 = (1.1 × 105) exp �−�5.3×105�+𝑃𝑃 �14×10−6�
𝑅𝑅𝑅𝑅

�                  (A.1.3) 

for dislocation-accommodated grain-boundary sliding by (dry olivine; Hirth and 

Kohlstedt, 2003; modified by Hansen et al., 2011): 

𝜀𝜀�̇�𝑑𝑑𝑑𝑑𝑑 = (104.8) 1
𝑑𝑑0.73 exp �−�4.45×105−(300×106×18×10−6)�+𝑃𝑃 �18×10−6�

𝑅𝑅𝑅𝑅
�         (A.1.4) 

and for diffusion creep by (dry olivine; Hirth and Kohlstedt, 2003): 

𝜀𝜀�̇�𝑑𝑖𝑖𝑑𝑑 = (107.6) 1
𝑑𝑑3

exp �−(3.7×105)+𝑃𝑃 �6×10−6�
𝑅𝑅𝑅𝑅

�                  (A.1.5) 

where 𝑃𝑃 is pressure in GPa 𝑅𝑅 is the gas constant in J⋅K−1⋅mol−1, 𝑇𝑇 is the temperature 

in K, and 𝑑𝑑 is grain size in µm. The grain-size evolution as a function of pressure, 𝑃𝑃 

(Pa), temperature, 𝑇𝑇 (K), and time, 𝑡𝑡 (s), is given by Eq. 1 and Eq. 2, using the 

parameters obtained in this study, that is: 
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𝑑𝑑 = �𝑑𝑑0
3.88 + �(2.11 × 10−7) exp  �−(608×103)+𝑃𝑃(4.3×10−6)

𝑅𝑅𝑅𝑅
�� 𝑡𝑡�

1
3.88�

        (A.1.6) 

 

Pressure and temperature as a function of depth were obtained from Dziewonski and 

Anderson (1981) and Katsura et al. (2004), respectively. Our calculations were 

performed using an initial grain size, 𝑑𝑑0, of 10 × 10−6 m.
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A.2. Computer Scripts 

This section presents the scripts included in the toolbox described in Chapter 7. The 

scripts are also available at the following repository: 

https://doi.org/10.5281/zenodo.5344419.  The scripts were written by Filippe Ferreira 

(Universität Bayreuth, Germany), supervised by Dr. Katharina Marquardt (Imperial 

College London, United Kingdom) and Dr. Marcel Thielmann (Universität Bayreuth, 

Germany). The scripts are licensed under the MIT license available at: 

https://opensource.org/licenses/MIT.  

A.2.1. Function getGBCDpar 

 

function GBCD_par=getGBCDpar(ebsd, cs) 

%Function actions: 

    %Reads EBSD file and outputs: 

    % msym, rot, rad, resolution, seg, stepSize, cutOff 

    % to input.txt files. Edit this file for the desired parameters. 

%Input: 

    % ebsd = root folder with gbpd/gbcd programs 

    % segments_fname = file name of segments 

    % GBCD_par = gbpd/gbcd/parameters (obtained from getGBCDpar.m) 

%Output: 

    %datFname: Path to the GBPD .dat file located in the graph_pd folder to be ploted 

 

%% Check symmetry 

https://doi.org/10.5281/zenodo.5344419
https://opensource.org/licenses/MIT
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switch cs.lattice 

    case 'cubic' 

        msym=3; 

    case 'hexagonal' 

        msym=2; 

    case 'tetragonal' 

        msym=1; 

    case 'trigonal' 

        msym=4; 

    case 'orthorhombic' 

        msym=5; 

    otherwise 

        error('Crystal symmetry not available') 

end 

 

% Rotation %** Change accordingly 

%  rot=0;% HKL system 

rot=1; % TSL system 

 

% Euler angles in rad or deg  

% rad=0% degree 

rad=1; % rad 

 

% Resolution (bins per 90 degrees) -maximum:18.     %** Change accordingly 

resolution=[9, 9]; 

 

% Segment analysys %** Change accordingly 
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% Recomended to leave at zero when using Mtex exported data 

% (in mtex every segment has the same size) 

seg= 0; 

 

%Check step size 

ucell=ebsd.unitCell; 

area_shape=polyarea(ucell(:,1),ucell(:,2)); 

 

switch size(ucell,1) 

    case 4 % square grid 

        stepSize=sqrt(area_shape);  

    case 6 % hexagonal grid 

        stepSize=sqrt(area_shape/sind(60)); 

    case 16 % ? grid 

        stepSize=sqrt((area_shape)/pi);% check this 

    otherwise 

         stepSize= input('Enter EBSD step size and press enter:  '); 

end 

 

% small length cutoff %** Change accordingly 

% Recomended to leave at zero when using Mtex exported data 

cutOff= 0.0; 

 

%Join all parameters in array  

GBCD_par=[msym, rot, rad, resolution, seg, stepSize, cutOff]; 

% 
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fprintf('\n -getGBCDpar: The following parameters will be used in the GBPD/CD 

calculations: \nSymmetry | Rotation | Radians | Resolution | Segment analysys | Step 

size | Small length Cut off \n  %11.0f | %12.0f | %11.0f | %10.0f x %.0f| %25.0f | %10.2f 

| %28.2f  \n ', GBCD_par); 

A.2.2. Function segments2dat 

 

function datFname = segments2dat(GBCDfolder,segments_fname,GBCD_par) 

%Function actions: 

    %1- Copy boundary segments file to GBPD folder  

    %2- Change  input.txt file 

    %3- run GBPD program 

%Input: 

    % GBCDfolder = root folder with gbpd/gbcd programs 

    % segments_fname = file name of segments 

    % GBCD_par = gbpd/gbcd/parameters (obtained from getGBCDpar.m) 

%Output: 

    %datFname: Path to the GBPD .dat file located in the graph_pd folder to be ploted 

%% Set file names, folder paths 

    oldFolder=pwd; 

    cd (GBCDfolder) 

    [~,sample_name,ext] = fileparts(segments_fname) ; 

    % output file name should be: 

     datFname = fullfile(GBCDfolder, 'graph_pd',['gbpd_', sample_name, 

'_2d_gmt.dat']); 
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 %% Replace location of boundary segments file in 'calc GBPD' input file 

    calcGbpdFolder = fullfile(GBCDfolder,'calc_gbpd'); 

    inputFname=fullfile(calcGbpdFolder,'input.txt'); 

 

    % replace second line of input file with the name of segment file 

    clear A; A = regexp(fileread(inputFname), '\n', 'split');% read all data to A, line by line 

    A{2} = sprintf([sample_name,ext]);% replace content of 2nd line 

 

    % Replace parameters in 'calc GBPD' input file 

    %GBCD_par=[msym, rot, rad, resolution, seg, stepSize, cutOff]; 

    A{4} = sprintf( '%d\t%d\t%d', GBCD_par(1:3)); % replace symmetry, rotation, radian 

    A{6} = sprintf( '%d\t%d', GBCD_par(4:5)); % replace resolution 

    A{8} = sprintf( '%d', GBCD_par(6)); % replace segment analysis 

    A{10} = sprintf( '%.2f', GBCD_par(7)); % replace step size 

    A{12} = sprintf( '%.2f', GBCD_par(8)); % replace small length cutoff 

 

    fid = fopen(inputFname, 'w'); % Open 'input.txt' 

    fprintf(fid, '%s\n', A{:}); % 

    fclose(fid); 

 

    %copy file 

    copyfile(segments_fname,fullfile(calcGbpdFolder,[sample_name,ext]) , 'f'); 

 

%% Replace parameters in  'plot GBPD' input file 

    inputFname=fullfile(GBCDfolder,'graph_pd','input.txt'); 

 

    clear A; A = regexp(fileread(inputFname), '\n', 'split');% read all data to A, line by line 
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    % replace file name  

    A{1} = sprintf(['gbpd_',sample_name,ext]);% replace content of 1st line 

 

    %GBCD_par=[msym, rot, rad, resolution, seg, stepSize, cutOff]; 

    A{3} = sprintf( '%d ', GBCD_par(1));% replace symmetry 

    A{5} = sprintf( '%d\t%d', GBCD_par(4:5));% replace resolution 

 

    fid = fopen(inputFname, 'w');% open input.txt 

    fprintf(fid, '%s\n', A{:}); % write A  

    fclose(fid); % close 

 

    %% Run GBPD script 

 

    % Set Fortran path For MATLAB (if not already): 

    try 

        if contains(computer , 'MAC' ) % MAC 

            if ~contains(getenv('PATH'), ':/usr/local/bin')  

                setenv('PATH', [getenv('PATH') ':/usr/local/bin']); %set path for mac 

            end 

            system(['chmod +x ',fullfile(GBCDfolder, 'gbpd.sh')]);% make shell file 

executable (Mac/Linux) 

            system(['. ',fullfile(GBCDfolder, 'gbpd.sh')]);% Run and Show output  

            fprintf('\n -segments2dat: GBPD wrote to file: %s \n ', datFname) 

 

        elseif contains(computer , 'LNX' ) % Linux 
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                system(['chmod +x ',fullfile(GBCDfolder, 'gbpd.sh')]);% make shell file 

executable (Mac/Linux) 

                system(['. ',fullfile(GBCDfolder, 'gbpd.sh')]);% Run and Show output 

                fprintf('\n -segments2dat: GBPD wrote to file: %s \n ', datFname) 

 

 

        elseif contains(computer , 'WIN' ) 

            system(['chmod +x ',fullfile(GBCDfolder, 'gbpd_WIN.sh')]);% make shell file 

executable (Mac/Linux) 

            system(['sh ',fullfile(GBCDfolder, 'gbpd_WIN.sh')]);% Run and Show output 

            fprintf('\n -segments2dat: GBPD wrote to file: %s \n ', datFname) 

 

        end 

         

     catch 

            error('It was not possible to execute the shell Files. ') 

    end 

   % [x,y]=system([GBCDfolder, '/gbpd.sh']) % work with output 

    % [~, ~]=system([GBCDfolder, '/gbpd.sh']);% omit output 

    %add GMT folder to path 

    %setenv('PATH', [getenv('PATH') ':/opt/local/bin']); %set GMT path for mac 

    %system('./Draw_stereograms 1 gbpd_SrTiO3_all_EDAX_2d_gmt 2d rainbow 0.76 

1.37 0.06 stereo CUB') 

 

    cd (oldFolder) 

end 
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A.2.3. Function GBCDsegments2dat 

 

function datFname = GBCDsegments2dat(ax,ang,GBCDfolder,segments_fname, 

GBCD_par) 

%Function actions: 

    %1- Copy boundary segments file to GBCD folder  

    %2- Change  input.txt file 

    %3- run GBCD program 

%Input: 

    % ax= Axis of misorientation (MTEX class Miller) 

    % ang= Angles of misorientation in degrees (double array) 

    % GBCDfolder = root folder with gbpd/gbcd programs 

    % segments_fname = path to segments file 

    % GBCD_par = gbpd/gbcd/parameters (obtained from getGBCDpar.m) 

%Output: 

    %datFname: Path to the GBCD .dat file located in the gbcd_graph_fd folder to be 

ploted 

%% Set file names, folder paths 

oldFolder=pwd; 

cd (GBCDfolder) 

 

if length(ax)~=length(ang) 

       error ('Different axis/ angle size. They must be the same size.') 

end 

[~,sample_name,ext] = fileparts(segments_fname) ; 

 

% output file names should be: 
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for i=1:length(ang) 

 datFname{i} = fullfile(GBCDfolder,'gbcd_graph_fd',['gbcd_',sample_name, 

'_gmt_',num2str(i),'.dat']); 

end 

 

%% Replace location of boundary segments file in 'calc GBCD' input file 

inputFname = fullfile(GBCDfolder,'calc_gbcd_stereo_fd','input.txt'); 

 

% replace second line of 'gbcd calc' input file with the name of segment file 

clear A; A = regexp(fileread(inputFname), '\n', 'split');% read all data to A, line by line 

A{2} = sprintf([sample_name,ext]);% replace content of 2nd line 

fid = fopen(inputFname, 'w');% open input.txt 

 

% Replace parameters in 'calc GBCD' input file 

%GBCD_par=[msym, rot, rad, resolution, seg, stepSize, cutOff]; 

A{4} = sprintf( '%d\t%d\t%d', GBCD_par(1:3)); % replace symmetry, rotation, radian 

A{6} = sprintf( '%d\t%d', GBCD_par(4:5)); % replace resolution 

A{8} = sprintf( '%d', GBCD_par(6)); % replace segment analysis 

A{10} = sprintf( '%4.1f', GBCD_par(7)); % replace step size 

A{12} = sprintf( '%4.2f', GBCD_par(8)); % replace small length cutoff 

 

fprintf(fid, '%s\n', A{:}); 

fclose(fid); 

 

%copy file 

copyfile(segments_fname,fullfile(GBCDfolder,'calc_gbcd_stereo_fd', 

[sample_name,ext]), 'f'); 
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%% Replace file path, axis and angle in  'plot GBCD' input file 

inputFname = fullfile(GBCDfolder,'gbcd_graph_fd','input.txt'); 

 

% replace 12+(1:length(ang)) lines of 'gbcd plot' input file with the ax(x,y,z)/ang(deg) 

clear A; A = regexp(fileread(inputFname), '\n', 'split');% read all data to A, line by line 

% replace file name  

    A{1} = sprintf(['gbcd_',sample_name,ext]);% replace content of 1st line 

 

A(13:end) = [];% clear existing ax/angle 

A(~cellfun('isempty',A)); % clear empty lines 

 

for i=1:length(ang) 

    A{12+i} = sprintf( '%4.2f \t %4.2f \t %4.2f \t %4.1f', ax(i).x, ax(i).y, ax(i).z, ang(i)');% 

replace content of 13th to (12+max(i)) lines 

end 

% Replace parameters in 'plot GBCD' input file 

%GBCD_par=[msym, rot, rad, resolution, seg, stepSize, cutOff]; 

A{3} = sprintf( '%d ', GBCD_par(1));% replace symmetry 

A{9} = sprintf( '%d\t%d', GBCD_par(4:5));% replace resolution 

A{11} = sprintf( '%d ', length(ax));% replace number of plots 

 

fid = fopen(inputFname, 'w');% open input.txt 

fprintf(fid, '%s\n', A{:}); % write A  

fclose(fid); % close 

 

  %% Run GBCD script 
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    % Set Fortran path For MATLAB (if not already): 

try 

    if contains(computer , 'MAC' ) % MAC 

        if ~contains(getenv('PATH'), ':/usr/local/bin')  

            setenv('PATH', [getenv('PATH') ':/usr/local/bin']); %set path for mac 

        end 

        system(['chmod +x ',fullfile(GBCDfolder, 'gbcd.sh')]);% make shell file executable 

(Mac/Linux) 

        system(['. ',fullfile(GBCDfolder, 'gbcd.sh')]);% Run and Show output  

        fprintf('\n-GBCDsegments2dat: GBCD wrote to file(s): \n ') 

        disp(datFname); 

        fprintf('\n') 

 

    elseif contains(computer , 'LNX' ) % Linux 

            system(['chmod +x ',fullfile(GBCDfolder, 'gbcd.sh')]);% make shell file 

executable (Mac/Linux) 

            system(['. ',fullfile(GBCDfolder, 'gbcd.sh')]);% Run and Show output 

            fprintf('\n-GBCDsegments2dat: GBCD wrote to file(s): \n ') 

            disp(datFname); 

            fprintf('\n') 

 

    elseif contains(computer , 'WIN' ) 

        system(['chmod +x ',fullfile(GBCDfolder, 'gbcd_WIN.sh')]);% make shell file 

executable (Mac/Linux) 

        system(['sh ',fullfile(GBCDfolder, 'gbcd_WIN.sh')]);% Run and Show output 

        fprintf('\n-GBCDsegments2dat: GBCD wrote to file(s): \n ') 

        disp(datFname); 
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        fprintf('\n') 

    end 

 

 catch 

        error('It was not possible to execute the shell Files. ') 

end 

%add GMT folder to path 

%     setenv('PATH', [getenv('PATH') ':/opt/local/bin']); %set path for mac 

 

cd (oldFolder) 

end 

A.2.4. Function loadGBPD 

 

function GBPD = loadGBPD(datFname, varargin) 

%Function actions: 

    % Load rho, theta and mud from gbpd .dat file 

%Input: 

    % datFname = GBPD structure containing rho, theta and m.u.d. 

%Output: 

    % GBPD = Structure with coordinates and multiple of uniform distribution (m.u.d.) 

values  

%% Create gbpd structure 

GBPD=dlmread(datFname); 

GBPD(1,:)=[];GBPD(:,4)=[]; 
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GBPD=array2table(GBPD); 

% Rename Columns 

GBPD.Properties.VariableNames{1}='theta'; 

GBPD.Properties.VariableNames{2}='rho'; 

GBPD.Properties.VariableNames{3}='mud'; 

% Round values 

GBPD.theta=round(GBPD.theta); 

% Round values and convert rho to Matlab reference frame 

GBPD.rho=round(GBPD.rho-90);  

 

%% Area fraction calculation example 

% cs=crystalSymmetry('mmm', [4.762 10.225 5.994]); 

% m=Miller(vector3d('polar',GBPD.rho,GBPD.theta),cs);% transform polar 

coordinates to miller idx 

% mr=round(m); %round miller index  

%  

% mt=table(m.hkl);% create table from hkl  indexes... 

% mt.Properties.VariableNames{1}='hkl'; %rename column 

%  mrt=table(mr.hkl); 

%  mrt.Properties.VariableNames{1}='hkl_Round'; 

%  

% areafraction=(GBPD.mud/81)*100;  

% dists=(areafraction.^-1)/max((areafraction.^-1)); %distance normalized from 0 to 1 

%  

% GBPD=[GBPD table(areafraction) table(dists) mt mrt]; 

%% 

fprintf('\n -loadGBPD: GBPD imported with the following properties: \n') 
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disp(GBPD.Properties.VariableNames) 

end 

A.2.5. Function loadGBCD 

 

function GBCD = loadGBCD(datFnames) 

%Function actions: 

    % Load rho, theta and mud from gbcd .dat file 

%Input: 

    % datFnames = Cell with GBCD file names containing rho, theta and m.u.d. 

%Output: 

    % GBCD = Cell containing structures (gbcd) with coordinates and multiple of uniform 

distribution (m.u.d.) values  

 

%% Read GBCD from all files  

for i=1:length(datFnames) 

    datFname=datFnames{i}; 

    gbcd=dlmread(datFname); 

    gbcd(1,:)=[];gbcd(:,4)=[]; 

    gbcd=array2table(gbcd); 

    % Rename Columns 

    gbcd.Properties.VariableNames{1}='theta';%rename column 

    gbcd.Properties.VariableNames{2}='rho'; 

    gbcd.Properties.VariableNames{3}='mud'; 

    % Round values 
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    gbcd.theta=round(gbcd.theta); 

    % Round values and onvert rho to Matlab reference frame 

    gbcd.rho=round(gbcd.rho-90); % 

 

    %% Area fraction calculation example 

%     cs=crystalSymmetry('mmm', [4.762 10.225 5.994]); 

%     m=Miller(vector3d('polar',gbcd.rho,gbcd.theta),cs);% transform polar coordinates 

to miller idx 

%     mr=round(m); %round miller index  

%  

%     mt=table(m.hkl);% create table from hkl  indexes... 

%     mt.Properties.VariableNames{1}='hkl'; %rename column 

%      mrt=table(mr.hkl); 

%      mrt.Properties.VariableNames{1}='hkl_Round'; 

%  

%     areafraction=(gbcd.mud/81)*100;  

%     dists=(areafraction.^-1)/max((areafraction.^-1)); %distance normalized from 0 to 

1 

%  

%     gbcd=[gbcd table(areafraction) table(dists) mt mrt]; 

 

    GBCD{i}=gbcd; 

end 

    fprintf('\n -loadGBCD: GBCD of %.0f files imported. \n ', length(GBCD)) 

     

end 
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A.2.6. Function plotGBPD 

 

function  plotGBPD(gbpd,cs,varargin) 

%Function actions: 

    % Plot GBPD in a stereographic projection 

%Input: 

    % gbpd = GBPD structure containing rho, theta and m.u.d. 

%Output: 

    % Stereographic projection plot of the GBPD 

%Flags: 

    % 'scatter' : Plot scatter plot of the GBPD 

    % 'fundamentalRegion' : Plot in the fundamental Region of the crystal symmetry  

 

%% Plot gbpd 

fprintf(1,'\n -plotGBPD: Plotting GBPD...') 

 

vec=vector3d('polar', deg2rad(gbpd.rho), deg2rad(gbpd.theta)); 

 

% Scatter plot    

if ~isempty(varargin) && any(contains(varargin, 'scatter')) 

      if contains(varargin, 'fundamentalRegion') 

        m=Miller(vec,cs); 

        figure;plot(m,gbpd.mud,'fundamentalRegion') 

     

    else 

         figure;plot(vec,gbpd.mud,'upper') 

      end 
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% Interpolation plot    

else  

    if ~isempty(varargin) && any(contains(varargin, 'fundamentalRegion')) 

        m=Miller(vec,cs); 

        figure;plot(m,gbpd.mud,'fundamentalRegion','smooth') 

    else 

        grid_res=round(mode(diff(gbpd.theta))); % Grid resolution: angle interval 

between values (in deg) 

        % grid_res=9; 

        equiGrid=plotS2Grid('resolution',grid_res*degree); 

 

        idwVec = interp(vec,gbpd.mud,equiGrid,'inverseDistance');  

        pcolor(equiGrid,idwVec,'projection','edist','upper','smooth'); %  

    end 

 

end 

% Plot Miller index above it 

% h = [cs.aAxis,cs.bAxis,cs.cAxis]; 

% hold on 

% plot(h,'markerFaceColor',[ 0.5765 0.2314 0.2549],'markerSize',5, 'labeled','all', 

'fontSize',12,'Color',[ 0.5765 0.2314 0.2549],'upper') 

% hold off 

% 

% set(gca,'fontSize',18) 

%  

% mtexColorMap(parula) 
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% hold on 

%     plotMirrorPlanes(cs,'upper') 

% hold off 

 

%% Plot max/min 

 

% [~,id_max_mud]=max(gbpd.mud); 

% [~,id_min_mud]=min(gbpd.mud); 

%  

% % m_max=round(Miller(vec(id_max_mud),cs)); 

% % m_min=round(Miller(vec(id_min_mud),cs)); 

% m_max=Miller(vec(id_max_mud),cs); 

% m_min=Miller(vec(id_min_mud),cs); 

%  

%%Low id Miller idx 

% maxIdx=4; 

% equiGrid=plotS2Grid('resolution', 2*degree,'fundmentalRegion');  

% m=Miller(equiGrid,cs); 

% m=round(m); m=unique(m); 

% m=m(m.h<=maxIdx & m.k<=maxIdx & m.l<=maxIdx); 

% m=symmetrise(m,cs,'upper');m=m(:); 

%  

% [~,id_max]=min(angle(m_max,m)); 

% m_max=m(id_max); 

% [~,id_min]=min(angle(m_min,m)); 

% m_min=m(id_min); 
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% % f=newMtexFigure;plot(m, 'labeled','all', 

'fontSize',8,'upper','figSize','huge','markerSize',3,'grid','grid_res',pi/2) 

%  

% %plot Miller IDX 

% hold on 

% plot(m_max,'markerFaceColor',[0 0 0],'markerSize',8, 'labeled','all', 

'fontSize',16,'Color',[0 0 0],'upper','parent',gca) 

% hold off 

%  

% hold on 

% plot(m_min,'markerFaceColor',[1 1 1],'markerSize',8, 'labeled','all', 

'fontSize',16,'Color',[1 1 1],'upper','parent',gca) 

% hold off 

 

% Correct colorbar position 

% set(gca,'fontSize',18) 

%  

% mtexColorMap(parula) 

% vbar=mtexColorbar('fontSize', 18); 

% ylabel(vbar,'m.u.d.','Interpreter','tex','fontSize',18); 

% vbarPos = get(vbar,'Position'); 

% x_offset=round(vbarPos(1)*0.05); 

% set(vbar,'Position',[vbarPos(1)+x_offset vbarPos(2) vbarPos(3) vbarPos(4)]) 

fprintf(1,' Done! \n ') 

end 
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A.2.7. Function plotGBCD 

 

function  plotGBCD(gbcds, cs, axs, angs,varargin) 

%Function actions: 

    % Plot GBCD in a stereographic projection 

%Input: 

    % gbcds = GBCD structure(s) containing rho, theta and m.u.d. 

    % ax= Axis of misorientation (MTEX class Miller) 

    % ang= Angles of misorientation in degrees (double array) 

%Output: 

    % Stereographic projection plot of the GBCD 

%Flags: 

    % 'scatter' : Plot scatter plot of the GBCD 

    % 'smooth' : Interpolated plot 

    % 'fundamentalRegion' : Plot in the fundamental Region of the crystal symmetry  

 

%% Plot gbcd 

fprintf(1,'\n -plotGBCD: Plotting GBCD...') 

 

mtexFig=newMtexFigure; 

 

 

for i=1:length(gbcds) 

    gbcd=gbcds{i}; 

    ax=round(Miller(axs(i),'uvw')); 

    ang=angs(i); 
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    if i~=1 

        mtexFig.nextAxis; 

    else 

        mtexFig.gca; 

    end 

     

    vec=vector3d('polar', deg2rad(gbcd.rho),deg2rad(gbcd.theta)); 

     

% Scatter plot    

    if contains(varargin, 'scatter') 

        if contains(varargin, 'fundamentalRegion') 

            m=Miller(vec,cs); 

            plot(m,gbcd.mud,'fundamentalRegion','parent', mtexFig.gca) 

        else 

            plot(vec,gbcd.mud,'upper','parent', mtexFig.gca) 

        end 

% Interpolation plot    

    else  

        if contains(varargin, 'fundamentalRegion') 

            m=Miller(vec,cs); 

            plot(m,gbcd.mud,'fundamentalRegion','smooth','parent', mtexFig.gca) 

        else 

            grid_res=round(mode(diff(gbcd.theta))); % Grid resolution: angle interval 

between values 

            equiGrid=plotS2Grid('resolution',grid_res*degree); 

 

            idwVec = interp(vec,gbcd.mud,equiGrid,'inverseDistance');  
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            pcolor(equiGrid,idwVec,'projection','edist','upper','smooth','parent', 

mtexFig.gca); %  

        end 

     

    end 

    % Set title     

    strTitle= sprintf('[%.0f %.0f %.0f] %.0f%c', 

round(ax.u),round(ax.v),round(ax.w),ang,char(176)); 

    mtexTitle(strTitle,'interpreter','tex','parent', mtexFig.gca)% 

end 

fprintf(1,' Done! \n ') 

end 
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A.3. Supplemental Figures 

 

 

Figure A.3.1: Microstructures, misorientation and crystal preferred orientation of the starting 
material: a) Inverse pole figure map in the direction normal to the plane of the page. b) 
Misorientation angle and c) misorientation axis distribution in crystal coordinates. Uniform 
misorientation angle distribution is shown as a red line for reference. d) Pole figures of (100), 
(010) and (001) planes. 

 

 

 

Figure A.3.2: Estimation of the orientation of grain boundaries. a) 3-D microstructure 
displaying the two spherical angles (𝛼𝛼 and 𝛽𝛽 that define the grain-boundary plane. b) The 
grain-boundary plane is defined in a stereographic projection by a great circle (dashed green 
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line). c) The grain-boundary normal (n) and the principal crystal directions (poles to the a, b, and c 
planes) are plotted in the crystal reference frame. The Miller index of the respective boundary 
plane can be extracted using this construction. d) For EBSD data from 2-D sections, for 
example the XY plane presented in a), 𝛽𝛽 is unknown but must be in the range of 0 to 𝜋𝜋, and 
the grain-boundary normal should contain the pole to the grain-boundary trace (t). Poles of 
grain-boundary planes perpendicular to the XY surface (red) are sampled with a higher 
probability than those parallel to that surface (blue). 

 

 

Figure A.3.3: Equal-angle stereographic projection of olivine crystallographic planes. Miller 
indices up to 4 are shown. 
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Figure A.3.4: Grain boundary plane distribution as a function of number of segments: a) 
GBPD of textured sample shows no significant modifications from a minimum of 10 000 
segments. b) GBPD of untextured sample (sample PT0535) shows no significant 
modifications from a minimum of 100 000 segments, one order of magnitude higher than 
textured samples. The number of uniformly sampled segments (n) is given above each plot. 
Note that a) refers to only one section (XZ) of PT0499, which is a textured sample, therefore 
the data differs from overall GBPD data depicted in Figure 3.8. 
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Figure A.3.5: TEM bright field images illustrating the interaction between dislocations and 
grain boundaries. a-c) Slip bands (black arrows) transmitted across low-angle grain 
boundaries (white arrows). d-f) Slip band (black arrows) blocked by high-angle grain 
boundaries (white arrows). Contrast-limited adaptive histogram equalization was applied to 
all TEM images. TEM images are form sections XZ’ and XZ’’ (see Figure 2). The diffraction 
vector (g) was not measured.  
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Figure A.3.6: Cleaning of EBSD data exemplified with the sample FSG5 - starting material. 
EBSD data is shown by inverse pole figure maps of olivine overlaying grayscale image 
quality maps: a) EBSD data as acquired, b) after NPAR re-indexing and c) after grain-dilation 
and pseudo-symmetry correction. Resulting grain boundaries are also shown in this figure. 
Images are 35 x 35 µm wide. Grey areas are poorly indexed or pyroxene grains. 
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Figure A.3.7: Grain size distributions: The first row shows the series of experiments for 
different annealing time, performed at 1673 K and pressures of a)1 GPa and b) 7GPa. The 
second row shows the temperature series of experiments performed for 24 hours at 
pressures of c)1 GPa and d) 7GPa. The third row shows the pressure and pyroxene content 
series of experiments performed at 1673 K for 24 hours. e) Grain size distribution for 
experiments performed at pressures of 1 GPa, 7 GPa and 10 GPa. f) Grain size distribution 
for experiments performed at 7 GPa for different pyroxene contents: 6 vol.% and 13 vol.%. 
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Figure A.3.8. Microstructure of samples a)HV806 (vacuum sintered Fo+10 vol.% En, starting 
material), b)HV806-HT (1673 K, 24 h, 0.1 MPa) and c)HV806-HP (1673 K, 24 h, 1 GPa). 
Images show inverse pole figure maps of olivine with insets showing phase maps: olivine is 
green and pyroxene is brown. Secondary electron image of samples d) HV806 and e) 
HV806-HP. Insets show magnified regions. Insets are 50 µm x 50µm. Note pores and holes 
in the starting material (d) and its virtually absence after high pressure experiments(e).f) 
Grain size distribution (bars) and its respective log-normal distribution (curves) of samples 
HV806, HV806-HT and HV806-HP.The mode, median and mean of each distribution is 
shown by squares, diamonds and circles respectively. 
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Figure A.3.9. The effect of different initial grain sizes on the viscosity estimation at deep 
upper mantle conditions: Figures on the left column demonstrate the expected grain sizes at 
1 Ma (dashed lines) and 10 Ma (dotted lines) at the conditions of the geotherm shown in 
figure 9a, considering an activation volume of V* = 0 m3/mol (blue lines) and V* = 4.3 x 10-6 
m3/mol (orange lines). Figures on the right column show the resulting viscosity profile of the 
deep upper mantle at 1 Ma and 10 Ma, for constant shear stress of 1 MPa and strain rates 
from experimental flow laws of disGBS, diffusion creep (Hansen et al., 2011; Hirth and 
Kohlstedt, 2003) and dislocation creep (Hirth and Kohlstedt, 2003). Figures in the upper(a, 
b), middle(c, d) and bottom row were calculated considering initial grain sizes of 10 µm, 100 
µm and 1000 µm (1 mm), respectively. 
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Figure A.3.10: Dimensions of parts in a 8/5 deformation assembly. Dimensions are in mm. 
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Figure A.3.11: Dimensions of second-stage anvil with a 5 mm truncated edge length. 
Dimensions are in mm. 
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Figure A.3.12: Dimensions of gasket used together with the 8/5 assembly. Dimensions are in 
mm. 
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A.4. Supplemental Tables 

Table A.4.1: Experimental data of samples HV806, the vacuum-sintered starting material, 
HV806-HP, the grain growth experiment at 1 GPa and HV806-HT , the grain growth 

experiment at 1 atm. P is pressure in GPa, T temperature in ºC, t experimental duration in 
hours, d average grain size in µm, d MIL the mean intercept length in µm. Mo Fit, µ Fit and σ Fit 
are the mode, mean and standard deviation of the lognormal fit to the grain-size distribution, 
respectively. fPx is the pyroxene fraction as measured by EBSD and n is the number of grains 

analysed for each sample.  

Sample Starting 
Material 

P 
(GPa) 

T 
(K) 

t 
(h) 

 d 
(µm) 

d MIL 
(µm) Mo FIT µ FIT σ FIT  f Px 

(EBSD) n 

HV806 
Vacuum sintered 

Fo 
 + 10% Px 

10-11 1523 3 4 2,6 2,85 1,27 0,48 0,01 5424 

HV806-HP HV806 1 1673 24 6,59 4,14 4,77 1,78 0,47 0,02 3013 

HV806-HT HV806 10-4 1673 24 5,04 3,38 3,49 1,5 0,5 0,02 2415 
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