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Abstract
The framework of document spanners abstracts the task of information extraction from
text as a function that maps every document (a string) into a relation over the document’s
spans (intervals identified by their start and end indices). For instance, the regular
document spanners are the regular expressions with capture variables, closed under the
relational algebra. The expressive power of the regular spanners is precisely captured
by the class of vset-automata—an extension of finite state automata, that mark the
endpoints of selected spans. In this thesis, we embark the investigation of multiple
different aspects of document spanners. Namely, parallel evaluation, weight annotation,
and aggregation of document spanners.

Parallel Evaluation: Programs for extracting structured information from text, namely
information extractors, often operate separately on document segments obtained from
a generic splitting operation such as sentences, paragraphs, k-grams, HTTP requests,
and so on. An automated detection of this behavior of extractors, which we refer
to as split-correctness, would allow text analysis systems to devise query plans with
parallel evaluation on segments for accelerating the processing of large documents. Other
applications include the incremental evaluation on dynamic content, where re-evaluation
of information extractors can be restricted to revised segments, and debugging, where
developers of information extractors are informed about potential boundary crossing
of different semantic components. We propose and study a new formal framework
for split-correctness within the formalism of document spanners. Our analysis studies
the complexity of split-correctness over regular spanners. We also discuss different
variants of split-correctness, for instance, in the presence of black-box extractors with
split constraints.

Weight Annotation: Concerning weight annotation, we embark on the investigation
of document spanners that can annotate extractions with auxiliary information such as
confidence, support, and confidentiality measures. To this end, we adopt the abstraction
of provenance semirings by Green, Karvounarakis, and Tannen, where tuples of a relation
are annotated with the elements of a commutative semiring, and where the annotation
propagates through the positive relational Algebra operators via the semiring operators.
Hence, the proposed spanner extension, referred to as an annotator, maps every document
into an annotated relation over the spans. As a specific instantiation, we explore weighted
vset-automata that, similarly to weighted automata and transducers, attach semiring
elements to transitions. We investigate key aspects of expressiveness, such as the closure
under the positive relational Algebra, and key aspects of computational complexity,
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such as the enumeration of annotated answers and their ranked enumeration in the case
of ordered semirings. For a number of these problems, fundamental properties of the
underlying semiring, such as positivity, are crucial for establishing tractability.

Aggregation: Lastly we investigate the computational complexity of querying text by
aggregate functions — such as sum, average, and quantile — on top of regular document
spanners. To this end, we formally define aggregate functions over document spanners
and analyze the computational complexity of exact and approximate computation. More
precisely, we show that in a restricted case, all studied aggregate functions can be
computed in polynomial time. In general, however, even though exact computation
is intractable, some aggregates can still be approximated with fully polynomial-time
randomized approximation schemes (FPRAS).
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Zusammenfassung
Das System der Document Spanner (frei übersetzt: Abschnittsanfragen) abstrahiert
die Aufgabe der Informationsextraktion aus Texten als eine Funktion, die Dokumente
(Zeichenketten) in Relationen über Abschnitte des Dokuments (identifiziert durch die
Start- und Endposition in der Zeichenkette) übersetzt. Reguläre Abschnittsanfragen zum
Beispiel sind reguläre Ausdrücke mit Variablen, abgeschlossen unter der relationalen
Algebra. Die Ausdrucksstärke von regulären Abschnittsanfragen umfasst exakt die Klasse
der sogenannten vset-Automaten — eine Erweiterung von endlichen Automaten, welche
die Endpunkte der selektierten Abschnitte markieren. In dieser Arbeit studieren wir
mehrere verschiedene Aspekte von Abschnittsanfragen und befassen uns mit der parallelen
Auswertung, Annotation von Gewichten und der Aggregation von Abschnittsanfragen.

Parallele Auswertung: Programme, die strukturierte Informationen aus Texten
extrahieren, auch informations Extraktoren genannt, arbeiten oft unabhängig voneinander
an mehreren Teilen eines Dokuments, die durch eine generische Aufteilung des Dokuments
in Sätze, Absätze, HTTP Anfragen oder Ähnliches erzeugt werden. Ein automatisches
Erkennen eines solchen Verhaltens, das wir als Aufteilungskorrektheit bezeichnen, würde
es informations Extraktoren erlauben, Ausführungspläne zur parallelen Auswertung
zu erzeugen und dadurch die Verarbeitung von großen Dokumenten zu beschleunigen.
Andere Anwendungen sind die inkrementelle Auswertung von dynamischen Inhalten, für
welche die erneute Auswertung von informations Extraktoren auf überarbeitete Bereiche
beschränkt werden kann und die Suche von Fehlern, wobei Entwickler von informations
Extraktoren über die mögliche Überschreitung von semantischen Inhaltsgrenzen informiert
werden können. In dieser Arbeit definieren und studieren wir ein neues formales System
für Aufteilung Korrektheit im Formalismus von Abschnittsanfragen. Unsere Analyse
studiert die Komplexität der Aufteilungskorrektheit für reguläre Abschnittsanfragen und
wir untersuchen verschiedene Varianten von Aufteilungskorrektheit, zum Beispiel im
Zusammenhang mit Black Box Extraktoren unter Aufteilungsbedingungen.

Gewichts Annotation: Bezüglich der gewichteten Annotation untersuchen wir Ab-
schnittsanfragen, welche die extrahierten Daten mit zusätzlichen Informationen, wie zum
Beispiel der Irrtumswahrscheinlichkeit, dem Support oder Informationen zur Vertrau-
lichkeit anreichern. Dazu passen wir die Abstraktion sogenannter “provenance semirings”
(frei übersetzt: Ursprungs Semiringe) von Green, Karvounarakis und Tannen an. In diesen
werden Tupel einer Relation mit Elementen eines kommutativen Semirings annotiert und
Informationen zum Ursprung mittels der Semiring Operatoren durch positive relationale
Algebra Operatoren propatiert. Die vorgeschlagene Erweiterung von Abschnittsanfragen,
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welche wir als Annotatoren bezeichnen, bildet Dokumente auf annotierte Relationen über
Abschnitte ab. Als eine spezifische Darstellungsmöglichkeit untersuchen wir gewichtete
vset-Automaten welche ähnlich zu gewichteten endlichen Automaten und Transduktoren
Semiring Elemente zu Zustandsübergängen hinzufügt. Wir untersuchen Schüsseleigen-
schaften der Ausdrucksstärke, wie zum Beispiel den Abschluss unter positiver relationaler
Algebra und Schlüsseleigenschaften der Komplexität, wie zum Beispiel der Aufzählung
von annotierten Antworten und deren geordnete Aufzählung im Fall von geordneten
Semiringen. Für eine Vielzahl dieser Probleme sind fundamentale Eigenschaften des
verwendeten Semirings, beispielsweise Positivität, für effiziente Algorithmen essenziell.

Aggregation: Zuletzt studieren wir die Komplexität der Berechnung von Aggregat-
funktionen — wie zum Beispiel Summe, Durchschnitt oder Quantil — über Resultate von
regulären Abschnittsanfragen. Dazu definieren wir Aggregatfunktionen über Abschnitts-
anfragen formal und analysieren die Komplexität der exakten und näherungsweisen
Auswertung. Genauer zeigen wir das in einem eingeschränkten Fall, alle betrachteten
Aggregatfunktionen in polynomieller Zeit ausgewertet werden können. Allgemein kön-
nen manche Aggregatfunktionen noch immer durch “fully polynomial-time randomized
approximation schemes” (frei übersetzt: randomisierte echt polynomielle Approximati-
onsschemata) angenähert werden, auch wenn eine exakte Berechnung nach allgemein
geglaubten Hypothesen nicht in polynomieller Laufzeit möglich ist.
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Samenvatting
Het raamwerk van document spanners abstraheert het extraheren van informatie uit
tekst als een functie die elk document (een tekst) omzet in een relatie bestaand uit over-
spanningen van het document (intervallen geïdentificeerd door hun start- en eindindices).
Bijvoorbeeld, de reguliere document spanners zijn de reguliere expressies met variabelen
die gesloten zijn onder de relationele algebra. De uitdrukkingskracht van de reguliere
spanners valt precies samen met de klasse van vset-automata en deze zijn een uitbreiding
van eindigetoestandsautomaten die de eindpunten van geselecteerde overspanningen mar-
keren. In deze dissertatie beginnen we met het onderzoeken van verschillende aspecten
van de document spanners zoals parallelle evaluatie, gewicht annotatie en aggregatie van
de document spanners.

Parallele evaluatie: Programma’s voor het extraheren van gestructureerde informatie
uit tekst, genaamd information extractors, werken afzonderlijk op verschillende delen
van het document, die verkregen zijn uit een generieke splitsingsoperatie. Voorbeelden
van zulke delen zijn zinnen, paragrafen, k-grammen, HTTP verzoeken, enzovoort. Het
geautomatiseerd detecteren van dit gedrag van de extractors, dat split-correctness heet,
zou tekstanalyse systemen in staat stellen om queryplannen te bedenken met parallelle
evaluatie op de verschillende delen zodat het verwerken van grote documenten versneld
kan worden. Andere toepassingen zijn de incrementele evaluatie van dynamische inhoud,
waarbij de herevaluatie van de informatie extractie kan beperkt worden tot de aangepaste
delen, alsook foutopsporing, waarbij ontwikkelaars van informatie-extractors geïnformeerd
worden over potentiële semantische componenten die over deelgrenzen heen gaan. We
presenteren een nieuw formeel kader voor split-correctness en bestuderen dit binnen
de theorie van document spanners. Onze analyse bestudeert de complexiteit van split-
correctness voor reguliere spanners, bovendien bespreken we ook verschillende varianten
van split-correctness, bijvoorbeeld bij de aanwezigheid van black-box extractors met split
constraints.

Annotatie van gewichten: Met betrekking tot de gewichtsannotatie, beginnen we
met het onderzoeken van document spanners die overspanningen kunnen annoteren
met extra informatie zoals een maat een zekerheid, ondersteuning en vertrouwelijkheid.
Hiervoor gebruiken we de abstractie van provenance semirings van Green, Karvounarakis,
en Tannen, waarbij de tuples van een relatie geannoteerd worden met de elementen van
een commutatieve semiring en waar de annotatie via de semiring operatoren doorgegeven
wordt doorheen de positieve relationele Algebra operatoren. Vandaar dat de voorgestelde
uitbreiding voor spanners, aangeduid als een annotator, elke document toekent aan
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een geannoteerde relatie die gaat over de overspanningen. Als een specifieke geval,
verkennen we de gewogen vset-automata die, op dezelfde manier als gewogen automaten en
transductoren, semiring elementen koppelen met overgangen. We onderzoeken belangrijke
aspecten van expressiviteit, zoals het gesloten zijn onder de positieve relationele Algebra
en belangrijke aspecten van computationele complexiteit, zoals de opsomming van de
geannoteerde antwoorden of de gerangschikte opsomming in het geval dat geordende
semirings gebruikt worden. Voor een aantal van deze problemen zijn de fundamentele
eigenschappen van de onderliggende semiring, zoals positiviteit, cruciaal voor het nagaan
van de uitvoerbaarheid ervan.

Aggregatie: Tenslotte onderzoeken we de computationele complexiteit van het be-
vragen van tekst door aggregatiefuncties zoals som, gemiddelde en kwantiel bovenop
de reguliere document spanners. Hiervoor definiëren we formeel de aggregatiefuncties
voor document spanners en analyseren we de computationele complexiteit van de exacte
berekeningen alsook van de benaderingen. In meer detail, we tonen aan dat, met enkele
beperkingen, alle bestudeerde aggregatiefuncties berekend kunnen worden in polynomiale
tijd. Algemeen gezien kunnen aggregatie kunnen benaderd worden met fully polynomial-
time randomized approximation schemes (FPRAS) ook al is de exacte berekening normaal
lastig.
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Chapter 1

On Document Spanners and
Information Extraction

A plethora of paradigms have been developed over the past decades towards the challenge
of extracting structured information from text—a task generally referred to as Information
Extraction (IE). Common textual sources include natural language from a variety of
sources such as scientific publications, customer input and social media, as well as
machine-generated activity logs. Instantiations of IE are central components in text
analytics and include tasks such as segmentation, named-entity recognition, relation
extraction, and coreference resolution [137]. Rules and rule systems have consistently
been key components in such paradigms, yet their roles have varied and evolved over time.
Systems such as Xlog [150] and SystemT [22] use IE rules for materializing relations
inside relational query languages. Machine-learning classifiers and probabilistic graphical
models (e.g., Conditional Random Fields) use rules for feature generation [93, 158]. Rules
serve as weak constraints (later translated into probabilistic graphical models) in Markov
Logic Networks [126] (abbrev. MLNs) and in the DeepDive system [151]. Rules are also
used for generating noisy training data (“labeling functions”) in the Snorkel system [130].

The framework of document spanners (spanners for short) provides a theoretical basis
for investigating the principles of relational rule systems for IE [45]. Specifically, a
spanner extracts from a document a relation over text intervals, called spans, using
either atomic extractors or a relational query on top of the atomic extractors. More
formally, by a document we refer to a string d over a finite alphabet, a span of d
represents a substring of d by its start and end positions, and a spanner is a function that
maps every document d into a relation over the spans of d. The most studied spanner
language is that of the regular spanners: atomic extraction is via regex formulas, which
are regular expressions with capture variables, and relational manipulation is via the
relational algebra: projection, natural join, union, and difference.1 Equivalently, the
regular spanners are the ones expressible as variable-set automata (vset-automata for
short), which are nondeterministic finite-state automata that can open and close variables
(playing the role of the attributes of the extracted relation). Interestingly, there has been
an independent recent effort to express artificial neural networks for natural language
processing by means of finite-state automata [106, 108, 167].

1Adding string equality selection would result in Core-Spanners, which are more powerful.
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Chapter 1 On Document Spanners and Information Extraction

In this thesis, we study multiple different aspects of document spanners. In Part I
introduces the framework of split-correctness, where we study whether or not document
spanners can be evaluated in a distributed setting. More specifically, we introduce and
study the framework of split-correctness in Chapter 3 and study the computational
complexity for the class of regular document spanners in Chapter 4. In Part II of the
thesis, we study quantitative aspects of document spanners. Chapter 5 defines and studies
an extension of document spanners, which adopt a quantitative approach. That is, each
extracted tuple is associated with a level of confidence that the tuple coincides with the
intent. The last Chapter, Chapter 6, studies the computational complexity of evaluating
aggregate functions over regular document spanners. We begin by giving some motivation
for the different aspects of the thesis.

1.1 Split-Correctness
When applied to a large document, an IE function may incur a high computational cost
and, consequently, an impractical execution time. However, it is frequently the case that
the program, or at least most of it, can be distributed by separately processing smaller
chunks in parallel. For instance, Named Entity Recognition (NER) is often applied
separately to different sentences [87, 89], and so are instances of Relation Extraction [99,
170]. Algorithms for coreference resolution (identification of places that refer to the same
entity) are typically bounded to limited-size windows; for instance, Stanford’s well known
sieve algorithm [129] for coreference resolution processes separately intervals of three
sentences [90]. Sentiment extractors typically process individual paragraphs or even
sentences [119]. It is also common for extractors to operate on windows of a bounded
number N of words (tokens), also known as N -grams or local contexts [21, 59]. Finally,
machine logs often have a natural split into semantic chunks: query logs into queries,
error logs into exceptions, web-server logs into HTTP messages, and so on.
Tokenization, N -gram extraction, paragraph segmentation (identifying paragraph

breaks, whether or not marked explicitly [67]), sentence boundary detection, and machine-
log itemization are all examples of what we call splitters. When IE is programmed in a
development framework such as the aforementioned ones, we aspire to deliver the premise
of being declarative—the developer specifies what end result is desired, and not how it is
accomplished efficiently. In particular, we would like the system to automatically detect
the ability to split and distribute. This ability may be crucial for the developer (e.g.,
data scientist) who often lacks the expertise in software and hardware engineering. In
Part I of the thesis, we embark on a principled exploration of automated inference of
split-correctness for information extractors. That is, we explore the ability of a system to
detect whether an IE function can be applied separately to the individual segments of a
given splitter, without changing the semantics.
The basic motivation comes from the scenario where a long document is pre-split by

some conventional splitters (like the aforelisted ones), and developers provide different
IE functions. If the system detects that the provided IE function is correctly splittable,
then it can utilize its multi-processor or distributed hardware to parallelize the computa-
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tion. Moreover, the system can detect that IE programs are frequently splittable, and
recommend the system administrator to materialize splitters upfront. Even more, the
split guarantee facilitates incremental maintenance: when a large document undergoes a
minor edit, like in the Wikipedia model, only the relevant segments (e.g., sentences or
paragraphs) need to be reprocessed.

1.2 Weight Annotations
To date, the research on spanners has exclusively adopted a Boolean approach: a tuple
is either extracted or not. Nevertheless, when applied to noisy or fuzzy domains such
as natural language, modern approaches in artificial intelligence adopt a quantitative
approach where each extracted tuple is associated with a level of confidence that the tuple
coincides with the intent. When used within an end-to-end IE system, such confidence
can be used as a principled way of tuning the balance between precision and recall. For
instance, in probabilistic IE models (e.g., Conditional Random Fields), each extraction
has an associated probability. In systems of weak constraints (e.g., MLN), every rule has
a numerical weight, and the confidence in an extraction is an aggregation of the weights
of the invoked rules that lead to the extraction. IE via artificial neural networks typically
involves thresholding over a produced score or confidence value [23, 121]. Numerical
scores in the extraction process are also used for quantifying the similarity between
associated substrings, as done with sequence alignment and edit distance in the analysis
of biological sequences such as DNA and RNA [161, 166].
In Part II of this thesis we embark on the investigation of spanners that quantify

the extracted tuples. We do so by adopting the concept of annotated relations from
the framework of provenance semirings by Green et al. [62]. In essence, every tuple of
the database is annotated with an element of a commutative semiring, and the positive
relational algebra manipulates both the tuples and their annotations by translating
relational operators into semiring operators (e.g., product for natural join and sum for
union). An annotated relation is referred to as a K-relation, where K is the domain of
the semiring. The conceptual extension of the spanner model is as follows. Instead of a
spanner, which is a function that maps every document d into a relation over the spans
of d, we now consider a function that maps every document d into a K-relation over
the spans of d. We refer to such a function as a K-annotator. Interestingly, as in the
relational case, we can vary the meaning of the annotation by varying the semiring.

• We can model confidence via the probability (a.k.a. inside) semiring and the Viterbi
(best derivation) semiring [61].

• We can model support (i.e., number of derivations) via the counting semiring [61].
• We can model access control via the semiring of the confidentiality policies [50] (e.g.,

does the extracted tuple require reading top-secret sections? which level suffices for
the tuple?).

• We can model the traditional spanners via the Boolean semiring.
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As a specific instantiation of K-annotators, we study the class of K-weighted vset-
automata. Such automata generalize vset-automata in the same manner as weighted
automata and weighted transducers (cf. the Handbook of Weighted Automata [39]):
transitions are weighted by semiring elements, the cost of a run is the product of the
weights along the run, and the weight (annotation) of a tuple is the sum of costs of all
the runs that produce the tuple. (Again, there has been recent research that studies the
connection between models of artificial neural networks in natural language processing
and weighted automata [143].)

Our investigation answers several fundamental questions about the class of K-weighted
vset-automata:

1. Is this class closed under the positive relational algebra (according to the semantics
of provenance semirings [62])?

2. What is the complexity of computing the annotation of a tuple?

3. Can we enumerate the annotated tuples as efficiently as we can do so for ordinary
vset-automata (i.e., regular document spanners)?

4. In the case of ordered semirings, what is the complexity of enumerating the answers
in ranked order by decreasing weight?

Our answers are mostly positive and show that K-weighted vset-automata possess appro-
priate expressivity and tractability properties. As for the last question, we show that
ranked enumeration is intractable and inapproximable for some of the aforementioned
semirings (e.g., the probability and counting semirings), but tractable for positively
ordered and bipotent semirings, such as the Viterbi semiring.

1.3 The Complexity of Aggregates
The last aspect of document spanners we study is the computational complexity of
evaluating aggregate functions over regular spanners. These are queries that map a
document d and a spanner S into a number α(S(d)), where S(d) is the relation obtained
by applying S to d and α is a standard aggregate function: count, sum, average, min,
max, or quantile. There are various scenarios where queries that involve aggregate
functions over spanners can be useful. For example, such queries arise in the extraction
of statistics from textual resources like medical publications [116] and news reports [142].
As another example, when applying advanced text search or protein/DNA motif matching
using regular expressions [24, 112], the search engine typically provides the (exact or
approximate) number of answers, and we would like to be able to compute this number
without actually computing the answers, especially when the number of answers is
prohibitively large. Finally, when programming feature generators or labeling functions
in extractor development, the programmer is likely to be interested in aggregate statistics
and summaries for the extractions (e.g., to get a holistic view of what is being extracted
from the dataset, such as quantiles over extracted ages and so on), and again, we would
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like to be able to estimate these statistics faster than it takes to materialize the entire
set of answers.
Our main objective is to understand when it is tractable to compute α(S(d)). This

question raises closely related questions that we also discuss, such as when the mate-
rialization of intermediate results (which can be exponentially large) can be avoided.
Furthermore, when the exact computation of α(S(d)) is intractable, we study whether it
can be approximated.
At the technical level, each aggregate function (with the exception of count) requires

a specification of how an extracted tuple of spans represents a number. For example,
the number 21 can be represented by the span of the string “21”, “21.0”, “twenty one”,
“twenty first”, “three packs of seven” and so on. To abstract away from specific textual
representations of numbers, we consider several means of assigning weights to tuples. To
this end, we assume that a (representation of a) weight function w, which maps every
tuple of S(d) into a number, is part of the input of the aggregate functions. Hence,
the general form of the aggregate query we study is α(S, d, w). The direct approach
to evaluating α(S, d, w) is to compute S(d), apply w to each tuple, and apply α to the
resulting sequence of numbers. This approach works well if the number of tuples in S(d)
is manageable (e.g., bounded by some polynomial). However, the number of tuples in
S(d) can be exponential in the number of variables of S, and so, the direct approach
takes exponential time in the worst case. We will identify several cases in which S(d) is
exponential, yet α(S(d)) can be computed in polynomial time.
Therefore, we focus on identifying when this exponential cost is unavoidable (lower

bounds), when it can be avoided, and when approximatations allow to overcome in-
tractability. Furthermore, we study how the choice of the weight function w impacts
tractability.

It is not very surprising that, at the level of generality we adopt, each of the aggregate
functions is intractable (#P-hard) in general. However, this hardness (and generally our
lower bounds) applies to specific numerical representations w that have a relatively simple
(or even a trivial) form. Hence, we focus on several assumptions that can potentially
reduce the inherent hardness of evaluation:

• Restricting to positive numbers;

• Restricting to weight functions w that are determined by a single span or defined
by (unambiguous) weighted vset-automata;

• Restricting to spanners that are represented by an unambiguous variant of vset-
automata;

• Allowing for a randomized approximation (FPRAS, i.e., fully polynomial-time
randomized approximation schemes).

Our analysis shows which of these assumptions brings the complexity down to polynomial
time, and which is insufficient for tractability. Importantly, we derive an interesting and
general tractable case for each of the aggregate functions we study.
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1.4 Related Work
In this section we will discuss research which is closely related to the framework of
document spanners. To this end, we begin by giving an overview over related research
areas and conclude this section by giving an overview over the research on document
spanners.

1.4.1 Related Research Areas
Many aspects of document spanners are also studied in other contexts, which we will
discuss in this section.

Enumeration: Building upon Johnson et al. [74], there is plenty of research on enu-
merating the answers of queries expressed in different formalisms. One line of research
studies enumeration of queries expressed in first order logic [40, 144] and monadic second
order logic [4, 5, 6, 8, 94, 114, 115].
Another line of work [144, 147, 165] studies to how the complexity of enumerating is

affected by assumptions on the underlying data, like the assumption that an input graph
is nowhere dense [144]. In this thesis, we study enumeration and ranked enumeration of
so called K-annotators in Chapter 5.

Query Evaluation on Succinct Data Representations: Reminiscent yet different
from our work on spanner aggregation, there is plenty of research on query answering on
succinct representations of data. For instance in artificial intelligence, where knowledge
compilation is used to answer reasoning tasks, based on succinct Boolean circuits (e.g.
Darwiche and Marquis [29]) or factorized databases [79, 80, 118, 139], a succinct and
lossless representation of relational data, which, for instance, can be used to speedup
machine learning algorithms (cf. Olteanu and Schleich [118]). As we will discuss in
Chapter 6, document spanners can also be seen as a succinct representation of their
output on a given document. We study whether or not this representation can be used to
compute aggregates over the output relation, without materializing the output relation.

Incremental View Maintenance and Query Evaluation under Updates Incre-
mental maintenance of relational views dates back to Gupta et al. [65] and studies the
question of updating query results on relational databases under updates to the underlying
data. To only name a view lines of research, Griffin and Libkin [63] study maintenance
of materialized views with duplicates and incremental XPath evaluation is studied by
Björklund et al. [16]. More recently, Schwentick et al. [145] study maintainability of
queries by rules expressed in first order logic and Keppeler [76] studies query evaluation
under updates to the underlying database. The framework of split-correctness, which
we introduce in Part I, can also be seen as a first step towards evaluation of document
spanners under updates to the input document.
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Parallel Query Evaluation: The framework of split-correctness is inspired by the
parallel-correctness framework as proposed by Ameloot et al. [9, 10]. The parallel-
correctness framework considers the parallel evaluation of relational queries and studies
whether or not conjunctive queries can be evaluated distributively, in a setting where
the data is distributed according to a distribution policy. Recent work studies parallel-
correctness for conjunctive queries with union and negation [58], parallel-correctness for
conjunctive queries under bag semantics [78], and distribution policies for datalog [77].
In Part I of this thesis, we will introduce the framework of split-correctness and study
whether or not document spanners can be evaluated in a parallel fashion.

Weighted Automata and Transducers: There is extensive research on weighted
automata and weighted transducers, studying various aspects thereof. To only name a
few recent lines of research, weighted automata with storage are studied by Herrmann et
al. [68], Mazowiecki and Riveros [107] study pumping lemmas for weighted automata,
and the task of extracting weighted automata from Recurrent Neural Networks is studied
by Okudono et al. [117]. We refer to the Handbook of Weighted Automata [39] for more
background on weighted automata. In Part II of this thesis, we will introduce and study
an extension of weighted automata, which can be used to enrich the output of a document
spanner by provenance information.

Determinism and Unambiguity: Plenty of research studies different notions of
determinism and unambiguity for regular (tree) languages. Brüggemann-Klein and
Wood [19], define and study deterministic regular expressions, which loosely speaking are
regular expressions that can be translated efficiently into deterministic finite automata.
Based on this, there is plenty of work [28, 56, 64, 95, 96, 97] studying various aspects of
deterministic regular expressions.
Similar to deterministic regular expressions, Brüggemann-Klein and Wood [20] and

Brüggemann-Klein[18] define and study unambiguous regular languages. Concerning
automata, Stearns and Hunt III [157] show that containment for unambiguous automata
can be checked in polynomial time. As shown by Seidl [148], this result can also be
extended to unambiguous tree automata.
Finding the correct notion of determinism and unambiguity is crucial for many ap-

plications. For instance, in the context of XML, Martens and Niehren [102] show that
minimization of bottom-up deterministic unranked tree automata is NP-complete, whereas
bottom-up deterministic stepwise tree automata allow for polynomial time minimiza-
tion. We refer to Colcombet [25], for a survey on different notions of determinism and
unambiguity. We study different notions of determinism for so called vset-automata in
Chapter 4.1.

Sequential Pattern Mining: Introduced by Srikant and Agrawal [156], the goal of
sequential pattern mining to find the most frequent patterns in a dataset. For instance,
Beedkar et al. [15] define and study an unified framework for frequent pattern mining
under subsequence constraints. Similar to regular document spanners, their algorithms
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build upon finite state transducers as their underlying computational model. We refer
to Mabroukeh and Ezeife [98] for a comprehensive study of sequential pattern mining
algorithms. In Chapter 5 we define and study so called K-annotators, which can be used
as a means of extracting frequent patterns.

Formal Language Theory: This work is also closely related to research in formal
language theory [133] like pattern languages [11, 30, 152], extended regular expressions [56,
51, 131] and language decomposition [103, 136]. For instance we study the connection of
this work to the classical problem of language primality in Chapter 4.5.

1.4.2 Research on Document Spanners

Since their introduction by Fagin, Kimelfeld, Reiss, and Vansummeren [44, 45, 46], the
research on document spanners has focused on a variety of different aspects, which we will
discuss now. We note that this discussion is by no means meant to be fully exhaustive.

Spanner Evaluation: Freydenberger, Kimelfeld, and Peterfreund [54] study the com-
putational complexity of the evaluation of (unions of) conjunctive queries ((U)CQs) over
regular document spanners. They show that, even though evaluation is NP-complete,
UCQs can be evaluated with polynomial delay under the assumption that each involved
CQ has a bounded number of atoms.

Enumeration: A series of articles [7, 8, 17, 48, 49, 141] study the computational
complexity of enumerating the output relations of regular document spanners, leading to
Amarilli et al. [8] who show that regular document spanners, represented by nondetermin-
istic vset-automata can be enumerated with preprocessing linear in the document and
polynomial in the spanner, and delay constant in the document and polynomial in the
spanner. Schmid and Schweikardt [141] study evaluation and enumeration of document
spanners over compressed documents.
Concerning ranked enumeration, Bourhis et al. [17] study the setting, where output

tuples are ranked according to cost functions, expressed in monadic second order logic.
To this end, they define cost transducers, which are quite similar to the unambiguous
weighted vset-automata, which we study in Chapter 5.2

Counting and Uniform Sampling: Arenas et al. [12, 13] show that, given a regular
document spanners and a document, there is a polynomial time algorithm for randomized
uniform sampling of the output relation. Furthermore, there is a fully polynomial time
approximation scheme which approximates the size of the output relation.

2To be precise, cost transducers are a bit more restrictive, as they require the multiplicative monoid of
the semiring to be a group.
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Core Spanners: Regular spanners closed under string equality selection, also called core
spanners, are also studied in literature [45, 53, 123, 140]. Freydenberger and Holldack [53]
study the expressive power of core spanners and compare them to similar formalisms like
patterns, word equations and a subclass of extended regular expressions. Furthermore,
they study the query evaluation and static analysis problems for core spanners and, for
instance, show that universality and equivalence of core spanners are not semidecidable.
Building upon this, Schmid and Schweikardt [140] define a fragment of core spanners,
which incorporates features of core spanners directly into regular languages and for which
typical static analysis questions are decidable.

Document Spanners and Logic: Another line of work [52, 55, 57], studies docu-
ment spanners by the means of logic and finite model theory. That is, Freydenberger
and Peterfreund [55] define and study the logic FC, which combines aspects of finite
model theory and the theory of concatenation [127]. Based on this, Freydenberger and
Thompson [57] study spanner evaluation under updates to the document.

Context Free Document Spanners: Another extension of regular document spanners
is studied by Peterfreund [122], who defines context-free document spanners, by allowing
context free languages in the spanner definitions.

Extracting Incomplete Information: Maturana, Riveros, Vrgoč [105] extend the
classical setting, where all tuples in the output relation must assign the same set of
variables. In their work, the authors provide some preliminary results on expressiveness
and computational complexity of this extended setting of document spanners, which are
further studied by Peterfreund et al. [123].

Datalog: Another line of work [14, 47, 111, 124, 150] studies the combination of
document spanners and datalog. That is, Fagin et al. [47] define and study a framework
for declarative cleaning of inconsistencies, using denial constraints over information
extraction programs and prioritized repairs. Furthermore, Peterfreund et al. [124] show
that recursive Datalog over regular document spanners exactly captures all spanners
which can be evaluated in PTIME.

Ontology Mediated Information Extraction: Lembo et al. [91] and Scafoglieri
and Lembo [138] study ontology mediated information extraction. In a nutshell, the
proposed algorithms use semantic knowledge from ontologies to improve the results of
queries expressed by document spanners.

1.5 Contributions by other Authors
This work is the result of many discussions with other researchers and is based on
previously published research [31, 33, 34, 35, 36].
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The work on split-correctness, presented in Part I, is based on joint work with Benny
Kimelfeld, Yoav Nahshon, Frank Neven, Matthias Niewerth, and Wim Martens. A
preliminary version of this work was presented at the 38th Symposium on Principles of
Database Systems (PODS 2019) [33]. An extended version [34] of this work is currently
under review. The author of this thesis is the main author of this work. Notable
contributions from other authors are Sections 3.2, and 4.3, which is joint work with
Matthias Niewerth.
The work on weight annotators, presented in Chapter 5, is based on joint work with

Benny Kimelfeld, Wim Martens, and Liat Peterfreund. A preliminary version of this
work was presented at the 23rd International Conference on Database Theory (ICDT
2020) [35]. An extended version [36] of this work is currently under review. The author
of this thesis is the main author of this work.

The work on aggregates is based on joint work with Benny Kimelfeld, Wim Martens, and
Noa Bratman. A preliminary version of this work was presented at the 24th International
Conference on Database Theory (ICDT 2021) [31]. The revised version, as presented in
Chapter 6, is by the author of this thesis.
The dutch summary was translated by Erik Bollen.

1.6 Structure of this Thesis
This thesis is organized as follows. In Chapter 2, we give the preliminaries on (regular)
document spanners. Part I consists of two chapters. We define and study the framework
of split-correctness in Chapter 3 and study its computational complexity for regular
document spanners in Chapter 4. In Part II we study weight annotators (Chapter 5)
and aggregation functions for document spanners (Chapter 6). We conclude and point
out open problems and possible directions for future work in Chapter 7. We note that
Parts I and II are of independent interest and therefore can be studied in arbitrary order.
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Chapter 2

Preliminaries
The cardinality of a set A is denoted by |A|. A multiset over A is a function M : A→ N.
We call M(a) the multiplicity of a in M and say that a ∈M if M(a) > 0. The size of M
denoted |M |, is the sum of the multiplicities of all elements in A, that is,

∑
a∈AM(a).

Note that, the size may be infinite. We denote multisets in brackets ⦃·⦄ in the usual
way. E.g., in the multiset M = ⦃1, 1, 3⦄ we have that M(1) = 2, M(3) = 1, and |M | = 3.
Furthermore, given a set X, we denote by 2X the power set of X.
We assume countably infinite and disjoint sets D and Vars, containing datavalues

(or simply values) and variables, respectively. We sometimes also call Vars the set of
span variables. Let V ⊆ Vars be a finite set of variables. A V -tuple is a total function
t : V → D that assigns values to variables in V . We denote the set of all V -tuples by
V -Tup. Let t be a V -tuple. We also denote V by Vars(t). The arity of t is the cardinality
|V | of V . For a subset X ⊆ Vars, we denote the restriction of t to the variables in X by
πX(t). We sometimes leave V implicit when the precise set is not important. We say
that a tuple t is empty, denoted by t = (), if Vars(t) = ∅.

2.1 Document Spanners
This thesis is within the formalism of document spanners by Fagin et al. [45, 46]. We first
revisit some definitions from this framework. Let Σ be a finite set, disjoint from D and
Vars, of symbols called the alphabet. A document (over Σ) is a sequence d = σ1 · · ·σn of
symbols where every symbol is from the alphabet, that is, σi ∈ Σ. If n = 0 we denote
d by ε and call d empty. By Σ∗ we denote the set of all documents over Σ. A (k-ary)
string relation R, for some k ∈ N, is a subset R ⊆ (Σ∗)k of the k-fold Cartesian product
of Σ∗. We denote by |d| the length n of a document d ∈ Σ∗.
A span of d is an expression of the form [i, j〉 with 1 ≤ i ≤ j ≤ n + 1. For a span

[i, j〉 of d, we denote by d[i,j〉 the string σi · · ·σj−1. A span [i, j〉 is empty if i = j which
implies that d[i,j〉 = ε. For a document d, we denote by Spans(d) the set of all possible
spans of d and by Spans the set of all possible spans of all possible documents. The
framework focuses on functions that extract spans from documents and assigns them to
variables. Since we will be working with relations over spans, also called span relations,
we assume that D is such that Spans ⊆ D. A d-tuple t is a V -tuple which only assigns
values from Spans(d), that is, t(x) ⊆ Spans(d) for every x ∈ Vars(t). If the document d

13



Chapter 2 Preliminaries

T h e r e t a r e t 7 t e v e n t s t i n t B e l g i u m , t 1 0 - 1 5 t i n t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

F r a n c e , t 4 t i n t L u x e m b o u r g , t t h r e e t i n t B e r l i n .

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

dxloc dxevents

Belgium 7
France 10-15
Luxembourg 4
Berlin three

xloc xevents

[23, 30〉 [11, 12〉
[41, 47〉 [32, 37〉
[54, 64〉 [49, 50〉
[75, 81〉 [66, 71〉

Figure 2.1: A document d (top), a string relation (bottom left), and the corresponding
span relation R (bottom right).

is clear from the context, we sometimes say simply tuple instead of d-tuple. Overloading
notation, we denote by dt the tuple (dt(x1), . . . , dt(xn)), where Vars(t) = {x1, . . . , xn}.

Example 2.1.1. Consider the document in Figure 2.1. The string relation at the bottom
left depicts a possible extraction of locations with the corresponding number of events.
The table on the bottom right depicts the corresponding span relation.

Two spans [i1, j1〉 and [i2, j2〉 are equal if i1 = i2 and j1 = j2. In particular, we
observe that two spans do not have to be equal if they select the same string. That is,
d[i1,j1〉 = d[i2,j2〉 does not imply that [i1, j1〉 = [i2, j2〉. Two spans [i, j〉 and [i′, j′〉 overlap
if i ≤ i′ < j or i′ ≤ i < j′, and are disjoint otherwise. Finally, [i, j〉 covers [i′, j′〉 if
i ≤ i′ ≤ j′ ≤ j. Given a span [i, j〉 and a natural number n, we denote by [i, j〉 � n the
span [i+ n, j + n〉. Analogously, if i > n, we denote by [i, j〉 � n the span [i− n, j − n〉.
If s is a span of d and t is a d-tuple, we say that s covers t if s covers t(x) for every

variable x ∈ Vars(t). Furthermore, let t be a non empty d-tuple for some document
d ∈ Σ∗. We define the minimal span that covers t as the span [i, j〉, where

i := min
{
i′ | [i′, j′〉 = t(v), and v ∈ Vars(t)

}
,

and
j := max

{
j′ | [i′, j′〉 = t(v), and v ∈ Vars(t)

}
.

If t is a d-tuple and n a natural number, we define the tuples t� n and t� n as the
d-tuples that result from shifting each span in t by n. More formally, for all variables
x ∈ Vars(t) we have:1

(t� n)(x) := t(x)� n ,

and
(t� n)(x) := t(x)� n .

1Notice that when n is too large, t� n or t� n could technically not be a d-tuple anymore. However,
we only use the operator in situations where this does not happen.
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2.2 Representations of Regular Document Spanners

A document spanner (also spanner for short) is a function S that maps every document
d into a finite set S(d) of d-tuples. By Vars(S) := {v ∈ Vars(t) | d ∈ Σ∗ and t ∈ S(d)} we
denote the variables of S. We note that, following Maturana et al. [105], we do not require
that all tuples of a spanner S assign all variables in Vars(S), that is, given a document
d and a tuple t, we require that Vars(t) ⊆ Vars(S). A spanner S is called functional if
every tuple uses the same variables, i.e., Vars(t) = Vars(S), for every document d ∈ Σ∗
and every tuple t ∈ S(d). By S ⊆ S′ we denote the fact that S(d) ⊆ S′(d), for every
document d. Furthermore, we denote by S = S′ the fact that the spanners S and S′
define the same function.
In the following, we sometimes require that a spanner only selects tuples that use at

least two different positions in d. More formally, a document spanner S is proper if for
every document d ∈ Σ∗, the empty tuple is not selected by S, i.e., () /∈ S(d), and t ∈ S(d)
implies that the minimal span that covers t is not empty.

2.1.1 Algebraic Operators on Document Spanners
We conclude this section by defining algebraic operations on spanners. Two d-tuples t1
and t2 are compatible if they agree on every common variable, i.e., t1(x) = t2(x) for all
x ∈ Vars(t1) ∩ Vars(t2). In this case, define t1 ∪ t2 as the tuple with Vars(t1 ∪ t2) =
Vars(t1)∪Vars(t2) such that (t1∪t2)(x) = t1(x) for all x ∈ Vars(t1) and (t1∪t2)(x) = t2(x)
for all x ∈ Vars(t2).
Definition 2.1.2 (Algebraic Operations on Spanners). Let S1, S2 be (document) spanners
and let d ∈ Σ∗ be a document.

• Variable enclosing. The spanner S = x{S1} is defined, for all S1 with x /∈ Vars(S1),
by

S(d) :=
{

t ∪ {x 7→ [1, |d|+ 1〉} | t ∈ S1(d)
}
.

• Concatenation. The spanner S = S1 · S2 is defined, for all S1, S2 with Vars(S1) ∩
Vars(S2) = ∅, by

S(d) :=
{

t1 ∪ t2 | d = d1 · d2, t1 ∈ S1(d1), and t2� |d1| ∈ S2(d2)
}
.

• Union. The union S = S1 ∪ S2 is defined by S(d) := S1(d) ∪ S2(d).
• Projection. The projection S = πY (S1) is defined by S(d) := {πY (t) | t ∈ S1(d)}.

Recall that πY (t) denotes the restriction of t to the variables in Vars(t) ∩ Y.
• Natural Join. The (natural) join S = S1 ./ S2 is defined such that S(d) consists of

all tuples t1 ∪ t2 such that t1 ∈ S1(d), t2 ∈ S2(d), and t1 and t2 are compatible,
i.e., t1(x) = t2(x) for all x ∈ Vars(t1) ∩Vars(t2).

2.2 Representations of Regular Document Spanners
In this section, we recall the terminology and definition of regular languages and regular
spanners [45]. We assume that the reader is familiar with (non)deterministic finite state

15



Chapter 2 Preliminaries

automata (abbrev. NFA and DFA). By L(A) we denote the language accepted by a
(non)deterministic finite state automaton A.

We use two main models for representing spanners: regex-formulas and vset-automata.
Furthermore, following Freydenberger [52], we introduce so-called ref-words, which connect
spanner representations with regular languages. We also introduce various classes of vset-
automata, namely deterministic and unambiguous vset-automata, that have properties
essential to the tractability of some problems we study. Figure 2.4 provides an overview of
all representations of regular document spanners we use throughout this thesis. We also
study a variation of (regular) document spanners, called K-Annotators, which annotate
tuples with an element from a commutative semiring. We refer to Chapter 5 for the
formal definition.

2.2.1 Regex Formulas
A regex-formula (over Σ) is a regular expression that may include variables (called capture
variables). Formally, we define the syntax with the recursive rule

α := ∅ | ε | σ | (α ∨ α) | (α · α) | α∗ | x{α} ,

where σ ∈ Σ and x ∈ Vars. We use α+ as a shorthand for α · α∗ and Σ as a shorthand
for
∨
σ∈Σ σ. The set of variables that occur in α is denoted by Vars(α) and the size |α| is

defined as the number of symbols in α. The spanner JαK represented by a regex formula
α is given by the following inductive definition that uses the algebraic operations from
Definition 2.1.2:

J∅K := ∅ JεK :=
{
ε 7→ {()}

}
J(α1 ∨ α2)K := Jα1K ∪ Jα2K Jα∗K := ∪i≥0JαiK

Jx{α}K := x
{
JαK
}

JσK :=
{
σ 7→ {()}

}
J(α1 · α2)K := Jα1K · Jα2K

We say that a regex formula α is sequential if
• no variable occurs under the Kleene star,
• for every subformula of the form x{α1} it holds that x does not occur in α1, and
• for every subformula of the form α1 · α2 it holds that the sets of variables used in
α1 and α2 are disjoint.

A regex formula α is functional if α is sequential and the spanner JαK is functional.
The set of all regex formulas is denoted by RGX. Similarly, the sequential (or functional)

regex formulas are denoted by sRGX (fRGX, respectively). It follows immediately from
the definitions that every functional regex-formula is also sequential, but not vice versa.
For instance, the regex-formula α = x1{a} ∨ x2{b} is sequential, but not functional (and
therefore, fRGX ( sRGX).

Maturana et al. [105] showed that the class of spanners defined by regex-formulas is the
same as the class of spanners defined by sequential regex-formulas. However, using the
same technique as Freydenberger [52, Proposition 3.9], it can be shown that the smallest
sequential regex-formula equivalent to a given regex formula α can be exponentially larger
than α.
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2.2 Representations of Regular Document Spanners

2.2.2 Ref-Words
For a finite set V ⊆ Vars of variables, ref-words are defined over the extended alphabet
Σ ∪ ΓV , where ΓV := {x`,ax | x ∈ V }. We assume that ΓV is disjoint from Σ and Vars.
Ref-words extend strings over Σ by encoding opening (x`) and closing (ax) of variables.
A ref-word r ∈ (Σ ∪ ΓV )∗ is valid if every occurring variable is opened and closed

exactly once. More formally, for each x ∈ V , the string r has precisely one occurrence of
x` and precisely one occurrence of ax, which is after the occurrence of x`. For every
valid ref-word r over (Σ∪ΓV ) we define Vars(r) as the set of variables x ∈ V which occur
in the ref-word. More formally,

Vars(r) := {x ∈ V | ∃rpre
x , rx, rpost

x ∈ (Σ ∪ ΓV )∗ such that r = rpre
x · x` ·rx · ax ·rpost

x }.

Intuitively, each valid ref-word r encodes a d-tuple for some document d, where the
document is given by symbols from σ in r and the variable markers encode where the spans
begin and end. Formally, we define functions doc and tup that, given a valid ref-word,
output the corresponding document and tuple.2 The morphism doc: (Σ ∪ ΓV )∗ → Σ∗ is
defined as:

doc(σ) :=
{
σ if σ ∈ Σ
ε if σ ∈ ΓV

By definition, every valid ref-word r over (Σ ∪ ΓV ) has an unique factorization

r = rpre
x · x` ·rx · ax ·rpost

x

for each x ∈ Vars(r). We are now ready to define the function tup as

tup(r) := {x 7→ [ix, jx〉 | x ∈ Vars(r), ix = |doc(rpre
x )|, jx = ix + |doc(rx)|} .

The usage of the doc morphism ensures that the indices ix and jx refer to positions in
the document and do not consider other variable operations.
A ref-word language R is a language of ref-words. The spanner JRK represented by a

ref-word language R is given by

JRK(d) :=
{

tup(r) | r ∈ R, r is valid, and doc(r) = d
}
.

A ref-word language R is sequential if every ref-word r ∈ R is valid. It is functional if
it is sequential and JRK is functional.

2.2.3 Variable Order Condition
Let r = x1`x2` aax1 ax2 and r′ = x1`x2` aax2 ax1 be ref-words. We observe that
both ref-words encode the tuple which selects the span [1, 2〉 in both variables x1, x2 on
document a. Thus, the same spanner can be represented by multiple ref-word languages.
We now introduce the variable order condition, in order to achieve a one-to-one mapping

2The function doc is sometimes also called clr in literature (cf. Freydenberger et al. [54]).
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between ref-words (resp., ref-word languages) and tuples (resp., spanners). To this end,
we fix a total, linear order ≺ on the set ΓVars of variable operations, such that v` ≺ av
for every variable v ∈ Vars. We say that a ref-word r satisfies the variable order condition
if all adjacent variable operations in r are ordered according to the fixed linear order ≺.
That is, the ref-word r = σ1 · · ·σn satisfies the variable order condition if σi ≺ σi+1 for
every 1 ≤ i < n with σi, σi+1 ∈ ΓVars. We observe that, for every document d and every
tuple t, there is exactly one ref-word r, with d = doc(r) and t = tup(r), that satisfies the
variable order condition. We define ref as the function that, given a document d and a
d-tuple t, returns this unique ref-word that satisfies the variable order condition.
The following observation shows the connections between the functions doc, ref, and

tup.

Observation 2.2.1. Let r be a valid ref-word and let r′ := ref(doc(r), tup(r)). Then
tup(r) = tup(r′). Furthermore, r = r′ if and only if r satisfies the variable order
condition.

Analogous to sequentiality, we say that a ref-word language R satisfies the variable
order condition if every ref-word r ∈ R satisfies the variable order condition. The following
lemma connects spanners and sequential ref-word languages which satisfy the variable
order condition.

Lemma 2.2.2. Let R1,R2 be sequential ref-word languages which satisfies the variable
order condition. Then R1 ⊆ R2 if and only if JR1K ⊆ JR2K.

Proof. (If): Let r ∈ R1. Thus, tup(r) ∈ JR1K(doc(r)) ⊆ JR2K(doc(r)) and therefore, due
to R2 satisfying the variable order condition, r ∈ R2.
(Only if): Let d ∈ Σ∗ be a document and t ∈ JR1K(d). Thus, there must be a

valid ref-word r ∈ R1 with doc(r) = d and tup(r) = t. Due to R1 satisfying the
variable order condition, r must satisfy the variable order condition and therefore,
ref(d, t) = r ∈ R1 ⊆ R2 and thus t ∈ JR2K(d), concluding the proof.

Connection between ref-words and regex formulas

Every regex-formula can be interpreted as a generator of a (regular) ref-word language
R(α) over the extended alphabet Σ ∪ ΓVars(α) using the usual semantics for regular
expressions and interpreting every subformula of the form x{β} as x` ·β · ax.
A straightforward induction shows that JαK = JR(α)K for every regex-formula α.

Furthermore α is sequential (functional) if and only if R(α) is sequential (functional).

2.2.4 Variable Set-Automata
A variable-set automaton (vset-automaton) with variables from a finite set V ⊆ Vars can
be understood as an ε-NFA that is extended with edges that are labeled with variable
operations ΓV . Formally, a vset-automaton is a sextuple A := (Σ, V,Q, q0, QF , δ), where
Σ is a finite set of alphabet symbols, V is a finite set of variables, Q is a finite set of states,
q0 ∈ Q is an initial state, QF ⊆ Q is a set of final states, and δ : Q× (Σ∪{ε}∪ΓV )→ 2Q
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is the transition function. The size of a vset-automaton A is defined by |A| = |Q| +
|QF |+ |δ|+ 1. By Vars(A) := V we denote the variables of A. To define the semantics
of A, we first interpret A as an ε-NFA over the terminal alphabet Σ ∪ ΓV , and define
its ref-word language R(A) as the set of all ref-words r ∈ L(A) ⊆ (Σ ∪ ΓV )∗ that are
accepted by the ε-NFA A.

Analogous to runs of ε-NFAs, we define a run ρ of A on a ref-word r = σ1 · · ·σn as the
sequence

ρ := q0
σ1−→ q1 · · · qn−1

σn−−→ qn ,

where qi+1 ∈ δ(qi, σi+1) for all 0 ≤ i < n, and qn ∈ QF . We observe that all runs are
accepting and that r ∈ R(A) if and only if there is a run ρ of A on r. Furthermore, a run
ρ of A on r accepts a d-tuple t if doc(r) = d and t = tup(r).

We define JAK as JR(A)K and say that A is sequential ifR(A) is sequential. Furthermore,
we say that A is functional if R(A) is functional and Vars(JR(A)K) = V . Two vset-
automata A1, A2 are equivalent if they define the same spanner, i.e., if JA1K = JA2K.
Furthermore, a vset-automaton A satisfies the variable order conditionif R(A) satisfies
the variable order condition.
We refer to the set of all vset-automata as VSA and to the set of all sequential (or

functional) vset-automata as sVSA (or fVSA, respectively).
We observe that, given a vset-automaton A, ε-transitions can be removed in PTIME,

using the classical ε-removal algorithm for ε-NFAs.

Observation 2.2.3. Given a vset-automaton A an equivalent vset-automaton A′ which
does not use ε-transitions can be constructed in polynomial time.

Deterministic and Unambiguous vset-Automata

We use the notion of determinism as introduced by Maturana et al. [105], but refer to it
as weakly deterministic because, as we will show in Theorem 4.1.4, weakly deterministic
vset-automata still have sufficient nondeterminism to make the containment problem
PSPACE-hard, which is as hard as for general vset-automata. We therefore define a
stronger notion of determinism, which will lead to an NL-complete containment problem
(Theorem 4.1.5). Furthermore, we define unambiguous vset-automata, which utilize a
relaxed notion of determinism that preserves tractability of containment (Theorem 4.1.5).
Formally, a vset-automaton A = (Σ, V,Q, q0, QF , δ) is weakly deterministic, if

1. δ(q, ε) = ∅ for every q ∈ Q, i.e., it does not use ε-transitions, and

2. |δ(q, v)| ≤ 1 for every q ∈ Q and every v ∈ Σ ∪ ΓV .

Finally we define deterministic and unambiguous vset-automata. To this end, we define
the following three conditions:

(C1) A is weakly deterministic;

(C2) A satisfies the variable order condition;
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q0start q1 q2 q3 q4 q5 q6 q7

Σ

xevents`
Num

axevents

Gap
xloc`

City

Country
axloc

Σ

q0start q1 q2 q3 q4 q5 q6 q7

Σ

xevents`
Num

axevents

Gap
xloc`

Loc
axloc

Σ

Figure 2.2: Two example vset-automata that extract the span relation R on input d as
defined in Figure 2.1. For the sake of presentation, the automata are simplified
as follows: Num is a sub-automaton matching anything representing a number
(of events) or range, Gap is a sub-automaton matching sequences of at most
three words, City and Country are sub-automata matching city and country
names respectively. Loc is a sub-automaton for the union of City and Country.
All these sub-automata are assumed to be deterministic.

(C3) there is exactly one run of A on every ref-word r ∈ R(A).

We say that a vset-automaton A is deterministic if it satisfies conditions (C1) and (C2)
and it is unambiguous if it satisfies conditions (C2) and (C3). The following observation
is obvious, as (C1) clearly implies (C3).

Observation 2.2.4. Every deterministic vset-automaton is also unambiguous.

We note that for Boolean spanners the definitions coincide with the classical unambi-
guity and determinism definitions of finite state automata. That is, a vset-automaton
with Vars(A) = ∅ is deterministic (unambiguous) if it is a deterministic (unambiguous)
finite state automaton.

Example 2.2.5. The span relation on the bottom right of Figure 2.1 can be extracted
from d by a spanner that matches textual representations of numbers (or ranges) in the
variable xevents, followed by a city or country name, matched in xloc. Figure 2.2 shows
how two such vset-automata may look like. Note that some strings, like Luxembourg
are the name of a city as well as a country. Thus, the upper automaton is ambiguous,
because the tuple with Luxembourg is captured twice (thus, violating (C3)). The lower
automaton is unambiguous, because the sub-automaton for Loc only matches such names
once.

We show in Proposition 2.2.6 that none of the conditions (C1), (C2), and (C3) restrict
the expressiveness of regular spanners. We discuss complexity of deterministic vset-
automata in Section 4.1.2. In the following, we denote by dVSA (resp., dfVSA and
dsVSA) the class of deterministic (resp., deterministic and functional, deterministic
and sequential) vset-automata and by uVSA (resp., ufVSA and usVSA) the class of
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unambiguous (resp., unambiguous and functional, unambiguous and sequential) vset-
automata.
Deterministic vset-automata are similar to the extended deterministic vset-automata

by Florenzano et al. [48], which allow multiple variable operations on a single transition
and force each variable transition to be followed by a transition processing an alphabet
symbol. However, deterministic vset-automata can be exponentially more succinct than
extended deterministic vset-automata. An example class of automata where this blowup
occurs is depicted in Figure 2.3.
As we will show next, deterministic vset-automata are equally expressive as vset-

automata in general.

Proposition 2.2.6. For every vset-automaton A there is an equivalent sequential deter-
ministic vset-automaton A′, i.e., JAK = JA′K.

Proof. We have to show that we can find a vset-automaton A′, such that A′ is equivalent
to A and A′ satisfies (C1) and (C2).
Maturana et al. [105, Proposition 5.6] show that, for every vset-automaton there is

an equivalent sequential vset-automaton. Therefore, we can assume, w.l.o.g., that A
is sequential. Florenzano et al. [48, Theorem 3.1, Proposition 3.2] show that every
vset-automaton can be transformed into an equivalent extended vset-automaton and
vice versa. The model of extended vset-automata allows to annotate a set of variable
operations to a single edge. For the construction of a vset-automaton from a given
extended vset-automaton they fix an order on the variables and replace each transition,
containing multiple variable operations by a sequence of edges. Therefore, the variable
order condition (C2) can be achieved by using ≺ as variable order for the transformation
from extended to normal vset-automata.3 We note that all involved constructions preserve
sequentiality.
We can achieve (C1) by interpreting the vset-automaton as an ε-NFA that accepts

ref-words and using the classical ε-NFA determinization construction. This construction
also preserves sequentiality as it does not change the involved ref-word language.

Throughout this thesis, we will often assume that regular document spanners are given
as sequential (or functional) vset-automata. The main reason is that, as we show next,
problems like answering whether a vset-automaton produces a non-empty output on a
given document become intractable if the vset-automaton is not sequential. We note
that the following proposition is heavily based on Freydenberger [52, Lemma 3.1] who
showed that given a vset-automaton A it is NP-hard to decide whether JAK(ε) 6= ∅. Based
on the reduction by Freydenberger, we show that the problem remains NP-hard if the
vset-automaton is deterministic.4

3Fagin et al. [45] already gave a similar construction on so called lexicographic vset-automata, i.e.,
vset-automata in which consecutive variable operations always follow a given linear order.

4Note that we require an non-empty input document d of linear size to cope with the determinism of A.
The automaton constructed by Freydenberger is nondeterministic and therefore also does not require
the input document to be of linear size.
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Figure 2.3: Class of example spanners where the smallest deterministic extended VSAs
(top) are exponentially larger than the smallest deterministic vset-automata
(bottom). The automaton on the top has a transition δ(q0,ΓV ) = {qn} for
every V ⊆ {x1, . . . , xn}, thus, it has 2n transitions. Note that the automaton
in the middle is not deterministic, as it contains ε-transitions. However,
these ε-transitions can be removed via the classical ε removal algorithm for
finite automata, resulting in the bottom automaton, which has n(n+1)

2 + n
transitions in total.
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Proposition 2.2.7. Given a document d and a vset-automaton A, testing if JAK(d) 6= ∅
is NP-complete, even if A is deterministic.

Proof. The upper bound is straightforward by guessing a d-tuple t and checking whether
t ∈ JAK(d). We will now give a reduction from the Hamiltonian path problem. The
reduction is heavily based on Freydenberger [52, Lemma 3.1] who shows that, given a
vset-automaton A, it is NP-hard to decide whether JAK(ε) 6= ∅. We show that deciding
whether JAK(d) 6= ∅ is NP-hard even if A is deterministic. Given a directed graph
G = (V,E), the Hamiltonian path problem asks whether there is a sequence (i1, . . . , in)
with n = |V | and (ij , ij+1) ∈ E for all 1 ≤ j < n such that for every v ∈ V there is
exactly one 1 ≤ j ≤ n with ij = v.
Given a directed graph G, we will construct A ∈ dVSA over the alphabet Σ = {a},

such that each tuple t ∈ JAK(an) corresponds to a Hamiltonian path in G. We assume,
w.l.o.g., that V = {1, . . . , n} for some n ≥ 1 and axi ≺ axj if i < j. Then let
A := (Σ, V,Q, q0, QF , δ) with Σ = {a}, where the set of variables is exactly the set V of
nodes of G, Q = {q0} ∪ {qi, qoi , qci |1 ≤ i ≤ n}, QF = {qcn}, and δ is defined as follows:

δ(q0, xi`) := qoi for all 1 ≤ i ≤ n,
δ(qoi , a) := qi for all 1 ≤ i ≤ n,

δ(qi, xj`) := qoj for all (i, j) ∈ E,
δ(qi,ax1) := qc1 for all 1 ≤ i ≤ n,

δ(qci ,axi+1) := qci+1 for all 1 ≤ i < n.

Observe that S always reads an alphabet symbol a after opening a variable and closes
all variables in a fixed order. Furthermore, we observe that JAK(d) = ∅ if d 6= an. We
now show that A is deterministic. To this end, let v, v′ ∈ ΓV be two variable operations
such that there are states q1, q2, q3 ∈ Q with q2 ∈ δ(q1, v) and q3 ∈ δ(q2, v

′). Then, per
construction of A, v = axi and v′ = axi+1 and v ≺ v′, thus A obeys the variable order
property. Furthermore, observe that per definition of δ, A is weakly deterministic and
thus A is deterministic.

It remains to show that JAK(an) 6= ∅ if and only if G has a Hamiltonian path. We will
show that there is a one-to-one correspondence between t ∈ JAK(an) and Hamiltonian
paths in G. Let t ∈ JAK(an). Then, ref(d, t) = xi1` a xi2` a · · ·xin` aax1 · · · axn.
Furthermore, each variable xij corresponds to a node ij ∈ V and for all 1 ≤ j < n,
(ij , ij+1) ∈ E. As ref(d, t) is valid and each axi occurs in ref(d, t), each xi` occurs exactly
once. Thus, (i1, . . . , in) is a Hamiltonian path in G. Vise versa, each Hamiltonian path
in G corresponds to a valid ref-word r with tup(r) ∈ JAK(an).

Finally, we recall that it is well known that the class of regex-formulas (RGX) is
less expressive than the class of vset-automata (VSA) [45, 105]. In order to reach the
expressiveness of vset-automata, RGX needs to be extended with projection, natural join,
and union. Figure 2.4 gives an overview of the expressiveness and inclusions between the
introduced classes of document spanners.
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Figure 2.4: Expressiveness and inclusion relations of classes of regular document spanners.
All formalisms within the same box are equally expressive.

We denote the set of all representations depicted in Figure 2.4 by Sgeneral and the
unambiguous and sequential subset by Stractable, that is, Stractable = {usVSA,ufVSA,
dsVSA,dfVSA}.

2.2.5 Computational Model
Throughout this thesis, we use the RAM model with uniform cost measure and loga-
rithmic word size [2] for our complexity results. That is, we assume that addition and
multiplication of numbers, represented by a logarithmic number of bits, take constant
time.

24



Part I

Parallel Evaluation of
Document Spanners

25





Chapter 3

Split-Correctness
We begin this chapter by defining the basic concepts of our framework. A splitter is a
spanner P that outputs a set of intervals (e.g., sentences, paragraphs, N -grams, HTTP
requests, etc.). A spanner S is self-splittable by a splitter P if for all documents d,
evaluating S on d gives the same result as the union of the evaluations of S on each of
the chunks produced by P . We also consider the more general case where we allow the
spanner on the chunks produced by P to be some spanner SP different from S. In this
case, we say that S is splittable by P via SP . If, for given S and P , such a spanner SP
exists, then we say that S is splittable by P . With these definitions, we formally define
several computational problems, each parameterized by a class S of spanners. In the
Split-Correctness problem, we are given S, P , and SP , and the goal is to determine
whether S is splittable by P via SP . In the Splittability (resp., Self-Splittability)
problem, we are given S and P and the goal is to determine whether S is splittable
(resp., self-splittable) by P . We also consider other settings, which we will discuss in
the later sections. In our analysis, we consider the classes of regex formulas and vset-
automata, as well as vset-automata in known normal forms, namely sequential, functional,
unambiguous, and deterministic.

We show several complexity results for the studied classes of spanners. For one, the
problems Split-Correctness and Self-Splittability are PSPACE-complete for regex
formulas and vset-automata. Furthermore, we also characterize a sufficient condition
for the tractability of Split-Correctness and Self-Splittability for sequential
and unambiguous vset-automata. This condition, which we will call the highlander
condition,1 also reduces to PSPACE-completeness the complexity of Splittability,
which is solvable in EXPSPACE in general. One key property of splitters that, most of
the time, is sufficient (but not necessary) for the highlander condition is the disjointness of
the splitter. Disjointness is a natural property—it requires the splitter P to be such that
for all input documents, the spans produced by P are pairwise disjoint (non-overlapping),
such as in the case of tokenization, sentence boundary detection, paragraph splitting,
and paragraph segmentation. Examples of non-disjoint splitters include N -grams and
pairs of consecutive sentences.

Following our analysis of Split-Correctness and Splittability for regular spanners,
we turn to discussing additional problems that arise in our framework. In Section 4.5,

1This is in acclimation to the tagline “There can be only one” of the Highlander movie. It will become
clear why we choose this name later on.
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we study the problem of Split-Existence: given a spanner S, is there a nontrivial
splitter P such that S is splittable by P? Even though we do not solve this problem, we
connect it to the problem of language primality [136, Problem 2.1], a classic problem
in Formal Language Theory that is still not completely understood. More precisely, we
prove that a special case of Split-Existence is equivalent to a variant of the language
primality problem for which the complexity is still open. In Section 3.3, we study the
splitter framework in the context of the relational algebra. We establish results on the
associativity of composition, the transitivity of self-splittability, and the distributivity of
composition and join.

In addition, we discuss problems that arise in natural extensions of the basic framework.
One of these problems captures the case where some of the spanners in the query
are treated as black boxes in a formalism that we do not understand well enough to
analyze (as opposed to, e.g., regex formulas), and yet, are known to be splittable by
the splitters at hand. For example, a coreference resolver may be implemented as a
decision tree over a multitude of features [155] but still be splittable by sequences of three
sentences, and a POS and a NER tagger may be implemented by a bidirectional LSTM-
CNN (Long short-term memory convolutional neural network) [23] and a bidirectional
dependency network [162], respectively, but still be splittable by sentences. Technically,
our results heavily rely on the algebraic properties of the splitter framework (associativity,
transitivity, distributivity) that we established earlier. Additional problems we discuss
are split-correctness and splittability under the assumption that the document conforms
to a regular language.
Our framework can be seen as an extension of the parallel-correctness framework

as proposed by Ameloot et al. [9, 10]. That work considers the parallel evaluation of
relational queries. In our terms, that work studies self-splittability where spanners are
replaced by relational queries and splitters by distribution policies.

Further Motivation
Besides the obvious, there another, perhaps less straightforward, motivations comes from
debugging in the development of IE programs. For illustration, suppose that the developer
seeks HTTP requests to a specific host on a specific date, and for that she seeks Host
and Date headers that are close to each other; the system can warn the developer that
the program is not splittable by HTTP requests like other frequent programs over the
log (i.e., it can extract the Host of one request along with the Date of another), which is
indeed a bug in this case. In the general case, the system can provide the user with the
different splitters (sentences, paragraphs, requests, etc.) that the program is split-correct
for, in contrast with what the developer believes should hold true.

Organization
This chapter is organized as follows. In Section 3.1 we define the central concepts of the
framework and define the main decision problems and the highlander and cover condition.

28



3.1 General Framework and Main Problems

1 2 3 4 5 6 1
7

2
8

3
9

4
10

5
11

6
12 13 14 15 16d

s = [7, 13〉

sglobal = slocal� s = [8, 12〉, slocal = [2, 6〉
Figure 3.1: Visualization of the shift span operator, with [8, 12〉 = [2, 6〉 � [7, 13〉.

We study the framework in the context of the relational algebra in Section 3.2 and study
extensions of the framework in Section 3.3.

3.1 General Framework and Main Problems
In this chapter, we are particularly interested in spanners that split documents into
(possibly overlapping) segments. Formally, a document splitter (or splitter for short) is
a functional unary document spanner S, that is, there is a single variable x such that,
for every tuple t ∈ S(d) and d ∈ Σ∗, we have Vars(t) = {x}. So, a splitter can split the
document into paragraphs, sentences, N -grams, HTTP messages, error messages, and so
on.
In the sequel, unless mentioned otherwise, we denote a splitter by P and its unique

variable by xP . Furthermore, we assume, w.l.o.g., that xP /∈ Vars(S) for every spanner
S that we do not call a splitter. Since a splitter outputs unary span relations, its output
on a document d can be identified with the set of spans {t(xP ) | t ∈ P (d)}. We often
use this simplified view on splitters and treat their output as a set of spans. A splitter
P is disjoint if the spans extracted by P are always pairwise disjoint, that is, for all
d ∈ Σ∗ and s, s′ ∈ P (d), the spans s and s′ are disjoint. For instance, splitters that split
documents into spans of the form [1, k1〉, [k1, k2〉, . . . (such as paragraphs and sentences)
are disjoint, but N -gram extractors are not disjoint for N > 1.
Next, we want to define when a spanner is splittable by a splitter, that is, when

documents can be split into components such that the operation of a spanner can be
distributed over the components. To this end, we first need some notation. Let d be a
document, let s := [i, j〉 be a span of d, and let slocal := [i′, j′〉 be a span of the document
d[i,j〉. Then, slocal also marks a span of the original document d, namely the one obtained
from slocal by shifting it i − 1 characters to the right. We denote this shifted span by
sglobal := slocal� s, which abbreviates slocal� (i− 1) (cf. Figure 3.1). Hence, we have:

sglobal = slocal� s = slocal� (i− 1) = [i′ + (i− 1), j′ + (i− 1)〉 .

Analogously, we denote by sglobal� s the span which is obtained from sglobal by shifting
it i− 1 characters to the left. We denote this shifted span by slocal = sglobal� s, which
abbreviates sglobal� (i− 1). Hence, we have:

slocal = sglobal� s = sglobal� (i− 1) = [i′ − (i− 1), j′ − (i− 1)〉 .

Again, we overload the notation and write t� s (resp., t� s) for the d-tuple that
results from shifting each span in t by s to the right (resp., to the left).
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Observation 3.1.1. Let d be a document, s be a span of d, and t be a ds-tuple. Then
the d-tuple t′ = t� s is covered by s. Furthermore, given a d-tuple t, the tuple t� s is a
well defined ds-tuple if t is covered by s.

We now define the composition S ◦ P of a spanner S and splitter P . Intuitively, S ◦ P
is the spanner that results from evaluating S on every part of the document extracted
by P , with a proper shift of the indices. Recall that a splitter P is functional and has
exactly one variable, thus, it always selects a set of unary tuples. In the following we
abuse notation and simply write s rather than s(xP ) when s ∈ P (d) for some document
d. We define on every document d,

(S ◦ P )(d) :=
⋃

s∈P (d)

{t� s | t ∈ S(ds)} .

As an example, if S extracts person names and P is a sentence splitter, then S ◦ P
is the spanner obtained by applying S to every sentence independently and taking the
union of the results. Furthermore, if S extracts close mentions of email addresses and
phone numbers, and P is the 5-gram splitter, then S ◦ P is obtained by applying S to
each 5-gram individually. Since executing S on each individual output of P enables
parallelization, it is interesting if there is a difference between the output of S and S ◦ P
on some document d. This property clearly depends on the definitions of S and P . We
define it formally in the following section under the name self-splittability.

3.1.1 Splittability and Split-correctness
We say that a spanner S is splittable by a splitter P via a spanner SP if evaluating S on
a document d always gives the same result as evaluating SP on every string extracted by
P (again with proper indentation of the indices). If such an SP exists, we say that S
is splittable by P ; and if SP is S itself, we say that S is self-splittable by P . We define
these notions more formally.

Definition 3.1.2. Let S be a spanner and P a splitter. We say that:

1. S is splittable by P via a spanner SP , if S = SP ◦ P ;

2. S is splittable by P if there exists a spanner SP such that S = SP ◦ P ;

3. S is self-splittable by P if S = S ◦ P .

We refer to SP as the split-spanner.

As a simple example, suppose that we analyze a log of HTTP requests separated
by blank lines and assume for simplicity that the log only consists of GET requests.
Furthermore, assume that P splits the document into individual requests (without the
blank lines) and that S extracts the request line, which is always the first line of the
request. If S identifies the request line as the one following the blank line, then S is
splittable by P via SP , which is the same as S but replaces the requirement to follow a
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blank line with the requirement of being the first line. If, on the other hand, S identifies
the request line as being the one starting with the word GET, then S is self-splittable by
P , since we can apply S itself to every HTTP message independently.
Other examples are as follows. Many spanners S that extract person names do not

look beyond the sentence level. This means that, if P splits to sentences, it is the case
that S is self-splittable by P . Now suppose that S extracts mentions of email addresses
and phone numbers based on the formats of the tokens, and moreover, it allows at most
three tokens in between; if P is the N -gram splitter, then S is self-splittable by P for
N ≥ 5 but not for N < 5.

3.1.2 Main Decision Problems
The previous definitions and the motivating examples directly lead to the corresponding
decision problems. We use S to denote a class of spanner representations (such as VSA
or RGX).

Split-Correctness[S]
Input: Spanners S, SP ∈ S and splitter P ∈ S.
Question: Is S splittable by P via SP , that is, is S = SP ◦ P?

Splittability[S]
Input: Spanner S ∈ S and splitter P ∈ S.
Question: Is S splittable by P , that is, is there a spanner SP ∈ S,

such that S = SP ◦ P?

Self-Splittability[S]
Input: Spanner S ∈ S and splitter P ∈ S.
Question: Is S self-splittable by P , that is, is S = S ◦ P?

Note that Self-Splittability[S] is a special case of Split-Correctness[S] by choos-
ing SP = S. It can also be seen as a special case of Splittability[S] in the sense that
Self-Splittability implies Splittability.

One natural continuation of these three problems is the question where only S is given
and it is asked whether P and SP exist, such that S is splittable by P via SP . In general,
the answer to this question is yes, as every spanner is self-splittable by the splitter that
only selects the whole document, i.e., P = x{Σ∗}. We therefore parameterize the decision
problem with a class P of splitters.

Split-Existence[S,P]
Input: Spanner S ∈ S.
Question: Is there a splitter P ∈ P such that S is splittable by P?
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3.1.3 Cover and Highlander Condition
We now define two conditions on the interaction of spanners and splitters which will be
useful to obtain upper bounds for Split-Correctness and Splittability. The first
condition is the cover condition, which states that, for every tuple selected by a spanner,
there is at least one span covering it.
Definition 3.1.3 (Cover Condition). A splitter P covers a spanner S if for every
document d and every non-empty tuple t ∈ S(d), there exists a span s ∈ P (d) that covers
the tuple t.
We show now that the cover condition is indeed necessary for Splittability.

Lemma 3.1.4. Let S be a spanner which is splittable by a splitter P . Then P covers S.

Proof. Let d be a document and t ∈ S(d) be a non-empty d-tuple. If S is splittable by P ,
there must be a spanner SP such that S = SP ◦P . By assumption, t ∈ S(d) = (SP ◦P )(d),
there is a span s ∈ P (d), such that t′ := t� s ∈ SP (ds). Thus, t = t′� s and therefore,
by Observation 3.1.1, s covers t.

The second condition is the highlander condition which states that every tuple selected
by the spanner is covered by at most one split.
Definition 3.1.5 (Highlander Condition). A spanner S and a splitter P satisfy the
highlander condition if, for every document d and every tuple t ∈ S(d), there exists at
most one span s ∈ P (d) that covers the tuple t.

Recall that disjointness is a natural property that splitters often satisfy in real life (e.g.,
tokenization, sentence boundary detection, paragraph splitting and segmentation). Given
a disjoint splitter, it is easy to see that the highlander condition is almost guaranteed to
be satisfied. The only case in which the highlander condition is not satisfied on a disjoint
splitter is if the spanner selects a tuple which does not cover a non-empty part of the
document, that is, S is not proper2.
Lemma 3.1.6. Let S be a proper spanner and let P be a disjoint splitter. Then S and
P satisfy the highlander condition.

Proof. For the sake of contradiction, assume that S is proper and P is disjoint but the
highlander condition is not satisfied. Therefore there is a document d ∈ Σ∗ and a tuple
t ∈ S(d), such that t is covered by [i1, j1〉, [i2, j2〉 ∈ P (d). We assume, w.l.o.g., that
i1 ≤ i2. The d-tuple t can not be empty, as S is proper. Therefore, let [i, j〉 be the
minimal span covering t, which must be well defined as t is not empty. We observe that
[i, j〉 is covered by [i1, j1〉 and [i2, j2〉, that is i1 ≤ i ≤ j ≤ j1 and i2 ≤ i ≤ j ≤ j2. Due
to disjointness of P , [i1, j1〉 and [i2, j2〉 must be disjoint, that is, i1 ≤ j1 ≤ i2 ≤ j2. Thus,
[i, j〉 can only be covered by both [i1, j1〉 and [i2, j2〉 if i1 = i = j = j2. Which implies
that, the tuple [i, j〉 is empty, leading to the desired contradiction as [i, j〉 is the minimal
span covering t ∈ S(d), which can not be empty if S is proper.

2Recall that a spanner S is proper if for every document d ∈ Σ∗, the empty tuple is not selected by S
and t ∈ S(d) implies that the minimal span that covers t is not empty.
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We conclude this section by defining the corresponding decision problems. As before,
we use S to denote a class of spanner representations (such as VSA or RGX which we
defined in Section 2.2).

Disjoint[S]
Input: Splitter P ∈ S.
Question: Is P disjoint?

Proper[S]
Input: Spanner S ∈ S.
Question: Is S proper?

Cover[S]
Input: Spanner S ∈ S and splitter P ∈ S.
Question: Do S and P satisfy the cover condition?

Highlander[S]
Input: Spanner S ∈ S and splitter P ∈ S.
Question: Do S and P satisfy the highlander condition?

3.2 The Framework in the Context of the Relational
Algebra

In a complex pipeline that involves multiple spanners and splitters, it may be beneficial
to reason about the manipulation or replacement of operators for the sake of query
planning (in a similar way as we reason about query plans in a database system). In
this section, we consider questions of this sort. As a basis for optimizing query plans, we
show that the composition of spanners and splitters is associative (Section 3.2.3) and
that splittability as well as self-splittability is transitive (Section 3.2.4). Furthermore,
we give a sufficient condition which for distributivity of spanner composition over join
(Section 3.2.5). Afterwards we study the problem of deciding on the splittability in the
presence of black-box spanners that are known to follow split constraints (Section 3.3.1).

3.2.1 Characterization of Composition
The following lemma gives an algebraic characterization of S ◦ P .

Lemma 3.2.1. Let S be a spanner and P be a splitter. Then S ◦ P = πVars(S)((Σ∗ ·
xP {S} · Σ∗) ./ P ).

Proof. Let S and P be as given and let S′ = πVars(S)((Σ∗ · xP {S} · Σ∗) ./ P ). We show
both directions of the equation separately.
(S′ ⊆ S ◦ P ): Let d ∈ Σ∗ be a document and t′ ∈ S′(d) be a d-tuple. Per definition

of S′, there is a tuple txP ∈
(
(Σ∗ · xP {S} · Σ∗) ./ P

)
(d) with t′ := πVars(S)(txP ) and
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s := txP (xP ) covers t. Let s := txP (xP ) ∈ P (d) and t = t′ � s be the ds-tuple with
t ∈ S(ds). Thus, due to s ∈ P (d) and t ∈ S(ds), it must hold that t′ = t� s ∈ (S ◦P )(d).

(S ◦P ⊆ S′): Let d ∈ Σ∗ be a document, s ∈ P (d), and t ∈ S(ds). Let t′ = t� s, thus,
by Observation 3.1.1, s covers t′. Let txP be the d-tuple defined by

txP (v) :=
{

t′(v) if v ∈ Vars(t′)
s if v = xP .

Therefore, txP ∈
(
(Σ∗ · xP {S} · Σ∗) ./ P

)
(d) and t′ := πVars(t′)(txP ) ∈ S′(d).

3.2.2 Characterization of the Splittability Problem
We now give a characterization of the Splittability problem. To this end, we show that
a spanner is splittable by a splitter if and only if it is splittable via a specific canonical
split-spanner.

The following example illustrates that there can be different split-spanners witnessing
splittability.

Example 3.2.2. Consider S := ay{b}b and P := x{ab} b∨ax{bb}. Then, both S = SP ◦P
and S = S′P ◦ P for SP := ay{b} and S′P := y{b}b but SP 6= S′P . The reason why this
happens is that P selects two different spans s = [1, 3〉 and s′ = [2, 4〉 that both cover the
span [2, 3〉 selected by S on abb. Since the selected spans are different, the split-spanners
SP and S′P need to be different as well to be able to simulate S. Notice that P is not a
disjoint splitter, as [1, 3〉 and [2, 4〉 are not disjoint.

We show, that there is a canonical split-spanner Scan
P for every spanner S and splitter

P such that S is splittable by P if and only if it is splittable via Scan
P :

Scan
P (d) :=

{
t | ∀d′ ∈ Σ∗,∀s ∈ P (d′) such that d′s = d, it holds that (t� s) ∈ S(d′)

}
.

Intuitively, a tuple is selected by Scan
P if and only if it is “safe” to be selected. A d-tuple

t is not safe if there is a document d′ and a split s ∈ P (d′) with d′s = d and t� s /∈ S(d).
As we will show in the following lemma, Scan

P ◦ P ⊆ S.
Note that the definition of Scan

P is not the same as in Doleschal et al. [33], where Scan
P

is defined with an existential quantifier instead of the second universal quantifier in the
present definition. The present canonical split-spanner can be used more generally.

Lemma 3.2.3. Let S be a document spanner and P be a document splitter. Then
Scan
P ◦ P ⊆ S.

Proof. Let S and P be as stated. Recalling the definition of the ◦ operator, we have that

(Scan
P ◦ P )(d) :=

⋃
s∈P (d)

{t� s | t ∈ Scan
P (ds)} .

Let d be a document and t ∈ (Scan
P ◦ P )(d) be a d-tuple. Then, there is a span s ∈ P (d),

such that t′ := t�s ∈ Scan
P (ds). Per definition of Scan

P it must hold that t = t′�s ∈ S(d),
concluding the proof.
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Theorem 3.2.4. Let S be a document spanner and P be a document splitter. Then S is
splittable by P if and only if S is splittable by P via Scan

P .

Proof. We only have to show the “only if” direction, since the other direction is trivial.
Due to Lemma 3.2.3, it suffices to show that S ⊆ Scan

P ◦ P .
Assume that S is splittable by P via some spanner SP . We begin by showing that

SP ⊆ Scan
P . Let d be a document and t ∈ S(d) be a d-tuple. As S = SP ◦ P there is a

split s ∈ P (d), such that t′ := t� s ∈ SP (ds). For the sake of contradiction, assume that
t′ /∈ Scan

P (ds). By definition of Scan
P , there is a document d′ ∈ Σ∗ and a span s′ ∈ P (d′)

with ds = d′s′ such that t′ � s′ /∈ S(d′). Therefore, s′ ∈ P (d′) and t′ ∈ SP (d′s′) but
t′� s′ /∈ S(d′), leading to the desired contradiction as S = SP ◦P . Therefore, SP ⊆ Scan

P .
It remains to show that S ⊆ Scan

P ◦ P . Recalling the definition of S ◦ P ,

(SP ◦ P )(d) =
⋃

s∈P (d)

{t� s | t ∈ SP (ds)}

⊆
⋃

s∈P (d)

{t� s | t ∈ Scan
P (ds)}

= (Scan
P ◦ P )(d) .

Therefore, S = SP ◦ P ⊆ Scan
P ◦ P , concluding the proof.

3.2.3 Associativity of Composition
Using the characterization of composition, we will now show that composition is associa-
tive.

Theorem 3.2.5. Given a spanner S and two splitters P1 and P2, then it holds that
S ◦ (P1 ◦ P2) = (S ◦ P1) ◦ P2.

Proof. We use the algebraic characterization from Lemma 3.2.1 and denote the variables
of the splitters P1 and P2 by x1 and x2, respectively.
We begin by showing that the following equality holds for every spanner S1 and S2

and every variable x /∈ Vars(S1) ∪Vars(S2).

Σ∗ · x{S1 ./ S2} · Σ∗ = (Σ∗ · x{S1} · Σ∗) ./ (Σ∗ · x{S2} · Σ∗) (†)

Let d be a document and t be a tuple such that t ∈ (Σ∗ · x{S1 ./ S2} · Σ∗)(d). Let
s = t(x) be the span assigned to x and t′ = t� s. By definition of concatenation and
variable enclosing, it holds that

t′ ∈ x{S1 ./ S2}(ds) and πVars(S1./S2)(t′) ∈ (S1 ./ S2)(ds)

and therefore, for i ∈ {1, 2}, it holds that πVars(Si)(t′) ∈ Si(ds) and πVars(Si)∪{x}(t′) ∈
x{Si(ds)}. We can conclude that πVars(Si)∪{x}(t) ∈ (Σ∗ · x{Si(d)} · Σ∗)(d), and finally

t ∈
(
(Σ∗ · x{S1} · Σ∗) ./ (Σ∗ · x{S2} · Σ∗)

)
(d) .

35



Chapter 3 Split-Correctness

The other direction can be shown symetrically. Let d be a document, t ∈
(
(Σ∗ ·

x{S1} · Σ∗) ./ (Σ∗ · x{S2} · Σ∗)
)
(d) be a tuple and s = t(x). Then, for all i ∈ {1, 2},

πVars(Si)∪{x}(t) ∈ (Σ∗ · x{Si} · Σ∗)(d) and therefore πVars(Si)∪{x}(t� s) ∈ x{Si}. We
can conclude that t� s ∈ x{S1 ./ S2} and therefore t ∈ Σ∗ · x{S1 ./ S2} · Σ∗, which
concludes the proof of Equation (†).

We will now show the following equalities.

(S ◦ P1) ◦ P2
(1)= πVars(S)

((
Σ∗ · x2{S ◦ P1} · Σ∗

)
./ P2

)
(2)= πVars(S)

((
Σ∗ · x2

{
πVars(S)

(
(Σ∗ · x1{S} · Σ∗) ./ P1

)}
· Σ∗

)
./ P2

)
(3)= πVars(S)

((
Σ∗ · x2

{
(Σ∗ · x1{S} · Σ∗) ./ P1

}
· Σ∗

)
./ P2

)
(4)= πVars(S)

(((
Σ∗ · x2

{
(Σ∗ · x1{S} · Σ∗)

}
· Σ∗

)
./ (Σ∗ · x2{P1} · Σ∗)

)
./ P2

)
(5)= πVars(S)

((
(Σ∗ · x1{S} · Σ∗) ./ (Σ∗ · x2{P1} · Σ∗)

)
./ P2

)
(6)= πVars(S)

((
Σ∗ · x1{S} · Σ∗

)
./ πx1

(
(Σ∗ · x2{P1} · Σ∗) ./ P2

))
(7)= πVars(S)

((
Σ∗ · x1{S} · Σ∗

)
./ (P1 ◦ P2)

)
(8)= S ◦ (P1 ◦ P2)

The equalities (1), (2), (7), and (8) hold by the algebraic characterization of Lemma 3.2.1.
The equalities (3) and (6) hold by the definition of projection and join in the relational
algebra, i.e., it is enough to project only once and the intermediate projections do not
have an effect, as the variables removed by the projection are not part of the natural join.
The Equality (4) follows from Equation (†) by using S1 := (Σ∗ · x1{S} · Σ∗), S2 := P1,
and x := x2.
The Equality (5) follows from the observation that in the left-hand side of the join,

the only restriction of x2 is that the span of x2 has to cover the span of x1. However,
this restriction is already imposed by the right-hand side of the join, where x2 has to
cover the part of the document matched by P1 and therefore the span of x1. Therefore,
removing x2 on the lefthand side of the join does not alter the result. This concludes the
proof.

3.2.4 Transitivity of (Self-)Splittability
The fact that spanner composition is associative allows us to show that splittability and
self-splittability are transitive.

Theorem 3.2.6. Let S be a document spanner and P1 and P2 be document splitters
such that S is splittable by P1 and P1 is splittable by P2, then S is splittable by P2. If
furthermore S is self-splittable by P1 and P1 is self-splittable by P2 then S is self-splittable
by P2.
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Proof. Assume that S is splittable by P1 and P1 is splittable by P2, then there is a spanner
S′ such that S = S′ ◦ P1. Furthermore, there is a splitter P ′ such that P1 = P ′ ◦ P2. As
the composition of document spanners is associative, we can conclude that

S = S′ ◦
(
P ′ ◦ P2

)
=

(
S′ ◦ P ′

)
◦ P2 .

Therefore S is splittable by P2 via S′ ◦ P ′.
Let now S be self-splittable by P1 and P1 be self-splittable by P2. Then we have S′ = S

and P ′ = P in the equation above and using S = S ◦ P1 = S′ ◦ P ′ we can conclude that
S = S ◦ P2, which shows that S is self-splittable by P2.

3.2.5 Distributivity of Composition and Join
Another important question is whether applying a splitter commutes with other operations
of the algebra, especially the join operation. We now give a sufficient precondition for
distributivity, which is defined as

(S1 ./ S2) ◦ P = (S1 ◦ P ) ./ (S2 ◦ P ) .

The problem is that the two spans on the righthand side of the equation could be different.
If they are, the equation needs not to be true, though it is still possible in some corner
cases. An obvious idea is to require that S1◦P and S2◦P satisfy the highlander condition.
However, as we show in Example 3.2.7, this might not be enough, as it is possible that
there are two overlapping spans covering tuples from S1 and S2, respectively, such that x
is in the intersection of both spans. Even requiring that the spanners are proper and the
splitter is disjoint might not be enough if x is assigned the empty span. This explains
the rather complicated precondition of the following theorem.

Example 3.2.7. Let S1 := Σ∗ · x1{a} · x2{b} · Σ∗, S2 := Σ∗ · x2{b} · x3{a} · Σ∗, and
P := Σ∗ · x{Σ · Σ} · Σ∗. We observe that S1 (resp., S2) and P satisfy the highlander
condition.

Let S := S1 ./ S2 be the join of both spanners and let d = aba. It follows that P (d) =
{[1, 3〉, [2, 4〉} and S(d) = {t}, where t(x1) = [1, 2〉, t(x2) = [2, 3〉, and t(x3) = [3, 4〉. As
there is no span s ∈ P (d) that covers t ∈ S(d) it follows directly from Lemma 3.1.4 that
S is not splittable by P , and therefore S ◦ P 6= S. However, both spanners, S1 and S2,
are self-splittable by P which implies that (S1 ◦ P ) ./ (S2 ◦ P ) = S1 ./ S2 = S. It follows
directly

(S1 ./ S2) ◦ P = S ◦ P 6= S = S1 ./ S2 = (S1 ◦ P ) ./ (S2 ◦ P ) ,

and therefore, spanner composition does not distribute over the join.

Theorem 3.2.8. Let P be a disjoint document splitter and S1 and S2 be document
spanners such that X := Vars(S1) ∩Vars(S2) 6= ∅ and the spanner πX(S1) ./ πX(S2) is
proper. Then, spanner composition distributes over the join, that is,

(S1 ./ S2) ◦ P = (S1 ◦ P ) ./ (S2 ◦ P ) .
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Proof. Let d be a document and t be a tuple such that t ∈
(
(S1 ./ S2) ◦ P

)
(d). Then

there is a decomposition d = d1 · d2 · d3 such that s = [|d1|+ 1, |d1 · d2|+ 1〉 ∈ P (d), and
t� |d1| ∈ (S1 ./ S2)(d2). We can conclude that, for all i ∈ {1, 2}, πVars(Si)(t� |d1|) ∈
Si(d2), therefore πVars(Si)(t) ∈ (Si ◦ P )(d), and finally t ∈

(
(S1 ◦ P ) ./ (S2 ◦ P )

)
(d).

For the other direction let d be a document and t be a tuple such that t ∈
(
(S1 ◦ P ) ./

(S2 ◦ P )
)
(d). For i ∈ {1, 2}, it must hold that πVars(Si)(t) ∈ (Si ◦ P )(d). Thus there are

spans s1 and s2, such that πVars(Si)(t)� si ∈ Si(dsi). Due to πX(S1) ./ πX(S2) being
proper, the minimal span s that covers πX(t) is not empty. As furthermore s is covered
by both s1 and s2 and P is disjoint, we can conclude that s1 = s2. Therefore, we have
that t�s1 ∈ (S1 ./ S2)(ds1) and finally t ∈

(
(S1 ./ S2)◦P

)
(d), concluding the proof.

Note that in the previous theorem it is sufficient if either the spanner πX(S1) or the
spanner πX(S2) is proper.

3.3 Extensions of the Framework
In this section, we will study extensions of the framework. We begin by studying the
framework in the presence of document spanners which are represented by black boxes
and conclude this section by studying the framework under schema constraints.

3.3.1 Split-Constrained Black Boxes
We begin with motivating examples.

Example 3.3.1. In this example and the next, we’ll denote by S(x, y) that spanner S
uses the variables x and y. Consider the spanner S that seeks to extract adjectives for
Galaxy phones from reports. We define this spanner by joining three spanners:
The spanner S1(x, y) is given by the regex formula

Σ∗ · x{Galaxy [A-Z][0-9]∗} · Σ∗ · y{Σ∗} · Σ∗

that extracts mentions of Galaxy brands (e.g., Galaxy A6 and Galaxy S8) followed by
substrings y.
The spanner S2(x, x′) is a coreference resolver (e.g., the sieve algorithm [129]) that

finds spans x′ that coreference spans x. The spanner S3(x′, y) finds pairs of noun phrases
x′ and attached adjectives y (e.g., based on a Recursive Neural Network [154]).

For example, consider the review “I am happy with my Galaxy A6. It is stable.” Here,
in one particular match, x will match (the span of) Galaxy A6, x′ will match it (which is
an anaphora for Galaxy A6 ), and y will match stable. (Other matches are possible too.)

How should a system find an efficient query plan to this join on a long report? Naively
materializing each relation might be too costly: S1(x, y) may produce too many matches,
and S2(x, x′) and S3(x′, y) may be computationally costly. Nevertheless, we may have
the information that S2 is splittable by paragraphs and that S3 is splittable by sentences
(hence, by paragraphs). This information suffices to determine that the entire join
S1(x, y) ./ S2(x, x′) ./ S3(x′, y) is splittable, hence parallelizable, by paragraphs.
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Example 3.3.2. Now consider the spanner that joins two spanners: S(x) extracts spans
x followed by the phrase “is kind” (e.g., “Barack Obama is kind”). The spanner S′(x)
extracts all spans x that match person names. Clearly, the spanner S(x) does not split
by a natural splitter, since it includes, for instance, the entire prefix of the document
before “is kind”. However, by knowing that S′(x) splits by sentences, we know that the
join S(x) ./ S′(x) splits by sentences. Moreover, by knowing that S′(x) splits by 3-grams,
we can infer that S(x) ./ S′(x) splits by 5-grams. Here, again, the holistic analysis of the
join infers splittability in cases where intermediate spanners are not splittable.

We now formalize the splittability question that the examples give rise to. A spanner
signature Λ is a collection {λ1, . . . , λk} of spanner symbols, where each λi is associated with
a set Vars(λi) of span variables. Furthermore, let Xi := Vars(λi) ∩

(⋃
i<j≤k Vars(λj)).

We assume that Xi 6= ∅, for all 1 ≤ i ≤ k. An instance I of Λ associates with each spanner
symbol λi an actual spanner Si such that Vars(Si) = Vars(λi) and πXi(Si) is proper. In
Example 3.3.1, λ1 would correspond to the regex-formula S1, with Vars(λ1) = {x, y}.
Furthermore, λ2 and λ3 would correspond to the name of a coreference resolver S2 and
an adjective extractor S3, respectively, with Vars(λ1) = {x, x′} and Vars(λ2) = {x′, y}.
Let Λ be a spanner signature and I an instance of Λ. We denote by I./ the spanner

that is given by
I./ := S1 ./ · · · ./ Sk .

We note that this is well-defined due to the associativity and commutativity of the join
operator.
A split constraint over a spanner signature Λ is an expression of the form “λi is

self-splittable by the splitter P ,” which we denote by λi v P . An instance I of Λ satisfies
a set C of split constraints, denoted I |= C, if for every constraint λi v P in C it is the
case that Pi is self-splittable by P . The problem of split-correctness with black boxes is
the following:

Black Box Splittability
Input: A spanner signature Λ, a set C of split constraints, and

a splitter P .
Question: Is I./ self-splittable by P whenever I is an instance of Λ such

that I |= C?

A natural question to ask is the following. Assume that all spanners are self-splittable
by the same splitter P , that is, λ v P , for every λ ∈ Λ. Does this imply that I./
is self-splittable by P? In general, the answer to this question is no, as shown by the
spanners and splitter defined in Example 3.2.7. The next result shows that in the presence
of disjoint splitters the join operator preserves self-splittability.

Theorem 3.3.3. Let P be a disjoint splitter, let Λ be a spanner signature, and let C be a
set of split constraints, such that λi v P ∈ C, for all 1 ≤ i ≤ k. Then I./ is self-splittable
by P if I |= C.
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Proof. Let I be an instance of Λ, such that I |= Λ and let Pi be the spanner interpreting
λi. We have to show, that I./ = I./ ◦ P .
Recall that per definition of Λ, Xi = Vars(λi) ∩

(⋃
i<j≤k Vars(λj)

)
, and Xi 6= ∅, for

all 1 ≤ i ≤ k. Furthermore, per definition of I, πXi(Si) is proper and Si is self-splittable
by P , for all 1 ≤ i ≤ k. Thus, using associativity of ./ and Theorem 3.2.8, it follows that

I./ ◦ P =
(
S1 ./ . . . ./ Sk

)
◦ P

=
(
S1 ./

(
S2 ./ (· · · ./ Sk)

))
◦ P

= (S1 ◦ P ) ./
((
S2 ./ (S3 ./ (. . . ./ Sk))

)
◦ P
)

...
= (S1 ◦ P ) ./ . . . ./ (Sk ◦ P )
= S1 ./ . . . ./ Sk

= I./ .

This concludes the proof.

Observe that the requirement that πXi(Si) is proper is always satisfied if Si does not
assign the empty span to variables and it holds, for every document d ∈ Σ∗ and every
tuple t ∈ Si(d), that Xi ⊆ Vars(t).

3.3.2 Schema Constraints

Sometimes a spanner is not splittable by a given splitter, because of a reason that seems
marginal. For instance, the spanner may first check that the document conforms to some
standard format, such as Unicode, UTF-8, CSV, HTML, etc. This is no issue, if the
document collection is verified to conform to the standard prior to splitting. In this
section, we will introduce schema constraints, which extend the framework in order to
embark this.
A schema constraint L is a—not necessary regular—language. We say that two

spanners S, S′ are equivalent under a schema constraint L if and only if for all documents
d ∈ L it holds that S(d) = S′(d). We denote this by S ≡L S′. We say that S is splittable
by P via SP under the schema constraint L if and only if S ≡L SP ◦ P . A schema
constraint L is regular, if L is regular.

Note that every language L is also a Boolean spanner, extracting the empty tuple on
every document d ∈ L and the empty set on every documents d /∈ L. Thus, the join of a
spanner and a language, as used in the following lemma, is defined as the join of two
spanners.

Lemma 3.3.4. Let S, SP be spanners, P be a splitter, and L be a schema constraint.
Then S ≡L SP ◦ P if and only if S ./ L =

(
SP ◦ (P ./ L)

)
.
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Proof. Per definition of ≡L , it holds that S ≡L SP ◦P if and only if S ./ L = (SP ◦P ) ./
L. Therefore, we have to show that (SP ◦ P ) ./ L = SP ◦ (P ./ L).

(SP ◦ P ) ./ L (1)= πVars(SP )
(
(Σ∗ · x{SP } · Σ∗) ./ P

)
./ L

(2)= πVars(SP )

((
(Σ∗ · x{SP } · Σ∗) ./ P

)
./ L

)
(3)= πVars(SP )

(
(Σ∗ · x{SP } · Σ∗) ./ (P ./ L)

)
(4)= SP ◦ (P ./ L)

The equalities (1) and (4) are by the algebraic characterization of Lemma 3.2.1. The
Equality (2) is by the fact that L does not use variables and we are therefore allowed to
change the order of projection and join. Finally, the Equality (3) holds because of the
associativity of joins.

It follows directly from Lemma 3.3.4 that schema constraints do not extend the
expressivity of the general framework.

Schema constraints also give rise to other problems that can be studied. For instance,
it may be the case that we already have a spanner and splitter available that we do not
want to change, but we want to know whether there exists a schema constraint L such
that the spanner is splittable by the splitter under the schema constraint. In general, the
answer to this is always positive, splittability holds for every combination of a spanner
and a splitter under the schema constraint L = ∅. Therefore, we say that a schema
constraint L covers S if and only if the splitter PL := x{L} covers S.

Next we observe that, for each spanner S, there is a minimal schema constraint
LS := {d | S(d) 6= ∅} such that split-correctness holds under LS if it holds for every
schema constraint which covers the spanner. We first observe that LS is indeed contained
in every schema condition which covers S.

Observation 3.3.5. Let S be a spanner and let L be a schema constraint which covers
S. Then, PL = x{L} covers S and therefore, LS ⊆ L.

The following observation follows directly from Observation 3.3.5 and Lemma 3.3.4.

Observation 3.3.6. Let S and SP be spanners, P be a splitter, and L be a schema
constraint which covers S. Then S ≡L SP ◦ P implies that S ≡LS SP ◦ P .
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Chapter 4

Complexity Results for Regular
Document Spanners
We now give the main results for the decision problems we introduced in Chapter 3 in
the case of regular spanners. The following two theorems summarize the main complexity
results.
Recall that Sgeneral is the set of all introduced representations of regular spanner,

that is, all representations depicted in Figure 2.4, and Stractable is the unambiguous and
sequential subset thereof, that is, Stractable = {usVSA,ufVSA,dsVSA,dfVSA}.

Theorem 4.0.1. Let S ∈ Sgeneral be a class of document spanners. Then the decision
problems Split-Correctness[S] and Self-Splittability[S] are PSPACE-complete.
Furthermore, Split-Correctness[S] and Self-Splittability[S] are in PTIME if

• S ∈ Stractable, and

• the spanner is proper and the splitter is disjoint, or the highlander condition is
satisfied by the spanner and splitter.

Theorem 4.0.2. Let S ∈ Sgeneral be a class of document spanners. Then deciding
Splittability[S] is in EXPSPACE and PSPACE-hard. Furthermore, it is PSPACE-
complete if one of the following two conditions is satisfied:

• the highlander condition is satisfied by spanner and splitter, or

• the spanner is proper and the splitter is disjoint.

Organization
This chapter is organized as follows. In Section 4.1 we give some technical foundations.
We study the upper bounds of Split-Correctness and Splittability in Section 4.2
and the upper bounds of Splittability in Section 4.3. The corresponding lower bounds
are studied in Section 4.4. In Section 4.5 we study the connection of Split-Existence
and language primality. We conclude this chapter by studying the complexity of schema
constraints in Section 4.6.

43



Chapter 4 Complexity Results for Regular Document Spanners

4.1 Technical Foundations
In this section, we provide the technical foundation for our main results. In Section 4.1.1
we show that, given a spanner S and a splitter P , represented by vset-automata AS , AP ∈
VSA, the spanner S◦P can be constructed as a vset-automaton AS◦P . Furthermore, if AS
and AP are unambiguous and sequential, and S◦P and P satisfy the highlander condition,
then the constructed vset-automaton for AS◦P is also unambiguous and sequential. We
study the complexity of containment in Section 4.1.2 and provide upper bounds for the
complexity of Disjoint,Proper,Highlander and Cover in Section 4.1.3.

4.1.1 Spanner/Splitter Composition
We begin by showing that, given AS , AP ∈ VSA, a vset-automaton that represents
the spanner JASK ◦ JAP K can be constructed. If AS and AP are unambiguous and
sequential, and JASK ◦ JAP K and P satisfy the highlander condition, then the constructed
vset-automaton is also unambiguous and sequential.
Proposition 4.1.1. Given vset-automata AS and AP representing a spanner and a
splitter, respectively, a vset-automaton AS◦P can be constructed in polynomial time, such
that

• JAS◦P K = JASK ◦ JAP K;
• AS◦P ∈ sVSA if AS ∈ sVSA; and
• AS◦P ∈ usVSA if AS , AP ∈ usVSA, and AS◦P and AP satisfy the highlander

condition.
Peterfreund et al. [123] showed that the join of sequential vset-automata can be

computed in polynomial time, if the number of shared variables is bounded by a constant.
Furthermore, for sequential vset-automata, projection can be computed in polynomial
time. The proof extends to arbitrary vset-automata, if the number of removed variables
is bounded by a constant. This shows the first two bullet points. We show the last bullet
point, using an explicit construction, that also proves the first two bullet points.

Proof. Let xP be the variable of AP and assume, w.l.o.g., that xP /∈ Vars(AS).1 We use
the algebraic characterization from Lemma 3.2.1 that states that

S ◦ P = πVars(S)
(
(Σ∗ · xP {S} · Σ∗) ./ P

)
for a spanner S and a splitter P . Let AS = (Σ, V,QS , q0,S , QF,S , δS) and AP =
(Σ, {xP }, QP , q0,P , QF,P , δP ) be vset-automata representing a spanner S and a splitter
P . By Observation 2.2.3, we assume, w.l.o.g., that AS and AP do not use ε-transitions.
We construct the vset-automaton

AS◦P :=
(

Σ, V, QP × (QS ∪ {⊥})× {1, 2, 3}, (q0,P ,⊥, 1), QF,P × {⊥} × {3}, δ
)
.

1This is possible as the composition S ◦ P does not depend on the variable xP . If xP ∈ Vars(AS), we
can therefore modify AP to use a variable x /∈ Vars(AS) instead. We observe that this obviously can
be done in polynomial time.
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The construction is similar to a product construction for the automata AS , AP , and a
three state automaton that accepts the language Σ∗ · xP {(Σ∪ ΓV )∗} ·Σ∗. The main idea
of the construction is simulation in three phases. In phase one, AP runs. Whenever AP
can open its variable it is decided nondeterministically whether the simulation stays in
phase one or continues with phase two. At the beginning of phase two, AS is initialized
with its start state and runs in parallel to the simulation of AP . Whenever AP allows to
close its variable and AS is in an accepting state, the simulation nondeterministically
decides to stay in phase two or continue with phase three. In phase three, the simulation
of AP is finished. The simulation can end at every point in which AP is in an accepting
state. Thus, the transition function is defined by

δ :=
{(

(q,⊥, 1), σ, (q′,⊥, 1)
)
| (q, σ, q′) ∈ δP , σ ∈ Σ

}
∪ AP runs{(

(q,⊥, 1), ε, (q′, q0,S , 2)
)
| (q, xP`, q′) ∈ δP

}
∪ AS starts{(

(q, p, 2), σ, (q′, p′, 2)
)
| (q, σ, q′) ∈ δP , (p, σ, p′) ∈ δS , σ ∈ Σ

}
∪ AP and AS run{(

(q, p, 2), v, (q, p′, 2)
)

| (p, v, p′) ∈ δS , v ∈ ΓV
}
∪ variable operation of AS{(

(q, p, 2), ε, (q′,⊥, 3)
)
| (q,axP , q′) ∈ δP , p ∈ QF,S

}
∪ AS stops{(

(q,⊥, 3), σ, (q′,⊥, 3)
)
| (q, σ, q′) ∈ δP , σ ∈ Σ

}
. AS runs

By construction, every run of AS◦P on a valid ref-word r = σ1 · · ·σn uses exactly two
ε-transitions and is of the form

(q0,⊥, 1) σ1−→ (q1,⊥, 1) σ2−→ · · · σi−1−−−→ (qi−1,⊥, 1) ε−→ (qi, p0, 2) σi−→
σi−→ (qi+1, p1, 2) σi+1−−−→ · · · σj−1−−−→ (qj , pj−i, 2) ε−→ (qj+1,⊥, 3) σj−→ · · · σn−−→ (qn+2,⊥, 3)

where
p0

σi−→ p1
σi+1−−−→ · · · σj−1−−−→ pj−i

is a run of AS on σi · · ·σj−1 and

q0
σ1−→ q1 · · · qi−1

σi−1−−−→ qi−1
xP`−−−→ qi

doc(σi)−−−−−→ · · ·

· · · doc(σj−1)−−−−−−→ qj
axP−−−→ qj+1

σj−→ qj+2 · · · qn+1
σn−−→ qn+2

is a run of AP on d := doc(r) = σ1 · · ·σi−1 · doc(σi · · ·σj−1) · σj · · ·σn.2 Furthermore,
the span [i, j′〉 with j′ = i+ |doc(σi · · ·σj−1)|, which is defined by the positions of the
ε-transitions in the run, is in P (d) and covers tup(r).
We can therefore conclude that JAS◦P K = πVars(S)((Σ∗ · xP {S} · Σ∗) ./ P ) and AS◦P

is sequential if AS is sequential.
It remains to show that AS◦P is unambiguous if

• AS and AP are unambiguous, and
• AS◦P and AP satisfy the highlander condition.

2We note that by construction of AS◦P the first component of the state does not change, when
doc(σi) = ε.
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To this end, observe that:

1. a run of AS◦P that witnesses the violation of the variable order condition (C2) of
AS◦P implies that there is a run of AS that witnesses the violation of the condition
for AS ;

2. two distinct runs of AS◦P that violate unambiguity condition (C3) of AS◦P must
either

• have ε-transitions at different positions and therefore witness the existence of
two distinct spans in S that both cover tup(r), which violates the highlander
condition, or

• have ε-transitions at the same positions and therefore witness that either AS
has two distinct runs on r, violating the assumption that AS ∈ usVSA, or
AP has two distinct runs on the unique ref-word corresponding to the span
indicated by the positions of the ε-transitions, violating the assumption that
AP ∈ usVSA.

Altogether, this shows that AS◦P being not unambiguous leads to a contradiction to
the assumption that AS and AP are unambiguous and that S ◦ P and P satisfy the
highlander condition.

4.1.2 Containment of Regular Document Spanners
We now study the complexity of containment of regular document spanners. In particular,
we show that containment of regex-formulas and vset-automata is PSPACE-complete
(Corollary 4.1.3), even under some determinism assumptions introduced in past work [105]
(Theorem 4.1.4), but it is solvable in PTIME for unambiguous and even in NL for
deterministic vset-automata (Theorem 4.1.5).
Given two spanners AS , AS′ ∈ S the containment problem asks whether JASK(d) ⊆

JA′SK(d) for every document d. As we will see later, deciding containment is essential for
deciding many of the problems studied throughout this thesis.

Containment[S]
Input: Spanner S, S′ ∈ S.
Question: Is S ⊆ S′?

The next theorem establishes the complexity of containment in the general case.

Theorem 4.1.2 (Maturana et al. [105, Theorem 6.4]). Containment is PSPACE-hard
for fRGX and fVSA and in PSPACE for RGX and VSA.

Since we know from Figure 2.4 that fRGX ⊆ sRGX ⊆ RGX and fVSA ⊆ sVSA ⊆ VSA,
we have the following corollary.

Corollary 4.1.3. Containment of regex-formulas (RGX, sRGX, fRGX) and vset-
automata (VSA, fVSA, sVSA) is PSPACE-complete.
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We now consider containment of deterministic and weakly deterministic vset-automata.
We first show that containment of weakly deterministic vset-automata is PSPACE-
complete.3 As we will see in the proof, the hardness of containment is due to the
fact that multiple variable operations can occur without reading alphabet symbols and
therefore, multiple different orderings of variable operations can be used to introduce
nondeterministic choice.

Theorem 4.1.4. Containment of weakly deterministic functional vset-automata is
PSPACE-complete.

Proof. The upper bound follows directly from Theorem 4.1.2. For the lower bound
we reduce from the PSPACE complete problem of DFA union universality [84]. Given
deterministic finite automata A1, . . . , An over the alphabet Σ, the union universality
problem asks whether

L(Σ∗) ⊆
⋃

1≤i≤n
L(Ai) . (†)

We construct vset-automata A,A′ using the variable set V = {x1, . . . , xn}, such that
A(d) ⊆ A′(d) for all documents d ∈ Σ∗ if and only if (†) holds. Let A accept the language
defined by the regex-formula

αA := x1

{
x2
{
· · ·xn{Σ∗} · · ·

}}
,

selecting the whole document with every variable. Clearly, the regex-formula αA can
be represented by a weakly deterministic functional vset-automaton A. We now abuse
notation and describe the language accepted by A′ by a hybrid regex-formula

αA′ := x1{α1}+ · · ·+ xn{αn} ,

where the DFAs Ai are plugged in. In particular,

αi := x1

{
· · ·xi−1

{
xi+1{· · · {xn{Ai}

}
· · ·
}
,

for 1 ≤ i ≤ n. Term i in αA′ starts by first opening variable xi, continues to open all
other variables in increasing order, and finally selects the whole document d for every
variable if d ∈ L(Ai). Clearly, as every term starts with a different variable symbol, this
hybrid formula can be transformed into an equivalent weakly deterministic functional
vset-automaton A′ in linear time.

3We note that, assuming coNP 6= PSPACE, this result contradicts Theorem 6.6 in Maturana et al. [105],
where it is argued that containment for weakly deterministic sequential vset-automata is in coNP.
There is an error in the upper bound of Maturana et al. [105], as can be seen in the version that
includes the proofs [104]. The specific error is in the pumping argument for proving a polynomial size
witness property for non-containment. The polynomial size witness property is not necessarily true,
due to the nondeterminism entailed in the ability of the automaton to open variables in different
orders. At every specific position in the string, the execution can be in Θ(n) possible states, where n
is the number of states, implying that a minimal witness may require a length of 2Θ(n).
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It remains to argue that JAK(d) ⊆ JA′K(d) for every document d ∈ Σ∗ if and only if (†)
holds.
(if): Assume that L(Σ∗) ⊆

⋃
1≤i≤n L(Ai) holds. Let d ∈ Σ∗ be a document and

t ∈ JAK(d) be a d-tuple. Per definition of A, we have t(v) = [1, |d|+ 1〉 for all variables
v ∈ V . By assumption, there is an automaton Ai such that d ∈ L(Ai). Therefore, the
tuple t is accepted by term i of A′, thus t ∈ JA′K(d).
(only if): Assume that JAK(d) ⊆ JA′K(d), for every document d ∈ Σ∗. Let d ∈ Σ∗ be

an arbitrary document and t ∈ A(d). Per assumption, it follows that t ∈ JA′K(d) and
therefore there is a run of A′ on d selecting t. Let xi be the first variable which is opened
in this run. Per construction of A′ it follows, that d ∈ L(Ai).

The question is now whether there exists a satisfactory notion of determinism for
vset-automata that allows for efficient containment testing without loss of expressiveness.
Our definitions of unambiguity and determinism resolves this complexity issue, without
loss of expressiveness (cf. Proposition 2.2.6). Now, we can show that containment is
tractable for deterministic and unambiguous vset-automata.

Theorem 4.1.5. Containment for usVSA is in PTIME and containment for dsVSA is
in NL.

Proof. As we will see next, the NL upper bound for dsVSA follows from containment of
deterministic finite state automata. The PTIME upper bound for usVSA follows from
containment of unambiguous finite state automata. In the following, we only give the
proof for dsVSA. The proof for usVSA is analogous (using the fact that containment for
unambiguous finite automata is in PTIME [157, Corollary 4.7]).

To this end, let A1, A2 be deterministic sequential vset-automata (i.e., A1, A2 ∈ dsVSA).
By Lemma 2.2.2, JA1K ⊆ JA2K if and only if R(A1) ⊆ R(A2). Let i ∈ {1, 2}. Observe
that due to Ai being weakly deterministic, it must hold that Ai, interpreted as ε-NFA, is
deterministic. The result follows since containment for deterministic finite automata is
well known to be in NL.

4.1.3 Complexity of Checking Cover and Highlander Condition
Towards tractability results, we first show that the emptiness problem of sequential
vset-automata is decidable in NL.

Proposition 4.1.6 (Maturana et al. [105, Theorem 6.2]). Given a sequential vset-
automaton A, it can be checked in NL whether JAK(d) 6= ∅ for some document d.

Proof. Let A ∈ sVSA. Due to A being sequential, all ref-words r ∈ R(A) must be valid.
Thus, JAK(d) 6= ∅ if and only if R(A) 6= ∅. The result follows from the fact that emptiness
of ε-NFAs can be checked in NL.4

4Emptiness of ε-NFAs is the same problem as Reachability in graphs, which is well known to be
NL-complete (cf. Papadimitriou [120, Theorem 16.2]).
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The next proposition shows that deciding Proper,Disjoint, and Highlander are
tractable if spanner and splitter are sequential.

Proposition 4.1.7. Proper[sVSA],Disjoint[sVSA], and Highlander[sVSA] are in
NL. Furthermore, Proper[sRGX],Disjoint[sRGX], and Highlander[sRGX] are in
PTIME.

Proof. For every regex-formula an equivalent vset-automaton can be constructed in
polynomial time using the usual constructions that convert a regular expression into an
NFA. Thus it suffices to show that the problems are in NL for sVSA.
Let AS , AP ∈ sVSA be automata representing a spanner and a splitter, respectively.

Let S = JASK and P = JAP K. We denote the variables of AS by V , the single variable
of AP with x, and a fresh variable not used by AS or AP by y. We provide logspace
constructions for sVSAs Aprop, Adisjoint, and Ahighlander, such that the ref-word languages
of the automata are empty if and only if S is proper, P is disjoint, and S and P satisfy
the highlander condition, respectively. The result follows, as emptiness of sVSA can be
checked in NL (cf. Proposition 4.1.6).

To ease readability, we abbreviate tup(r)(x) by tupr(x) in the remainder of this proof.

Aproper: The automaton Aproper is the intersection of AS and an automaton A′ such
that R(A′) = Σ∗ · (ΓV )∗ · Σ∗.

The automaton Aproper is sequential, since R(Aproper) ⊆ R(AS) and AS is sequential.
Thus, all ref-words r ∈ R(Aproper) are valid. Assume that r ∈ R(Aproper). Let d :=
doc(r). Observe that tup(r) ∈ S(d), due to R(Aproper) ⊆ R(AS). Furthermore, due to
R(Aproper) ⊆ R(A′) = Σ∗ · (ΓV )∗ · Σ∗ it must hold that tup(r) is either empty or the
minimal span covering it is empty. In both cases tup(r) is a witness that AS is not proper.
For the other direction, assume there is a document d and a tuple t ∈ S(d) such that
t is empty or the minimal span covering t is empty, then the ref-word r ∈ R(AS) with
tup(r) = t is in R(A′) and therefore in R(Aproper).

Adisjoint: We define the automaton Adisjoint as the intersection of the following four
automata such that t ∈ JAdisjointK(d) is a tuple over variables x, y. The automaton
AxP (resp., AyP ) selects all (x, y) pairs such that t(x) ∈ P (d) (resp., t(y) ∈ P (d)) for a
document d ∈ Σ∗. The automaton Adistinct verifies whether t(x) 6= t(y) and Aoverlap
verifies whether t(x) and t(y) overlap. More formally, we define the automata as follows:

• AxP is derived from AP by adding self-loops for every label from Γ{y} = {y`,ay}
to every state.

• AyP is derived from AP by changing every label x` to y`, every label ax to ay, and
afterwards adding self loops for every label from Γ{x} = {x`,ax} to every state.

• Adistinct ensures that tupr(x) 6= tupr(y) for every ref-word r ∈ R(Adistinct).5 This
automaton is depicted in Figure 4.1.

5Note that Adistinct does not select all ref-words with tupr(x) 6= tupr(y), as it does not consider cases
where one variables is opened and closed before the other variable is opened.
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Figure 4.1: The automaton Adistinct.

• Aoverlap is a three state automaton with R(Aoverlap) := (Σ ∪ {x`, y`})∗ · Σ · (Σ ∪
{ax,ay})∗ that ensures that at least one symbol is read while both variables are
open. We note that AxP and AyP already ensure that both variables are used.

The constructions of all automata can be carried out by an logarithmic space Turing
Machine. Note that Adisjoint is sequential, since AxP , (resp., A

y
P ) ensures that x (resp., y) is

not opened or closed several times and that it is closed if and only if it is opened. A ref-word
r ∈ R(Adisjoint) witnesses that P is not disjoint, since AxP verifies that tupr(x) ∈ P (doc(r)),
AyP verifies that tupr(y) ∈ P (doc(r)), Adistinct verifies that tupr(x) 6= tupr(y), and Aoverlap
verifies that tupr(x) and tupr(y) overlap. For the other direction, a document d where
P (d) has two overlapping spans s1 and s2 ensures that r ∈ R(Adisjoint), where r is derived
from d by inserting opening and closing operations for x and y at the positions indicated
by s1 and s2.

Ahighlander: We define the automaton Ahighlander as the intersection of the following
automata, such that Vars(Ahighlander) = V ∪ {x, y}. AxP (and AyP ) again ensures that
t ∈ JAhighlanderK(d) implies that t(x) ∈ P (d) (resp., t(y) ∈ P (d)). Following the same
idea, A′S ensures that πV (t) ∈ S(d). The automaton Adistinct ensures that t(x) 6= t(y)
if t ∈ JAhighlanderK(d). The last automaton, Aenclosed ensures that both, t(x) and t(y),
contain πV (t). More formally:

• AxP , A
y
P , and Adistinct are as before but with additional self-loops for every symbol

from ΓV at each state.
• A′S is derived from AS by adding self-loops for every label from Γ{x,y} to every

state.
• Aenclosed is an automaton with R(Aenclosed) = (Σ ∪ {x`, y`})∗ · (Σ ∪ ΓV )∗ · (Σ ∪
{ax,ay})∗ that ensures that no variable operation for variables from V is used
outside of the spans defined by x and y.

We compute Ahighlander as the intersection of A′S , AxP , A
y
P , Adistinct, and Aenclosed. We

note that even if the five automata are not sequential, the automaton Ahighlander is
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sequential. For every variable, one of the automata A′S , AxP , and A
y
P ensures that it is

not opened or closed several times and that it is closed if and only if it is opened.
We explain why a ref-word r ∈ R(Ahighlander) witnesses a violation of the highlander

condition. By the construction of Aenclosed, the (different) spans tupr(x) and tupr(y)
are both in P (doc(r)) and both cover πV (tupr) ∈ S(doc(r)). For the other direction, a
document d, spans s1, s2 ∈ P (d), and a tuple t ∈ S(d) witnessing the violation of the
highlander condition ensure that

ref(d, t ∪ {x 7→ s1, y 7→ s2}) ∈ R(Ahighlander) .

Therefore, the language is not empty.

We proceed by studying the complexity of testing the cover condition. Here, we only
give an upper bound, a matching lower bound is established in Lemma 4.4.1.

Proposition 4.1.8. Cover[VSA] is in PSPACE.

Proof. Let S be a spanner and P be a splitter, given as AS , AP ∈ VSA. We assume,
w.l.o.g., that xS /∈ V . We define a spanner AV ∈ VSA that selects every possible tuple.
More formally, AV := (Σ, V, {q0}, q0, {q0}, δ) is the vset-automaton with a single state
q0, where δ := {(q0, c, q0) | c ∈ Σ ∪ ΓV }. We argue next that P covers S if and only if
S ⊆ JAV K ◦ P .

(if): Assume that the cover condition does not hold. Then there is a document d ∈ Σ∗
and a non-empty tuple t ∈ S(d), such that there is no span s ∈ P (d) which covers t.
Even though AV selects every possible tuple, we have t /∈ (JAV K ◦ P )(d).

(only if): Assume that the cover condition holds. Let d ∈ Σ∗ be a document and
t ∈ S(d) be a non-empty d-tuple. Since P covers S, there is a span s ∈ P (d) which
covers t. Thus, per definition of AV , it must hold that t� s ∈ JAV K(d), and therefore
S ⊆ JAV K ◦ P also holds.

The PSPACE upper bound follows from Proposition 4.1.1 (first bullet point), which
shows that a vset-automaton A ∈ VSA with JAK = JAV K ◦ P can be constructed in
polynomial time, and Theorem 4.1.2 which states that containment of vset-automata is
in PSPACE.

4.2 Deciding Split-Correctness and Self-Splittability
In this section, we show that Split-Correctness and Self-Splittability are in
PSPACE for regex-formulas and vset-automata, while both problems are in PTIME if
S, SP , and P are given as ufVSA and S and P satisfy the highlander condition.
It follows directly from Proposition 4.1.1 and Theorem 4.1.5 that split-correctness is

decidable in PTIME when the highlander condition is satisfied and the vset-automata
are unambiguous and sequential.
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Lemma 4.2.1. Deciding Split-Correctness[VSA] is in PSPACE. Furthermore, if S
and P satisfy the highlander condition, Split-Correctness[usVSA] is in PTIME.

Proof. Let AS , ASP , AP ∈ VSA with S = JASK, P = JAP K, and SP = JASP K. Further-
more, let ASP ◦P be as constructed in Proposition 4.1.1, that is, JASP ◦P K = SP ◦P . Thus,
S is splittable by P via SP if and only if JASK = JASP ◦P K. It follows from Theorem 4.1.2
that this equivalence can be checked in PSPACE.

Assume that AS , ASP , AP ∈ ufVSA and that S and P satisfy the highlander condition.
By Proposition 4.1.1 (second bullet point), ASP ◦P ∈ sVSA. We begin by checking
whether ASP ◦P and AP satisfy the highlander condition, which can be done in PTIME
due to Proposition 4.1.7. If this is the case, we can conclude that ASP ◦P ∈ usVSA
(Proposition 4.1.1, third bullet point) and therefore it can be checked in PTIME whether
S is splittable by P via SP as shown in Theorem 4.1.5. Otherwise, if SP ◦ P and P
do not satisfy the highlander condition, there must be a document d ∈ Σ∗ and a tuple
t ∈ (SP ◦ P )(d) such that at least two splits s, s′ ∈ P (d) cover t. Therefore, due to S and
P satisfying the highlander condition, it must hold that t /∈ S(d), which implies that S is
not splittable by P via SP .

The following corollary follows directly from Lemma 3.1.6 and Lemma 4.2.1.

Corollary 4.2.2. Split-Correctness[usVSA] is in PTIME if S is proper and P is
disjoint.

We observe that, by the definition of Self-Splittability, the following corollary
follows directly.

Corollary 4.2.3. Deciding Self-Splittability[VSA] is in PSPACE. Furthermore,
Self-Splittability[usVSA] is in PTIME if either

1. S and P satisfy the highlander condition, or

2. S is proper and P is disjoint.

4.3 Deciding Splittability
We will now study the Splittability problem. Recall the definition of the canonical
split-spanner:

Scan
P (d) :=

{
t | ∀d′ ∈ Σ∗,∀s ∈ P (d′) such that d′s = d, it holds that (t� s) ∈ S(d′)

}
.

We begin by showing that Scan
P is regular if S and P are regular (Section 4.3.1). In

Sections 4.3.2 and 4.3.3 we show the upper bounds for Splittability in the general case
and in the presence of the highlander condition. We conclude this section by proving a
key technical lemma in Section 4.3.4.
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4.3.1 Constructing the Canonical Split-Spanner
In this section, we will show that Scan

P is regular if S and P are regular (Corollary 4.3.5).
To this end, define a finite monoid M such that Scan

P is exactly the spanner represented
by the language recognized by M .
A monoid is a triple (M,�, e) consisting of a set M , an associative binary operation

� : M×M →M , and a neutral element e. We say that a monoidM recognizes a language
L over the alphabet Ξ if there is a homomorphism h : Ξ∗ →M and a set Macc ⊆M such
that w ∈ L if and only if h(w) ∈Macc. A function h is a (string) homomorphism if and
only if h(ε) = e and h(w1 · w2) = h(w1) � h(w2) for all strings w1, w2 ∈ Ξ∗. It is well
known that a language L is regular if and only if it is recognized by a finite monoid M .
All monoids that we define will be finite.

Given a VSA A = (Σ, V,Q, q0, QF , δ), the transition monoid MA of A is (2Q×Q,�, idQ),
where 2Q×Q is the set of all possible binary relations over Q, the operation � is the
composition of relations, i.e.,

m1 �m2 :=
{

(x, z) | ∃y ∈ Q, such that (x, y) ∈ m1 and (y, z) ∈ m2
}
,

and idq := {(q, q) | q ∈ Q} is the identity relation over Q. The canonical homomorphism
hA for the transition monoid is defined by

hA(r) :=
{

(p, q) | q ∈ δ∗(p, r)
}
.

For reasons that become apparent later, we define hA(α) = idQ for every variable
operation α ∈ ΓVars \Vars(A) that does not belong to a variable used by A. This has
the effect that hA ignores all “foreign” variables, which is helpful when combining the
transition monoids of different spanners.
Lemma 4.3.1. Let A ∈ VSA. The language R(A) is recognized by MA.

Proof. Let r ∈ (Σ∪ΓVars(A))∗ be a ref-word over the alphabet Σ∪ΓVars(A). Furthermore,
let Macc

A := {m | m ∩ ({q0} × QF ) 6= ∅} be the set of accepting monoid elements. As
r ∈ R(A) if and only if there is an accepting run of A on r and by the definition of hA,
we get that r ∈ R(A) if and only if hA(r) ∈Macc

A , concluding the proof.

As we will show, given a spanner S, one can also construct a monoid that recognizes the
language of all valid ref-words, satisfying the variable order condition, which correspond to
a tuple selected by S. More formally, we define the language RS , where S is a document
spanner:

RS :=
{

ref(d, t) | ∃d ∈ Σ∗, such that t ∈ S(d)
}
.

Observe that RS = R(A) if S is given as a sequential vset-automaton A which satisfies
the variable order condition. We generalize this and show that, for every document
spanner S given by a vset-automaton A, there is a monoid M of size exponential in A
which recognizes RS . Furthermore, as we will show this monoid can be constructed by a
polynomial space Turing Machine.6

6We note that the polynomial space bound of the Turing Machine only refers to the working tapes, but
not to the output tape, to which the exponential size monoid is written.
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Lemma 4.3.2. Let A ∈ VSA. There is a monoid M≺A of exponential size that recognizes
RJAK. Furthermore, M≺A can be constructed by a polynomial space Turing Machine.

We note that if A is sequential and satisfies the variable order condition, then RJAK =
R(A) and the transition monoid MA of A can be used for M≺A . In the general case, the
construction of M≺A is quite involved. To meet the exponential size restriction it is not
possible to compute an equivalent sequential vset-automaton that complies with the
variable order condition. Instead, sequentiality and the variable order condition have
to be dealt with in the monoid construction itself. We give a proof for Lemma 4.3.2 in
Section 4.3.4.

Given a set V of variables, we define the monoid MV that can test whether a ref-word
(using variables from V ) satisfies the variable order condition:

MV :=
(

2ΓV ∪ {0},�V , ∅
)

;

X �V Y :=
{
X ∪ Y if X ∩ Y = ∅ and x ≺ y for all x ∈ X, y ∈ Y
0 otherwise.

Lemma 4.3.3. For every finite set V ⊆ Vars of variables, MV recognizes the set RV of
all valid ref-words over V which satisfy the variable order condition.

Proof. Let Macc
V = {X 6= 0 | ∀v ∈ V, it holds that v` ∈ X ⇔ av ∈ X} and hV : (Σ ∪

V )∗ →MV be the homomorphism induced by

hV (a) :=
{
a if a ∈ ΓV
∅ otherwise.

It remains to show that r ∈ (Σ∪ΓV )∗ is valid and satisfies the variable order condition
if and only if hV (r) ∈ Macc

V . Let hV (r) ∈ Macc
V . Observe that, per definition of �V , r

must satisfy the variable order condition. Furthermore, per definition of ≺, it must hold
that v` ≺ av for all variables v ∈ Vars . Thus, r must be valid, as all variables v ∈ Vars(r)
must be opened and closed exactly once and opened before they are closed. For the
other direction, assume that r is valid and satisfies the variable order condition. It is
straightforward to verify that hV (r) 6= 0 and furthermore, hV (r) ∈Macc

V .

Let S be a regular document spanner, P be a regular document splitter, and V =
Vars(S). We use Lemma 4.3.2 and show that the Cartesian product of the monoids MV ,
M≺S , and M≺P contains enough structure to recognize RScan

P . Therefore, Scan
P is indeed a

regular document spanner.

Proposition 4.3.4. For every regular document spanner S and every regular document
splitter P , the monoid M := MV ×M≺S ×M

≺
P recognizes RScan

P .

Proof. Let h : (Σ ∪ ΓV )∗ →M be the homomorphism defined by

h(r) := (hV (r), hS(r), hP (r)) .
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We define Macc as

Macc :=
{

(mV ,mS ,mP ) |mV ∈Macc
V and for all d1, d2 ∈ Σ∗ it holds that

m′P ∈Macc
P ⇒ m′S ∈Macc

S ,where (m′V ,m′S ,m′P ) =

h(d1)� h(xP`)� (mV ,mS ,mP )� h(axP )� h(d2)
}
.

Recall that Macc
V = {X 6= 0 | ∀v ∈ V, it holds that v` ∈ X ⇔ av ∈ X}. Furthermore,

for a ref-word r, it holds that h(r) ∈ Macc
S (resp., h(r) ∈ Macc

P ) if and only if r ∈ RS
(resp., r ∈ RP ). We have to show that, for every ref-word r, it holds that r ∈ RScan

P if
and only if h(r) ∈Macc.

(if): Let r be a ref-word and d = doc(r). Assume that h(r) ∈Macc. By definition ofMV

and the fact that hV (r) ∈Macc
V , we can conclude that r is valid and satisfies the variable

order condition. It remains to show that tup(r) ∈ Scan
P (d), which implies that r ∈ RScan

P .
To this end, let d′ ∈ Σ∗ and s ∈ P (d′) such that d′s = d. If no such d′ and s exist, it follows
that tup(r) ∈ Scan

P (d) and we are done. Otherwise, d′ can be decomposed as d′ = d1 ·d ·d2.
Let (m′V ,m′S ,m′P ) := h(d1)�h(xP`)�(mV ,mS ,mP )�h(axP )�h(d2). By definition of h
andMacc

P , we have thatm′P = hP (d1)�hP (xP`)�hP (r)�hP (axP )�hP (d2) ∈Macc
P . Let

r′ = d1 ·r ·d2. Thus, tup(r′) = tup(r)�s ∈ S(d′) if and only if h(r′) ∈Macc
S . Furthermore,

due to hS ignoring xP , hS(r′) ∈Macc
S if and only if m′S ∈Macc

S . As m′P ∈Macc
P , we have

by the definition of Macc that m′S ∈ Macc
S and therefore hS(r′) ∈ Macc

S . This implies
that tup(r′) ∈ S(d′) and therefore tup(r) ∈ Scan

P (d), concluding the if-part of the proof.

(only if): Let r ∈ RScan
P and d = doc(r). Thus, tup(r) ∈ Scan

P (d) and r is valid and
satisfies the variable order condition. We show that m = (mV ,mS ,mP ) = h(r) ∈Macc.
As r is valid and satisfies the variable order condition, we have that mV ∈ Macc

V . It
remains to show that for every d1, d2 ∈ Σ∗ it holds that m′P ∈ Macc

P implies that
m′S ∈Macc

S , where (m′V ,m′S ,m′P ) = h(d1)� h(xP`)� (mV ,mS ,mP )� h(axP )� h(d2).
To this end let d1, d2 ∈ Σ∗ be arbitrary documents and m′S and m′P be as above with
m′P ∈Macc

P . We have to show that m′S ∈Macc
S . Let r′ = d1 · xP` ·d · axP ·d2 and recall

that r ∈ RP if and only if hP (r) ∈ Macc
P . Observe that hP (r′) = m′P ∈ Macc

P and thus
r′ ∈ RP . Let d′ = doc(r′). Thus, s = [|d1|, |d1 · d|〉 ∈ P (d′) and d′s = d. This implies that
tup(r)� s ∈ S(d) and ref(d, tup(r)� s) ∈ RS . Observe that ref(d, tup(r)� s) = r′ and
therefore it follows that m′S = hS(ref(d, r′)) ∈Macc

S , concluding the proof.

Corollary 4.3.5. Scan
P is a regular document spanner.

4.3.2 Complexity Upper Bound for Splittability in the General
Case

The proof of the upper bound consists of two parts. We first show that testing whether
an element m ∈M belongs to Macc is in PSPACE (Proposition 4.3.6) and then give an
EXPSPACE algorithm for testing splittability (Theorem 4.3.7).
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Proposition 4.3.6. Let m ∈ M be a monoid element. It can be tested in PSPACE
whether m ∈Macc.

Proof. Recall that

Macc :=
{

(mV ,mS ,mP ) |mV ∈Macc
V and for all d1, d2 ∈ Σ∗ it holds that

m′P ∈Macc
P ⇒ m′S ∈Macc

S ,where (m′V ,m′S ,m′P ) =

h(d1)� h(xP`)� (mV ,mS ,mP )� h(axP )� h(d2)
}
.

We give a PSPACE algorithm which decides whether (mV ,mS ,mP ) /∈Macc by guessing
a counterexample.7 By definition of Macc, (mV ,mS ,mP ) /∈Macc if and only if

1. mV /∈Macc
V ; or

2. there are d1, d2 ∈ Σ∗ with
h(d1)� h(xP`)�m� h(axP )� h(d2) ∈MV × (MS \Macc

S )×Macc
P .

Recall that Macc
V = {X 6= 0 | ∀v ∈ V, v` ∈ X ⇔ av ∈ X}. Thus, the first condition can

be checked in PTIME. Due to h being a homomorphism, it must hold that h(σ1 · · ·σn) =
h(σ1)� · · · � h(σn). Therefore, the second condition can be checked by guessing d1 and
d2 symbol by symbol and computing h(d1) and h(d2) on the fly. More formally, the
algorithm does not store the possibly large documents d1 and d2, but only stores the
monoid elements h(d1) and h(d2), and the size of d1 and d2, encoded in binary. The
algorithm rejects if no counterexample of size at most exponential in |m| is found. Note
that the existence of a counterexample d1, d2 of more than exponential length also implies
the existance of an exponential length counter example, as the total number of monoid
elements is exponential in |m|. Therefore, by the pigeonhole principle, the described
algorithm would store the same pair of monoid elements (h(d1), h(d2)) at least once while
guessing an counterexample of more than exponential length.

We are now ready to given an upper bound for Splittability.

Theorem 4.3.7. Splittability[S] is in EXPSPACE.

Proof. Let S ∈ S and P ∈ S be a spanner and a splitter. By Theorem 3.2.4, S is
splittable by P if and only if S is splittable by P by Scan

P . The high level idea of the
proof is to compute a vset-automaton A for Scan

P ◦ P and then test equivalence with S.
Recall that |M | is exponential in the size of AS and AP (cf. Lemma 4.3.2). To

exploit the construction of Proposition 4.1.1, we turn M into the vset-automaton AM =
(Σ, V,M, h(ε),Macc, δ), where the transition function is defined by δ(m,σ) = m� h(σ).
We use the monoid elements as states of the automaton. From the construction and
definition of M it is obvious that JAK = Scan

P and that AM is linear in the size of M . By
Proposition 4.3.6, Macc can be constructed in PSPACE. Now we apply Proposition 4.1.1
to obtain an automaton A for Scan

P ◦ P , which is of polynomial size in M and thus
7Recall that PSPACE is closed under complement.
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exponential in the size of P and S. Testing equivalence of S and A can be done in space
polynomial in S and A. As A is of exponential size, this yields the EXPSPACE bound
claimed in the theorem statement.

4.3.3 Complexity Upper Bound for Splittability under the
Highlander Condition

In this section we will show that the upper bound of splittability can be improved to
PSPACE if the spanner and the splitter satisfy the highlander condition. We begin by
characterizing counterexamples to splittability under the highlander condition.

Lemma 4.3.8. Let S and P be a spanner and a splitter such that the highlander and
cover conditions are satisfied. Then S is splittable by P if and only if there is no ref-word
r = d1 · xP` ·r′ · axP ·d2 ∈ (Σ ∪ ΓVars(S) ∪ ΓVars(P ))∗ such that

• d1, d2 ∈ Σ∗;

• d1 · r′ · d2 ∈ RS;

• d1 · xP` ·doc(r′) · axP ·d2 ∈ RP ; and

• r′ /∈ RScan
P .

Proof. Assume that S is not splittable by P . By Lemma 3.2.3 and Theorem 3.2.4, there
must be a document d and a tuple t ∈ S(d) \ (Scan

P ◦ P )(d). Due to t ∈ S(d), it holds
that ref(d, t) ∈ RS and, due to the cover condition, there must be a span [i, j〉 ∈ P (d)
which covers t. Let d1, d2 ∈ Σ∗ and r′ be a ref-word, such that d1 · r′ · d2 = ref(d, t),
i = |d1|+ 1, and j = |d1 · doc(r′)|+ 1. Furthermore, let r = d1 · xP` ·r′ · axP ·d2, thus
doc(r) = d and d[i,j〉 = doc(r′). Due to i = |d1|+ 1 and j = |d1 · doc(r′)|+ 1, it follows
that d1 ·xP` ·doc(r′) · axP ·d2 ∈ RP . Therefore r satisfies the first three conditions of the
lemma statement. Assume, towards a contradiction, that r′ ∈ RScan

P . This implies that
t ∈ (Scan

P ◦P )(d), which is a contradiction to the assumption that t ∈ S(d) \ (Scan
P ◦P )(d)

showing that r also satisfies the last condition given in the lemma statement.
Conversely assume that there is a string r = d1 · xP` ·r′ · axP ·d2 ∈ (Σ ∪ ΓVars(S) ∪

ΓVars(P ))∗ satisfying the conditions from the lemma statement. By d1 · r′ · d2 ∈ RS , we
have that t = tup(d1 · r′ · d2) ∈ S(doc(r)). By d1 · xP` ·doc(r′) · axP ·d2 ∈ RP , we have
that [i, j〉 ∈ P (doc(r)) covers t, where i = |d1|+ 1 and j = |d1 · doc(r′)|+ 1. As S and
P satisfy the highlander condition, there can be no other span in P (doc(r)) that covers
t. Furthermore, as r′ /∈ RScan

P , we can conclude that t /∈ Scan
P ◦ S(doc(r)), contradicting

that S is splittable by P using Scan
P . By Theorem 3.2.4, we can conclude that S is not

splittable by P .

Theorem 4.3.9. Let S be a regular document spanner and P be a regular document
splitter, both given as vset-automata, such that the highlander condition is satisfied. Then,
Splittability[VSA] is in PSPACE.
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Proof. We first verify whether P covers S. Note that the cover condition can be checked
in PSPACE (Proposition 4.1.8) and is necessary for splittability (Lemma 3.1.4). Thus,
for the remainder of this proof, we can assume that the cover condition is satisfied.

As S and P satisfy the highlander and cover condition, we can now use Lemma 4.3.8.
We provide a nondeterministic algorithm that runs in polynomial space for the complement
problem, i.e., checking whether S is not splittable by P . We exploit Lemma 4.3.8.
The algorithm guesses a string r = d1 · xP` ·r′ · axP ·d2 ∈ (Σ ∪ ΓVars(S) ∪ ΓVars(P ))∗,

letter by letter, and computes hS(r), hP (r), and h(r′) on the fly. We note that hS(r)
can be computed in polynomial space by starting with the monoid element mS = hS(ε)
and replacing mS with mS · hS(σ) whenever a new letter σ is guessed. The elements
hP (r) and h(r′) can be computed analogously. If no counterexample is found within
exponentially many steps, the algorithm rejects.8
Finally, by Lemma 4.3.8, the facts that S and P satisfy the highlander and cover

condition, and the definition of the monoids MS , MP , and M , we have that S is not
splittable by P if hS(r) ∈ Macc

S , hP (r) ∈ Macc
P , and h(r′) /∈ Macc. We remind that hS

and hP ignore “foreign” variables. By Proposition 4.3.6, the condition h(r′) /∈Macc can
be checked in polynomial space. As the other two conditions can be easily checked in
polynomial space, this concludes the proof.

The following corollary is immediate by Lemma 3.1.6 and Theorem 4.3.9.
Corollary 4.3.10. Deciding Splittability[VSA] is in PSPACE, if the input spanner
is proper and the splitter is disjoint.

4.3.4 Proof of Lemma 4.3.2
We now give the proof of Lemma 4.3.2. To this end, we recall the lemma statement.
Lemma 4.3.2. Let A ∈ VSA. There is a monoid M≺A of exponential size that recognizes
RJAK. Furthermore, M≺A can be constructed by a polynomial space Turing Machine.

We start by giving some intuition about the proof idea. Let A = (Σ, V,Q, q0, QF , δ) ∈
VSA. We define the monoid MV that can test whether a ref-word, using variables from
V , satisfies the variable order condition:

MV :=
(

2ΓV ∪ {0},�V , ∅
)

X �V Y :=
{
X ∪ Y if X ∩ Y = ∅ and x ≺ y for all x ∈ X, y ∈ Y
0 otherwise.

Building up on MV , we define M≺A as

M≺A :=
(
MV ∪ (MV ×MA ×MV ), �≺A , ∅

)
.

8Again, as argued in the proof of Proposition 4.3.6, the algorithm only stores the monoid elements but
not the ref-word r. Furthermore, there must be an counterexample of size at most exponential in the
input, as otherwise, the algorithm would store the same combination of monoid elements at least
once.
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The intuitive idea behind our construction is that we use the monoid MV to process
substrings consisting entirely of variable operations. The monoidMV conveniently already
checks that the variable operations occur in the correct order and we can derive the whole
set of processed variable operations from the monoid element obtained after processing a
substring of variable operations. In fact, if the operations contain no duplicates and are
in the correct order, the monoid element is the desired set. Otherwise it is 0 to denote
that the processed ref-word is invalid.
Monoid elements m from M≺A that are from MV correspond to substrings containing

only variable operations. Monoid elements of the form m = (mv1 ,ma,mv2) correspond
to a substring containing variable operations and symbols. Here mv1 and mv2 correspond
to the variable operations before the first and after the last symbol from Σ, respectively,
while ma corresponds to possible runs of the automaton for the substring r′ from the
first to the last Σ-symbol. However, we cannot simply compute hA(r′), as we also have
to consider runs of the automaton that process the variable operations that occur inside
r′ in a different order.
At some point we need to connect monoid elements from MV with monoid elements

from MA. We therefore define a function f : MV → MA that, given some mv ∈ MV ,
computes all possible runs in A that use exactly the variable operations encoded by mv.
We give the formal proof now.

Proof. Let A = (Σ, V,Q, q0, QF , δ) ∈ VSA. We define M≺A as

M≺A :=
(
MV ∪ (MV ×MA ×MV ), �≺A, ∅

)
.

It is obvious that M≺A can be constructed with polynomial space in |A|, as MA and MV

can be constructed with polynomial space in |A|. Therefore, M≺A is of exponential size in
|A|. First, we define for every subset Γ of ΓV the language RΓ ⊆ Γ|Γ| as the language
containing all strings v1 · · · v|Γ| of variable operations such that each variable operation
in V occurs exactly once and i < j implies that for no variable x it holds that vi = ax
and vj = x`. With other words, RΓ contains all strings of variable operations over Γ
that can be completed to a valid ref-word by adding a prefix and a suffix. Both, the
prefix and/or the suffix can be empty. We remind that mv ∈ MV is a set of variable
operations, except for the case mv = 0.

Now we are ready to define the function f : MV →MA.

f(mv) :=
{
∅ if mv = 0{

(q1, q2) | there is a string r ∈ Rmv , such that q2 ∈ δ∗(q1, r)
}

otherwise.
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We define the multiplication operation of M≺A . There are four different cases depending
on whether the operands are from MV or from MV ×MA ×MV .

mv1 �≺A mv2 := mv1 �V mv2

mv1 �≺A
(
mv2 ,ma,mv3

)
:=

(
mv1 �V mv2 , ma, mv3

)(
mv1 ,ma,mv2

)
�≺A mv3 :=

(
mv1 , ma, mv2 �V mv3

)(
mv1 ,ma1 ,mv2

)
�≺A

(
mv3 ,ma2 ,mv4

)
:=

(
mv1 , ma1 �A f(mv2 �V mv3)�A ma2 , mv4

)
We remind that �V denotes the multiplication ofMV and �A denotes the multiplication

of MA. It remains to show that M≺A accepts RJAK. We use the homomorphism, induced
by

h≺A(a) :=
{
hV (a) if a ∈ ΓV(
∅, hA(a), ∅

)
if a ∈ Σ ,

that maps variable operations to the corresponding elements of mV and symbols to the
corresponding elements from mA. We define M≺acc

A as
M≺acc
A :=

{
m ∈MV | f(m) ∈Macc

A

}
∪{

(mv1 ,ma,mv2) ∈MV ×MA ×MV | f(mv1)�A ma �A f(mv2) ∈Macc
A

}
.

The top row corresponds to the case that the document is empty, i.e., the ref-word
consists only of variable operations, while the bottom row corresponds to non-empty
documents. To determine whether a ref-word should be accepted, we have to incorporate
the variable operations before the first and after the last symbol from Σ. Then, we can
use Macc

A to check whether we should accept.
It remains to show that {r | h≺A(r) ∈M≺acc

A } = RJAK. Let r′ ∈ RJAK, t := tup(r′), and
d := doc(r′). Thus, it must hold that t ∈ JAK(d) and there is a valid ref-word r ∈ R(A)
which is accepted by A, such that tup(r) = t and doc(r) = d. Per definition of RJAK it
follows that ref(d, t) = r′. We have to show that h≺A(r′) = h≺A(ref(d, t)) ∈ M≺acc

A . We
decompose r as

r = V0 · d1 · V1 · d2 · V2 · · ·Vk−1 · dk · Vk
and r′ as

r′ = V ′0 · d′1 · V ′1 · d′2 · V ′2 · · ·V ′`−1 · d′k · V ′`
where Vi, V ′i ∈ Γ∗V and dj , d

′
j ∈ Σ∗. As both ref-words encode the same tuple for the

same document, we have that k = `, di = d′i, and V ′j is a permutation of the symbols in
Vj for 0 ≤ i ≤ k and 1 ≤ j ≤ k. By definition of MA and M≺A , we get that

hA(r) = hA(V0) �A hA(d1) �A · · · �A hA(dk) �A hA(Vk) ∈ Macc
A

h≺A(r′) = h≺A(V ′0) �≺A h≺A(d1) �≺A · · · �≺A h≺A(dk) �≺A h≺A(V ′k)
(1)= hV (V ′0) �≺A

(
∅, hA(d1), ∅

)
�≺A · · · �

≺
A

(
∅, hA(dk), ∅

)
�≺A hV (V ′k)

(2)=
(
hV (V ′0), hA(d1) �A f(hV (V ′1)) �A hA(d2) �A · · ·

· · · �A f(hV (V ′k−1)) �A hA(dk), hV (V ′k)
)
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The equality (1) holds by the definition of �≺A, which for substrings consisting only
of variable operations just uses �V and for substrings containing only Σ-symbols uses
basically mA. We note that f(∅) = hA(ε), as R∅ = {ε}. The equality (2) can be derived
by iteratively applying the definition of �≺A as often as possible.
By definition of M≺acc

A , we get that h≺A(r′) ∈M≺acc
A if and only if ma defined as

ma := f(hV (V ′0)) �A hA(d1) �A f(hV (V ′1)) �A hA(d2) �A · · ·
· · · �A hA(dk) �A f(hV (V ′k))

is in Macc
A . As V ′i respects the variable ordering, hV (V ′i ) 6= 0 is the set containing all

variable operations from V ′i . By definition of f and the fact that V ′i contains exactly the
same variable operations as Vi, we can conclude that hA(Vi) ⊆ f(hV (V ′i )) for 0 ≤ i ≤ k.9
As the multiplication �A is monotone10 and hA(Vi) ⊆ f(hV (V ′i )), we get that hA(r) ⊆ ma.
Furthermore, as A accepts r, it holds that hA(r) ∈Macc

A and due to Macc
A being upwards

closed11 we can conclude that ma ∈Macc
A and therefore h≺A(r′) ∈M≺acc

A . This concludes
one direction of the proof.
Let now r be some ref-word, such that h≺A(r) ∈ M≺acc

A . We have to show that there
exists a valid ref-word r′ ∈ R(A) such that doc(r) = doc(r′) and tup(r) = tup(r′).

We decompose r as

r = V0 · d1 · V1 · d2 · V2 · · ·Vk−1 · dk · Vk .

Observe that k = 0, if h≺A(r) ∈MV , and k > 0 otherwise. By the definition of M≺acc
A we

know that

mr := f(hV (V0)) �A hA(d1) �A f(hV (V1)) �A · · · �A hA(dk) �A f(hV (Vk)) ∈ Macc
A .

Let qV0 , qd1 , qV1 , qd2 , . . . , qdk, qVk , qdk+1 be states such that qV0 is the initial state and qdk+1 is
some final state of A and for 0 ≤ i ≤ k and 1 ≤ j ≤ k it holds that

• (qVi , qdi+1) ∈ f(hV (Vi)); and
• (qdj , qVj ) ∈ hA(dj).

We note that, due to mr ∈Macc
A and the definition of mr, these states have to exist.

By the definition of f and the fact that (qVi , qdi+1) ∈ f(hV (Vi)), for every 0 ≤ i ≤ k,
there must be a strings V ′0 . . . V ′k ∈ Γ∗V of variable operations, such that V ′i ∈ RhV (Vi)

and qdi+1 ∈ δ∗(qVi , V ′i ), for every 0 ≤ i ≤ k. We define r′ as

r′ := V ′0 · d1 · V ′1 · · · · · V ′k−1 · dk · V ′k .

By the construction r′ is a valid ref-word, such that doc(r) = doc(r′) and tup(r) =
tup(r′). Furthermore, we have that δ∗(q0, r′) ∩QF 6= ∅ and therefore r′ is accepted by A,
concluding the proof.

9We remind that elements of MA are sets of pairs of states, which we can compare using ⊆.
10That is m1 ⊆ m′1 and m2 ⊆ m′2 imply m1 �A m2 ⊆ m′1 �A m′2 for all m1,m2,m′1,m

′
2 ∈MA.

11That is m ⊆ m′ and m ∈Macc
A implies that m′ ∈Macc

A .
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4.4 Complexity Lower Bounds
In this section, we will give lower bounds for Split-Correctness, Splittability and
other related decision problems. Recall that the problems Split-Correctness[S] and
Self-Splittability[S] are in PTIME if S ∈ Stractable and the highlander condition is
satisfied. Here, we show that neither S ∈ Stractable nor the highlander condition on its
own are sufficient to achieve tractability.
We start by showing that the problems Split-Correctness, Splittability, and

Self-Splittability are PSPACE-hard, even if the spanner is proper and all inputs are
given as deterministic functional vset-automata. As we will see in the proof it is already
PSPACE-hard to decide whether the cover condition is satisfied.

Lemma 4.4.1. The problems Self-Splittability[dfVSA], Splittability[dfVSA],
and Cover[dfVSA] are PSPACE-hard, even if all input spanner are proper.

Proof. We give a reduction from the PSPACE-complete problem of DFA concatenation
universality [73]. Given two DFAs A1, A2, DFA concatenation universality asks whether
L(Σ∗) = L(A1) · L(A2).

Let A1, A2 be regular languages, given as DFAs over the alphabet Σ. Furthermore, let
a /∈ Σ. Slightly abusing notation, we define the dfVSA by a hybrid regex-formula, where
the automata Ai are plugged in. In particular, AS = Σ∗ · y{a} and AP = A1 · x{A2 · a}.
Let S = JASK and P = JAP K. Thus, S(d) = ∅ = P (d) if d /∈ L(Σ∗ · a). Furthermore,
if d ∈ L(Σ∗ · a), S(d) = [|d|, |d| + 1〉 and for all [i, j〉 ∈ P (d) it holds that i ≤ |d| and
j = |d|+ 1.
We show that the following statements are equivalent:

1. S is self-splittable by P ,

2. S is splittable by P ,

3. L(A1) · L(A2) = L(Σ∗),

4. P covers S.

We observe that (1) implies (2). Thus, we only need to show that (2) implies (3), (3)
implies (4), and (4) implies (1).

(2) implies (3): Assume that L(A1) ·L(A2) 6= L(Σ∗). Thus there is a document d ∈ Σ∗
such that d /∈ L(A1) · L(A2). Therefore, P (d · a) = ∅ but S(d · a) = {[|d|+ 1, |d|+ 2〉} 6= ∅
and therefore S can not be splittable by P .

(3) implies (4): Assume that L(A1) ·L(A2) = L(Σ∗). Let d′ ∈ (Σ∪{a})∗ and t ∈ S(d′).
Thus, d′ = d · a, for some document d ∈ Σ∗ and t(y) = [|d|+ 1, |d|+ 2〉. Per assumption,
there is a decomposition d = d1 · d2, such that di ∈ Ai, for i ∈ {1, 2}. Therefore,
s := [|d1|+ 1, |d|+ 2〉 ∈ P (d · a) = P (d′) covers t.

(4) implies (1): We have to show that S = S ◦ P . Let t ∈ S(d′) be a tuple. Therefore,
there is a document d ∈ Σ∗ such that d′ = d · a. As P covers S, there is a split s ∈ P (d′)
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which covers t. Observe that per definition of S, it holds that t� s ∈ S(d′s) and therefore
t ∈ (S ◦ P )(d′), implying that S ⊆ S ◦ P . For the other direction, let t ∈ (S ◦ P )(d′).
Therefore, there is a document d ∈ Σ∗ with d′ = d · a. Thus, there is a span s ∈ P (d′)
which covers t. It follows per definition of S that t� s ∈ S(d′s). Which implies that
t ∈ S(d′) and therefore S ◦ P ⊆ S.

It follows directly that Split-Correctness[dfVSA] is PSPACE-hard.

Corollary 4.4.2. Split-Correctness[dfVSA] is PSPACE-hard, even if all input span-
ner are proper.

Smit [153, Proposition 3.3.7] shows that the problems Split-Correctness[dfVSA]
and Self-Splittability[dfVSA] remain PSPACE-hard if S is a Boolean spanner (and
therefore not proper) and P is disjoint. It is straightforward to extend the proof of Smit
along the lines of Lemma 4.4.1 to show that Splittability[dfVSA] and Cover[dfVSA]
are also PSPACE-hard for disjoint splitter. We refer to Appendix A for the proof.

Lemma 4.4.3. The problems Self-Splittability[dfVSA], Splittability[dfVSA],
and Cover[dfVSA] are PSPACE-hard, even if P is disjoint.

Corollary 4.4.4. Split-Correctness[dfVSA] is PSPACE-hard, even if P is disjoint.

Recall that Self-Splittability[usVSA] is in PTIME if the spanner is proper and
the splitter is disjoint (cf. Corollary 4.2.2). We will show now that tractability is also
lost if the spanner and the splitter are not required to be unambiguous. That is, we
show that Self-Splittability and Splittability remain PSPACE-hard even if the
highlander condition is satisfied12 and the spanner and splitter are given as functional
regex-formulas or functional vset-automata.

Lemma 4.4.5. Self-Splittability[S] and Splittability[S], for S ∈ {fRGX, fVSA},
are PSPACE-hard, even if the splitter P is disjoint and the spanner S is proper.

Proof. The reductions are from the containment problem for regular expressions and
NFAs which are both known to be PSPACE-complete.

Let L1 and L2 be regular languages and let S = y{L1} and P = x{L2}. We show the
following statements are equivalent:

1. S is self-splittable by P ,

2. S is splittable by P ,

3. L1 ⊆ L2.
12Recall that the highlander condition is satisfied if S is proper and P is disjoint (cf. Lemma 3.1.6).
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The lemma statement follows directly from the fact that containment of regular
languages is PSPACE-complete for NFAs and regular expressions. It remains to show
the equivalence of (1), (2), and (3). We observe that (1) implies (2) per definition.

(2) implies (3): Assume that S is splittable by P . Let d ∈ L1 be a document. By
definition of S it follows that [1, |d|+ 1〉 ∈ S(d). Since S is splittable by P and [1, |d|+ 1〉
is only covered by itself, it follows that [1, |d|+1〉 ∈ P (d) and [1, |d|+1〉 ∈ SP (d[1,|d|+1〉) =
SP (d) for some spanner SP . Therefore, by definition of P , we have that d ∈ L2.

(3) implies (1): Let L1 ⊆ L2. Observe, that S only selects the span [1, |d| + 1〉.
Therefore, S is self-splittable by P :

[1, |d|+ 1〉 ∈ S(d) ⇔ d ∈ L1
⇔ d ∈ L1 and d ∈ L2
⇔ [1, |d|+ 1〉 ∈ S(d) and [1, |d|+ 1〉 ∈ P (d)
⇔ [1, |d|+ 1〉 ∈ (S ◦ P )(d)

Again, it follows directly that Split-Correctness[dfVSA] is PSPACE-hard.

Corollary 4.4.6. Split-Correctness[fRGX] and Split-Correctness[fVSA] are
hard for PSPACE, even if the splitter is disjoint and the spanner is proper.

4.5 Connection of Split-Existence and Language
Primality

Recall the definition of the Split-Existence[S,P].

Split-Existence[S,P]
Input: Spanner S ∈ S.
Question: Is there a splitter P ∈ P such that S is splittable by P?

We now show that Split-Existence is strongly connected to a classical problem
from Formal Language Theory, which is called Language Primality. To this end, we
define middle extractors, which capture N -gram extractors or splitters extracting pairs
of consecutive sentences. A splitter P is a middle extractor, if P = L1 · x{L2} · L3,
where Li 6= {ε}, for i ∈ {1, 2, 3}, are regular languages. We denote the class of middle
extractors by Pmiddle. Observe that the splitters used in the proofs of Lemma 4.4.1 and
Lemma 4.4.5 are middle extractors and therefore, the problems are PSPACE-hard for
middle extractors.
The Language-Primality problem asks, given a language L, whether L is prime, i.e.,

whether it cannot be decomposed into two languages L1 and L2 such that L = L1 · L2
and L1 6= {ε} 6= L2. The complexity of Language-Primality has been considered an open
problem since the late 90’s (cf. Salomaa [136, Problem 2.1]). Martens, Niewerth and
Schwentick [103] showed that Language-Primality is PSPACE-complete, if the language is
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given as a deterministic finite state automaton. However, to the best of our knowledge,
the complexity of Language-Primality for other representations of the input remains open.
Here, we define the complement of Language-Primality. Furthermore, we add an additional
parameter k specifying into how many languages we want to decompose the language L.

k-Decomposable
Input: A regular language L.
Question: Is there a decomposition of L into L1, . . . ,Lk, such that

L = L1 · · · Lk, and Li 6= {ε} for all 1 ≤ i ≤ k?

Clearly 2-Decomposable is the complement of Language-Primality. There is a connection
between Split-Existence and 3-Decomposable that is most easily seen in the case of
Boolean spanners:
Observation 4.5.1. Let S ∈ Sgeneral be a class of regular document spanners and L ∈ S
be a Boolean spanner (i.e., a regular language). Then L is 3-Decomposable if and only if
L ∈ Split-Existence[S, Pmiddle].

Of course, we are not interested in studying Boolean spanners, but the observation above
gives little hope to settle the complexity of Split-Existence[S, Pmiddle] without settling
the complexity of 3-Decomposable. We note that the complexity of k-Decomposable is
still open even for deterministic automata in the case k > 2.

4.6 Schema Constraints
In this section we study the complexity of deciding Split-Correctness, Splittability,
and Self-Splittability in the presence of schema constraints, as defined in Section 3.3.2.
Let S, P be spanners, P be a splitter and L be a schema constraint. We begin by

showing that the construction for S ◦ P in Proposition 4.1.1 can be extended to also
embark schema constraints. By Lemma 3.3.4 it holds that S ≡L SP ◦ P if and only if
S ./ L =

(
SP ◦ (P ./ L)

)
. Therefore, it suffices to show the following lemma.

Lemma 4.6.1. Given vset-automata AS and AL representing a spanner S and a regular
schema constraint L, respectively, a vset-automaton A can be constructed in polynomial
time, such that

1. JAK = JASK ./ L;

2. A ∈ sVSA if AS ∈ sVSA; and

3. A ∈ uVSA if AS , AL ∈ uVSA.
Proof. Let AS = (Σ, V,QS , q0,S , QF,S , δS) ∈ S and AL = (Σ, ∅, QL, q0,L, QF,L, δL) ∈ S
be as given. We define the automaton A := (Σ, V,Q, q0, QF , δ), where Q := QS × QL,
q0 := (qS , qL), QF := QF,S ×QF,L, and

δ :=
{(

(qS , qL), σ, (q′S , q′L)
)
| σ ∈ Σ ∪ {ε}, (qS , σ, q′S) ∈ δS , (qL, σ, q′L) ∈ δL

}
∪{(

(qS , qL), v, (q′S , qL)
)
| v ∈ ΓV , (qS , v, q′S) ∈ δS , qL ∈ QL

}
.
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The only difference to the usual product construction is, that transitions related to variable
operations are only processed by AS and ignored by AL. It is easy to see that A ∈ VSA
can be constructed in polynomial time. Furthermore, R(A) = R(AS) ∩ {r | doc(r) ∈ L}.
Therefore it must hold that

JAK = JR(A)K = R(AS) ∩ {r | doc(r) ∈ L} = JASK ./ L ,

concluding the proof of statements (1) and (2).
It only remains to show that A ∈ uVSA if AS , AL ∈ uVSA. To this end, assume that A

is not unambiguous. As observed before, R(A) = R(AS)∩ {r | doc(r) ∈ L} and therefore
R(A) ⊆ R(AS). Thus, due to AS ∈ uVSA, A must satisfy the variable order condition.
Assume there are two distinct runs of A that violate unambiguity condition (C3). Due
to AS ∈ uVSA, both runs must coincide in the AS component of A. However, by the
same argument, both runs must also coincide in the AL component of A, leading to the
desired contradiction. This concludes the proof.

Due to Lemmas 3.3.4 and 4.6.1, the complexity results for Split-Correctness,
Self-Splittability, and Splittability (cf. Theorems 4.0.1, 4.0.2) also hold in the
presence of schema constraints. Note that this also includes the PTIME fragment if the
schema constraint L ∈ S is represented by a class of document spanners S ∈ Stractable.

As we show next, given a sequential vset-automaton AS ∈ sVSA, a vset-automaton A
that represents the minimal schema constraint can be constructed in polynomial time.

Lemma 4.6.2. Let AS ∈ sVSA be a sequential vset-automaton. Then an automaton
A ∈ sVSA with JAK = π∅JASK can be constructed in polynomial time.

Proof. Let AS = (Σ, V,QS , q0,S , QF,S , δS). We define A := (Σ, ∅, QS , q0,S , QF,S , δ), where

δ :=
{

(p, σ, q) | σ ∈ Σ ∪ {ε}, (p, σ, q) ∈ δS
}
∪{

(p, ε, q) | (p, v, q) ∈ δS , v ∈ ΓV
}
.

Observe that A ∈ sVSA can be constructed in polynomial time. Furthermore, due to the
assumption that AS is sequential, it follows that there is a tuple t ∈ JASK(d) if and only
if () ∈ JAK. Therefore, it must hold that JAK = π∅JASK.

Due to Observation 3.3.5 and Observation 3.3.6, we can decide whether there exists
a schema constraint L which covers S such that S ≡L SP ◦ P by checking whether
S ≡R(π∅(S)) SP ◦ P . Furthermore, it follows directly from Lemma 4.6.2 that R(π∅(S))
can indeed be constructed in polynomial time. However, given an unambiguous (resp.,
deterministic) and sequential vset-automaton, one can not guarantee that the automaton
A, as constructed in Lemma 4.6.2, is unambiguous. Thus, all but the PTIME complexity
result for Split-Correctness, Self-Splittability, and Splittability (cf. Theo-
rems 4.0.1, 4.0.2) also hold if one asks whether there exists a schema constraints L which
covers S, such that S ≡L SP ◦ P .
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Chapter 5

Weight Annotators
In this chapter we introduce and study weight annotators. In contrast to classical
document spanners, weight annotators quantify the extracted tuples. That is, each
extracted tuple is associated with a weight from a semiring.

Organization
This chapter is organized as follows. We give some required algebraic background,
preliminary definitions and notation in Section 5.1. In Sections 5.2 and 5.3 we define
K-Annotators and weighted vset-automata — a formalism to represent K-Annotators.
We discuss semiring encodings in Section 5.4. We conclude this chapter by studying their
fundamental properties in Section 5.5 and various evaluation and enumeration problems
of weighted vset-automata in Sections 5.6, and 5.7.

5.1 Annotated Relations
Weight annotators read documents and produce annotated relations [62], which are
relations in which each tuple is annotated with an element from a commutative semiring.
In this section, we revisit the basic definitions and properties of annotated relations.

5.1.1 Algebraic Foundations
We begin by giving some required background on algebraic structures like monoids and
semirings [60].
A commutative monoid (M, ∗, id) is an algebraic structure consisting of a set M, a

binary operation ∗ and an element id ∈M, such that:

1. ∗ is associative, i.e., (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈M,

2. id is an identity, i.e., id ∗ a = a ∗ id = a for all a ∈M, and

3. ∗ is commutative, i.e. a ∗ b = b ∗ a for all a, b ∈M.

We say that a monoid (M, ∗, id) is bipotent, if a ∗ b ∈ {a, b}, for every a, b ∈M.
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A commutative semiring (K,⊕,⊗, 0, 1) is an algebraic structure consisting of a set K,
containing two elements: the zero element 0 and the one element 1. Furthermore, it is
equipped with two binary operations, namely addition ⊕ and multiplication ⊗ such that:

1. (K,⊕, 0) is a commutative monoid,

2. (K,⊗, 1) is a commutative monoid,

3. multiplication distributes over addition, that is, (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c), for
all a, b, c ∈ K, and

4. 0 is absorbing for ⊗, that is, 0⊗ a = 0 for all a ∈ K.

Furthermore, a semiring is positive if, for all a, b ∈ K, the following conditions hold:

• 0 6= 1,
• if a⊕ b = 0, then a = 0 = b, and
• if a⊗ b = 0, then a = 0 or b = 0.

We call a semiring bipotent, if its additative monoid is bipotent.
An element a ∈ K is a zero divisor if a 6= 0 and there is an element b ∈ K with b 6= 0

and a ⊗ b = 0. Furthermore, an element a ∈ K has an additive inverse, if there is an
element b ∈ K such that a⊕ b = 0. In the following, we will also identify a semiring by its
domain K if the rest is clear from the context. When we do this for numeric semirings
such as Q and N, we always assume the usual addition and multiplication.

Given a semiring (K,⊕,⊗, 0, 1) and a set K′ ⊆ K with 0, 1 ∈ K′ such that K′ is closed
under addition and multiplication (that is, for all a, b ∈ K′ it holds that a⊕ b ∈ K′ and
a⊗ b ∈ K′) then (K′,⊕,⊗, 0, 1) is a subsemiring of K.

Example 5.1.1. The following are examples of commutative semirings. It is easy to
verify that all but the numeric semirings and the Łukasiewicz semiring are positive.

1. The numeric semirings are (Q,+, ·, 0, 1), and (Z,+, ·, 0, 1).

2. The counting semiring (N,+, ·, 0, 1).

3. The Boolean semiring (B,∨,∧, false, true) where B = {false, true}.

4. The probability semiring (Q+,+, ·, 0, 1).1 Rabin [128] and Segala [146] define
probabilistic automata over this semiring, where all transition weights must be
between 0 and 1 and the sum of all transition weights starting some state, labeled
by the same label must be 1.

5. The Viterbi semiring ([0, 1],max, ·, 0, 1) is used in probabilistic parsing [38].
1One may expect the domain to be [0, 1], but this is difficult to obtain while maintaining the semiring
properties. For instance, defining a⊕ b as min{a+ b, 1} would violate distributivity.
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6. The access control semiring A = ({P < C < S < T < 0},min,max, 0, P ), where P
is “public”, C is “confidential”, S is “secret”, T is “top secret”, and 0 is “so secret
that nobody can access it” [50].

7. The tropical semiring (Q ∪ {∞},min,+,∞, 0) where min stands for the binary
minimum function. This semiring is used in optimization problems of networks [38].2

8. The Łukasiewicz semiring, whose domain is [0, 1], with addition given by x⊕ y =
max(x, y), with multiplication x⊗ y = max(0, x+ y − 1), zero element 0, and one
element 1. This semiring is used in multivalued logics [38].

Complexity-wise, we assume that semiring elements are encoded in binary. That is,
the encoding of a semiring K, is a function enc : K → {0, 1}∗, which assigns a binary
encoding to every semiring element. Furthermore, we denote the length of the encoding of
an element a ∈ K by ‖a‖.3 We discuss semiring encodings into more detail in Section 5.4.

5.1.2 Annotated Relations
For the rest of this thesis, we assume that (K,⊕,⊗, 0, 1) is a commutative semiring. Let
V ⊆ Vars be a finite set of variables. Recall that a V -tuple is a function t : V → D
that assigns values to variables in V and that we denote the set of all the V -tuples
by V -Tup. A K-relation R over V is a function R : V -Tup → K such that its support,
defined by supp(R) := {t | R(t) 6= 0}, is finite. We will also write t ∈ R to abbreviate
t ∈ supp(R). Furthermore, we say that two K-relations R1 and R2 are disjoint if
supp(R1) ∩ supp(R2) = ∅. The size of a K-relation R is the size of its support, that is,
|R| := |supp(R)|. The arity of a K-relation over V is |V |.

Example 5.1.2. The bottom left table in Figure 5.1 shows an example K-relation, where
K is the Viterbi semiring. The variables are xpers and xloc, so the V -tuples are described
in the first two columns. The third column contains the element in K associated to each
tuple.

Green et al. [62] defined a set of operators on K-relations that naturally correspond to
relational algebra operators and map K-relations to K-relations. They define the algebraic
operators4 union, projection, natural join, and selection for all finite sets V1, V2 ⊆ Vars
and for all K-relations R1 over V1 and R2 over V2, as follows.

• Union: If V1 = V2 then the union R := R1 ∪ R2 is a function R : V1-Tup → K
defined by R(t) := R1(t)⊕R2(t). (Otherwise, the union is not defined.)

2In literature there are actually multiple different definitions for the tropical semiring, e.g., (Q ∪
{−∞},max,+,−∞, 0) and (N ∪ {∞},min,+,∞, 0). If not mentioned otherwise, we use the tropical
semiring as defined here.

3Note that we do not denote the encoding length of semiring elements by |a| to obviate confusions with
the absolute value function for numbers.

4As in much of the work on semirings in provenance, e.g., Green et al. [62], we do not consider the
difference operator (which would require additive inverses).
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C a r t e r t f r o m t P l a i n s , t G e o r g i a , t W a s h i n g t o n t f r o m t W e s t m o r e l a n d , t V i r g i n i a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

xpers xloc annotation

Carter Plains,tGeorgia 0.9
Washington Westmoreland,tVirginia 0.9
Carter Georgia,tWashington 0.81
Carter Westmoreland,tVirginia 0.59049

xpers xloc annotation

[1, 7〉 [13, 28〉 0.9
[30, 40〉 [46, 68〉 0.9
[1, 7〉 [21, 40〉 0.81
[1, 7〉 [46, 68〉 0.59049

Figure 5.1: A document (top), a K-relation (bottom left), and the corresponding (K, d)-
relation (bottom right).

• Projection: For X ⊆ V1, the projection R := πXR1 is a function R : X-Tup→ K
defined by

R(t) :=
⊕

t=πX(t′) and R1(t′) 6=0

R1(t′) .

• Natural Join: The natural join R := R1 ./ R2 is a function R : (V1 ∪ V2)-Tup→ K
defined by

R(t) := R1(πV1(t))⊗R2(πV2(t)) .

• Selection: If P : V1-Tup→ {0, 1} is a selection predicate that maps each V1-Tup t
to either 0 or 1. Then R := σP(R1) is a function R : V1-Tup→ K defined by

R(t) := R1(t)⊗ P(t) .

Proposition 5.1.3 (Green et al. [62]). The above operators preserve the finiteness of
the supports and therefore they map K-relations into K-relations.

Hence, we obtain an algebra on K-relations.

5.2 K-Annotators
Recall that a d-tuple t is a V -tuple which only assigns values from Spans(d). A (K, d)-
relation over V ⊆ Vars is defined analogously to a K-relation over V but only uses
d-tuples t with V = Vars(t).

Definition 5.2.1. A K-annotator (or annotator for short), is a function S that is
associated with a finite set V ⊆ Vars of variables and maps documents d into (K, d)-
relations over V . We denote V by Vars(S). We sometimes also refer to a K-annotator as
an annotator over K when we want to emphasize the semiring.
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Notice that B-annotators, i.e., annotators over the Boolean semiring (B,∨,∧, false, true)
are simply the functional document spanners.5 Furthermore, we say that two K-annotators
S1 and S2 are disjoint if, for every document d ∈ Σ∗, the K-relations S1(d) and S2(d)
are disjoint.

Example 5.2.2. We provide an example document d in Figure 5.1 (top). The table at
the bottom right depicts a possible (K, d)-relation obtained by a spanner that extracts
(person, hometown) pairs from d. Notice that for each span [i, j〉 occurring in this table,
the string d[i,j〉 can be found in the table to the left.
In this naïve example, which is just to illustrate the definitions, we used the Viterbi

semiring and annotated each tuple with (0.9)k, where k is the number of words between
the spans associated to xpers and xloc. The annotations can therefore be interpreted as
confidence scores.

We now lift the relational algebra operators on K-relations to the level of K-annotators.
For all documents d and for all annotators S1 and S2 associated with V1 and V2, respec-
tively, we define the following:

• Union: If V1 = V2 then the union S := S1∪S2 is defined by S(d) := S1(d)∪S2(d).6

• Projection: For X ⊆ V1, the projection S := πXS1 is defined by S(d) := πXS1(d).
• Natural Join: The natural join S := S1 ./ S2 is defined by S(d) := S1(d) ./ S2(d).
• String selection: Let R be a k-ary string relation.7 The string-selection operator
σR is parameterized by k variables x1, . . . , xk in V1 and can be written as σRx1,...,xk

.
Then the annotator S := σRx1,...,xk

S1 is defined as S(d) := σP(S1(d)) where P is a
selection predicate with P(t) = 1 if (dt(x1), . . . , dt(xk)) ∈ R; and P(t) = 0 otherwise.

Due to Proposition 5.1.3, it follows that the above operators form an algebra on K-
annotators.

5.3 Weighted Variable Set-Automata
In this section, we define the concept of a weighted vset-automaton as a formalism to
represent K-annotators. This formalism is the natural generalization of vset-automata
and weighted automata [39]. Later in this section, we present another formalism, which
is based on parametric factors and can be translated into weighted vset-automata
(Section 5.3.1).

Let V ⊆ Vars be a finite set of variables. A weighted variable-set automaton over
semiring K (alternatively, a weighted vset-automaton or a K-weighted vset-automaton)

5Recall that a document spanner S is functional, if every tuple uses the same variables, that is,
Vars(t) = Vars(S) for every document d ∈ Σ∗ and every tuple t ∈ S(d).

6Here, ∪ stands for the union of two K-relations as was defined previously. The same is valid also for
the other operators.

7Recall that a (k-ary) string relation is the Cartesian product of k languages, that is, L1×L2×· · ·×Lk,
with Li ⊆ Σ∗ for all 1 ≤ i ≤ k.
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is a tuple A := (Σ, V,Q, I, F, δ) where Σ is a finite alphabet; V ⊆ Vars is a finite set of
variables; Q is a finite set of states; I : Q→ K is the initial weight function; F : Q→ K is
the final weight function; and δ : Q× (Σ∪{ε}∪ΓV )×Q→ K is a (K-weighted) transition
function.

We define the transitions of A as the set of triples (p, o, q) with δ(p, o, q) 6= 0. Likewise,
the initial (resp., accepting) states are those states q with I(q) 6= 0 (resp., F (q) 6= 0). A
run ρ of A on ref-word r := σ1 . . . σm is a sequence

q0
σ1→ · · · σm−1→ qm−1

σm→ qm ,

where

• I(q0) 6= 0 and F (qm) 6= 0;
• δ(qi, σi+1, qi+1) 6= 0 for all 0 ≤ i < m.

Recall that, for every semiring element a ∈ K, we denote the length of the encoding of a
by ‖a‖. The size of a weighted vset-automaton A is defined by

|A| := |Q|+
∑
q∈Q
‖I(q)‖+

∑
q∈Q
‖F (q)‖+

∑
p,q∈Q, a∈(Σ∪{ε}∪ΓV )

‖δ(p, a, q)‖ .

Slightly overloading notation, we say that a run ρ is on a document d if ρ is a run on r
and doc(r) = d. Furthermore, again overloading notation, given a run ρ of A on r, we
denote r by ref(ρ). We define the ref-word language R(A) as the set of all ref-words r
such that A has a run ρ on r.
The weight of a run is obtained by ⊗-multiplying the weights of its constituent

transitions. Formally, the weight wρ of ρ is an element in K given by the expression

I(q0)⊗ δ(q0, σ1, q1)⊗ · · · ⊗ δ(qm, σm, qm+1)⊗ F (qm+1) .

We call ρ nonzero if wref(ρ) 6= 0. Furthermore, ρ is called valid if ref(ρ) is valid and
Vars(tup(ref(ρ))) = V .8 If ρ is valid we denote the tuple tup(ref(ρ)) by tup(ρ).

We say that a weighted vset-automaton A is functional if R(A) is functional and
Vars(tup(r)) = V , for every r ∈ R(A). Furthermore, a vset-automaton A satisfies the
variable order condition if R(A) satisfies the variable order condition. We denote the set
of all valid and nonzero runs of A on d by

P (A, d) := {ρ | ref(ρ) ∈ R(A) and d = doc(ref(ρ))} .

Notice that there may be infinitely many valid and nonzero runs of a weighted vset-
automaton on a given document, due to ε-cycles , which are states q1, . . . , qk such that
(qi, ε, qi+1) is a transition for every i ∈ {1, . . . , k − 1} and q1 = qk. Similar to much of
the standard literature on weighted automata (see, e.g., [43]) we assume that weighted

8Note that the second condition ensures that all runs are over the same set of variables. This is required
as K-annotators map documents to annotated relations.
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vset-automata do not have ε-cycles, unless mentioned otherwise. The reason for this
restriction is that automata with such cycles need K to be closed under infinite sums for
their semantics to be well-defined.9
As such, if A does not have ε-cycles, then the result of applying A on a document d,

denoted JAKK(d), is the (K, d)-relation R for which

R(t) :=
⊕

ρ∈P (A,d) and t=tup(ρ)

wρ .

Note that P (A, d) only contains runs ρ that are valid and nonzero. If t is a V ′-tuple
with V ′ 6= V then R(t) = 0, because we only consider valid runs. In addition, JAKK is
well defined since every V -tuple in the support of JAKK(d) is a V -tuple over Spans(d). To
simplify notation, we sometimes denote JAKK(d)(t) — the weight assigned to the d-tuple
t by A — by JAKK(d, t). We say that two K-weighted vset-automata A1 and A2 are
disjoint if R(A1) ∩R(A2) = ∅. This also implies that the corresponding K-annotators
JA1KK and JA2KK are disjoint. We observe that if the semiring is not positive, there
can be ref-words r ∈ R(A) but R(tup(r)) = 0. This happens, if there are multiple runs
encoding the same tuple, which have a total weight of 0.
We say that a K-annotator S is regular if there exists a weighted vset-automaton A

such that S = JAKK. Note that this is an equality between functions. Furthermore,
we say that two weighted vset-automata A and A′ are equivalent if they define the
same K-annotator, that is, JAKK = JA′KK, which is the case if JAKK(d) = JA′KK(d) for
every d ∈ Σ∗. We denote the set of all regular K-annotators as RegK. Similar to our
terminology on B-annotators, we use the term B-weighted vset-automata to refer to the
“classical” vset-automata. Indeed, we observe that the class of functional document
spanners is exactly the class of weighted B-annotators. Furthermore, we observe that not
every regular spanner, represented by a vset-automaton A, can also be represented by a
B-weighted vset-automaton, as the spanner JAK might not be functional.

We say that a K-weighted vset-automaton A is unambiguous if A satisfies unambiguity
conditions (C2) and (C3). That is, A satisfies the following two conditions:

(C2) A satisfies the variable order condition;

(C3) there is exactly one run of A on every ref-word r ∈ R(A).

We note that, over some semirings, the class of unambiguous weighted vset-automata
is strictly contained in the class of weighted vset-automata, as shown in the following
proposition. However, over the Boolean semiring, every B-weighted automaton can be
determinized (Proposition 2.2.6). Therefore there is also an unambiguous B-weighted
automaton Au which is equivalent to A, as every deterministic B-weighted automaton is
also unambiguous. We denote the set of all regular K-annotators which can be represented
by an unambiguous K-weighted vset-automaton by URegK.

9The semirings need to fulfill additional properties as well such as distributivity, commutativity and
associativity must also hold for infinite sums. Such semirings are called complete [110].
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q0start

q1

q2 q3 q4 q5

q6

q7 q8 q9

q10

Σ′; 1 t; 1

Σ′; 1

xpers`; 1
Pers; 1

axpers; 1 t; 1

Σ′; 1 t; 0.9

Σ′; 1

xloc`; 1
Loc; 1

axloc; 1

t; 1

Σ; 1

Figure 5.2: An example weighted vset-automaton over the Viterbi semiring with initial
state q0 (with weight 1), two final states q9, q10 (both with weight 1), and
alphabet Σ′ = Σ \ {t}. Pers and Loc are sub-automata matching person
and location names respectively. All edges, including the edges of the sub-
automata, have the weight 1 besides the transition from q6 to q5 with weight
0.9.

Proposition 5.3.1. URegK ( RegK, where K = (Z∪{∞},min,+,∞, 0) is the tropical
semiring.

Proof. We have to show that there is a K-weighted vset-automaton A such that there is
no K-weighted unambiguous vset-automaton A′ which is equivalent to A.

Weighted automata can be seen as weighted vset-automata over the empty set of vari-
ables. Thus, the statement follows directly from Kirsten [82, Proposition 3.2] who showed
that there is a K-weighted automaton A such that there is no equivalent unambiguous
K-weighted automaton A′.10

Example 5.3.2. Figure 5.2 shows an example weighted vset-automaton over the Viterbi
semiring, which is intended to extract (person, hometown)-tuples from a document.
Here, “Pers” and “Loc” should be interpreted as sub-automata that test whether a string
could be a person name or a location. (Such automata can be compiled from publicly
available regular expressions11 and from deterministic rules and dictionaries as illustrated
in SystemT [22].)

The relation extracted by this automaton from the document in Figure 5.1 is exactly
the annotated span relation of the same figure. The weight of a tuple t depends on the
number of spaces occurring between the span captured by xpers and the span captured
by xloc. More specifically the automaton assigns the weight (0.9)k to each tuple, where k
is the number of words between the two variables.

As we see next, checking equivalence of weighted vset-automata is undecidable in
general.

Proposition 5.3.3. Given two weighted vset-automata A1 and A2 over the tropical
semiring, it is undecidable to test whether JAKK = JA′KK.
10Actually, Kirsten [82, Proposition 3.2] showed an even stronger result. That is, he showed that, the

result still holds if A is a polynomially ambiguous weighed automaton, i.e., a weighted automaton for
which the number of accepting runs of a word of length n is bound by a fixed polynomial p(n).

11For example, http://regexlib.com/.
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Proof. Follows directly from undecidability of the containment problem of weighted
automata over the tropical semiring (cf. Krob [86, Corollary 4.3]12).

5.3.1 Annotators via Parametric Factors
We now describe another way of introducing weights (or softness) in document spanners.
In fact, this section can be seen as an additional motivation for K-annotators. Indeed,
we will show that, if softness is introduced in document spanners (i.e., B-annotators) in
the standard manner that we recall here, the resulting annotators can be captured in our
framework.
We introduce softness via the concept of parametric factors, which is a very common

concept that is used in a wide range of contexts. Examples are the soft keys of Jha et
al. [72], the PrDB model of Sen et al. [149], the probabilistic unclean databases of De Sa et
al. [134] which can be viewed as a special case of the Markov Logic Network (MLN) [132].
Intuitively, a parametric factor is a succinct expression of numerical factors of a probability
via weighted rules: whenever the rule fires, a corresponding factor (determined by the
weight) is added to the product that constitutes the probability. What we want to show
in this section is that, if one has rules that involve B-annotators, and one adds uncertainty
or softness to these rules in this standard way — using parametric factors — then the
obtained formalism naturally leads to K-annotators.

Next, we give the precise definition of a soft spanner and show that, when the factors
are regular, a soft spanner can be translated into a weighted vset-automaton.

Formally, a soft spanner is a triple Q = (P,S, w), where:
• P is a functional document spanner, i.e., a B-annotator,
• S is a finite set of functional document spanners referred to as the factor spanners,

and
• w : S→ Z assigns a (positive or negative) numerical value to each factor spanner.

Given a document d, the soft spanner Q assigns to each t ∈ P (d) a probability as follows:

Q̂(d, t) := exp

∑
S∈S

∑
t′∈{t}onS(d)

w(S)

 =
∏
S∈S

ew(S)·|{t}onS(d)| ,

Q(d, t) :=Q̂(d, t)/Z(d) ,

where Z(d) is a normalization factor (or the partition function) defined in the usual way:

Z(d) =
∑

t∈P (d)

Q̂(d, t) .

Note that {t} on S(d) is the join of the relation S(d) with the relation that consists of the
single tuple t. Hence, |{t} on S(d)| is the number of tuples t′ ∈ S(d) that are compatible
(joinable) with t, that is, t(x) = t′(x) whenever x is in the domain of both t and t′.
12The proof by Krob is quite algebraic. See Almagor et al. [3, Theorem 4] for an automata theoretic

proof.
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Figure 5.3: Example soft spanner Q = (P, {S}, w); where P is represented by the au-
tomaton on top (as in Figure 5.2, Pers and Loc are sub-automata matching
person and location names respectively), S is defined by the automaton below,
renaming x (resp. z) into xpers (resp. xloc), and w(S) = −1.

Example 5.3.4. A relation along the lines of the relation as discussed in Example 5.3.2
can be extracted using a soft spanner Q = (P, {S}, w). To this end, P is a Boolean
spanner extracting (person, hometown)-tuples; S is the spanner, extracting (xpers, y, xloc)-
triples of words, where y matches a word between xpers and xloc; and the weight function
w is the function assigning w(S) = −1. Note that S simply extracts words and does not
test whether the words matched by xpers or xloc correspond to a person or location.
We therefore see that K-annotators can also be defined by applying the standard

technique of parametric factors to document spanners. In fact, as we will see next, soft
spanners can be compiled into weighted vset-automata, which serves as an additional
motivation for weighted vset-automata. To prove this result, we use closure properties
of weighted vset-automata that we will obtain further in this chapter (so the proof
can be seen as a motivation for the closure and computational properties of weighted
vset-automata as well).
Theorem 5.3.5. Let Q = (P,S, w) be a soft spanner such that P and every S ∈ S is
regular. There exists an Z-weighted vset-automaton A such that JAKZ(d, t) = log(Q̂(d, t))
for all documents d and tuples t. Moreover, A can be constructed in polynomial time in the
size of Q if the spanners of Q are represented as unambiguous functional vset-automata.

Proof. In this proof we will use two results which are shown later in this chapter. That
is,

1. Given two unambiguous functional vset-automata A1, A2 over the Boolean semiring,
one can construct an unambiguous functional vset-automaton A with JAKB =
JA1KB ./ JA2KB in polynomial time (cf. Corollary 5.5.10).

2. Regular annotators are closed under finite union, projection, and finite natural join.
Furthermore, the constructions preserve functionality and, if the annotators are
given as functional weighted vset-automata, the construction for a single union,
projection, and join can be done in polynomial time. (cf. Theorem 5.5.4).
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Recall that every regular document spanner can be represented by an unambiguous
B-weighted vset-automaton (cf. Observation 2.2.4 and Proposition 2.2.6). Let AP be
an unambiguous B-weighted vset-automaton with P = JAP KB and, for every S ∈ S,
let AS be an unambiguous B-weighted vset-automaton with S = JASKB. By result (1),
there is an unambiguous B-weighted vset-automaton JAP./SKB = JAP KB ./ JASKB. Thus,
for every document d ∈ Σ∗, there is exactly one run for every tuple t ∈ JAP./SKB(d).
From AP./S we compute a weighted vset-automaton AS′ by interpreting it as an Z-
weighted vset-automaton, such that AS′ has a transition δS′(p, o, q) = 1 if and only if
δ(p, o, q) = true is a transition in AP./S . Furthermore, we assign to each accepting state
q of AP./S the weight F (q) = w(S). Therefore, AS′ is unambiguous and has exactly one
run with weight w(S) for every tuple t ∈ JAS′KZ(d). Then the automaton we need for
computing log(Q̂(d, t)) is

A =
⋃
S∈S

πVP JAS′KZ .

Note that, due to result (2), A actually exists. Recall that every AS′ is unambiguous and
has exactly one run with weight w(S) for every tuple t ∈ JAS′KZ(d). Per definition of union
and projection, it follows that JAKZ(d, t) =

∑
S∈S

∑
t′∈{t}./JAS′KZ(d) w(S) = log(Q̂(d, t)).

Observe that, due to (1) and (2), A can be constructed in polynomial time in the size
of Q if the spanners of Q are represented as unambiguous functional vset-automata,
concluding the proof.

5.4 Semiring-Encodings
In this section we discuss the encodings of semirings. In order to state complexity results,
we need to make some assumptions about the representation and computation of the
semiring operations. That is, as mentioned in Section 5.1.1, we assume that semiring
elements are encoded in binary, i.e. there is a function enc : K→ {0, 1}∗, which assigns a
binary encoding to every semiring element. Furthermore, the length of the encoding of
an element a ∈ K is denoted by ‖a‖.
Throughout this chapter, we often encode computations into matrix multiplications.

To this end, we define matrix multiplication systems MMSK of dimension n ∈ N as triples
MMSK := (I,M,F ), where I, F ∈ Kn are n-dimensional vectors over K and M ∈ Kn×n
is a n× n matrix. We define the size of a matrix multiplication system as its dimension
plus the sum of the encoding lengths of all semiring elements in the system. That is,

|MMSK| = n+
∑
a∈I
‖a‖+

∑
a∈M
‖a‖+

∑
a∈F
‖a‖ .

For an n × n matrix X ∈ Kn×n (resp., a vector X ∈ Kn), we define max(X) as the
maximum of the dimension of X and the biggest representation length of a semiring
element in X. More formally,

max(X) := max(n,max
x∈X
‖x‖) .
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Furthermore, for a matrix multiplication system MMSK = (I,M,F ), we define

max(MMSK) = max(max(I),max(M),max(F )) .

Let FT be the transpose of vector F . By I ×M we denote the matrix multiplication
of I and M . We define efficient semiring encodings as follows.

Definition 5.4.1. Let (K,⊕,⊗, 0, 1) be a semiring. The encoding of K is efficient
if, given a matrix multiplication system MMSK and a natural number k, the semiring
elements

wi := I ×M i × FT ,

for all 0 ≤ i ≤ k, and
w :=

⊕
1≤i≤k

wi

can be computed in time polynomial in |MMSK| · k.

Throughout this chapter, whenever we give complexity bounds, we assume that an
efficient encoding of the semiring is used. As we show now, the standard encodings of
most of the semirings in Example 5.1.1 are efficient.

Proposition 5.4.2. Let (K,⊕,⊗, 0, 1) be a semiring. Then the encoding of K is efficient
if for all semiring elements a, b ∈ K, a⊕ b and a⊗ b can be computed in time polynomial
in ‖a‖+ ‖b‖ and

‖a⊕ b‖ ≤ max(‖a‖, ‖b‖) + 1, and
‖a⊗ b‖ ≤ ‖a‖+ ‖b‖ .

Proof. Let MMSK = (I,M,F ) be a matrix multiplication system of dimension n and
k ∈ N be a natural number. Let w1, . . . , wk and w be as defined in the definition of
efficient semiring encodings (Definition 5.4.1).

We observe that the computation of w requires a polynomial number of additions and
multiplications. However, as the encoding of the semiring elements, which are used for
the computation, might become large, this does not immediately imply that w can be
computed in time polynomial in |MMSK| · k.

We therefore show, for every 1 ≤ i ≤ k, that the semiring elements, which are required
for the computation of wi have an encoding of size at most polynomial in |MMSK| · k.
Due to the assumption that ‖a⊕ b‖ ≤ max(‖a‖, ‖b‖) + 1, this immediately implies that
‖w‖ is polynomial in |MMSK| · k, which concludes the proof.

Recall that max(M) is the maximum of the dimension n of M and the representation
size of the element in M with the largest representation. We begin by showing that,
max(I ×M) ≤ max(I) + max(M) + n for all vectors I ∈ Kn and matrices M ∈ Kn×n.
Let x be an element of I ×M . Per definition of matrix multiplication, x is the sum of n
elements x1, . . . , xn, each of which is the product of an element from I and an element
from M . Thus

‖xi‖ ≤ max(I) + max(M)
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and therefore,
‖x‖ ≤ max(I) + max(M) + n .

We can conclude that max(I ×M) ≤ max(I) + max(M) + n for all vectors I ∈ Kn and
matrices M ∈ Kn×n.

We now show by induction that, for all i ∈ N, it holds that

max(I ×M i × FT ) ≤ max(I) + i · (max(M) + n) + max(F ) + n ,

for all vectors I, F ∈ Kn and all matrices M ∈ Kn×n. We observe that, due to max(I) +
max(M) + max(F ) + n ≤ |MMSK|, this implies that ‖wi‖ is polynomial in |MMSK| · k,
for all 0 ≤ i ≤ k.

For the base case, we observe that w0 = I × F is the sum of n elements, each of which
has size at most max(I) + max(F ). As desired, we therefore have that

max(I × F ) = ‖w0‖ ≤ max(I) + max(F ) + n .

For the inductive step, assume there is an i ∈ N such that,

max(I ×M i × FT ) ≤ max(I) + i · (max(M) + n) + max(F ) + n ,

for all vectors I, F ∈ Kn and all matrices M ∈ Kn×n. With I ′ := I ×M we have that

max(I ′) = max(I ×M) ≤ max(I) + max(M) + n

and therefore,

max(I ×M i+1 × FT ) = max(I ′ ×M i × FT )
≤ max(I ′) + i · (max(M) + n) + max(F ) + n

≤ max(I) + max(M) + n+ i · (max(M) + n) + max(F ) + n

= max(I) + (i+ 1) · (max(M) + n) + max(F ) + n .

This concludes the proof.

Note that all semirings over a finite domain have an efficient encoding, as each semiring
element can be encoded with constant size and all operations can be carried out in
constant time via a constant size lookup table.

Corollary 5.4.3. A semiring (K,⊕,⊗, 0, 1) has an efficient encoding, if its domain is
finite.

We observe that for many semirings, the standard encodings satisfy the conditions
of Proposition 5.4.2. For instance the numeric semiring (Z,+, ·, 0, 1), the counting
semiring, Boolean semiring, the Viterbi semiring (over the rationals Q), the access control
semiring, and the tropical semirings. However, for some semirings standard encodings of
the semiring elements do not satisfy the conditions of Proposition 5.4.2. For example,
consider the numeric semiring (Q,+, ·, 0, 1) and the encoding, where every semiring
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element a = n
d is encoded by its numerator n ∈ Z and its denominator d ∈ N. The

problem is that the sum of two rational numbers a
b ,

c
d is given by x = a

b + c
d = a·d+b·c

b·d
and therefore the size of the encoding of x is ‖x‖ ≤ ‖a · d‖+ ‖b · c‖+ ‖c · d‖ which, in
general, does not satisfy the condition that ‖ab + c

d‖ ≤ max(‖ab ‖, ‖
c
d‖) + 1. Even though

this only increases the size of the representation by a small margin, it forces us to study
the complexity in more depth to conclude that this encoding is efficient.

Proposition 5.4.4. The numeric semiring (Q,+, ·, 0, 1) has an efficient encoding.

Proof. Let (Q,+, ·, 0, 1) be the numeric semiring. We assume that every semiring element
x = a

b is encoded by its numerator a ∈ Z and its denominator b ∈ N. Let all numerators
and denominators be encoded in binary, where two’s complement encoding is used for the
numerators. We observe that Proposition 5.4.2 holds for both encodings. Furthermore,
the encoding of the denominators is monotone, that is, for every x, y ∈ N it holds that
‖x‖ ≤ ‖y‖ if x ≤ y.
Given a matrix multiplication system MMSK = (I,M,F ), let D be the set of all

denominators of the rationals in I, F andM . We will compute the least common multiple
dlcm of all denominators in D and expand the representations of all numbers to the
denominator dlcm. Observe that all denominators d ∈ D are natural numbers. Therefore,

‖dlcm‖
(1)
≤
∥∥∥ ∏
d∈D

d
∥∥∥ (2)
≤
∑
d∈D

‖d‖
(3)
≤ |MMSK| ,

where (1) follows from dlcm ≤
∏
d∈D

d and the monotonicity of the encoding of the

denominators, (2) follows from ‖x⊗ y‖ ≤ ‖x‖+ ‖y‖, and (3) follows from the definition
of |MMSK|. Therefore, ‖dlcm‖ ≤ |MMSK| is polynomial in |MMSK|. Furthermore, the
computation of dlcm as well as the expansion can be done in polynomial time.13 We
therefore assume, w.l.o.g., that all rationals in I, F , and M have the denominator dlcm.
Let IZ, FZ ∈ Zn and MZ ∈ Zn×n be the vectors I, F and the matrix M where all

numbers are replaced by it’s numerator. For all 1 ≤ i ≤ k, we define

wZ,i := IZ ×M i
Z × FTZ .

We recall that, due to Proposition 5.4.2, wZ,i can be computed in time polynomial in
|MMSK| · k. Per assumption that all rationals in I, F and M have the denominator dlcm,
we have that wi = wZ,i

di+2
lcm

. Furthermore, the denominator can also be computed in time
polynomial in |MMSK|, as ‖dlcm‖ is polynomial in |MMSK| and ‖x ⊗ y‖ ≤ ‖x‖ + ‖y‖
for the encoding of natural numbers. Thus, for all i ≤ k, wi can be computed in time
polynomial in |MMSK| · k. Furthermore, w can be computed in time polynomial in
|MMSK| · k by first expanding all wi to the denominator dk+2

lcm and summing up the
expanded fractions. This concludes the proof.
13The least common multiple can be computed using the Eucledian algorithm and the expansion of

x = a
b
by multiplying the numerator a by b

dlcm
.
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5.5 Fundamental Properties
We now study fundamental properties of annotators. Specifically, we show that regular
annotators are closed under union, projection, and join. Furthermore, annotators over a
semiring K behave the same as document spanners with respect to string selection if K
is positive or ⊕ is bipotent14 and for every a, b ∈ K, a⊗ b = 1 implies that a = b = 1.

5.5.1 Epsilon Elimination
We begin the section by showing that every regular K-annotator can be transformed into
an equivalent functional regular K-annotator without ε-transitions.

Proposition 5.5.1. For every weighted vset-automaton A there is an equivalent weighted
vset-automaton A′ that has no ε-transitions. This automaton A′ can be constructed from
A in polynomial time. Furthermore, A is functional if and only if A′ is functional.

Proof. We use a result by Mohri [110, Theorem 7.1] who showed that, given a weighted
automaton, one can construct an equivalent weighted automaton without epsilon transi-
tions.

More precisely, let A = (Σ, V,Q, I, F, δ) be a weighted vset-automaton. Notice that A
can also be seen as an ordinary weighted finite state automaton B = (Σ ∪ ΓV , Q, I, F, δ).
In this automaton, one can remove epsilon transitions by using Mohri’s epsilon removal
algorithm [110, Theorem 7.1]. The resulting ε-transition free automaton B′ = (Σ ∪
ΓV , Q′, I ′, F ′, δ′) accepts the same strings as B. Therefore, interpreting B′ as an weighted
vset-automaton A′ = (Σ, V,Q′, I ′, F ′, δ′) we have that JAKK = JA′KK and A′ is functional
if and only if A is functional.
Concerning complexity, Mohri shows that this algorithm runs in polynomial time,

assuming that weighted-ε-closures can be computed in polynomial time. However, in our
setting this is obvious as we do not allow ε-cycles. Therefore, the weight of an element
of an ε-closure can be computed by at most n matrix multiplications, where n is the
number of states in A. Per assumption that K has an efficient encoding, these matrix
multiplications can be computed in polynomial time.

5.5.2 Functionality
Non-functional vset-automata are inconvenient to work with, since some of their nonzero
runs are not valid and therefore do not contribute to the weight of a tuple. It is therefore
desirable to be able to automatically convert weighted vset-automata into functional
weighted vset-automata.

Proposition 5.5.2. Let A be a weighted vset-automaton. Then there is a functional
weighted vset-automaton Afun that is equivalent to A. If A has n states and uses k
variables, then Afun can be constructed in time polynomial in n and exponential in k.
Furthermore, the construction preserves unambiguity.
14Recall, ⊕ is bipotent, if a⊕ b ∈ {a, b}, for every a, b ∈ K.
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Proof. The proof follows the idea of a similar result by Freydenberger [52, Proposition
3.9] for unweighted vset-automata. Like Freydenberger, we associate each state in Afun
with a function s : V → {w, o, c}, where s(x) represents the following:

• w stands for “waiting”, meaning x` has not been read,
• o stands for “open”, meaning x` has been read, but not ax,
• c stands for “closed”, meaning x` and ax have been read.

Let S be the set of all such functions. Observe that |S| = 3|V |. We now define
Afun := (Σ, V,Qfun, Ifun, Ffun, δfun) as follows:

Qfun := Q× S ;

Ifun(p, s) :=
{
I(p) where s(x) = w for all x ∈ V
0 otherwise;

Ffun(p, s) :=
{
F (p) where s(x) = c for all x ∈ V
0 otherwise.

Furthermore, for all (p, s) ∈ Qfun and x ∈ V we define sxo (resp., sxc ) as sxo(x) := o (resp.,
sxc := c) and sxo(y) := s(y) (resp., sxc (y) = sx(y)) for all x 6= y. Using these, we define

δfun((p, s), a, (q, s)) = δ(p, a, q) for a ∈ (Σ ∪ {ε}),
δfun((p, s), x`, (q, sxo)) = δ(p, x`, q) if s(x) = w,
δfun((p, s),ax, (q, sxc )) = δ(p,ax, q) if s(x) = o,
δfun((p, s), a, (q, t)) = 0 otherwise.

Functionality follows analogously to Freydenberger [52, Proposition 3.9]. It remains
to show equivalence, i.e., that for every document d ∈ Σ∗ it holds that JAKK(d) =
JAfunKK(d). Observe that there is a one-to-one correspondence between valid nonzero
runs ρ ∈ P (A, d) and valid nonzero runs ρfun ∈ P (Afun, d) with wρ = wρfun . Therefore,
JAKK(d) = JAfunKK(d) must also hold and the construction preserves unambiguity.

The exponential blow-up in Proposition 5.5.2 cannot be avoided, since it already occurs
for weighted vset-automata over the Boolean semiring.15 Functionality of vset-automata
can be checked efficiently, as we have the following result.

Proposition 5.5.3. Given a K-weighted vset-automaton A with m transitions and k
variables, it can be decided whether A is functional in time O(km). Furthermore, A is
functional if and only if it is functional when interpreted as B-weighted document spanner.

Proof. Per definition, a weighted vset-automaton is functional if all runs are valid.
Furthermore, a run on a ref-word r is valid if Vars(tup(r)) = V , where V ⊆ Vars is the set
15Freydenberger [52, Proposition 3.9] showed that there is a class of vset-automata {Ak | k ∈ N}, each

with one state and k, such that every functional vset-automaton equivalent to Ak has at least 3k

states.
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of variables of V . Observe that this definition only depends on the ref-word’s and not on
the semiring of the automaton. Therefore, a K-weighted vset-automaton A is functional
if and only if A is functional when interpreted as an B-weighted vset-automaton AB.
More formally, let AB be the B-weighted vset-automaton obtained by replacing nonzero
weights with true, sum by ∨ and multiplication by ∧. The result now follows directly from
Freydenberger [52, Lemma 3.5], who showed that it can be verified in O(km) whether a
vset-automaton is functional.

5.5.3 Closure Under Join, Union, and Projection

We will obtain the following result.

Theorem 5.5.4. Regular annotators are closed under finite union, projection, and
finite natural join. Furthermore, if the annotators are given as functional weighted
vset-automata, the construction for a single union, projection, and join can be done in
polynomial time. All constructions preserve functionality.

The theorem follows immediately from Lemmas 5.5.5, 5.5.6, and 5.5.9. Whereas the
constructions for union and projection are fairly standard, the case of join needs some
care in the case that the two automata A1 and A2 process variable operations in different
orders.16

Lemma 5.5.5. Given two K-weighted vset-automata A1 and A2 with V1 = V2, one can
construct a weighted vset-automaton A in linear time, such that JAKK = JA1KK ∪ JA2KK.
Furthermore, A is unambiguous if A1 and A2 are unambiguous and disjoint.

Proof. Let A1 := (Σ, V,Q1, I1, F1, δ1) and A2 := (Σ, V,Q2, I2, F2, δ2), such thatQ1∩Q2 =
∅. We construct an automaton A := (Σ, V,Q, I, F, δ), such that JAKK = JA1KK ∪ JA2KK.
To this end, let Q = Q1 ∪ Q2, be the set of states, I, F : Q → K with I(q) = Ii(q)
and F (q) = Fi(q) for q ∈ Qi and i ∈ {1, 2}. Let δ(p, a, q) = δi(p, a, q) if p, q ∈ Qi, for
i ∈ {1, 2}, and δ(p, a, q) = 0 if p, q are not from the state set of the same automaton.
Observe that this construction can be carried out in linear time. It remains to show
the correctness of the construction. We observe that there are no nonzero transitions
between states in Q1 and Q2, thus no nonzero run ρ of A can have states p, q such that
p ∈ Q1 and q ∈ Q2. Let d ∈ Σ∗ be an arbitrary document. The set P (A, d) of all valid
and nonzero runs of A on d is the union of two sets P1(A, d), P2(A, d), where a run ρ is in
Pi(A, d) if it consists of states in Qi. Furthermore, for i ∈ {1, 2} it holds that ρ ∈ Pi(A, d)

16More formally, if A1 processes x` y` aay ax and A2 processes y`x` aaxay, then these two different
sequences produce different encodings of the same tuple. This has to be considered by the automata
construction.
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if and only if ρ ∈ P (Ai, d) and therefore,

JAKK(d, t) =
⊕

ρ∈P (A,d) and t=tup(ρ)

wρ

=

 ⊕
ρ∈P1(A,d) and t=tup(ρ)

wρ

⊕
 ⊕
ρ∈P2(A,d) and t=tup(ρ)

wρ


=

 ⊕
ρ∈P (A1,d) and t=tup(ρ)

wρ

⊕
 ⊕
ρ∈P (A2,d) and t=tup(ρ)

wρ


=JA1KK(d, t)⊕ JA2KK(d, t) .

This concludes the proof that JAKK = JA1KK ∪ JA2KK.
It remains to show that A is unambiguous if A1 and A2 are unambiguous and disjoint.

We observe thatR(A) = R(A1)∪R(A2). Thus, the variable order condition condition (C2)
must be satisfied as both A1 and A2 satisfy the variable order condition. Furthermore,
due to the disjointness of A1 and A2 it must hold that R(A1) ∩R(A2) = ∅ and therefore
the unambiguity condition (C3) must also be satisfied.

Lemma 5.5.6. Given a K-weighted vset-automaton A and a subset X ⊆ V of the
variables V of A, there exists a weighted vset-automaton A′ with JA′KK = πXJAKK.
Furthermore, if A is functional, then A′ can be constructed in polynomial time.

Proof. Let A := (Σ, V,Q, I, F, δ) and V − = V \X. If A is not yet functional, we can
assume by Proposition 5.5.2 that it is, at exponential cost in the number of variables of
A. Furthermore, assume that, for every nonzero transition, there is a run ρ which uses
the transition. Due to A being functional, we will be able to construct A′ by replacing all
transitions labeled with a variable operation o ∈ ΓV − with an ε-transition of the same
weight. More formally, let A′ := (Σ, X,Q, I, F, δ′), such that

• δ′(p, o, q) = δ(p, o, q) for all p, q ∈ Q and o ∈ Σ ∪ {ε} ∪ ΓX , and
• δ′(p, ε, q) = δ(p, o, q) for all p, q ∈ Q and o ∈ ΓV − .

Observe that A′ can be constructed in polynomial time if A is functional. We argue
why δ′ is well defined. Towards a contradiction, assume that δ′ is not well-defined. This
can only happen if A has two transitions δ(p, o1, q) and δ(p, o2, q) with o1, o2 ∈ ΓV − ∪{ε}
and o1 6= o2. Therefore, there are two runs ρ1, ρ2, which use δ(p, o1, q) and δ(p, o2, q)
respectively. Let ρ′1 be the same as ρ1, however, using δ(p, o2, q) instead of δ(p, o1, q).
Therefore, since o1 6= o2 and o1, o2 ∈ ΓV −∪{ε}, either ρ1 or ρ′1 are not valid, contradicting
functionality of A.

It remains to show that JA′KK = πXJAKK. Let d ∈ Σ∗ be an arbitrary document. Every
run ρ of A selecting t on d corresponds to exactly one run ρ′ of A′ selecting t′ on d such
that t′ = πXt and wρ = wρ′ . Therefore,
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πXJAKK(d)(t′) =
⊕

t′=πXt and JAKK(d,t) 6=0

JAKK(d, t)

=
⊕

t′=πXt and JAKK(d,t) 6=0

⊕
ρ∈P (A,d) and t=tup(ρ)

wρ

=
⊕

ρ′∈P (A′,d) and t′=tup(ρ′)

wρ′

=JA′KK(d)(t′) .

Therefore, JA′KK = πXJAKK.

We will now show that regular annotators are closed under join. Freydenberger et
al. [54, Lemma 3.10], showed that, given two functional B-weighted vset-automata A1
and A2, one can construct a functional vset-automaton A with JAKB = JA1KB ./ JA2KB in
polynomial time. The construction is based on the classical product construction for the
intersection of NFAs. However, A1 and A2 can process consecutive variable operations
in different orders which must be considered during the construction. To deal with this
issue, we adapt and combine multiple constructions from literature.
To be precise, we adopt so called extended vset-automata as defined by Amarilli et

al. [6]17. An extended K-weighted vset-automaton on alphabet Σ and variable set V is
an automaton AE = (Σ, V,Q, I, F, δ), where Q = Qv ]Q` is a disjoint union of variable
states Qv and letter states Q`. Furthermore, I : Q → K is the initial weight function,
F : Q → K the final weight function, and δ : Q × (Σ ∪ 2ΓV ) × Q → K is a transition
function, such that transitions labeled by σ ∈ Σ originate in letter states and terminate
in variable states and T ⊆ ΓV transitions originate in variable states and terminate in
letter states. More formally, for every σ ∈ Σ, it holds that δ(p, σ, q) = 0 if p ∈ Qv and
q ∈ Q`. Furthermore, for every T ⊆ ΓV , δ(p, T, q) = 0 if p ∈ Q` and q ∈ Qv. The weight
wρ of a run ρ on a weighted extended vset-automaton, JAEKK, and functionality are
defined analogously to the weighted vset-automata. Furthermore, an extended weighted
vset-automaton AE is unambiguous, if all runs encode a different tuple, that is, for every
two runs ρ1 6= ρ2 of AE it holds that tup(ρ1) 6= tup(ρ2). We observe that we do not need
to enforce the variable order condition for unambiguous extended weighted vset-automata,
as consecutive variable operations are encoded into a single transition.

Proposition 5.5.7. For every functional weighted vset-automaton A, there exists an
equivalent functional extended weighted vset-automaton AE and vice versa. Given an
automaton in one model, one can construct an automaton in the other model in polynomial
time. Furthermore, the conversion preserves unambiguity.

Proof. Let A := (Σ, V,Q, I, F, δ) be a weighted functional vset-automaton.
17Extended vset-automata were first introduced by Florenzano et al. [48], but the definition of Amarilli

et al. [6] is more convenient for us.
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Due to Proposition 5.5.3 a weighted vset-automaton is functional if and only if the
automaton A interpreted as B-weighted vset-automaton is functional. For functional
vset-automata it is well known18 that there is a function s : Q× V → {w, o, c}, where

• s(q, v) = w stands for “waiting”, meaning that no run ρ of A such that v` is read
before reaching state q.

• s(q, v) = o stands for “open”, meaning that all runs ρ of A read v` but not av
before reaching state q.

• s(q, v) = c stands for “closed”, meaning that all runs ρ of A read v` and av before
reaching state q.

Furthermore, based on s, we define the function ST : Q×Q→ ΓV , such that ST (q, q′), if
on every run ρ of A which visits q′ after q, the variable operations ST (q, q′) must be read
between q and q′. More formally, x` ∈ ST (p, q) if and only if s(p, x) = w and s(q, x) 6= w
and ax ∈ ST (p, q) if and only if s(p, x) 6= c and s(q, x) = c.
We assume, w.l.o.g., that the states of A are {1, . . . , n} for some n ∈ N. For every

state i ∈ Q, we define the vector Vi where

Vi(j) =
{

0 if i 6= j

1 if i = j .

Furthermore, we define the n× n matrix Mp,q where

Mp,q(i, j) =
{
δ(i, o, j) if o ∈ ST (p, q)
1 otherwise .

We construct the weighted extended functional vset-automaton AE := (Σ, V,Q` ∪
Qv, IE , FE , δE) as follows. Let Q` := {q` | q ∈ Q} and Qv := {qv | q ∈ Q} be two disjoint
copies of the states of A. Furthermore, let

IE(q) :=
{
I(q) if q ∈ Qv
0 if q ∈ Q` ;

FE(q) :=
{

0 if q ∈ Qv
F (q) if q ∈ Q` .

We define δE as follows

δE(pl, σ, qv) := δ(p, σ, q) for all σ ∈ Σ,
δE(pv, O, q`) := Vpv × (Mpv,q`)|O| × V Tq` for O = ST (pv, q`)
δE(pv, ∅, p`) := 1

18For example, compare Freydenberger [52], Freydenberger et al. [54].
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We observe that per assumption that K has an efficient encoding, it follows that AE
can be constructed in polynomial time. It remains to show that JAKK = JAEKK. To this
end, we define a function, which maps valid runs of A to runs of AE . More formally, let

ρ = q0
σ1→ · · · σm−1→ qm−1

σm→ qm

be a run of A on r = σ1 · · ·σm. Furthermore, let d = d1 · · · dn = doc(r), t := tup(r), and,
for 1 ≤ i ≤ n+ 1, let

Ti = {x` | t(x) = [i, j〉 for some i ≤ j ≤ n+ 1}∪ {ax | t(x) = [j, i〉 for some 1 ≤ j ≤ i} .

Let q0
v ∈ Qv (resp., qn+1

` ∈ Q`) be the variable state (resp., letter state) corresponding
to q0 (resp., qm). Furthermore, for 1 ≤ k ≤ n, let qk−1

` , qkv be the states corresponding to
the states visited by ρ while reading the symbol dk. That is, for qj

da+1→ qj+1 in ρ , qk−1
`

corresponds to qj and qkv to qj+1. We observe that, due to A being functional, it must
hold that Ti = ST (qi−1

v , qi−1
` ).

We define f(ρ) as the run ρE ∈ P (AE , d) such that

ρE = q0
v
T1→ q0

`
d1→ q1

v
T2→ · · · dn→ qnv

Tn+1→ qn` .

For every valid run ρE ∈ P (AE , d), it holds that wρE =
⊕

ρ∈P (A,d) with f(ρ)=ρE wρ.
Therefore, it follows that

JAEKK(d, t) =
⊕

ρE∈P (AE ,d) and t=tup(ρE)

wρE

=
⊕

ρE∈P (AE ,d) and t=tup(ρE)

⊕
ρ∈P (A,d) with f(ρ)=ρE

wρ

=
⊕

ρ∈P (A,d) and t=tup(ρ)

wρ

= JAKK(d, t) .

It remains to show that AE is unambiguous if A is unambiguous. To this end, assume
that AE is not unambiguous. Thus, there must be two runs ρ1

E 6= ρ2
E on AE , encoding the

same tuple. By construction of AE , there must be two runs ρ1 6= ρ2 of A which encode
the same tuple. Due to the variable order condition (C2), ref(ρ1) = ref(ρ2), however this
contradicts the unambiguity condition (C3). Therefore AE must be unambiguous.
For the other direction, one can construct a weighted vset-automaton A with ε-

transitions19, by replacing every edge δ(p,O, q) = w by a sequence of transitions
δ(p, v1, q1) = w, δ(q1, v2, q2) = 1, . . . , δ(qn−1, vn, q) = 1, where O = {v1, . . . , vn}, with
v1 ≺ v2 ≺ · · · ≺ vn, and q1, . . . , qn−1 are new states. We observe that only the first
transition has weight w, whereas all other transitions have weight 1. This construction
also runs in polynomial time and it is straightforward to verify that JAKK = JAEKK and
that A is unambiguous if AE is unambiguous.
19By Proposition 5.5.1, the ε-transitions can be removed in polynomial time.

89



Chapter 5 Weight Annotators

Proposition 5.5.8. Let A1, A2 be two functional extended K-weighted vset-automata.
One can construct a functional extended K-weighted vset-automaton A in polynomial
time, such that JAKK = JA1KK ./ JA2KK. Furthermore, A is unambiguous if A1 and A2
are unambiguous.

Proof. Let A1 = (Σ, V1, Q1, I1, F1, δ1) and A2 = (Σ, V2, Q2, I2, F2, δ2) be two K-weighted
extended functional vset-automata. We construct a K-weighted extended functional
vset-automaton A = (Σ, V1 ∪ V2, Q1 ×Q2, I, F, δ) such that JAKK = JA1KK ./ JA2KK. To
this end, let I(q1, q2) = I1(q1)⊗ I2(q2) and F (q1, q2) = F1(q1)⊗ F2(q2). Furthermore, let

δ((p1, p2), σ, (q1, q2)) = δ1(p1, σ, q1)⊗ δ2(p2, σ, q2) ,

if σ ∈ Σ, and otherwise, if T ⊆ ΓV ,

δ
(
(p1, p2), T, (q1, q2)

)
= δ1

(
p1, T ∩ ΓV1 , q1

)
⊗ δ2(p2, T ∩ ΓV2 , q2) .

We observe that A can be constructed in polynomial time. We have to show that
JAKK = JA1KK ./ JA2KK. Let d ∈ Σ∗ be a document and t be a tuple. Every run
ρ ∈ P (A, d) with tup(ρ) = t originates from of a set of runs ρ1 ∈ P (A1, d) selecting πV1t
and a set of runs ρ2 ∈ P (A2, d) selecting πV2t. Due to distributivity of ⊗ over ⊕, it holds
that wρ = wρ1 ⊗ wρ2 . Furthermore, every run in A corresponds to exactly one run in A1
and one run in A2. It follows directly that JAKK(d, t) = JA1KK(d)(πV1t)⊗ JA2KK(d)(πV2t)
and that the construction preserves unambiguity.

We now show that regular annotators are closed under join.

Lemma 5.5.9. Given two K-weighted vset-automata A1 and A2, one can construct a
weighted functional vset-automaton A with JAKK = JA1KK ./ JA2KK. Furthermore, A can
be constructed in polynomial time if A1 and A2 are functional and A is unambiguous if
A1 and A2 are unambiguous.

Proof. If A1 and A2 are not yet functional, we can assume that they are at an exponential
cost in their number of variables (cf. Proposition 5.5.2). By Proposition 5.5.7, one can
construct functional extended weighted vset-automata A1

E , A
2
E with JAiKK = JAiEKK.

Furthermore, due to Proposition 5.5.8, one can construct a functional extended weighted
vset-automaton AE with JAEKK = JA1

EKK ./ JA2
EKK. Thus, again applying Proposi-

tion 5.5.7, one can construct a functional weighted vset-automaton AE with JAEKK =
JA1

EKK ./ JA2
EKK = JA1KK ./ JA2KK. Note that all constructions are in polynomial time if

A1 and A2 are functional and preserve unambiguity. Thus, concluding the proof with
A := AE .

The previous lemma also has applications to unambiguous functional vset-automata
over the Boolean semiring.

Corollary 5.5.10. Given two unambiguous functional vset-automata A1, A2 over the
Boolean semiring, one can construct an unambiguous functional vset-automaton A with
JAKB = JA1KB ./ JA2KB in polynomial time.
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5.5.4 Closure Under String Selection
A k-ary string relation is recognizable if it is a finite union of Cartesian products L1 ×
· · · ×Lk, where each Li is a regular language over Σ [135]. Recall that RegK is the set of
all regular K-annotators. We say that a k-ary string relation20 R is selectable by regular
K-annotators if the class of K-annotators is closed under the string selection σR. More
formally:

{σRx1,...,xk
(S) | S ∈ RegK and xi ∈ Vars(S) for all 1 ≤ i ≤ k} ⊆ RegK ,

If K = B, we say that R is selectable by document spanners. Fagin et al. [45, Theorem
4.16] proved that a string relation is recognizable if and only if it is selectable by document
spanners. Here, we generalize this result in the context of weights and annotation. Indeed,
it turns out that the equivalence is maintained for all positive semirings.

Theorem 5.5.11. Let (K,⊕,⊗, 0, 1) be a positive semiring and R be a string relation.
The following are equivalent:

1. R is recognizable.

2. R is selectable by document spanners.

3. R is selectable by K-annotators.

We note that the equivalence between (1) and (2) is known [45, Theorem 4.16]. The
implication (2) ⇒ (3) is heavily based on the closure properties from Theorem 5.5.4
and holds beyond positive semirings. For the proof of the implication (3) ⇒ (2), we use
semiring morphisms to turn K-weighted vset-automata into B-weighted vset-automata
and need positivity of the semiring. We need some preliminary results in order to give
the proof.

Definition 5.5.12. Let R be a k-ary string relation. A K-weighted vset-automaton
AK
R with variables {x1, . . . , xk} selects R over K if for every document d ∈ Σ∗ and every

tuple t it holds that JAK
RKK(d, t) = 1 if (dt(x1), . . . , dt(xk)) ∈ R, and 0, otherwise, that is,

(dt(x1), . . . , dt(xk)) /∈ R.

Lemma 5.5.13. Let R be a k-ary string relation. Then R is selectable by K-annotators
if and only if there is a vset-automaton AK

R that selects R over K.

Proof. Assume that R is selectable by K-annotators. Let A be the K-weighted vset-
automaton that assigns weight 1 to all possible tuples for all documents. As R is selectable
by K-annotators, σRx1,...,xk

(JAKK) must be a regular K-annotator. Thus, the K-weighted
vset-automaton AK

R representing σRx1,...,xk
(JAKK) selects R over K.

20Recall that a (k-ary) string relation is the Cartesian product of k languages, that is, L1×L2×· · ·×Lk,
with Li ⊆ Σ∗, for all 1 ≤ i ≤ k.
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For the other direction, let AK
R be as defined. Let A be a K-weighted vset-automaton.

Per definition of string selection,

σRx1,...,xk
(JAKK)(d, t) =

{
JAKK(d, t)⊗ 0 = 0 if (dt(x1), . . . , dt(xk)) /∈ R
JAKK(d, t)⊗ 1 = JAKK(d, t) otherwise.

Therefore, σRx1,...,xk
(JAKK) = JAKK ./ JAK

RKK, which proves that R is selectable by K-
annotators, as K-annotators are closed under join (cf. Theorem 5.5.4).

We will now define means of transferring the structure of weighted automata between
different semirings, that is, we define B-projections and K-extensions of weighted vset-
automata.

Definition 5.5.14. Let A be a weighted vset-automaton over K. A B-weighted vset-
automaton AB is a B-projection of A if, for every document d ∈ Σ∗, it holds that
t ∈ JABKB(d)⇔ t ∈ JAKK(d).

Definition 5.5.15. Let A be a B-weighted vset-automaton. Then a K-weighted vset-
automaton AK is called a K-extension of A if, for every document d ∈ Σ∗ and every tuple
t, the following are equivalent:

1. t ∈ JAKB(d)

2. t ∈ JAKKK(d) and JAKKK(d, t) = 1

Furthermore, AK has exactly one run for every tuple in JAKKK(d).

We now show that a B-projections of a K-weighted vset-automaton A exists if K is
positive. Furthermore, a K-extensions of a B-weighted vset-automaton always exists. To
this end, let (K,⊕,⊗, 0, 1) and (K′,⊕′,⊗′, 0′, 1′) be semirings. For a function f : K→ K′
and a weighted vset-automaton A := (Σ, V,Q, I, F, δ) over K, we define the weighted
vset-automaton Af := (Σ, V,Q, If , Ff , δf ) over K′, where If := f ◦ I, Ff := f ◦ F , and
δf := f ◦ δ.

Lemma 5.5.16. Let K be a positive semiring. Then there exists a B-projection AB of A
for every K-weighted vset-automaton A.

Proof. Let f : K→ B be the function

f(x) =
{

true if x 6= 0 ,
false if x = 0 .

Eilenberg [42, Chapter VI.2] shows that, due to K being positive21, the function f is a
semiring morphism, that is,

f(x⊕K y) = f(x)⊕B f(y), f(0) = false ,
f(x⊗K y) = f(x)⊗B f(y), f(1) = true .

21Eilenberg [42, Chapter VI.2] actually showed that f is a semiring morphism if and only if K is positive.
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Observe that these properties ensure that, for every document d ∈ Σ∗ and every tuple
t ∈ JAKK, it holds that

f (JAKK(d, t)) = JAf KK′(d, t).

Therefore, Af is a B-projection of A.

Lemma 5.5.17. Every B-weighted vset-automaton A has a K-extension.

Proof. Let A := (V,Q, I, F, δ) be a B-weighted vset-automaton. By Proposition 2.2.6
there is an equivalent deterministic vset-automaton Adet, for every vset-automaton A.
Therefore, we can assume, w.l.o.g., that A is deterministic and has exactly one run ρ
for every document d ∈ Σ∗ and every tuple t ∈ JAdetKB(d), with ref(ρ) = ref(d, t). Let
g : B→ K be the function22

g(x) =
{

1 if x = true ,
0 if x = false .

Observe that the automaton Ag must also have exactly one run ρ for every document
d ∈ Σ∗ and every tuple t ∈ JAdetKK(d). It remains to show that Ag is indeed a K-extension
of A. To this end, let d ∈ Σ∗ be a document. We have to show that the following are
equivalent:

1. t ∈ JAKB(d)

2. t ∈ JAgKK(d) and JAgKK(d, t) = 1

(1) implies (2): Let t ∈ JAKB(d) and let r = ref(d, t). Per assumption that A is
deterministic, A must have a run on r. Thus, Ag must also have a run, accepting r.
Furthermore, as A is deterministic, Ag can not have a run ρ′ 6= ρ with tup(ρ) = tup(ρ′),
as otherwise, A would also have a run ρ′ and thus not be deterministic. Per construction,
all transitions of Ag have weight 0 or 1. Thus, (2) must hold.

(2) implies (1): Let t ∈ JAgKK(d) and JAgKK(d, t) = 1. Thus, there is a run ρg of Ag on
d accepting t. Therefore, there must also be a run ρ of A on d, accepting t, concluding
the proof.

We are now ready to prove Theorem 5.5.11.

Proof of Theorem 5.5.11. The equivalence between (1) and (2) is shown in [45, Theorem
4.16].

We show (2) ⇒ (3). Let A be a K-weighted vset-automaton and R be a relation
that is selectable by regular B-annotators. We have to show that every string selection
σRx1,...,xk

JAKK is definable by a K-weighted vset-automaton. By assumption R is selectable
by regular B-annotators. Let ARB be the vset-automaton that selects R over B, which
exists by Lemma 5.5.13. Let ARK be a K-extension of ARB vset-automaton, which exists
22Notice that g is not necessarily a semiring morphism. Depending on K, it may be the case that

1⊕ 1 = 0, contradicting the properties of semiring morphisms. Take K = Z/2Z, for instance.
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by Lemma 5.5.17. Thus, ARK selects R over K and therefore, (3) follows directly from
Lemma 5.5.13.
We now prove the implication (3) ⇒ (2). Let R be a string relation selectable

by K-annotators and let A be a B-weighted vset-automaton. We have to show that
R is also selectable over B, i.e., there is a B-weighted vset-automaton ARB such that
JARB KB = σRx1,...,xk

JAKB. Let AK be a K-extension of A, which exists by Lemma 5.5.17.
Per assumption R is selectable over K, therefore, due to Lemma 5.5.13, there exists a
K-weighted vset-automaton ARK which selects R over K. Thus, σRx1,...,xk

JAKKK = JARKKK.
Let ARB be a B-projection of ARK , which exists by Lemma 5.5.16. It remains to show
that σRx1,...,xk

JAKB = JARB KB. Let d ∈ Σ∗ and t ∈ JARB KB(d). By Lemma 5.5.16, t ∈
JARKKK(d) and therefore, t ∈ σRx1,...,xk

JAKKK(d). Per definition of string selection, it
follows that (dt(x1), . . . , dt(xk)) ∈ R and t ∈ JAKKK(d). By Lemma 5.5.17, it follows that
(dt(x1), . . . , dt(xk)) ∈ R and t ∈ JAKB(d), and therefore t ∈ σRx1,...,xk

JAKB(d). Observe that
all implications in the previous argument where actually equivalences. Therefore, the
inclusion σRJAKB(d) ⊆ JARB KB(d) also holds.

Since the implication from (2) to (3) does not assume positivity of the semiring, it raises
the question whether the equivalence can be generalized even further. We show next
that this is indeed the case, for instance the equivalence also holds for the Łukasiewicz
semiring, which is not positive.

Beyond Positive Semirings

We provide some insights about the cases where K is not positive. First of all, one
implication always holds.

Lemma 5.5.18. Let (K,⊕,⊗, 0, 1) be an arbitrary semiring and R be a recognizable
string relation. Then R is also selectable by K-annotators.

Proof. This is an immediate consequence of the proofs of the implications (1) ⇒ (2) ⇒
(3) of Theorem 5.5.11.

The question is: For which semirings K does selectability by K-annotators imply
selectability by ordinary document spanners? It turns out that this is indeed possible for
some non-positive semirings, such as the Łukasiewicz semiring Ł.

Let (K′,⊕′,⊗′, 0′, 1′) be a subsemiring of a semiringK.23 The semiring (K′,⊕′,⊗′, 0′, 1′)
is minimal if there is no subsemiring of (K,⊕,⊗, 0, 1) with fewer elements. Recall that
a semiring K is bipotent, if a ⊕ b ∈ {a, b}, for every a, b ∈ K. We begin with some
intermediate results.

Lemma 5.5.19. Let (K,⊕,⊗, 0, 1) be a bipotent semiring. Then Kmin := {0, 1} is the
unique minimal subsemiring of K. Furthermore, Kmin is isomorphic to the Boolean
semiring.
23Recall that a subsemiring of K is a set K′, closed under addition and multiplication.
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Proof. For every semiring it holds that 0⊗ 1 = 0, 1⊗ 0 = 0, and 0⊗ 0 = 0. Furthermore,
1⊕ 0 = 1 and 0⊕ 0 = 0. As K is bipotent, it also holds that 1⊕ 1 = 1. Let K′ = {0, 1}.
Thus, Kmin = {0, 1} is a subsemiring of K, as {0, 1} is closed under addition and
multiplication. Observe that Kmin must be unique and minimal, as every subsemiring
must at least contain 0 and 1.

It remains to show that Kmin is isomorphic to B. To this end, let f : Kmin → B be the
bijection

f(x) =
{

true if x = 1 ,
false if x = 0 .

It is straightforward to verify that f is indeed a semiring isomorphism.

It follows directly that Kmin is a positive semiring.

Lemma 5.5.20. Let K be a bipotent semiring such that a⊗ b = 1 implies that a = b = 1.
Then a string relation R is selectable by K-annotators if and only if it is selectable by
Kmin-annotators.

Proof. Every Kmin-annotator is also a K-annotator. Therefore, we only have to show that
every string relation selectable by K-annotators is also selectable by Kmin-annotators.
Let A be a Kmin-weighted vset-automaton and R be selectable by K-annotators. We

have to show that σRx1,...,xk
JAKKmin

is definable by a Kmin-weighted vset-automaton. Let
d ∈ Σ∗ be a document.
Per assumption R is selectable over K. Let ARK be a K-weighted vset-automaton,

guaranteed by Lemma 5.5.13. We argue that we can assume, w.l.o.g., that all edges in
ARK have either weight 1 or 0 and therefore ARK is a Kmin-annotator, concluding the proof.

We observe that ARK only assigns weight 1 and 0. Therefore, t ∈ JARKKK(d) if and only
if JARKKK(d, t) = 1. Recall that K is bipotent, that is, for every a, b ∈ K, a⊕ b ∈ {a, b}.
Therefore, for every t ∈ JARKKK(d) there must be a run ρ of ARK on d with wρ = 1.
Furthermore, as a⊗ b = 1 implies that a = b = 1, this run must not have an edge with
weight a 6= 1. On the other hand, assume that there is a run ρ of ARK on d with weight
wρ = 1. Again, this run must not have an edge with weight a 6= 1. Furthermore, due to
a⊕ b 6= 0, unless a = 0 and b = 024, this implies that tup(ρ) ∈ JARKKK(d). Thus, there is
a run ρ of ARK on d consisting only of edges with weight 1 if and only if tup(ρ) ∈ JARKKK.
Therefore, all edges in ARK with weight w 6= 1 can be removed without changing the
K-annotator. Thus, we can assume, w.l.o.g., that all edges in ARK have either weight 0 or
1. It follows that ARK is a Kmin-annotator and therefore, by Lemma 5.5.13, it follows that
R is selectable over Kmin.

The following corollary follows directly from Theorem 5.5.11, Lemma 5.5.20, and
Lemma 5.5.19.

Corollary 5.5.21. Let K be a bipotent semiring, such that a⊗b = 1 implies that a = b = 1.
A string relation R is recognizable if and only if it is selectable by K-annotators.
24This follows from K being bipotent and ⊕ being the additive identity.
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Recall the Łukasiewicz semiring, whose domain is [0, 1], with addition given by x⊕ y =
max(x, y), multiplication x ⊗ y = max(0, x + y − 1), zero element 0, and one element
1. Thus, for every a, b ∈ [0, 1], a ⊕ b ∈ {a, b} and a ⊗ b = 1 if and only if a = b = 1.
Therefore, the Łukasiewicz semiring satisfies the conditions of Corollary 5.5.21.

Corollary 5.5.22. A string relation R is recognizable if and only if it is selectable by
Ł-annotators.

5.6 Evaluation Problems
We consider two types of evaluation problems in this section: answer testing and best
weight evaluation. The former is given an annotator, a document d, and a tuple t, and
computes the annotation of t in d according to the annotator. The latter does not receive
the tuple as input, but receives a weight threshold and is asked whether there exists a
tuple to which a weight greater than or equal to the threshold is assigned.

5.6.1 Answer Testing
Recalling Proposition 2.2.7, it follows that answer testing is NP-complete for B-weighted
vset-automata in general. However, the proof makes extensive use of non-functionality
of the automaton. As we show next, answer testing is tractable for functional weighted
vset-automata.

Theorem 5.6.1. Given a functional weighted vset-automaton A, a document d, and a
tuple t, the weight JAKK(d, t) assigned to t by A on d can be computed in polynomial time.

Proof. Let A, d, and t be as stated. Per definition, the weight assigned to t by A is

JAKK(d, t) :=
⊕

ρ∈P (A,d) and t=tup(ρ)

wρ .

Therefore, in order to compute the weight JAKK(d, t), we need to consider the weights of
all runs ρ for which t = tup(ρ). Furthermore, multiple runs can select the same tuple t
but assign variables in a different order.25

We first define an automaton At, such that JAtKK(d, t) = 1 and JAtKK(d)(t′) = 0 for
all t′ 6= t. Such an automaton At can be defined using a chain of |d|+ 2|V |+ 1 states,
which checks that the input document is d and which has exactly one nonzero run ρ,
with wρ = 1 and tup(ρ) = t.

By Theorem 5.5.4, there is a weighted vset-automaton A′ with JA′KK = JAKK ./ JAtKK.
It follows directly from the definition of A′ that JA′KK(d′, t′) = 0 if d′ 6= d or t′ 6= t
and JA′KK(d, t) = JAKK(d, t), otherwise. Furthermore, all runs ρ ∈ P (A′, d) have length
|d|+ 2|V |. Therefore, the weight JA′KK(d, t) can be obtained by taking the sum of the
25This may happen when variable operations occur consecutively, that is, without reading an alphabet

symbol in between.
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weights of all runs of length |d| + 2|V | of A′. We assume, w.l.o.g., that the states of
A′ are {1, . . . , n} for some n ∈ N. Due to distributivity of ⊕ over ⊗, this sum can be
computed as

JA′KK(d, t) = vI × (Mδ)|d|+2|V | × (vF )T ,
where

• vI is the vector (I(1), . . . , I(n)),
• Mδ is the n× n matrix with Mδ(i, j) =

⊕
a∈Σ∪ΓV δ(i, a, j), and

• (vF ) is the vector vF = (F (1), . . . , F (n)).

Therefore, by the assumption that K has an efficient encoding (Definition 5.4.1), the
weight can be computed in polynomial time.

5.6.2 Best Weight Evaluation
In many semirings, the domain is naturally ordered by some relation. For instance,
the domain of the probability semiring is Z+, which is ordered by the ≤-relation. This
motivates evaluation problems, where one is interested in some kind of optimization of
the weight. We start by giving the definition of an ordered semiring.26

Definition 5.6.2 (similar to Droste and Kuich [38]). A commutative monoid (K,⊕, 0)
is ordered if it is equipped with a linear order 4 preserved by the ⊕ operation. An
ordered monoid is positively ordered if 0 4 a for all a ∈ K. A semiring (K,⊕,⊗, 0, 1) is
(positively) ordered if the additive monoid is (positively) ordered and multiplication with
elements 0 4 a preserves the order.

We consider the following two problems.

Threshold
Input: Regular annotator A over an ordered semiring, document d ∈ Σ∗,

and a weight w ∈ K.
Question: Is there a tuple t with w 4 JAKK(d, t)?

MaxTuple
Input: Regular annotator A over an ordered semiring and a document d ∈ Σ∗.
Task: Compute a tuple with maximal weight, if it exists.

Notice that, if MaxTuple is efficiently solvable, then so is Threshold. We therefore
prove upper bounds for MaxTuple and lower bounds for Threshold. The Threshold
problem is sometimes also called the emptiness problem in the weighted automata
literature. It turns out that both problems are tractable for positively ordered semirings
that are bipotent.
26Note that the following definition slightly deviates from the definition by Droste and Kuich [38]. We

require the order to be linear, as the maximal weight would otherwise not be well defined.
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Theorem 5.6.3. Let (K,⊕,⊗, 0, 1) be a positively ordered, bipotent semiring. Further-
more, let A be a functional K-weighted vset-automaton, and let d ∈ Σ∗ be a document.
Then MaxTuple for A and d can be solved in polynomial time.

Proof. By Proposition 5.5.7, we can assume, w.l.o.g., that A is given as a functional
extended K-weighted vset-automaton. As K is bipotent, it must hold that a⊕ b ∈ {a, b}
for every a, b ∈ K. Therefore, the weight of a tuple t ∈ JAKK(d) is always equal to the
weight of one of the runs ρ with t = ref(ρ). In order to find the tuple with maximal
weight, we need to find the run of A on d with maximal weight. We define a directed
acyclic graph (DAG) which is obtained by taking a “product” between A and d. Finding
the run with the maximal weight then boils down to finding the path with maximal
weight in this DAG.

Assume that A = (V,Q, I, F, δ). Recall that 2ΓV denotes the power set of ΓV . We
define a weighted, edge-labeled DAG G = (N,E,w), where each edge e is in N × ({ε} ]
(2ΓV × {1, . . . , |d|+ 1}))×N and w assigns a weight w(e) ∈ K to every edge e. We note
that an edge (p, (T, i), q) ∈ E will encodes that a transition, labeled T , is reached after
reading d[1,i〉.
More formally, let N := {s, t} ] {(q, i) | q ∈ Q and 1 ≤ i ≤ |d| + 1}. We say that a

node n = (p, i) is in layer i of G, where s is in layer 0 and t in layer |d|+ 2. Furthermore,
let E be defined as follows:

E :={(s, ε, (q, 1)) | I(q) 6= 0}
∪ {((q, |d|+ 1), ε, t) | F (q) 6= 0}
∪ {((p, i), (T, i), (q, i)) | T ⊆ ΓV and δ(p, T, q) 6= 0}
∪ {((p, i), ε, (q, i+ 1)) | d[i,i+1〉 = a and δ(p, a, q) 6= 0} .

Furthermore, for T ⊆ ΓV and a ∈ Σ, we define the weight w(e) for all e ∈ E as follows:

w((s, ε, (q, 1))) := I(q)
w(((q, |d|+ 1), ε, t)) := F (q)

w(((p, i), (T, i), (q, i))) := δ(p, T, q)
w(((p, i), ε, (q, i+ 1))) := δ(p, a, q) .

Recall that, in extended weighted vset-automata, the set of states Q is a disjoint union
of letter- and variable states, such that all transitions labeled by σ ∈ Σ originate in letter
states and all transitions labeled by T ⊆ ΓV originate in variable states. Therefore, G
must be acyclic, as all edges are either from a node in layer i to a node in layer i + 1
or from a variable state to a letter state within the same layer. Furthermore, there is
a path from s to t in G with weight w if and only if there is a tuple t ∈ JAKK(d) with
the same weight. The Procedure BestWeightEvaluation shows how a path with maximal
weight can be computed in polynomial time.27 The correctness follows directly from K
27We note that all semiring operations must be computable efficiently as we assume that only efficient

encodings are used.
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being positively ordered, thus order being preserved by addition and multiplication with
an element ` ∈ K.

Procedure BestWeightEvaluation(G,s,t)
Input: A weighted, edge-labeled DAG G = (N,E,w), nodes s, t
Output: A path from s to t in G with maximal weight or Null, if no such path

exists.
1 p(s)← ε B p(n) will store the best path from s to n.
2 w(s)← 1 B w(n) will be the weight of the path p(n).
3 for s 6= n ∈ N in topological order do
4 if there is a node n′ and a label ` with (n′, `, n) ∈ E then
5 p(n) = ε
6 w(n) = 0
7 else
8 e = arg maxe:=(n′,`,n)∈E w(n′)⊗ w(e)
9 p(n) = p(n′) · e

10 w(n) = w(n′)⊗ w(e)

11 if w(t) 6= 0 then
12 output p(t)
13 else
14 output Null

If the semiring is not bipotent, however, the Threshold and MaxTuple problems
quickly become intractable.

Theorem 5.6.4. Let (K,⊕,⊗, 0, 1) be a semiring such that, for increasing values of
m,
⊕m

i=1 1 is strictly monotonously increasing. Furthermore, let A be a functional K-
weighted vset-automaton, let d ∈ Σ∗ be a document, and k ∈ K be a weight threshold.
Then Threshold for such inputs is NP-complete.

Proof. It is obvious that Threshold is in NP, as one can guess a tuple t and test in
PTIME whether w 4 JAKK(d, t), using Theorem 5.6.1.
For the NP-hardness, we will reduce from the MAX-3SAT problem. Given a 3CNF

formula and a natural number k, the decision version of MAX-3SAT asks whether there is
a valuation satisfying at least k clauses. Let ψ = C1 ∧ · · · ∧ Cm be a Boolean formula in
3CNF over variables x1, . . . , xn such that each clause Ci = (`i,1∨`i,2∨`i,3) is a disjunction
of exactly three literals `i,j ∈ {xc,¬xc | 1 ≤ c ≤ n}, 1 ≤ i ≤ k, 1 ≤ j ≤ 3. We can assume,
w.l.o.g., that no clause has two literals corresponding to the same variable.28 Observe
that, for each clause Ci, there are 23 = 8 assignments of the variables corresponding
28A clause C = x∨¬x∨ y can be omitted, as it is satisfied by every valuation and a clause C = x∨ x∨ y

can be replaced by two new clauses C1 = x ∨ z ∨ y and C2 = x ∨ ¬z ∨ y, where z is a new variable.
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Figure 5.4: Example gadgets for variable x.

to the literals of Ci of which exactly 7 satisfy the clause Ci. Formally, let fCi be the
function that maps a variable assignment τ to a number between 1 and 8, depending on
the assignments of the literals of the clause Ci. We assume, w.l.o.g., that fCi(τ) = 8 if
and only if Ci is not satisfied by τ .
We define a functional weighted automaton automaton Aψ over the unary alphabet

Σ = {σ} such that JAψKK(σn)(t) =
⊕m

i=1 1 if and only if the assignment corresponding
to t satisfies exactly m clauses in ψ and JAψKK(d, t) = 0 if d 6= σn or t does not encode a
variable assignment. Each variable xi of ψ is associated with a corresponding capture
variable xi of Aψ. With each assignment τ we associate a tuple tτ , such that

tτ (xi) =
{

[i, i〉 if τ(xi) = 0 , and
[i, i+ 1〉 if τ(xi) = 1 .

The automaton Aψ := (Σ, V,Q, I, F, δ) consists of m disjoint branches, where each branch
corresponds to a clause of ψ; we call these clause branches. Each clause branch is divided
into 7 sub-branches, such that a path in the sub-branch j corresponds to a variable
assignment τ if fCi(τ) = j. Thus, each clause branch has exactly one run ρ with weight
1 for each tuple tτ associated to a satisfying assignment τ of Ci.

More formally, the set of states Q = {qa,bi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ a ≤ 7, 1 ≤ b ≤ 5}
contains 5n states for every of the 7 sub-branches of each clause branch. Intuitively,
Aψ has a gadget, consisting of 5 states, for each variable and each of the 7 satisfying
assignments of each clause. Figure 5.4 depicts the three types of gadgets we use. Note
that the weights of the drawn edges are all 1. We use the left gadget if x does not
occur in the relevant clause and the middle (resp., right) gadget if the literal ¬x (resp.,
x) occurs. Furthermore, within the same sub-branch of Aψ, the last state of each
gadget is the same state as the start state of the next variable, i.e., qa,5i,j = qa,1i,j+1 for all
1 ≤ i ≤ k, 1 ≤ j < n, 1 ≤ a ≤ 7.

We illustrate the crucial part of the construction on an example. Let ψ = (x1 ∨
¬x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4). The corresponding weighted vset-automaton Aψ therefore
has 14 = 2 × 7 disjoint branches. Figure 5.5 depicts the sub-branch for clause C1
that corresponds to all assignments τ with fCi(τ) = 1 which we assume is the case if
x1 = x2 = 1 and x4 = 0.

Formally, the initial weight function and the final weight function are defined as follows:

I(qa,bi,j ) =
{

1 if j = b = 1
0 otherwise;

F (qa,bi,j ) =
{

1 if j = n, and b = 5
0 otherwise.
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Figure 5.5: The sub-branch of Aψ corresponding to C1 and x1 = x2 = 1, x4 = 0.

The transition function δ is defined as follows:

δ(qa,bi,j , o, q
a,b′

i,j ) =



1 b = 1, b′ = 2, o = xj`
1 b = 2, b′ = 3, o = axj
1 b = 2, b′ = 4, o = σ, and there is a variable assignment τ with

τ(xj) = 1 and fCi(τ) = a

1 b = 3, b′ = 5, o = σ, and there is a variable assignment τ with
τ(xj) = 0 and fCi(τ) = a

1 b = 4, b′ = 5, o = axj

All other transitions have weight 0.
We show that there is a tuple t ∈ JAψKK(σn) with weight wt =

⊕k
i=1 1 if and only if

the corresponding assignment τ satisfies exactly k clauses of ψ. Let τ be an assignment
of the variables x1, . . . , xn. Thus, there is a run ρ ∈ P (Aψ, σn) with weight wρ = 1
starting in qa,1i,1 , such that a = fCi(τ) if and only if τ satisfies clause Ci. Due to

⊕k
i=1 1

being strictly monotonously increasing it follows that
⊕k

i=1 1 4 wtτ if and only if the
corresponding assignment to τ satisfies at least k clauses. Let w =

⊕k
i=1 1. It follows

directly that there is an assignment τ of ψ satisfying k clauses if and only if there is a
tuple t with w 4 JAψKK(σn, t).

We note that Theorem 5.6.3 and Theorem 5.6.4 give us tight bounds for all semirings
we defined in Example 5.1.1. Furthermore, since MAX-3SAT is hard to approximate, we
can turn Theorem 5.6.4 into an even stronger inapproximability result for semirings where
approximation makes sense. To this end, we focus on semirings that contain (N,+, ·, 0, 1)
as a subsemiring in the following result. Note that this already implies that

⊕m
i=1 1 is

strictly monotonously increasing for increasing values of m.

Theorem 5.6.5. Let K be a semiring that contains (N,+, ·, 0, 1) as a subsemiring and let
A be a weighted vset-automaton over K. Unless PTIME = NP, there is no algorithm that
approximates the tuple with the best weight within a sub-exponential factor in polynomial
time.

Proof. Given a Boolean formula ψ in 3CNF, MAX-3SAT asks for the maximal number
of clauses satisfied by a variable valuation. Håstad [69, Theorem 6.5] shows that, for
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every ε > 0, it is NP-hard to approximate MAX-3SAT within a factor 8/7− ε. In other
words, unless PTIME = NP, there is no polynomial time algorithm which, given a 3CNF
formula, returns a variable assignment satisfying at least opt

8/7−ε clauses, where opt is
the maximal number of clauses which are satisfiable by a single variable assignment.
We can leverage this, using the reduction from Theorem 5.6.4, to show that there is no
polynomial time algorithm that approximates the tuple with the best weight with an
sub-exponential approximation factor.

Let ψ be a 3CNF formula with m clauses and let Aψ be the weighted vset-automaton
and d ∈ Σ∗ be as constructed from ψ as in the proof of Theorem 5.6.4. Let c = |Aψ|
be the size of Aψ, which is linear in n. As shown in Theorem 5.6.4, there is a tuple t
in Aψ with weight j if and only if the variable assignment corresponding to t satisfies
exactly j clauses. For a k ∈ N let Akψ be the weighted vset-automaton, constructed by
concatenating k copies of Aψ, each of which using a set of n fresh variables, by inserting
ε-edges with weight 1 from qi to qi+1 where qi is a final state of the i-th copy and qi+1
an initial state of the i+ 1-th copy. Observe that Akψ has size c · k, has nk variables, and
each tuple t ∈ JAkψKK(dk) encodes k, possibly different, variable assignments for ψ.

For the sake of contradiction, assume there is a polynomial time algorithm approximat-
ing the best weight of Akψ with a polynomial factor p(c) = ci for some constant i. That is,
given a spanner A of size c and a document d of size |d| ≤ c, the approximation algorithm
returns a tuple t with wt ≥ opt

p(c) , where opt is the maximal weight assigned to a tuple t over
d by A. Let t ∈ JAkψKK(dk) be such an approximation and τ1, . . . , τk be the corresponding
variable assignments of ψ. Recall that |Akψ| = c ·k and |dk| = n ·k ≤ c ·k. Per assumption,
there is an approximation algorithm, returning a tuple t with wt ≥ opt

p(c) ≥
opt

(c·k)i . The
tuple t encodes k variable assignments and the weight of the tuple is the product of the
weights of the variable assignments. Let τ be one the variable assignments, encoded by
t, which satisfy the most clauses.29 Due to Håstad [69, Theorem 6.5], this procedure
can at best lead to an (8/7 − ε) approximation of the maximal number of satisfiable
clauses. Therefore, it follows that wt ≤ opt

(8/7−ε)k . Thus, combining both inequalities, it
must hold that opt

(c·k)i ≤ wt ≤ opt
(8/7−ε)k . Thus, (8/7− ε)k ≤ (ck)i. However, if 1

8 > ε ≥ 0,
this does not hold for arbitrarily large k, as i and c are constants, leading to the desired
contradiction.

5.7 Enumeration Problems

In this section we consider computing the output of annotators from the perspective of
enumeration problems, where we try to enumerate all tuples with nonzero weight, possibly
from large to small. Such problems are highly relevant for (variants of) vset-automata,
as witnessed by the recent literature on the topic [6, 48].

29We note that there might be multiple assignments satisfying the same number of clauses.
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An enumeration problem P is a (partial) function that maps each input i to a finite or
countably infinite set of outputs for i, denoted by P (i). Terminologically, we say that,
given i, the task is to enumerate P (i).

An enumeration algorithm for P is an algorithm that, given input i, writes a sequence
of answers to the output such that every answer in P (i) is written precisely once. If
A is an enumeration algorithm for an enumeration problem P , we say that A runs in
preprocessing p and delay d if the time before writing the first answer is p(|i|), where |i|
is the size of the input i, and the time between writing every two consecutive answers
is d(|i|). By between answers, we mean the number of steps between writing the first
symbol from an answer until writing the first symbol of the next answer. We generalize
this terminology in the usual way to classes of functions. E.g., an algorithm with linear
preprocessing and constant delay has a linear function for p and a constant function for
d.

Given a K-weighted vset-automaton A and a document d, let f(A, d) be the maximal
time required for a single addition or multiplication while computing the weight JAKK(d, t)
for some tuple t. We note that, due to the assumption that K has an efficient encoding,
f(A, d) is at most polynomial in |A| and |d|. Furthermore, for instance for finite semirings
(like the Boolean semiring or the access control semiring), f(A, d) is constant. If the
order of the answers does not matter and the semiring is positive, we can guarantee an
enumeration algorithm which has linear preprocessing time and constant delay in the
size of the document and polynomial time and delay in the size of A and f(A, d).30 Note
that the proof of the theorem essentially requires to go through the entire proof of the
main result of Amarilli et al. [6, Theorem 1.1].

Theorem 5.7.1. Given a weighted functional vset-automaton A over a positive semiring
K, and a document d, the K-Relation JAKK(d) can be enumerated with preprocessing
linear in |d| and polynomial in |A| and f(A, d), and delay constant in |d| and polynomial
in |A| and f(A, d).

Proof Sketch. Amarilli et al. [6, Theorem 1.1] showed that, given a sequential vset-
automaton A and a document d, one can enumerate JAK(d) with preprocessing time
O((|Q|ω+1 + |A|)×|d|) and with delay O(|V |× (|Q|2 + |A|× |V |2)), where 2 ≤ ω ≤ 3 is an
exponent for matrix multiplication, V is the set of variables, and Q the set of states in A.
In other words, JAK(d) can be enumerated with linear preprocessing and constant delay
in d, and polynomial preprocessing and delay in A. To obtain this result, they view the
transition function of A as a (Boolean) transition matrix. Their methods easily extend
from the Boolean case to transition matrices over positive semirings.31 The claimed
complexity for enumeration of the K-Relation JAKK(d) can be achieved by computing all
matrix multiplications over K instead of B. Furthermore, instead of storing the set Λ
30We note that f(A, d) can be polynomial in the size of the document. Thus, strictly speaking,

preprocessing (resp., delay) might not be linear (resp., constant) in the size of the document. However,
stating the theorem like this enables us to give two direct corollaries (Corollaries 5.7.2 and 5.7.3)
depending on whether or not f(A, d) is constant.

31Note that positivity is required as otherwise weights might sum up or multiply to zero, which may
violate the constant delay.
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of current states, one has to store a set of (state,weight)-tuples in order to compute the
correct weights of the returned tuples.

Depending on whether or not f(A, d) is constant, we have the following two corollaries.

Corollary 5.7.2. Given a weighted functional vset-automaton A over a positive semiring
K, and a document d, such that f(A, d) is constant. Then the K-Relation JAKK(d) can
be enumerated with preprocessing linear in |d| and polynomial in |A|, and delay constant
in |d| and polynomial in |A|.

Corollary 5.7.3. Given a weighted functional vset-automaton A over a positive semiring
K, and a document d, such that f(A, d) is polynomial in |A| and |d|. Then the K-Relation
JAKK(d) can be enumerated with preprocessing linear in |d| and polynomial in f(A, d),
and delay constant in |d| and polynomial in f(A, d).

We now consider cases in which answers are required to arrive in a certain ordering.

Ranked Annotator Enumeration (RA-Enum)
Input: Regular functional annotator A over an ordered semiring (K,⊕,⊗, 0, 1)

and a document d.
Task: Enumerate all tuples t ∈ JAKK(d) in descending order on K.

Theorem 5.7.4. Let K be an positively ordered, bipotent semiring, let A be a K-weighted
functional vset-automaton, and let d ∈ Σ∗ be a document. Then RA-Enum can be solved
with polynomial delay and preprocessing.

Proof. By Proposition 5.5.7, we can assume that A is an extended functional K-weighted
vset-automaton. Therefore, all runs of A which accept a tuple t ∈ JAKK(d) have the same
label. We will use the DAG G we defined in the proof of Theorem 5.6.3 and run a slight
adaptation of Yen’s algorithm [168] on G.

From the proof of Theorem 5.6.3 it follows that, given G we can find a path from s to t
in G with maximal weight in polynomial time. Let p = n0 ·e0 ·n1 · · · ek−1 ·nk be a path in
G, where ni ∈ N and ej ∈ E for 0 ≤ i ≤ k and 0 ≤ j < k. We denote by p[i, i] the node
ni, by p[i, j] the path ni · ei · · · ej−1 · nj and by N(p) the set {ni | 0 ≤ i ≤ k} the set of
nodes used by p. The Procedure BestWeightEnumeration shows how Yen’s algorithm can
be adapted for the RA-Enum problem. Recall that per construction of D, all edges which
correspond to variable edges of A, are labeled by a tuple (T, i), which encodes that the
set T is processed after reading d[1,i〉. Thus, line 12 ensures that, whenever the algorithm
reaches line 13, all paths p[0, i] · p′ where p′ is a path from p[i, i] to t in G′ differ from
the paths in the set Out in at least one edge label and therefore, no tuple is enumerated
multiple times. Observe that the first output of Algorithm BestWeightEnumeration is
generated after polynomial time. Furthermore, every iteration of the while loop line 4,
takes polynomial time. Thus, the algorithm runs with polynomial preprocessing and
delay.
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Procedure BestWeightEnumeration(G,s,t).
Input: A weighted, edge-labeled DAG G = (N,E,w), as constructed in

Theorem 5.7.4, nodes s, t
Output: All paths from s to t in G in decreasing order without repetitions of

the same path labels.
1 Out ← ∅ B Out is the set of paths already written to output.
2 Cand ← ∅ B Cand is a set of candidate paths from s to t.
3 p ← BestWeightEvaluation(G, s, t)
4 while p 6= Null do
5 output p
6 Add p to Out
7 for i = 0 to |p| − 1 do
8 G′ ← (N,E′, w), where E′ is a copy of E
9 for every path p1 in Out with p1[0, i] = p[0, i] do

10 ni · (ni, `i, ni+1) · ni+1 ← p1[i, i+ 1]
11 for every p, q ∈ N with (p, `i, q) ∈ E′ do
12 Remove the edge

(
ni, `i, n) from E′ B Delete all `i-labeled edges.

13 p2 ← BestWeightEvaluation(G′, p[i, i], t)
14 if p2 is not Null then
15 Add p[0, i] · p2 to Cand

16 p← a path in Cand with maximal weight B p← Null if Cand = ∅.
17 Remove p from Cand
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Chapter 6

Aggregation Functions for Document
Spanners

In this chapter we study the computational complexity of aggregation functions over
regular document spanners. Given an aggregation function α, a spanner S, and a document
d, our main objective is to understand when it is tractable to compute an aggregate
α(S(d)). Furthermore, when exact computation is intractable, we study whether or not
the aggregate can be approximated. To the best of our knowledge, counting the number
of tuples extracted by a vset-automaton (i.e., the Count aggregate function) is the only
aggregation function for document spanners, which has been studied in literature.1 That
is, Florenzano et al. [48] study the problem of counting the number of extractions of a
vset-automaton and approximation thereof is studied by Arenas et al. [12]. To be specific,
Arenas et al. [12] give a polynomial-time uniform sampling algorithm from the space
of words which are accepted by an NFA and have a given length. Using that sampling,
they establish an FPRAS for the Count aggregate function. Our FPRAS results are also
based on their results. Throughout this chapter, we explain the connection between the
known results and our work in more detail. Yet, to the best of our knowledge, this work
is the first to consider aggregate functions over numerical values extracted by document
spanners.

Organization

This chapter is organized as follows. In Section 6.1, we give preliminary definitions and
notation. We summarize the main results of this chapter in Section 6.2 and expand on
these results in the later sections. In Section 6.3 we give some preliminary results. We
describe our investigation for constant-width weight functions, polynomial-time weight
functions and regular weight functions in Sections 6.4, 6.5 and 6.6, respectively. Finally,
we study approximate evaluations in Section 6.7.

1Arguably we also implicitly discuss the counting problem in Chapter 5 and study the maximum
aggregation in Section 5.6.2.
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T h e r e t a r e t 7 t e v e n t s t i n t B e l g i u m , t 1 0 - 1 5 t i n t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

F r a n c e , t 4 t i n t L u x e m b o u r g , t t h r e e t i n t B e r l i n .

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

dxloc dxevents w(d, t)

Belgium 7 7
France 10-15 10
Luxembourg 4 4
Berlin three 3

xloc xevents w(d, t)

[23, 30〉 [11, 12〉 7
[41, 47〉 [32, 37〉 10
[54, 64〉 [49, 50〉 4
[75, 81〉 [66, 71〉 3

Figure 6.1: A document d (top), a string relation with corresponding weights (bottom
left), and the corresponding span relation R with weights (bottom right).

6.1 Preliminaries on Aggregates
In this section, we will give some additional preliminaries. Recall that given a document
d and a vset-automaton A, testing whether JAK(d) 6= ∅ is NP-complete, even if A is
deterministic (cf. Proposition 2.2.7). Therefore, we only consider functional document
spanners in this chapter.2

6.1.1 Aggregate Queries
Aggregation functions, such as min, max, and sum operate on numerical values from
database tuples, whereas all the values of d-tuples are spans. Yet, these spans may
represent numerical values, from the document d, encoded by the captured words (e.g.,
“3,” “three,” “March” and so on). To connect spans to numerical values, we will use
weight functions w that map document/tuple pairs to numbers in Q, that is, if d is a
document and t is a d-tuple then w(d, t) ∈ Q. We discuss weight functions in more detail
in Section 6.2.3.

Example 6.1.1. Consider the document in Figure 6.1 and assume that we want to
calculate the total number of mentioned events. The table at the bottom left depicts a
possible extraction of locations with their number of events, where each tuple is annotated
with a weight w(d, t). The table on the bottom right depicts the corresponding span
relation. To get an understanding of the total number of events, we may want to take
the sum over the weights of the extracted tuples, namely 7 + 10 + 4 + 3 = 24.

For a spanner S, a document d, and weight function w, we denote by Img(S, d, w) the
set of weights of output tuples of S on d, that is, Img(S, d, w) = {w(d, t) | t ∈ S(d)}.

2We note in general it suffices for the emptiness problem that vset-automaton is sequential. However,
some of our results build upon K-Annotators, which correspond to functional spanners.
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Furthermore, let Img(w) ⊆ Q be the set of weights assigned by w, that is, k ∈ Img(w) if
and only if there is a document d and a d-tuple t with w(d, t) = k.

Definition 6.1.2. Let d be a document and A be a vset-automaton such that JAK(d) 6= ∅.
Let S = JAK, let w be a weight function, and q ∈ Q with 0 ≤ q ≤ 1. We define the
following spanner aggregation functions:

Count(S, d) := |S(d)|
Min(S, d, w) := min

t∈S(d)
w(d, t)

Max(S, d, w) := max
t∈S(d)

w(d, t)

Sum(S, d, w) :=
∑

t∈S(d)

w(d, t)

Avg(S, d, w) := Sum(S, d, w)
Count(S, d)

q-Quantile(S, d, w) := min
{
r ∈ Img(S, d, w)

∣∣∣∣ |{t ∈ S(d) | w(d, t) ≤ r}|
|S(d)| ≥ q

}
Observe that Min(S, d, w) = 0-Quantile(S, d, w) and Max(S, d, w) = 1-Quantile(S, d, w).

6.1.2 Main Problems
Let S be a class of regular document spanners and W be a class of weight functions. We
define the following problems.

Count[S]
Input: Spanner S ∈ S and document d ∈ Σ∗.
Question: Compute Count(S, d).

Sum[S,W]
Input: Spanner S ∈ S, document d ∈ Σ∗, a weight function w ∈ W.
Question: Compute Sum(S, d, w).

The problems Average[S,W], q-Quantile[S,W],Min[S,W], and Max[S,W] are
defined analogously to Sum[S,W]. Notice that all these problems study combined
complexity. Since the number of tuples in S(d) is always in O(|d|2k), where k is the
number of variables of the spanner S (cf. Corlollary 6.3.4), the data complexity of all
the problems is in FP: One can just materialize S(d) and apply the necessary aggregate.
Under combined complexity, we will therefore need to find ways to avoid materializing
S(d) to achieve tractability.
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6.1.3 Algorithms and Complexity Classes
We begin by giving the definitions of fully polynomial-time randomized approximation
schemes (FPRAS).

Definition 6.1.3. Let f be a function that maps inputs x to rational numbers and let
A be a probabilistic algorithm, which takes an input instance x and a parameter δ > 0.
Then A is called a fully polynomial-time randomized approximation scheme (FPRAS), if

• Pr
(∣∣A(x, δ)− f(x)

∣∣ ≤ δ ·
∣∣f(x)

∣∣) ≥ 3
4 ;

• the runtime of A is polynomial in |x| and 1
δ .

We will now recall the definitions for some of the complexity classes we will use in the
following sections, closely following the Handbook of Theoretical Computer Science [164].
The class FP (respectively, FEXPTIME) is the set of all functions that are computable
in polynomial time (resp., in exponential time). A counting Turing Machine is an
nondeterministic Turing Machine whose output for a given input is the number of
accepting computations for that input. Given functions f, g : Σ∗ → N, f is said to be
parsimoniously reducible to g in polynomial time if there is a function h : Σ∗ → Σ∗, which
is computable in polynomial time, such that for every x ∈ Σ∗ it holds that f(x) = g(h(x)).
Furthermore, we say that f is Turing reducible to g in polynomial time, if f can be
computed by a polynomial time Turing Machine M , which has access to an oracle for g.
The class #P is the set of all functions that are computable by polynomial-time

counting Turing Machines. A problem X is #P-hard under parsimonious reductions
(resp., Turing reductions) if there are polynomial time parsimonious reductions (resp.,
Turing reductions) to it from all problems in #P. If in addition X ∈ #P, we say that X
is #P-complete under parsimonious reductions (resp., Turing reductions).

The class FP#P is the set of all functions that are computable in polynomial time by an
oracle Turing Machine with a #P oracle. It is easy to see that, under Turing reductions,
a problem is hard for the class #P if and only if it is hard for FP#P. We note that
every problem which is #P-hard under parsimonious reductions is also #P-hard under
Turing reductions. Therefore, unless mentioned otherwise, we always use parsimonious
reductions.
The class spanL is the class of all functions f : Σ∗ → N for which there is an

nondeterministic logarithmic space Turing Machine M with input alphabet Σ such that
f(x) = |M(x)|.

The class OptP is the set of all functions computable by taking the maximum output
value over all accepting computations of a polynomial-time nondeterministic Turing
Machine that outputs natural numbers. Assume that Γ is the Turing Machine alphabet.
Let f, g : Γ∗ → N be functions. A metric reduction, as introduced by Krentel [85], from
f to g is a pair of polynomial-time computable functions T1, T2, where T1 : Γ∗ → Γ∗ and
T2 : Γ∗ × N→ N, such that f(x) = T2(x, g(T1(x))) for all x ∈ Γ∗.
The class BPP is the set of all decision problems solvable in polynomial time by a

probabilistic Turing Machine in which the answer always has probability at least 1
2 + δ of

being correct for some fixed δ > 0.

110



6.2 Main Results

6.2 Main Results
In this section we present the main results of this chapter.

6.2.1 Known Results
We begin by giving an overview of the results on Count, which are known from the
literature.

Theorem 6.2.1 (Arenas et al. [12], Florenzano et al. [48]). Count[ufVSA] is in FP
and Count[fVSA] is spanL-complete. Furthermore, Count[fVSA] can be approximated
by an FPRAS.

Proof. Follows from Arenas et al. [12, Corollaries 4.1 and 4.2], and Florenzano et al. [48,
Theorem 5.2].

The spanL lower bound by Florenzano et al. [48, Theorem 5.2] is due to a parsimonious
reduction from the #NFA(n)-problem3 which is known to be #P-complete under Turing
reductions (cf. Kannan et al. [75]). As every parsimonious reduction is also a Turing
reduction, the following corollary follows immediately.

Corollary 6.2.2. Count[fVSA] is #P-hard under Turing reductions.

Two observations can be made from these results. First, Count requires the input
spanner to be unambiguous for tractability. This tractability implies that Count can be
computed without materializing the possibly exponentially large set S(d) if the spanner
is unambiguous. Furthermore, if the spanner is not unambiguous then, due to spanL-
completeness of Count, we do not know an efficient algorithm for its exact computation
(and therefore may have to materialize S(d)), but Count can be approximated by an
FPRAS. We will explore to which extent this picture generalizes to other aggregates.

6.2.2 Overview of New Results
The complexity results are summarized in Table 6.1. By now the reader is familiar with
the aggregate problems and the types of spanners we study. In the next subsection
(Section 6.2.3), we will define the different representations of weight functions that we use.
Here, CWidth (respectively, CWidthN and CWidthQ+) are constant-width weight func-
tions (which only assign natural numbers or positive rationals), Poly are polynomial-time
computable weight functions, and Reg (resp., UReg) are weight functions represented
by weighted (resp., unambiguous weighted) vset-automata.

Entries in the table should be read from left to right. For instance, the third row states
that the Min problem, for both spanner classes ufVSA and fVSA, and for all three classes
CWidth, URegT, and RegT of weight functions is in FP. Likewise, the fourth row

3Given an NFA A and a natural number n, encoded in binary, the #NFA(n) problem asks for the
number of words w ∈ L(A) of length n. The #NFA(n) problem is sometimes also called Census
Problem.
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Aggregate Spanner Weights Complexity Approximation

Count ufVSA - in FP -
fVSA - #P-hard† FPRAS

Min ufVSA, fVSA CWidth,UReg,RegT in FP -
RegQ,Poly OptP-hard no FPRAS

Max ufVSA, fVSA CWidth,UReg in FP -
Reg,Poly OptP-hard no FPRAS

Sum
ufVSA CWidth,UReg,RegQ in FP -

RegT,Poly #P-hard no FPRAS

fVSA CWidthN spanL-complete FPRAS
CWidth,UReg,Reg,Poly #P-hard no FPRAS

Average
ufVSA CWidth,UReg,RegQ in FP -

RegT,Poly #P-hard no FPRAS

fVSA CWidthQ+ #P-hard† FPRAS
CWidth,UReg,Reg,Poly #P-hard† no FPRAS

q-Quantile ufVSA CWidth in FP -
UReg,Reg,Poly #P-hard† no FPRAS

fVSA CWidth,UReg,Reg,Poly #P-hard† no FPRAS
q-Quantile fVSA Poly - FPRAS-like
(positional) approximation

Table 6.1: Detailed overview of complexities of aggregate problems for document spanners.
All problems are in FEXPTIME. The “no FPRAS” claims either assume that
RP 6= NP or assume that the polynomial hierarchy does not collapse. The
#P-hardness results, marked with † rely on Turing reductions.

states that the same problems with RegQ or Poly weight functions become OptP-hard
and that the existence of an FPRAS would contradict commonly believed conjectures.
In general, the table gives a detailed overview of the impact of (1) unambiguity of

spanners and (2) different weight function representations on the complexity of computing
aggregates.

6.2.3 Results for Different Weight Functions

We formalize how we represent the weight functions for our new results. Recall that
weight functions w map pairs consisting of a document d and d-tuple t to values in Q.
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Constant-Width Weight Functions

The simplest type of weight functions we consider are the constant-width weight functions.4
Let 1 ≤ c ∈ N be a constant. A constant-width weight function (CWidth) w assigns
values based on the strings selected by at most c variables. A constant-width weight
function CWidth is given in the input as a relation R over the numerical semiring
Q = (Q,+,×, 0, 1) and the variables X, where X ⊆ Vars is a set of at most c variables.
Recall that dt denotes the tuple (dt(x1), . . . , dt(xn)), where Vars(t) = {x1, . . . , xn}. To
facilitate presentation, we assume that the variables in X are always present in t, that is,
X ⊆ Vars(t). The weight function w(d, t) is defined as

w(d, t) = R(dπXt) .

As we will see in Section 6.4, Max[fVSA,CWidth] and Min[fVSA,CWidth] are
in FP (Theorem 6.4.1). Furthermore, we show that the problems Sum[S,CWidth],
Average[S,CWidth], and q-Quantile[S,CWidth] behave similarly to Count[S],
that is, they are in FP if S = ufVSA (Theorem 6.4.3) and intractable if S = fVSA
(Theorems 6.4.4, 6.4.5, and 6.4.6).

Polynomial-Time Weight Functions

How far can we push our tractability results? Next, we consider more general ways of
mapping d-tuples into numbers. The most general class of weight functions we consider
is the set of polynomial-time weight functions (Poly). A function w from Poly is
given in the input as a polynomial-time Turing Machine M that maps (d, t) pairs to
values in Q and defines w(d, t) = M(d, t). Not surprisingly there are multiple drawbacks
of having arbitrary polynomial time weight functions. The first is that all considered
aggregates become intractable, even if we only consider unambiguous vset-automata
(Theorems 6.5.1, and 6.5.2). However, all aggregates can at least be computed in
exponential time (Theorem 6.5.3).

Regular Weight Functions

As the class of polynomial-time weight functions quickly leads to intractability, we
focus on a restricted class that is less restrictive than CWidth but not as general as
Poly, such that we can understand the structure of the representation towards efficient
algorithms. Our final classes of weight functions are based on K-Annotators as defined in
Chapter 5. More precisely, we consider (unambiguous) functional weighted vset-automata
over the tropical semiring T = (Q ∪ {∞},min,+,∞, 0) and the numerical semiring
Q = (Q,+,×, 0, 1).5 Formally, let Reg := RegT ∪RegQ be the class of all Annotators
over the tropical or numerical semiring. We observe that due to Propositions 5.4.2

4We note that this is an extension of the single-variable weight functions, which where studied by
Doleschal et al. [31].

5One can also consider the tropical semiring with max/plus, in which case the complexity results
are analogous to the ones we have for the tropical semiring with min/plus, with Min and Max
interchanged.
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q0start q1 q2 q3 q4 q5

Σ; 0

x`; 0
1; 100
...

8; 800
9; 900

0; 0
1; 10
...

8; 80
9; 90

0; 0
1; 1
...

8; 8
9; 9

ax; 0

Σ; 0

Figure 6.2: An unambiguous functional weighted vset-automaton over the tropical semir-
ing with initial state q0 (with weight 0) and accepting state q5 (with weight
0), extracting three digit natural numbers captured in variable x. Recall
that, over the tropical semiring, the weight of a run is the sum of all its edge
weights.

and 5.4.4, both semirings have efficient encodings. Therefore all complexity results of
Chapter 5 hold. A regular (Reg) weight function w is represented by a functional weighted
vset-automaton W ∈ Reg and defines w(d, t) = JW K(d, πVars(W )(t)). Furthermore, as
for constant width weight functions, we assume that the variables used by W are always
present in t, that is, Vars(W ) ⊆ Vars(t).
The set of unambiguous regular (UReg) weight functions is the subset of Reg that

is represented by unambiguous functional weighted vset-automata, that is, UReg :=
URegT ∪URegQ.

Example 6.2.3. Figure 6.2 gives an unambiguous functional weighted vset-automaton
over the tropical semiring that extracts the values of three-digit natural numbers from
text. It can easily be extended to extract natural numbers of up to a constant number
of digits by adding nondeterminism. Likewise, it is possible to extend it to extract
weights as in Example 6.1.1. If a single variable captures a list of numbers, similar to
d[32,37〉 = 10−15, one may use ambiguity to extract the minimal number represented in
this range.

Our results for regular and unambiguous regular weight functions are that the situation
is similar to CWidth when it comes to Min, Max, Sum, and Average. The main
difference is that, depending on the semiring, we require more unambiguity. For instance,
for the tropical semiring, one needs unambiguity of the regular weight function for Max
and for Sum, and Average one needs unambiguity for both the spanner and the regular
weight function to achieve tractability. Contrary, over the numerical semiring, one needs
unambiguity of the regular weight function for Min and Max, whereas for Sum and
Average unambiguity of the spanner is sufficient for tractability. For q-Quantile, the
situation is different from CWidth in the sense that regular weight functions render the
problem intractable. We refer to Table 6.1 for an overview.
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6.2.4 Approximation
In the cases where exact computation of the aggregate problem is intractable, we consider
the question of approximation. It turns out that there exist FPRAS’s in two settings
that we believe to be interesting. Firstly, in the case of Sum and Average and constant-
width weight functions, the restriction of unambiguity in the spanner can be dropped
if the weight function uses only nonnegative weights. Secondly, although q-Quantile
is #P-hard under Turing reductions for general fVSA, it is possible to positionally
approximate the Quantile element in an FPRAS-like fashion, even with the very general
polynomial-time weight functions. We discuss this problem in more detail in Section 6.7.

6.3 Preliminary Results
In this section, we give some basic results for document spanners and weight functions,
which we use throughout this chapter. That is, we study the relative expressiveness of the
previously defined classes of weight functions in Section 6.3.1 and give some preliminary
results on document spanners in Section 6.3.2.

6.3.1 Relative Expressiveness of Weight Functions
We begin by showing that every constant-width weight function is also an unambiguous
regular weight function.

Proposition 6.3.1. CWidth ⊆ URegQ ∩URegT.

Proof. Let w ∈ CWidth be a constant-width weight function, represented by a Q-relation
R over X. We begin by showing that w ∈ URegQ. Let X = {x1, . . . , xn}. We construct
a Q-annotator W representing w. Recall that the tuples in R are over the domain of
documents and not over spans. We define an unambiguous vset-automaton At, for every
tuple t ∈ R, such that t′ ∈ JAtKB(d) if and only if dt′ = t. Let t ∈ R. For every x ∈ X,
let

Axt := Σ∗ · x{t(x)} · Σ∗

and
At := Ax1

t ./ · · · ./ Axnt .

It is straightforward to verify that all Axt are unambiguous. Thus, due to Corollary 5.5.10,
the automaton At is also unambiguous.

We define Wt as the unambiguous functional Q-weighted vset-automaton, such that

JWtKQ(d, t′) =
{
R(t) if dt′ = t
0 otherwise.

This can be achieved by interpreting At as a Q-weighted vset-automaton, where all edges
have weight 1, the final weight function assigns weight 1 to all accepting states, and the

115



Chapter 6 Aggregation Functions for Document Spanners

initial weight function assigns weight R(t) to the initial state of At. We finally define W
as the union of all Wt. That is,

W =
⋃
t∈R

Wt .

We observe that, by Lemma 5.5.5, W must be unambiguous as all Wt are unambiguous
and the automata Wt are pairwise disjoint. Recall that JW KQ(d, t) = 0 = 0 if there is no
run of W on ref(d, t), i.e. dt /∈ R. Therefore, JW KQ(d, t) = R(dt) as desired.
The proof for CWidth ⊆ URegT follows the same lines. However, the zero element

of the tropical semiring is ∞ which implies that the automaton W must have exactly
one run ρ for every tuple t, even if w(d, t) = 0. To this end, let Wt be as defined before,
but interpreted over the tropical semiring. We construct an unambiguous functional
T-weighted vset-automaton WR, such that JWRKT(d, t) = 0 if dt /∈ R and WR has no
run for t otherwise. Observe that R is a recognizable string relation.6 Therefore, due
to Theorem 5.5.11, there is a document spanner AR, with t ∈ JARK(d) if and only if
dt ∈ R. Furthermore, let AR be the complement of AR, that is, t ∈ JARK(d) if and only
if dt /∈ R. Note that AR ∈ VSA as regular document spanners are closed under difference
(cf. Fagin et al. [45, Theorem 5.1]). By Proposition 2.2.6, we can assume, w.l.o.g., that
AR ∈ dfVSA. Let WR be AR, interpreted as T-weighted vset-automaton, that is, each
transition, initial and final state gets weight 1 = 0. Note that, due to AR ∈ dfVSA, WR
is unambiguous and functional. It follows that JWRKT(d, t) = 0 if dt /∈ R and WR has no
run for t otherwise. Let

W = WR ∪
⋃
t∈R

Wt .

Again, we observe that, by Lemma 5.5.5, W must be unambiguous as all involved
automata are unambiguous and pairwise disjoint. Furthermore,

JW KT(d, t) =
{
R(dt) if dt ∈ R
0 otherwise.

Therefore, JW KT(d, t) = R(dt) as desired.

Recall that, given a document d and a d-tuple t, the weight w(d, t) can be computed in
polynomial time (cf. Theorem 5.6.1). We can therefore make the following observation.

Observation 6.3.2. Reg ⊆ Poly.

6.3.2 Technical Foundations
We give some preliminary results which will be used throughout this chapter. That is,
we first show that the number of spans over a document d is polynomial in the size of
the document.

6Recall that a k-ary string relation is recognizable if it is a finite union of Cartesian products L1×· · ·×Lk,
where each Li is a regular language. Note that R is recognizable as it is the union over all tuples
t ∈ R, where each tuple is represented by the Cartesian product {t(x1)} × · · · × {t(xn)} with
Vars(t) = {x1, . . . , xn}.
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Lemma 6.3.3. Given a document d the number of spans over d is polynomial in the
size of d. That is, |Spans(d)| = (|d|+1)·(|d|+2)

2 , for every d ∈ Σ∗.

Proof. For a span [i, j〉, let ` = j − i be the length of the span. It is easy to see that for
any document d, there is exactly one span of length |d|, two spans of length |d| − 1, three
spans of length |d| − 2, etc. Thus, there are 1 + 2 + · · ·+ (|d|+ 1) = (|d|+1)·(|d|+2)

2 spans
over a document d. Therefore, Spans(d) = (|d|+1)·(|d|+2)

2 , concluding the proof.

It follows directly that the maximal number of tuples, extracted by a functional
document spanner is exponential in the size of the spanner.

Corollary 6.3.4. Let A ∈ fVSA be a vset-automaton and d ∈ Σ∗ be a document. Then
Count(S, d) ≤ |Spans(d)||Vars(A)| =

(
(|d|+1)·(|d|+2)

2

)|Vars(A)|
.

As we show next, given a number of variables, a document d and a number k of tuples,
we can construct an unambiguous functional vset-automaton A and a document d′ such
that A extracts exactly k tuples on d′. We will use this technical lemma throughout this
chapter for multiple proofs regarding q-Quantile aggregation.

Lemma 6.3.5. Let X := {x1, . . . , xv} ∈ Vars be a set of variables, d ∈ Σ∗ be a document,
and 0 ≤ k ≤ |Spans(d)||X|. Then there is a vset-automaton A ∈ ufVSA with Vars(A) = X
and a document d′ ∈ Σ∗ such that |JAK(d′)| = k. Furthermore, A and d′ can be constructed
in time polynomial in |X| and d.

Proof. We observe that the statement holds for k = 0. Therefore we assume, w.l.o.g.,
that 1 ≤ k ≤ |Spans(d)|v.
We begin by proving the statement for |X| = 1. Let 1 ≤ k ≤ |Spans(d)|. Recalling

the proof of Lemma 6.3.3, we observe that k can be written as a sum k = k1 + · · ·+ kn
of n ≤ |d| + 1 different natural numbers with 0 ≤ k1 < · · · < kn ≤ |d| + 1. We
construct an automaton Ak ∈ ufVSA, which consists of n branches, corresponding to
k1, . . . , kn. On document d, the branch corresponding to ki selects all spans of length
`i := |d|+ 1−ki. Slightly overloading notation, each of these branches can be constructed
as an unambiguous vset-automaton Aki := Σ∗ · x{Σ`i} · Σ∗. We observe that there are
exactly ki spans over d with length `i, and therefore |JAkiK(d)| = ki. The automaton Ak
is defined as

Ak := Ak1 ∪ · · · ∪Akn .

It is straightforward to verify that all automata Aki are unambiguous and functional.
Thus, due all Aki being pairwise disjoint, it holds that Ak ∈ ufVSA (cf. Lemma 5.5.5).
Furthermore, we observe that

|JAkK(d)| = |JAk1K(d)|+ · · ·+ |JAknK(d)| = k1 + · · ·+ kn = k .

It remains to show the statement for v := |X| > 1. Let # /∈ Σ be a new alphabet
symbol. We build upon the encoding for |X| = 1. That is, for every 1 ≤ k ≤ |Spans(d)|
let Axk be the automaton Ak, using variable x, as defined previously. We observe that
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every 1 ≤ k ≤ |Spans(d)|v has an encoding k = k1 · · · kv in base |Spans(d)| of length v.
The document d′ consists of v copies of d ·#, more formally

d′ := (d ·#)v .

For every 1 ≤ i ≤ v, we construct an automaton A′ki , which selects exactly ki ·
|Spans(d)|v−i tuples over document d′. More formally,

A′ki := d · x1{#} · d · x2{#} · · · d · xi−1{#} ·Axiki ·# ·A
xi+1
|Spans(d)| ·# · · ·# ·A

xv
|Spans(d)| ·# .

The automaton A′k is then defined as the union of all A′ki , that is,

A′k := A′k1
∪ · · · ∪A′kv .

We observe that A′ki ∈ ufVSA and due to all A′ki being pairwise disjoint, A′k ∈ ufVSA
(cf. Lemma 5.5.5). Furthermore, we observe that

|JA′kK(d′)| = |JA′k1
K(d′)|+ · · · |JA′vK(d)′| = k1 + · · ·+ kn = k .

This concludes the proof.

6.4 Constant-Width Weight Functions
We begin this section by showing that Min and Max are tractable for constant-width
weight functions. The reason for their tractability is that, for a constant number of
variables X ⊆ Vars(A), the spans associated to X in output tuples can be computed in
polynomial time. Building upon Corollary 6.3.4, we show that Min and Max are in FP
for constant-width weight functions and functional vset-automata. We immediately have:

Theorem 6.4.1. Min[fVSA,CWidth] and Max[fVSA,CWidth] are in FP.

Proof. Let A ∈ fVSA, d ∈ Σ∗, X ⊆ Vars(A) with |X| ≤ c, and w ∈ CWidth be given as
a Q-Relation R over X. We first show that the set {πXt | t ∈ JAK(d)} can be computed
in time polynomial in the sizes of A and d.
To this end, we observe that, per definition of projection for document spanners,

{πXt | t ∈ JAK(d)} =
(
πX(JAK)

)
(d). Since A is functional, a vset-automaton for πX(JAK)

can be computed in polynomial time (cf. Freydenberger et al. [54, Lemma 3.8]). Due to
|X| ≤ c, it follows from Corollary 6.3.4 that there are at most polynomially many tuples
in
(
πX(JAK)

)
(d). Thus, the set {πXt | t ∈ JAK(d)} can be materialized in polynomial

time.
In order to compute Min and Max, a polynomial time algorithm can iterate over

all tuples t in {πXt | t ∈ JAK(d)}, evaluate R(d, t) and maintain the minimum and the
maximum of these numbers.
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Algorithm 1: Calculate the multiset SA,d.
Input: An unambiguous, functional vset-automaton A ∈ ufVSA, a document

d ∈ Σ∗.
Output: The multiset SA,d.

1 S ← ⦃⦄

2 S← πX(JAK)(d)
3 for t ∈ S do
4 At ← A ./ Aref(d,t) B Aref(d,t) is the ufVSA that only accepts ref(d, t).
5 S(πXt)← Count(JAtK, d)
6 output S

In order to calculate aggregates like Sum,Avg, or q-Quantile, it is not sufficient to
know which weights are assigned, but also the multiplicity of each weight is necessary.
Recall that counting the number of output tuples is tractable if the vset-automaton is
functional and unambiguous (Theorem 6.2.1) and spanL-complete if the spanner is only
functional. We now show that we can achieve tractability of the mentioned aggregate
problems if the vset-automaton is functional and unambiguous. The reason is that we
can compute in polynomial time the multiset SA,d := ⦃πXt | t ∈ JAK(d)⦄, where we
represent the multiplicity of each tuple t′ (i.e., the number of tuples t ∈ JAK(d) such that
πXt = t′) in binary.

Lemma 6.4.2. Given a vset-automaton A and a document d, the multiset SA,d can be
computed in FP if A ∈ ufVSA.

Proof. The procedure is given as Algorithm 1. It is straightforward to verify that
the algorithm is correct. Due to Corollary 6.3.4, the set (πXJAK)(d) is at most of
polynomial size. Furthermore, slightly overloading notation, the automaton Aref(d,t) :=
ref(d, t) ∈ ufVSA can be constructed in polynomial time and due to Corollary 5.5.10 an
unambiguous functional vset-automaton for At can be computed in polynomial time as
well. By Theorem 6.2.1, each iteration of the for-loop also only requires polynomial time.
Thus, the whole algorithm terminates after polynomially many steps.

It follows that all remaining aggregate functions can be efficiently computed if the
spanner is given as an unambiguous functional vset-automaton.

Theorem 6.4.3. The problems Sum[ufVSA,CWidth], Average[ufVSA,CWidth],
and q-Quantile[ufVSA,CWidth] are in FP, for every 0 ≤ q ≤ 1.

Proof. Let A ∈ ufVSA be a vset-automaton, d ∈ Σ∗ be a document, w ∈ CWidth
be a weight function, represented by a Q-relation R over X. Due to Lemma 6.4.2 the
multiset SA,d can be computed in polynomial time. Thus one can compute the multiset
W := ⦃R(dt) | t ∈ SA,d⦄ in polynomial time. It is straightforward to compute the
aggregates in polynomial time from W .
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We conclude this section by showing that Sum, Avg, and q-Quantile are not tractable,
if the spanner is given as a functional vset-automaton.

Theorem 6.4.4. Sum[fVSA,CWidth] is #P-hard, even if w is represented by the
Q-Relation R over {x} with

R(d) :=


1 if d = 1
−1 if d = −1
0 otherwise.

Proof. We will give a reduction from #CNF which is #P-complete under parsimonious
reductions. Let φ be a Boolean formula in CNF over variables x1, . . . , xn and let
w ∈ CWidth be the weight function which is represented by the Q-Relation R, which is
as defined in the theorem statement.
We construct a vset-automaton A ∈ fVSA and a document d := an · − · 1, such that

Sum(JAK, d, w) = c, where c is the number of variable assignments which satisfy φ.
We begin by defining two vset-automata A1, A−1, with Vars(A1) = Vars(A−1) =

{x1, . . . , xn, x}. Slightly overloading notation, we define both automata by regex formulas.
The automaton A1 selects exactly 2n tuples on document d, all of which get assigned

weight 1 by w. More formally,

A1 := (x1{a} ∨ x1{ε} · a) · · · (xn{a} ∨ xn{ε} · a) · − · x{1} .

Therefore, Sum(JA1K, d, w) = Count(JA1K, d) = 2n.
As in the proof of Theorem 5.6.4, we encode variable assignments into tuples. That

is, each variable xi of φ is associated with a corresponding capture variable xi of A−1.
With each assignment τ we associate the tuple tτ , such that

tτ (xi) :=
{

[i, i〉 if τ(xi) = 0, and
[i, i+ 1〉 if τ(xi) = 1 .

We construct the automaton A−1 as a regex formula α, such that there is a one-to-one
correspondence between the non-satisfying assignments for φ and tuples in JαK(d). More
formally, for each clause Cj of φ and each variable xi, we construct a regex-formula

αi,j :=


xi{ε} · a if xi appears in Cj ,
xi{a} if ¬xi appears in Cj ,
(xi{ε} · a) ∨ xi{a} otherwise.

Consequently, we define αj := α1,j · · ·αn,j · x{−1}.
For example, if we use variables x1, x2, x3, x4 and Cj = x1 ∨ x3 ∨ ¬x4 is a clause, then

αj = x1{ε} · a · (x2{ε} · a ∨ x2{a}) · x3{ε} · a · x4{a} · x{−1}.

We observe that t ∈ JαjK(d) if and only if the variable assignment τ of φ with t = tτ
does not satisfy clause Cj .
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We finally define α := α1 ∨ · · · ∨ αm, that is, the disjunction of all αi and A−1 as the
vset-automaton, corresponding to α.7 Therefore, Count(JA−1K, d) = s, where s = 2n − c
is the number of variable assignments which do not satisfy φ. Furthermore, per definition
of A−1 and w, it follows that

Sum(JA−1K, d, w) = −1 · s = −s .

We finally define the vset-automaton A as the union of A1 and A−1. We observe that
every tuple t ∈ JAK(d) is either selected by A1 (if dt(x) = 1) or by A−1 (if dt(x) = −1),
but never by both automata. Recall that c is the number of assignments which satisfy φ
and s = 2n − c is the number non-satisfying assignments of φ. Therefore, we have that

Sum(JAK, d, w) = Sum(A1, d, w) + Sum(A−1, d, w) = 2n + (−s) = 2n − (2n − c) = c .

This concludes the proof.

If the weights are restricted to natural numbers, Sum becomes spanL-complete. Note
that we restrict weight functions to natural numbers, because spanL is a class of functions
that return natural numbers. Allowing positive rational numbers does not fundamentally
change the complexity of the problems though. We will see in Section 6.7 that this
enables us to approximate Sum aggregates.

Theorem 6.4.5. Sum[fVSA,CWidthN] is spanL-complete, even if w is represented by
the Q-Relation R over {x} with

R(d) :=
{

1 if d = 1
0 otherwise.

Proof. Recall that a function f is in spanL, if there is a nondeterministic logarithmic
space Turing Machine M such that f(x) = |M(x)|. Let A ∈ fVSA be a vset-automaton,
d ∈ Σ∗ be a document, and w ∈ CWidthQ+ be a weight function. We define M as the
Turing Machine, which guesses a d-tuple t and checks whether t ∈ JAK(d). If yes, M
computes the weight w(d, t), which can be done in NL, since w is given by a Q-Relation.
The Turing Machine M then branches into w(d, t) accepting branches. If t /∈ JAK(d),
M rejects. Thus, |M(A, d)| = Sum(S, d, w), and therefore Sum[fVSA,CWidthN] is in
spanL.

For the lower bound, we give a reduction from Count[fVSA], which is spanL-complete
(cf. Theorem 6.2.1). Let A ∈ fVSA, d ∈ Σ∗. We assume, w.l.o.g., that 1 /∈ Σ and
x /∈ Vars(A). We construct a document d′ := d · 1 and a vset-automaton A′ := A · x{1}.
We observe that Sum(JA′K, d′, w) = Count(JAK, d), concluding the proof.

We conclude this section by showing that Average and q-Quantile are #P-hard
under Turing reductions.

7It is easy to verify that the automaton A−1 ∈ fVSA can be constructed in polynomial time from α.
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Theorem 6.4.6. Let 0 < q < 1. Then, the problems Average[fVSA,CWidth] and
q-Quantile[fVSA,CWidth] are #P-hard under Turing reductions, even if w is repre-
sented by the Q-Relation R over {x} with

R(d) :=
{

1 if d = 1
0 otherwise.

Proof. Recall that Count[fVSA] is #P-hard under Turing reductions. We begin by
giving a Turing reduction from Count[fVSA] to Average[fVSA,CWidth]. Let A, d,
and d′ be as defined in the proof of Theorem 6.4.5. The vset-automaton A′ builds upon
A but selects a single additional tuple t with t(x) = [|d|+ 2, |d|+ 2〉 for all variables. As
we will see later, this tuple is used to calculate Count(JAK, d) from Avg(JA′K, d′). Let
Vars(A) = {x1, . . . , xn}. We define

A′ := (A · x{1}) ∨ (d · 1 · x1{x2{· · ·xn{x{ε}} · · · }) .

Observe that, for all t ∈ A′(d′) it holds that dt(x) = 1 if and only if πVars(A)t ∈ JAK(d).
Thus, per definition of A′ and w, Sum(JA′K, d′, w) = Count(JAK, d) and Count(JA′K, d′) =
Count(JAK, d) + 1. Therefore, it holds that

Avg(JA′K, d′, w) = Count(JAK, d)
Count(JAK, d) + 1 .

Solving the equation for Count(JAK, d), we have that

Count(JAK, d) = Avg(JA′K, d′, w)
1−Avg(JA′K, d′, w) .

This concludes the proof that Average[fVSA,CWidth] is #P-hard under Turing re-
ductions.
It remains to show that q-Quantile[fVSA,CWidth] is also #P-hard under Turing

reductions. Let A ∈ fVSA be a functional vset-automaton and d ∈ Σ∗ be a document. We
will show the lower bound for q = 1

2 first and study the general case of 0 < q < 1 afterwards.
Let x /∈ Vars(A) be a new variable. Let 0 ≤ r ≤ |Spans(d)||Vars(A)|. By Lemma 6.3.5
there is a vset-automaton A′ and a document d′ with Count(JA′K, d′) = |JA′K(d′)| = r.
Let 0, 1 /∈ Σ be a new alphabet symbol. Let dr = 0 · d · 1 · d′ and

Ar =
(
x{0} ·A · 1 · d′

)
∨
(
0 · d · x{1} ·A′

)
.

Thus, Count(JArK, dr) = Count(JAK, d) + Count(JA′K, d′). Recalling the definition of
w it holds, for every tuple t ∈ JArK, that w(dr, t) = 1 if t was selected by A′ and
w(dr, t) = 0 otherwise, i.e., t was selected by A. Therefore, 1

2 -Quantile(JArK, dr, w) = 0
if and only if Count(JAK, d) ≥ Count(JA′K, d′) = r. Let rmax be the biggest r such that
1
2 -Quantile(JArK, dr, w) = 0. Using binary search, we can calculate rmax with a polynomial
number of calls to an 1

2 -Quantile oracle. Furthermore, due to Count(JAK, d) ∈ N and
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Rmax being maximal, it must hold that Count(JAK, d) = rmax, concluding this part of
the proof.
The general case of 0 < q < 1 follows by slightly adopting the above reduction. Let

q = a
b with a, b ∈ N be given by its numerator and denominator. Observe that b > a as

0 < a
b < 1. Let A′, d′ be as above and let c := Count(JAK, d). The document dr consists

of a copies of d, separated by 0′s and (b − a) copies of d′ separated by 1′s. Formally,
dr = 0 · d1 · 0 · d2 · 0 · · · da · 0 · 1 · d′1 · 1 · d′2 · 1 · · · d′b−a · 1, where each di (resp. d′i) is a copy
of d (resp. d′). Furthermore, let

Ar =
(
Σ∗0 · x{0} ·A · 0 · Σ∗0 · Σ∗1

)
∨
(
Σ∗1 · Σ∗1 · x{1} ·A′ · 1 · Σ∗1

)
,

where Σ0 := Σ∪{0} (resp. Σ1 := Σ∪{1}). Observe that w assigns 0 to exactly c ·a tuples
in JArK(dr) and Count(JArK, dr) = c ·a+r ·(b−a). Thus, ab -Quantile(Ar, dr, w) = 0 if and
only if c·a

c·a+r·(b−a) ≥
a
b . We now show that c ≥ r if and only if ab -Quantile(JArK, dr, w) = 0.

Assume that c ≥ r. Then,
c · a

c · a+ r · (b− a) ≥
c · a

c · a+ c · (b− a) = c · a
c · b

= a

b
.

Therefore, ab -Quantile(JArK, dr, w) = 0. On the other hand, if c < r,

c · a
c · a+ r · (b− a) <

c · a
c · a+ c · (b− a) = c · a

c · b
= a

b
.

Thus, ab -Quantile(JArK, dr, w) = 1.
Recall that c = Count(JAK, d). As for q = 1

2 , let rmax be the biggest r such that
a
b -Quantile(JArK, dr, w) = 0. Using binary search, we can calculate rmax with a polynomial
number of calls to an a

b -Quantile oracle. Again it holds that Count(JAK, d) = rmax,
concluding the proof.

6.5 Polynomial-Time Weight Functions
Before we study regular weight functions, we make a few observations on the very general
polynomial-time computable weight functions. For weight functions w ∈ Poly, we
assume that w is represented as a Turing Machine A that returns a value A(d, t) in
polynomially many steps for some fixed polynomial of choice (e.g., n2).8 Furthermore, to
avoid complexity due to the need to verify whether A is indeed a valid input (i.e., timely
termination), we will assume that w(d, t) = 0, if A does not produce a value within the
allocated time.
We first observe that polynomial-time weight functions make all our aggregation

problems intractable, which is not surprising.

Theorem 6.5.1. The problems Min[ufVSA,Poly] and Max[ufVSA,Poly] are OptP-
hard. Furthermore, Sum[ufVSA,Poly] and Average[ufVSA,Poly] are #P-hard.

8Our complexity results are independent of the choice of this polynomial.
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Proof. Follows directly from Theorems 6.6.3, and 6.6.7.

Theorem 6.5.2. Let 0 < q < 1. q-Quantile[ufVSA,Poly] is #P-hard under Turing
reductions.

Proof. Follows directly from Theorem 6.6.9.

In fact, all lower bounds already hold for regular weight functions. We note that all
studied problems can be solved in exponential time, by first constructing the relation
JAK(d), which might be of exponential size, computing the weights associated to all tuples,
and finally computing the desired aggregate.

Theorem 6.5.3. Let 0 < q < 1. Then Agg[fVSA,Poly] is in FEXPTIME for every
Agg ∈ {Min,Max,Sum,Average, q-Quantile}.

Proof. Let A ∈ fVSA, d ∈ Σ∗, and w ∈ Poly. The algorithm first computes the multiset

WA,d,w := ⦃w(d, t) | t ∈ JAK(d)⦄ ,

which might be exponentially large. It is easy to see that WA,d,w can be computed in ex-
ponential time. Furthermore, it follows directly that Agg[fVSA,Poly] is in FEXPTIME
for every Agg ∈ {Min,Max,Sum,Average, q-Quantile}.

Throughout this chapter, we do not study excessively whether we can give a more
precise upper bound than the general FEXPTIME upper bound. However, we sometimes
give such bounds. For instance, we are able to provide OptP and FP#P upper bounds if
the weight functions return natural numbers (or integers in the case of the FP#P upper
bounds).

Theorem 6.5.4. Min[fVSA,Poly] and Max[fVSA,Poly] are in OptP if the weight
function only assigns natural numbers.

Proof. We only give the upper bound for Max. The proof for Min is analogous. Let
A ∈ fVSA, d ∈ Σ∗, and w ∈ Poly be a weight function which only assigns natural
numbers. The Turing Machine N guesses a d-tuple t and accepts with output 0 if t /∈ A(d).
Otherwise, N computes the weight w(d, t) and accepts with output w(d, t). It is easy to
see that the maximum output value of N is exactly Max(JAK, d, w).

In the following theorem we show that Sum, Average, and q-Quantile can be
computed in FP#P if all weights are integers. The key idea is that, due to the restriction
to integer weights, we can compute the aggregates by multiple calls to an #P oracle. For
instance for Sum, we define two weight functions, w+ and w−, such that w+ computes
the sum of all positive and w− the sum of all negative weights. Each of these sums can
be computed by a single call to an #P oracle.

Theorem 6.5.5. For every 0 ≤ q ≤ 1, Sum[fVSA,Poly], Average[fVSA,Poly], and
q-Quantile[fVSA,Poly] are in FP#P if the weight function only assigns integers.
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Proof. We first prove that Sum[fVSA,Poly] is in #P if the weight function only assigns
natural numbers. We will use this as an oracle for the general upper bound. Let A be a
vset-automaton, d ∈ Σ∗ be a document and w ∈ Poly be a weight function that only
assigns natural numbers. A counting Turing Machine M for solving the problem in #P
would have w(d, t) accepting runs for every tuple in A(d). More precisely, M guesses a d-
tuple t over Vars(A) and checks whether t ∈ JAK(d). If t ∈ JAK(d) and w(d, t) > 0, thenM
branches into w(d, t) accepting branches, which it can do because w is given in the input as
a polynomial-time deterministic Turing Machine. Otherwise, M rejects. Per construction,
M has exactly w(d, t) accepting branches for every tuple t ∈ JAK(d) with w(d, t) > 0.
Thus, the number of accepting runs is exactly

∑
t∈JAK(d) w(d, t) = Sum(JAK, d, w).

We now continue by showing that Sum[fVSA,Poly] is in FP#P if the weight function
only assigns integers. Let A be a vset-automaton, d ∈ Σ∗ be a document, and w ∈ Poly
be a weight function, which only assigns integers.

We define two weight functions w+, w− ∈ Poly, such that

Sum(A, d,w) = Sum(A, d,w+)− Sum(A, d,w−) .

Formally, we define the following two weight functions:

w+(d, t) :=
{
w(d, t) if w(d, t) ≥ 0, and
0 otherwise;

w−(d, t) :=
{
−w(d, t) if w(d, t) < 0, and
0 otherwise.

Therefore, Sum(JAK, d, w) = Sum(JAK, d, w+) − Sum(JAK, d, w−) and the answer to
Sum[S,Poly] can be obtained by taking the difference of the answers of two calls to
the Sum[S,Poly] #P oracle. The upper bound for Average[fVSA,Poly] is immediate
from the upper bound of Sum[fVSA,Poly] and Theorem 6.2.1. For the upper bound of
q-Quantile[fVSA,Poly] we define the weight function

w≤k(d, t) =
{

1 if w(d, t) ≤ k, and
0 otherwise.

Recall that

q-Quantile(S, d, w) := min
{
r ∈ Img(S, d, w)

∣∣∣∣ |{t ∈ S(d) | w(d, t) ≤ r}|
|S(d)| ≥ q

}
.

Therefore

q-Quantile(S, d, w) = min
{
r ∈ Img(S, d, w)

∣∣∣∣ Sum(JAK, d, w≤k)
Count(JAK, d) ≥ q

}
.

Thus, the upper bound of q-Quantile[fVSA,Poly] can be obtained by performing
binary search, using the upper bound of Sum[fVSA,Poly] and Theorem 6.2.1.
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6.6 Regular Weight Functions
We now turn to Reg and UReg weight functions. As we have shown in Proposition 6.3.1,
every CWidth weight functions can be translated into an equivalent UReg weight
function. Furthermore, the weight functions which where used for the lower bounds
can be represented by unambiguous functional weighted vset-automata of constant size.
Therefore, all lower bounds for CWidth also hold for UReg.

6.6.1 Compact DAG Representation
As we show next, aggregation problems for regular weight functions can often be reduced
to problems about paths on weighted directed acyclic graphs (DAGs), where the weights
come from the semiring of the weight function. Let (K,⊕,⊗, 0, 1) be a semiring. A
K-weighted DAG is a DAG D = (N,E), where N is a set of nodes, E ⊆ N ×K×N is a
finite set of weighted edges, and src (resp., snk) is a unique node in N without incoming
(resp., outgoing) edges. We define `(e) = `, where e = (v, `, v′) ∈ E. Furthermore, we
define paths p in the obvious manner as sequences of edges and the length `(p) of p as
the product (⊗) of the lengths of its edges. More formally, a path

p := n1`1n2 · · · `n−1nj

is a sequence of nodes ni ∈ N with 1 ≤ i ≤ j and (ni, `i, ni+1, ) ∈ E, for all 1 ≤ i < j,
and the length

`(p) := `1 ⊗ · · · ⊗ `j−1 .

We denote the set of all paths in D from src to snk by Paths(src, snk).
Given a document d, a functional vset-automaton A and a regular weight function

w ∈ RegK, we will construct a DAG D which plays the role of a compact representation
of the materialized intermediate result. The DAG D is obtained by a product construc-
tion between A, W , and d, such that every path from src to snk corresponds to an
accepting run of W that represents a tuple in JAK(d). If A and W are unambiguous this
correspondence is actually a bijection.

Lemma 6.6.1. Let K ∈ {Q,T} be either the numerical or the tropical semiring. Let d be
a document, A ∈ fVSA, and W be the functional weighted vset-automaton representing
w ∈ RegK. We can compute, in polynomial time, a K-weighted DAG D, such that there
is a surjective mapping m from paths p ∈ Paths(src, snk) in D to tuples t ∈ JAK(d).
Furthermore,

(1) the mapping m is a bijection, if A and W are unambiguous, and

(2) w(d, t) =
⊕

p∈Paths(src,snk),m(p)=t
`(p), for every t ∈ JAK(d), if A ∈ ufVSA or K = T.

Proof. Let d ∈ Σ∗, A ∈ fVSA, and W be the functional weighted vset-automaton
representing w ∈ RegK. By Proposition 5.5.1, we can assume, w.l.o.g., that all vset-
automata used in this proof do not contain ε-transitions.
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We begin by giving the construction of D. Let WA be the functional weighted vset-
automaton obtained by interpreting A as a K-weighted vset-automaton. More formally,
every transition in A is interpreted as an weighted transition with weight 1 and every
transition which is not in A is interpreted as a transition with weight 0. Furthermore,
let Wd := d be the functional weighted vset-automaton with Vars(Wd) = ∅ that assigns
the weight 1 to the empty tuple on input d and 0 to every tuple on input d′ 6= d.
By Lemma 5.5.9 the join of functional weighted vset-automata can be computed in
polynomial time. Let

WD := W ./ WA ./ Wd .

Per definition of join for K-relations, it holds that

JWDKK(d, t) = JW KK(d, πVars(W )(t))⊗ JWAKK(d, πVars(WA)(t))⊗ JWdKK(d, πVars(Wd)(t)) .

Let A ∈ ufVSA be unambiguous or K = T. In both cases, it holds that

JWAKK(d, t) =
{

1 if t ∈ JAK(d), and
0 otherwise.

Furthermore,

JWdKK(d′, t) =
{

1 if Vars(t) = ∅ and d′ = d, and
0 otherwise.

Therefore, if A ∈ ufVSA or K = T, it holds, for every tuple t ∈ JAK(d). that

JWDKK(d, t) = JW KK(d, πVars(W )(t)) (†)

We will use this equality in the proof of condition (2).
The DAG D = (ND, ED) is obtained from WD = (Σ, V,Q, I, F, δ) as follows. The set

of nodes ND :=
(
Q× (Σ∪ ΓV ∪ ∅)

)
] {src, snk} contains the nodes src, snk, plus a state

(q, σ) for each q ∈ Q and σ ∈ (Σ ∪ ΓV ∪ ∅), where σ 6= ∅ encodes the label of the last
transition and q the state. The set of edges is defined as follows:

ED :={(src, `, (x, ∅)) | I(x) = ` 6=∞}
] {((x1, σ1), `, (x2, σ2) | δ(x1, σ2, x2) = ` 6= 0, where σ1 ∈ (Σ ∪ ΓV ∪ ∅)}
] {((x, σ), `, snk) | F (x) = ` 6=∞, where σ ∈ (Σ ∪ ΓV ∪ ∅)} .

In the following we assume that D is trimmed, that is, for every node n ∈ ND there is
at least one path from src to snk, which visits n.9

We observe that the construction of D only requires polynomial time. Note that there
is a one-to-one correspondence between paths p ∈ Paths(src, snk) and accepting runs of
WD on d. That is,

p = src · `0 · (q0, ∅) · `1 · (q1, σ1) · · · (qn, σn) · `n+1 · snk
9Note that this condition can be enforced in linear time by two graph traversals (e.g. using breadth first
search), one starting from src to identify all states which can be reached from src and one starting
from snk to identify all states which can reach snk. We remove all states which are not marked by
both graph traversals.
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is a path from src to snk in D if and only if

ρ = q0
σ1→ q1

σ2→ · · · σn→ qn ,

with I(q0) = `0 and F (qn) = `n+1 is an accepting run of WD on d. Furthermore, we
observe that the weight of p is exactly the weight assigned to the run ρ by WD, that is,
`(p) = w(ρ).

For the sake of contradiction, assume that D is cyclic. Per assumption, all nodes n ∈ N
are on an path from src to snk, thus, D must have a path p from src to snk, which
contains a cycle. Let ρ be the run of WD corresponding to p. The automaton Wd is
acyclic. Observe that WD is functional as W , WA, and Wd are functional. Thus, ref(ρ) is
valid and therefore the cycle can not contain an edge labeled by a variable operation. Per
assumption, all involved vset-automata do not contain ε-transitions. Therefore, the cycle
must only consist of edges, labeled by alphabet symbols. Let ρ′ be the run, obtained
from ρ by removing all cycles. Due to commutativity of ⊗, it follows that wρ′ = wρ ⊗ x
for some x 6= 0. We observe that doc(ref(ρ′)) 6= d. Therefore, there is a run ρ′ of
WD on doc(ref(ρ′)) 6= d with weight wρ′ 6= 0, which is the desired contradiction to the
observation that for all runs ρ of WD it holds that wρ 6= 0 if and only if doc(ref(ρ)) = d.

We now define the mapping m. Let p ∈ Paths(src, snk) and let ρ be the corresponding
run ofWD. We define the mappingm(p) := tup(ρ). It follows directly thatm is surjective.
If A ∈ ufVSA or K = T and for t ∈ JAK(d), we have that

w(d, t) = JW KK(d, πVars(W )(t))
(†)= JWDKK(d, t)

=
⊕

ρ∈P (WD,d) and t=tup(ρ)

wρ

=
⊕

p∈Paths(src,snk),m(p)=t

`(p) .

The first and the third equalities follow from the definitions of Reg weight functions and
K-annotators. The last equality follows from the definition of D. This concludes the
proof of condition (2).
It remains to show that condition (1) holds. To this end, assume that A ∈ ufVSA

and W are unambiguous. Then, by Lemma 5.5.9, WD is unambiguous.10 Assume that
there are two paths p1 6= p2 such that p1, p2 ∈ Paths(src, snk) with m(p1) = m(p2). Let
ρ1 6= ρ2 be the corresponding runs of WD. Due to m(p) = tup(ρ), it must hold that ρ1
and ρ2 are two runs of WD, encoding the same tuple t. Due to unambiguity condition
(C3), both runs must encode a different ref-word, that is, ref(ρ1) 6= ref(ρ2). This implies
that either ref(ρ1) or ref(ρ2) must violate the variable order condition, contradicting
unambiguity condition (C2). Thus, m must be a bijection.

10Recall that Wd is unambiguous.
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6.6.2 Min and Max Aggregation
We will now study the computational complexity of Min and Max aggregation. We
begin by giving the tractable cases which are based on Lemma 6.6.1. The weighted DAG
from Lemma 6.6.1 allows us to reduce Min to the shortest path problem in DAGs. If
the weight function is unambiguous, Max can be reduced to the longest path problem
in DAGs. Notice that, although the longest path problem is intractable in general, it is
tractable for DAGs.

Theorem 6.6.2. Min[fVSA,RegT], Min[ufVSA,URegQ], Max[fVSA,URegT], and
Max[ufVSA,URegQ] are in FP.

Proof. Let d be a document, A ∈ fVSA, andW be the functional weighted vset-automaton
representing w ∈ RegT or w ∈ URegQ. Let D and m be the DAG and the surjective
mapping as guaranteed by Lemma 6.6.1. In the following, we will reduce all four cases to
finding the path with minimal (resp., maximal) length in D. Note that given a weighted
DAG D, one can compute the path with minimal (resp., maximal) length in polynomial
time, via dynamic programming, e.g. using the Bellman-Ford algorithm.11

We begin by giving the proofs for the numerical semiring. If A ∈ ufVSA and W ∈
URegQ, it follows directly from property (1) of Lemma 6.6.1 that m is a bijection.
Therefore, for every tuple t ∈ JAK(d), there is exactly one path p ∈ Paths(src, snk) with
m(p) = t. Thus, w(d, t) = `(p), where p ∈ Paths(src, snk) with m(p) = t. It follows
directly that Min(JAK, d, w) and Max(JAK, d, w) can be computed from D by searching
for the path p with minimal (respectively maximal) length.
It remains to give the proofs for the tropical semiring. We begin by giving the proof

for Min[fVSA,RegT]. Due to property (2) of Lemma 6.6.1,

Min(JAK, d, w) = min
t∈JAK(d)

min
p∈Paths(src,snk),m(p)=t

`(p) = min
p∈Paths(src,snk)

`(p)

and therefore Min[fVSA,RegT] again reduces to computing the path of minimal length
in D.

For Max, the situation is different, because the maximal weight of an output tuple is

Max(JAK, d, w) = max
t∈JAK(d)

min
p∈Paths(src,snk),m(p)=t

`(p) .

However, if W is unambiguous, it must hold that `(p) = `(p′) for all runs p, p′ ∈
Paths(src, snk) with m(p) = m(p′). Otherwise W would be required to have at least two
runs which accept the same tuple but assign different weights. Thus, W would not be
unambiguous. We can therefore conclude that,

Max(S, d, w) = max
t∈JAK(d)

min
{p|m(p)=t}

`(p) = max
p∈Paths(src,snk)

`(p) .

Again, we can reduce Max[fVSA,URegT] to the max length problem on D.
11One has to be careful in the case of the numeric semiring as the lengths along the path are multiplied.

Therefore one has to maintain the minimal as well as the maximal length between two nodes, as
edges with negative length change the sign, resulting in minimal paths to be maximal and vice versa.
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As we show now, the results of Theorem 6.6.2 are close to the tractability frontier: For
instance, if we relax the unambiguity condition in the weight function, the problem Max
does not correspond to finding the longest paths in DAGs and becomes intractable.
Theorem 6.6.3. Min[ufVSA,RegQ], Max[ufVSA,RegT], and Max[ufVSA,RegQ] are
OptP-hard.
Proof. We begin by giving the proofs for Max[ufVSA,RegT]. We give a metric reduc-
tion12 from the OptP-complete problem Maximum Satisfying Assignment (MSA) [85],
which is defined as follows. Let φ(x1, . . . , xn) be a propositional formula in CNF and let
v = v1 · · · vn ∈ Bn be an variable assignment of φ. Furthermore, let nv ∈ N be the natural
number encoded by v in binary. MSA asks, given the CNF formula φ(x1, . . . , xn), for
the maximum nv ∈ N such that v satisfies φ, or 0 if φ is not satisfiable. In the following,
we denote by MSA(φ) the output of MSA on input φ.

Let φ(x1, . . . , xn) be a Boolean formula in CNF. We use a similar construction as in
Theorems 5.6.4 and 6.4.4 to encode the CNF formula φ. Let d = an be the document.
We define

A := ((x1` εax1 a) ∨ (x1` aax1)) · · · ((xn` εaxn a) ∨ (xn` aaxn)) .

Notice that A can be defined with a polynomial-time constructible ufVSA. Observe that
there is a one-to-one correspondence between tuples t in JAK(d) and variable assignments
αt for φ: we can set αt(xi) = 1 if and only if t(xi) = [i, i+ 1〉. We construct a weight
function w ∈ RegT such that

w(d, t) =
{
nαt if αt |= φ

0 otherwise.

Recall that nαt is the natural number which is encoded by the variable assignment αt. It
follows directly that MSA(φ) = Max(JAK, d, w). Defining T2(x, y) 7→ y gives the desired
reduction.
It remains to construct an weighted vset-automaton W which encodes w. We define

the functional weighted vset-automaton W as the union of two automata. Let V be the
set of variables of φ. The first automaton WA is a copy of A, assigning weight 0 to all
edges, which are present in A. Furthermore, let δ assign weight 2i−1 to the a labeled
edge between opening and closing variable xi (that is, xi` and axi). Let I(q) = 0 if q
is the start state of A and ∞, otherwise. Analogously, let F (q) = 0 if q is an accepting
state of A and ∞ otherwise. It follows directly that JWAKK(an, t) = nαt .
The second automaton, W ′ consists of m disjoint branches, where each branch cor-

responds to a clause Ci of φ; we call these clause branches. Each branch has exactly
one run ρ with weight 1 for each tuple t associated to an assignment αt which does not
satisfy the clause Ci.13

12Recall that a metric reduction from f to g is a pair of polynomial-time computable functions T1, T2,
where T1 : Σ∗ → Σ∗ and T2 : Σ∗ × N→ N, such that f(x) = T2(x, g(T1(x))) for all x ∈ Σ∗.

13We note that this construction is quite similar to the construction in the proof of Theorem 5.6.4.
However, this time, there is only one branch for each clause, encoding all valuations which do not
satisfy the clause.
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Figure 6.3: Example gadgets for variable x.
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Figure 6.4: The clause branch of W corresponding to C1 and x1 = x2 = 1, x4 = 0.

We now give a formal construction of W ′. The set of states Q := {qai,j | 1 ≤ i ≤ m, 1 ≤
j ≤ n, 1 ≤ a ≤ 5} contains 5n states for each clause branch. Intuitively, W ′ has a gadget,
consisting of 5 states, for each variable and each clause branch. Figure 6.3 depicts the
three types of gadgets we use here. Note that the weights of the drawn edges are all 0.
We use the left gadget if x does not occur in the relevant clause and the middle (resp.,
right) gadget if the literal ¬x (resp., x) occurs. Furthermore, within the same branch of
W ′, the last state of each gadget is the same state as the start state of the next variable,
i.e., q5

i,j = q1
i,j+1 for all 1 ≤ i ≤ k, 1 ≤ j < n.

We illustrate the crucial part of the construction on an example. Let φ = (¬x1 ∨¬x2 ∨
x4)∧ (x2 ∨x3 ∨x4). The corresponding functional weighted vset-automaton W ′ therefore
has two disjoint branches, one for each clause of φ. Figure 6.4 depicts the clause branch
C1 that corresponds to all assignments which do not satisfy Ci, that is, all assignments
with x1 = x2 = 1 and x4 = 0.

Formally, the initial weight function is I(qai,j) = 1 if j = 1 = a and I(qai,j) = 0 otherwise.
The final weight function F (qai,j) = 1 if j = n and a = 5 and F (qai,j) = 0, otherwise. The
transition function δ is defined as follows:

δ(qai,j , o, qa
′

i,j) =



1 a = 1, a′ = 2, o = xj`
1 a = 2, a′ = 3, o = axj
1 a = 2, a′ = 4, and there is a variable assignment τ with

τ(xj) = 1 and τ 6|= Ci

1 a = 3, a′ = 5, o = a, and there is a variable assignment τ with
τ(xj) = 0 and τ 6|= Ci

1 a = 4, a′ = 5, o = axj

All other transitions have weight 0.
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We claim thatW ′ represents w′, where w′(d, t) = 1 if αt 6|= φ and w′(d, t) = 0 otherwise.
Let t ∈ JAK(d) be a tuple and let τ = αt be the variable assignment encoded by t. It is
easy to see that there is an accepting run ρ of W ′ for r with weight wρ = 1, starting in
qai,0, if and only if τ does not satisfy clause Ci.
As mentioned before, the functional weighted vset-automaton W is the union of W ′

and WA. Recall that, over the tropical semiring, 0 = ∞, 1 = 0, and the weight of a
tuple t is the minimal weight over all accepting runs which encode t. Thus, the weight
function represented by W is exactly w, as claimed. This concludes the proof that
Max[ufVSA,RegT] is OptP-hard.
It remains to show that Min[ufVSA,RegQ] and Max[ufVSA,RegQ] are OptP-hard.

We first show OptP-hardness for Max[ufVSA,RegQ].
We give a metric reduction from the OptP-complete problem of weighted satisfiability

(WSAT) [85], which is defined as follows. Let φ(x1, . . . , xn) be a propositional formula
in CNF with binary weights. WSAT asks, given the CNF formula φ(x1, . . . , xn) with
m clauses and weights w1, . . . , wm, for the maximal weight of an assignment, where the
weight of an assignment is the sum of the weights of the satisfied clauses.

Denote by WSAT(φ) the output of WSAT on input φ. Let φ(x1, . . . , xn) be a Boolean
formula in CNF. Let d,A,W be as defined before. However, the weights in W are defined
differently. That is, W is the union of WA and W ′, where WA is a copy of A, where
all transitions have weight 1. Furthermore, let x be the sum of all clause weights and
F (q) = x, if q is an accepting state of A. The automaton W ′ is defined exactly as before,
however, accepting with final weight F (q) = −wi if q is the final weight of the branch
of clause Ci and wi is the weight of Ci. Observe that w(d, t) = JW KQ(d, t) is exactly
the weighted sum of all clauses, which are satisfied by the valuation αt encoded by t. It
follows that Max(S, d, w) = WSAT(φ). Defining T2(x, y) 7→ y concludes the proof for
Max[ufVSA,RegQ].
The proof for Min[ufVSA,RegQ] is analogous, replacing the weight x with −x and

−wi with weight wi. Therefore, Min(S, d, w) = −WSAT(φ). Defining T2(x, y) 7→ −y
concludes the proof.

6.6.3 Sum and Average Aggregation

Since Sum and Average are already intractable for fVSA spanners and CWidth weight
functions (Theorems 6.4.4, 6.4.5, and 6.4.6), they are intractable for fVSA spanners and
Reg/UReg weight functions as well. In a similar vein as in Section 6.4, the problems
become tractable if we have unambiguity. However, in the case of the tropical semiring,
we require unambiguity of both the spanner and the representation of the weight function.
We begin by showing that Sum[ufVSA,RegQ] and Sum[ufVSA,URegT] are in FP.

Theorem 6.6.4. Sum[ufVSA,RegQ] is in FP.

Proof. Let d ∈ Σ∗, A ∈ ufVSA, and W be a functional weighted vset-automaton repre-
senting w ∈ RegQ. Let D = (N,E) and m be as guaranteed by Lemma 6.6.1. It follows
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that

Sum(JAK, d, w) =
∑

t∈JAK(d)

∑
p∈Paths(src,snk),m(p)=t

`(p) =
∑

p∈Paths(src,snk)

`(p) .

All paths p ∈ Paths(src, snk) consist of |d|+ 1 + 2 · |Vars(A)| edges. We assume, w.l.o.g.,
that N = {1, . . . , n}, with src = 1 and snk = n. Therefore, Sum(JAK, d, w) can be
computed by interpreting the edge relation E as a Qn×n matrix M and computing the
weight

I ×M |d|+1+2·|Vars(A)| × FT ,

where I = (1, 0, . . . , 0) (resp., F = (0, . . . , 0, 1)) is the vector which assigns 0 to all nodes
but 1 (resp., n), which is assigned the weight 1. Recall that the numerical semiring has
an efficient encoding. Therefore, Sum(S, d, w) can indeed be computed in polynomial
time.

Theorem 6.6.5. Sum[ufVSA,URegT] is in FP.

Proof. Let D,m be the DAG and the bijection guaranteed by Lemma 6.6.1. We have
that

Sum(JAK, d, w) (1)=
∑

t∈JAK

w(d, t)

(2)=
∑

t∈JAK

min
p∈Paths(src,snk),m(p)=t

`(p)

(3)=
∑

p∈Paths(src,snk)

`(p) .

The first equation follows from the definition of Sum. The second equation follows from
property (2) of Lemma 6.6.1. The third equation must hold due to m being a bijection
between tuples t ∈ JAK and paths p ∈ Paths(src, snk).
It remains to show that the sum of the lengths of source-to-target paths in a DAG

D = (N,E) can be computed in polynomial time. We begin by observing that given two
nodes x, y ∈ D the number of paths from x to y in D can be computed in polynomial
time via dynamic programming. Furthermore, given an edge e = (x, y) ∈ E one can
compute the number of paths from src to snk which use e by multiplying the number of
paths from src to x with the number of paths from y to snk. Therefore, the function
c : E → N which, given an edge e ∈ E assigns the number of paths using e can be
computed in polynomial time. Recall that over the tropical semiring, ⊗ = + and therefore
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`(p) =
∑
e∈p

`(e). It therefore follows that

Sum(JAK, d, w) =
∑

p∈Paths(src,snk)

`(p)

=
∑

p∈Paths(src,snk)

∑
e∈p

`(e)

=
∑
e∈E

(`(e)× c(e)) .

Therefore, Sum can be computed by representing the weights `(e) as a vector I and the
counts c(e) as a vector F . Thus, Sum(JAK, d, w) = I × FT , which can be computed in
polynomial time, as RegT has an efficient encoding.

We observe that FP upper bounds for Average follow directly from the corresponding
upper bound for Sum and the FP upper bound for Count (Theorem 6.2.1).

Corollary 6.6.6. Average[ufVSA,RegQ] and Average[ufVSA,URegT] are in FP.

If we relax the restriction that weight functions are given as unambiguous automata,
Sum and Average become #P-hard again.

Theorem 6.6.7. Sum[ufVSA,RegT] and Average[ufVSA,RegT] are #P-hard.

Proof. We begin by giving a parsimonious reduction from the #P-complete problem of
#CNF. To this end, let c = 1 in the case of Sum and c = 2n in the case of Average.
Let φ(x1, . . . , xn) be a propositional formula in conjunctive normal form. Let A, d

be as constructed in the proof of Theorem 6.6.3 and let w be the weight function
such that w(d, t) = c if the corresponding assignment αt satisfies φ and w(d, t) = 0
otherwise. Therefore, with c := 1 it follows directly that #CNF(φ) = Sum(JAK, d, w),
which shows that the problem is #P-hard. For Average let c := 2n. It follows that
#CNF(φ) = x = x·2n

2n = x·c
2n = Avg(JAK, d, w), implying that Average[ufVSA,RegT] is

also #P-hard.
It remains to show that there is a weighed automaton W representing w ∈ RegT. As

in the proof of Theorem 6.6.3, W is the union of two weighted vset-automata WA and
W ′, where WA is a copy of A, assigning weight 0 to all initial states and transitions of A
and weight c to all final states. Furthermore, W ′ is as defined, that is,

JW ′KT(an, t) =
{

0 if αt 6|= φ

∞ otherwise.

It follows directly that W encodes the weight function w, concluding the proof.

Finally, we show that Sum and Average for RegT weight functions are in FP#P.

134



6.6 Regular Weight Functions

Theorem 6.6.8. Sum[fVSA,Reg] and Average[fVSA,Reg] are in FP#P.

Proof. We will begin by showing that Sum[fVSA,Reg] is in FP#P if all weights assigned
by w are natural numbers. We will use this as an oracle for the general upper bound. Let
A be a vset-automaton, d ∈ Σ∗ be a document and w ∈ Reg be a weight function, which
only assigns natural numbers and is represented by a functional weighted vset-automaton
W . A counting Turing Machine M for solving the problem in #P would have w(d, t)
accepting runs for every tuple in A(d). More precisely, M guesses a d-tuple t over Vars(A)
and can checks whether t ∈ JAK(d) and w(d, t) > 0. If so, M branches into w(d, t)
accepting branches. Otherwise, M rejects. Per construction, M has exactly w(d, t)
accepting branches for every tuple t ∈ JAK(d) with w(d, t) > 0. Thus, the number of
accepting runs is exactly

∑
t∈JAK(d) w(d, t) = Sum(JAK, d, w).

Now, let w ∈ Reg be a weight function, represented by the functional weighted
vset-automaton W . Following the same lines as the proof of Proposition 5.4.4, we can
assume, w.l.o.g., that all rationals in W have the denominator dlcm.14 We recall that
w(d, t) = JW K(d, πVars(W )(t)). Thus, w(d, t) is the product of |d| + 1 + 2 ∗ |Vars(A)|
rationals, where each factor has the denominator dlcm. Therefore, JW K(d, πVars(W )(t))
must have the denominator d|d|+1+2|Vars(A)|

lcm
15, which has an encoding length linear in

W and d. Thus, Sum[fVSA,Reg] can be computed by two calls to an Sum[fVSA,Reg]
oracle. The first call only considers positive numerators, whereas the second call only
considers negative numerators. Then, Sum[fVSA,Reg] is the difference of the results of
both oracle calls, divided by d |d|+1+2∗|Vars(A)|

lcm .
The upper bound for Average[fVSA,RegT] is immediate from the upper bound of

Sum[fVSA,RegT] and Theorem 6.2.1.

6.6.4 Quantile Aggregation
The situation for q-Quantile is different from the other aggregation problems, since it
remains hard, even when both the spanner and weight function are unambiguous. The
reason is that the problem reduces to counting the number of paths in a weighted DAG
that are shorter than a given target weight, which is #P-complete due to Mihalák et
al. [109].

Theorem 6.6.9. q-Quantile[ufVSA,UReg] is #P-hard under Turing reductions, for
every 0 < q < 1.

At the core of the quantile problem is the problem of counting up to a threshold k 6=∞:

Count<k(S, d, w) := |{t ∈ P (d) | w(d, t) ≤ k}|.

The problems Count>k(S, d, w) and Count=k(S, d, w) are defined analogously. The
decision problem Count<k[S,W] is defined analogously to Sum[S,W]. We begin by
14Following the same lines as the proof of Proposition 5.4.4, this can be achieved by computing the least

common multiple of all denominators dlcm in W and expanding all fractions a
b
by b

dlcm
.

15Actually for the tropical semiring the denominator is dlcm, as ⊗ = + does not increase the denominator
if both summands have the same denominator.

135



Chapter 6 Aggregation Functions for Document Spanners

showing that Count<k[ufVSA,URegQ] and Count<k[ufVSA,URegT] #P-hard under
Turing reductions. We reduce from #Partition and #-Product-Partition.

Given a set N = {n1, . . . , nn} of natural numbers. Two sets N1, N2 are a partition of
N if N1 ∪ N2 = N and N1 ∩ N2 = ∅. Furthermore, a partition is perfect, if the sums
of the natural numbers in both sets are equal. Given such a set N = {n1, . . . , nn}, the
#Partition problem asks for the number of perfect partitions.
Analogously, a partition N1, N2 is called perfect product partition, if the products of

the natural numbers in both sets are equal. Furthermore, the Product-Partition Problem
asks whether there is a perfect product partition and the problem #Product-Partition
asks for the number of perfect product partitions.

Proposition 6.6.10. #Partition and #Product-Partition are #P-complete under Turing
reductions.

Proof. Mihalák et al. [109, Theorem 1] shows that #Partition is #P-complete.
The #P-completeness of #Product-Partition follows by a reduction of Ng et al. [113,

Theorem 1], who give a reduction from Exact Cover by 3-sets (X3C) to Product-Partition.
We note that this reduction is weakly parsimonious, as defined by Hunt et al. [70, Definition
2.5]. That is, for every solution of an X3C instance, there are exactly 2 solutions for
the constructed Product-Partition instance. Furthermore, Hunt et al. [70, implicit in
Theorem 3.8] show that #X3C is #P-hard. Therefore, the reduction of Ng et al. [113,
Theorem 1] can be used to give a Turing reduction from #X3C to #Product-Partition,
which implies that #Product-Partition is also #P-hard under Turing reductions. It is
easy to see that #Product-Partition is in #P.

Lemma 6.6.11. Let k ∈ Q. Then Count<k[ufVSA,URegT] is #P-hard under Turing
reductions.

Proof. We use the same idea as Mihalák et al. [109, Theorem 1] to encode #Partition. Let
N = {n1, . . . , nn} be an instance of #Partition. Let d = an. We construct A and W such
that every tuple t ∈ JAK(d) corresponds to a partition of N . Furthermore, w(d, t) = k if
and only if the partition encoded by t is perfect.

More formally, A := (Σ, V,Q, q0, QF , δ), where Σ := {a}, V := {x1, . . . , xn}, Q := {qji |
1 ≤ i ≤ n, 1 ≤ j ≤ 5}, where q5

i = q1
i+1 for all 1 ≤ i < n, q0 := q1

1 , QF := {q5
n}, and for

1 ≤ i ≤ n, δ is defined as follows:

δ(qji , σ) :=



{q2
i } if 1 ≤ i ≤ n, σ = xi`, and j = 1
{q3
i } if 1 ≤ i ≤ n, σ = axi, and j = 2
{q4
i } if 1 ≤ i ≤ n, σ = a, and j = 2
{q5
i } if 1 ≤ i ≤ n, σ = a, and j = 3
{q5
i } if 1 ≤ i ≤ n, σ = axi, and j = 4 .

Recall, that q5
i = q1

i+1 for all 1 ≤ i < n.
Furthermore, we define the functional weighted vset-automaton W encoding w the

same way as A. That is, all transitions labeled by an variable operation x ∈ ΓV are
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assigned weight 1, δ(q3
i , a, q

5
i ) = ni and δ(q2

i , a, q
4
i ) = −ni, the initial- and final weight

functions:

I(q) :=
{

1 if q = q0

0 otherwise ;

F (q) :=
{
k if q ∈ QF
0 otherwise .

We observe that every tuple t ∈ JAK(d) encodes a partition of N , that is, ni ∈ N1 if
t(xi) = [i, i〉 and ni ∈ N2 if t(xi) = [i, i + 1〉. Furthermore, for every tuple t ∈ JAK(d),
the weight w(d, t) is exactly k plus the difference of the sum of all elements in N1 and
the sum of all elements in N2. We make some observations about A, d, and w.

(1) The number of perfect partitions is exactly Count=k(JAK, d, w) ;

(2) Count<k(JAK, d, w) = Count>k(JAK, d, w) ;

(3) Count(JAK, d) = 2 · Count<k(JAK, d, w) + Count=k(JAK, d, w) ;

(4) Count(JAK, d) = 2n+1 ;

(5) Count=k(JAK, d, w) = 2n+1 − 2 · Count<k(JAK, d, w) .

Due to Observations (1) and (5) it follows that the number of perfect partitions can be
computed by a single call to an Count<k(JAK, d, w) oracle.

It remains to argue that the observations (1)−(5) hold. Observation (1) follows directly
from the previous observation that the weight of each tuple is k plus the difference of the
sum of all elements in N1 and the sum of all elements in N2. Observation (2) follows
from the fact that the partition problem is symmetric, that is, for every partition N1, N2
of N there is also a partition N2, N1. Observation (3) follows from (2), and (4) from
the fact that there are 2n subsets of N and therefore 2 · 2n possible partitions. The last
observation (5) follows from (3) and (4). This concludes the proof.

Along the same lines we show that Count<1[ufVSA,URegQ] is #P-hard under Turing
reductions. Note that we do not show hardness for Count<k[ufVSA,URegQ], but only
for the case k = 1.16

Lemma 6.6.12. Count<1[ufVSA,URegQ] is #P-hard under Turing reductions.

Proof. Let N be an instance of #Product-Partition. We construct A, d,w and W ,
as constructed in the proof of Lemma 6.6.11. However, in W , δ(q3

i , a, q
5
i ) = ni and

δ(q2
i , a, q

4
i ) = 1

ni
. Observe that w(d, t) is exactly the product of all elements in N1 divided

by the product of all elements in N2, where ni ∈ N1 if and only if t(xi) = [i, i〉 and
16Recall that, in the proof for the tropical semiring, we add k to all accepting runs by having F (q) = k,

if q ∈ QF . This is not possible over the numerical semiring, as the multiplicative operation is the
numerical multiplication · and not the numerical addition +.
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ni ∈ N2 if and only if t(xi) = [i, i + 1〉. Therefore, the number of perfect product
partitions is exactly the number of tuples t ∈ JAK(d) with w(d, t) = 1. Using the same
argument as in the proof of Lemma 6.6.11, it follows that

#Product-Partition = 2n+1 − 2 · Count<1(JAK, d, w) ,

and thus, #Product-Partition can be computed by a single Count<1[ufVSA,URegQ]
oracle call.

The following corollary follows directly from the Lemmas 6.6.11 and 6.6.12.
Corollary 6.6.13. Count<1[ufVSA,UReg] is #P-hard under Turing reductions.
We are finally ready to give the proof of Theorem 6.6.9.

Proof of Theorem 6.6.9. We show that Count<1(JAK, d, w) can be computed in polyno-
mial time, using a q-Quantile[ufVSA,UReg] oracle therefore, concluding that the
problem q-Quantile[ufVSA,UReg] is also #P-hard under Turing reductions.
Let A ∈ ufVSA, d ∈ Σ∗, and w ∈ UReg represented by an unambiguous functional

weighted vset-automaton W . Furthermore, let 0 < q < 1, such that q = a
b . Due to

Theorem 6.2.1, c := Count(JAK, d) can be computed in polynomial time. Let 0 ≤ r ≤
c · (b− 1). By Lemma 6.3.517, there are vset-automata Ar, A′r ∈ ufVSA and documents
dr, d

′
r, such that Count(JArK, dr) = r and Count(JA′rK, d′r) = c · (b− 1)− r. Let Wr (resp.,

W ′r) be Ar (resp., A′r), interpreted as unambiguous functional weighted vset-automaton,
where all transitions of Ar (resp., A′R) have weight 1, the initial weight function assigns
weight 1 to the initial state of Ar (resp., A′r), and the final weight function assigns weight
0 (resp., 1)18 to all accepting states of Ar (resp., A′r). Slightly overloading notation, we
define

A′ := (A · dr · d′r) ∨ (d ·Ar · d′r) ∨ (d · dr ·A′r)
and

W ′ := (W · dr · d′r) ∨ (d ·Wr · d′r) ∨ (d · dr ·W ′r)
It is straightforward to verify that both, A′ and W ′ are unambiguous. Let d′ = d · dr · d′r
and let w′ (resp, wr, w′r) be the weight function, represented by W ′ (resp., Wr,W

′
r). It

follows from the definition that

Count(JA′K, d′) = Count(JAK, d) + Count(JArK, dr) + Count(JA′rK, d′r)
= c+ r + (c · (b− 1)− r) = c · b .

Furthermore, recalling that w(d, t) = 0 for all tuples t ∈ JArK(dr) and w(d, t) = 1 for all
tuples t ∈ JA′rK(d′r), we have that

Count<1(JA′K, d′, w′)
= Count<1(JAK, d, w) + Count<1(JArK, dr, wr) + Count<1(JA′rK, d′r, w′r)
= Count<1(JAK, d, w) + r + 0 .

17For instance with v = Vars(A) · b.
18Note that we use 0 and 1 instead of 0 and 1 on purpose. The reason is that we want to assign the

same weights for both semirings.
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Using binary search, we compute rmin as the smallest r with q-Quantile(JA′K, d′, w′) < 1.
Thus,

Count<1(JA′K, d′, w′)
Count(JA′K, d′) = Count<1(JAK, d, w) + rmin

c · b
≥ q .

For the sake of contradiction, assume that Count<1(JAK,d,w)+rmin
c·b > q = c·a

c·b . It follows
that, Count<1(JAK, d, w) + rmin > c · a and therefore, as all involved numbers are natural
numbers, Count<1(JAK, d, w) + rmin − 1 ≥ c · a. Thus, Count<1(JAK,d,w)+(rmin−1)

c·b ≥ q,
leading to the desired contradiction, as rmin was assumed to be minimal.

We have that Count<1(JAK,d,w)+rmin
c·b = q = c·a

c·b . It follows that

Count<1(JAK, d, w) = c · a− rmin ,

which concludes the proof.

6.7 Aggregate Approximation
Now that we have a detailed understanding on the complexity of computing exact
aggregates, we want to see in which cases the result can be approximated. We only
consider the situation where the exact problems are intractable and want to understand
when the considered aggregation problems can be approximated by fully polynomial-time
randomized approximation schemes (FPRAS), and when the existence of such an FPRAS
would contradict commonly believed conjectures, like RP 6= NP and the conjecture that
the polynomial hierarchy does not collapse.
Based on the results for the computation of exact aggregates, we can already give

some insights into the possibility of approximation. That is, Zuckerman [171] shows that
#SAT can not be approximated by an FPRAS unless NP = RP. Furthermore, as shown
by Dyer et al. [41], this characterization extends to all problems which are #P-complete
under parsimonious reductions. Therefore, due to Theorems 6.4.4, and 6.6.7, we have the
following corollary.

Corollary 6.7.1. Unless NP = RP, Sum[fVSA,CWidth], Sum[ufVSA,RegT], and
Average[ufVSA,RegT] can not be approximated by an FPRAS.

Arenas et at. [12, Corollary 3.3] showed that every function in spanL admits an FPRAS.
Therefore, due to Theorem 6.4.5, we have the following corollary.

Corollary 6.7.2. Sum[fVSA,CWidthN] can be approximated by an FPRAS.

In the remainder of this section, we will revisit the other intractable cases of spanner
aggregation and study whether or not approximation is possible.

6.7.1 Approximation is Hard at First Sight
We begin with some inapproximability results. For instance, as we show now, the existence
of an FPRAS for the problems Min, Max with RegQ weight functions would imply a
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collapse of the polynomial hierarchy, even when spanners are unambiguous. Furthermore,
for Max and RegT weight functions the same result holds.

Theorem 6.7.3. Min[ufVSA,RegQ] and Max[ufVSA,RegQ] cannot be approximated
by an FPRAS, unless the polynomial hierarchy collapses to the second level.

Proof. Assume there is an FPRAS for Min[ufVSA,RegQ]. We will show that such an
FPRAS implies that the NP-complete problem SAT is in BPP, which implies that the
polynomial hierarchy collapses to the second level.19

Let φ(x1, . . . , xn) be a Boolean formula, given in CNF, and let A, d, and W ′ be as
defined in the proof for Max[ufVSA,RegT] of Theorem 6.6.3, where W ′ is interpreted as
an weighted vset-automaton over the numerical semiring. Observe that, due to 1 = 1 and
0 = 0, it follows that JW ′KQ(d, t) ≥ 1 if the valuation αt encoded by t does not satisfy at
least one clause of φ and 0 otherwise. Let w be the weight function encoded by W ′.

For the sake of contradiction, assume that there is an FPRAS for Min[ufVSA,RegQ]
and let δ = 0.4. Assume that φ is satisfiable, thus Min(JAK, d, w) = 0. Then the FPRAS
must return 0 with probability at least 3

4 . On the other hand, if φ is not satisfiable,
the FPRAS must return a value x ≥ (1 − δ) · 1 = 0.6 with probability at least 3

4 .
Consider the algorithm which calls the FPRAS and accepts if the approximation is 0, and
rejects otherwise. This algorithm is a BPP algorithm for SAT, resulting in the desired
contradiction.
The proof for Max[ufVSA,RegQ] is analogous. The only difference is that the final

weight function of W ′ is multiplied by −1, that is, W ′ assigns weight −x to each tuple,
encoding a valuation α which does not satisfy x clauses of φ.

Theorem 6.7.4. Max[ufVSA,RegT] cannot be approximated by an FPRAS, unless the
polynomial hierarchy collapses to the second level.

Proof. Let φ(x1, . . . , xn) be a Boolean formula, given in CNF. We assume, w.l.o.g., that
the valuation which assigns false to all variables does not satisfy φ. Let A, d, and w
be as defined in the proof for Max[ufVSA,RegT] in the proof of Theorem 6.6.3. Thus,
Max(JAK, d, w) ≥ 1 if φ is satisfiable and Max(JAK, d, w) = 0 if φ is not satisfiable.

For the sake of contradiction, assume that there is an FPRAS for Max[ufVSA,RegT]
and let δ = 0.4. Assume that φ is satisfiable, thus Max(JAK, d, w) ≥ 1. Then the FPRAS
must return a value x ≥ (1− δ) · 1 = 0.6 with probability at least 3

4 . On the other hand,
if φ is not satisfiable, the FPRAS must return 0 with probability at least 3

4 . Therefore,
we can obtain a BPP algorithm for SAT as follows. The algorithm first calls the FPRAS,
accepts if the approximation is bigger than 0, and rejects otherwise.

Concerning Sum and Average the only case which is not resolved by Corollary 6.7.1 is
the case of Average[fVSA,CWidth]. We show now that, under reasonable complexity
assumptions, this problem can also not be approximated by an FPRAS.
19NP ⊆ BPP implies that PH ⊆ BPP (cf. Zachos [169]) and as BPP ⊆ (ΠP

2 ∩ΣP
2 ) (cf. Lautemann [88]) the

polynomial hierarchy collapses on the second level. Furthermore, as BPP is closed under complement,
coNP ⊆ BPP implies that NP ⊆ BPP resulting in the same collapse of the polynomial hierarchy.
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Theorem 6.7.5. Average[fVSA,CWidth] cannot be approximated by an FPRAS,
unless the polynomial hierarchy collapses to the second level.

Proof. We will show that such an FPRAS implies that the NP-complete problem SAT is
in BPP, which implies that the polynomial hierarchy collapses to the second level.
Let A, d and w be as constructed in the proof of Theorem 6.4.4. Recall that given a

propositional formula φ in CNF, we have that Sum(JAK, d, w) = c, where c is the number
of satisfying assignments of φ.
Assume there is an FPRAS for Average[fVSA,CWidth] and let δ = 0.5. Assume

that φ is not satisfiable. Then the FPRAS on input A, d,w must return 0 with probability
at least 3

4 . On the other hand, if φ is satisfiable, thus c > 0, the FPRAS must return
a value x ≥ (1 − δ) · Avg(JAK, d, w) = 1

2 ·
c

Count(JAK,d) > 0, with probability at least 3
4 .

Therefore, the algorithm which first approximates Avg(JAK, d, w) with δ = 0.5, rejects if
the approximation is 0 and accepts otherwise is an BPP algorithm for SAT, implying
that NP ⊆ BPP, which implies that the polynomial hierarchy collapses to the second
level.

We now turn to the quantile problem. It turns out that this problem is difficult to
approximate even if the weight functions only return 0 or 1.

Theorem 6.7.6. Let 0 < q < 1. Then, q-Quantile[fVSA,CWidth] cannot be approxi-
mated by an FPRAS, unless the polynomial hierarchy collapses to the second level.

Proof. We will show that an FPRAS for q-Quantile[fVSA,CWidth] implies a BPP
algorithm for SAT. Let φ be a propositional formula φ in CNF. Assume that q = 1

2 and
let A and d be as constructed in the proof of Theorem 6.4.4. However, let w be the
weight function which is represented by the Q-Relation R over {x} with

R(d) :=
{

1 if d = 1
0 otherwise.

Recall from the construction of A and d that A is the union of two automata A1, A−1,
such that Count(JA1K, d) = 2n and Count(JA−1K, d) = s, where s is the number of
non-satisfying assignments for φ, furthermore, t ∈ JA1K(d) if and only if dt(x) = 1 and
t ∈ JA−1K(d) if and only if dt(x) = −1. We observe that R(−1) = 0 and therefore, for
every t ∈ JAK(d) we have that

w(d, t) =
{

1 if t ∈ JA1K(d)
0 if t ∈ JA−1K(d) .

Thus, 1
2 -Quantile(JAK, d, w) = 0 if and only if φ is not satisfiable.

Assuming there is an FPRAS for q-Quantile[fVSA,CWidth], one can decide SAT
with a probability of 3

4 by approximating q-Quantile(JAK, d, w) with δ = 0.5, rejecting if
the approximation is 0 and accepting otherwise. This, however, implies that NP ⊆ BPP,
which implies a collapse of the polynomial hierarchy on the second level.
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The general case for 0 < q < 1 follows by slightly adopting the previous construction.
That is, assume that q = a

b . Due to 0 ≤ q ≤ 1, it must hold that 1 ≤ a < b. We construct
a vset-automaton A′ and a document d′ as follows. Let σ /∈ Σ be a new alphabet symbol.
The document d′ consists of b copies of d, separated by σ and A′ consists of a copies of
A−1 and b− a copies of A1. More formally,

d′ := (d · σ)b .

Furthermore, slightly abusing notation, we define

A′ := (A−1 · σ)a · (A1 · σ)b−a .

We observe that on input document d′, the automaton A′ accepts exactly 2n ·(b−a) tuples
t with w(d′, t) = 1 and s · a tuples with weight 0. Therefore, ab -Quantile(S, d, w) = 0 if
and only if

s · a
2n · (b− a) + s · a

≥ a

b
.

Solving this equation for s, it holds that a
b -Quantile(S, d, w) = 0 if and only if s = 2n

and therefore a
b -Quantile(S, d, w) = 0 if and only if φ is not satisfiable.

The rest of the proof is analogous to the case that q = 1
2 .

When the spanners are unambiguous, the simplest intractable case for q-Quantile
is the one with UReg weight functions (see Table 6.1). Again, we can show that
approximation is hard.

Theorem 6.7.7. Let 0 < q < 1. Then, q-Quantile[ufVSA,URegT] cannot be approxi-
mated by an FPRAS, unless the polynomial hierarchy collapses on the second level.

Proof. We show that an FPRAS for q-Quantile[ufVSA,URegT] implies a BPP algo-
rithm for the NP-complete Partition problem. Let S = {s1, . . . , sn} be a set of natural
numbers. Furthermore, let A, d,w be constructed from S as in the proof of Lemma 6.6.11
with k = 0.

Per construction of A, d and w, every tuple t ∈ JAK(d) corresponds to a partition of
S, such that the partition is perfect if and only if w(d, t) = 0. Furthermore, due to the
partition problem being symmetrical, for every tuple t ∈ JAK(d) with w(d, t) = k there
is a tuple t′ ∈ JAK(d) with w(d, t) = −k. Thus, 1

2 -Quantile(JAK, d, w) = 1 if and only if
there is a tuple t ∈ JAK(d) with w(d, t) = 0.
Let q = 1

2 . Assuming there is an FPRAS for q-Quantile[ufVSA,URegT], one can
decide Partition with a probability of 3

4 by approximating q-Quantile(JAK, d, w) with
δ = 0.5, accepting if the approximation is 0 rejecting otherwise. This implies that the
algorithm accepts if and only if there is a perfect partition and therefore, NP ⊆ BPP,
which implies a collapse of the polynomial hierarchy on the second level.

For the general case, assume that q = a
b . We observe that due to 0 < q < 1, it must

hold that a < b. By Observation (4) in the proof of Lemma 6.6.11, Count(JAK, d) = 2n+1.
As in the proof of Theorem 6.6.9, we construct a vset-automaton A′, a document d′
and a weight function w′, represented by the weighted automaton W ′ ∈ URegT , such
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that q-Quantile(A′, d′, w′) = 0 if and only if S has a perfect partition. By Lemma 6.3.5,
there are vset-automata A−1, A1 ∈ ufVSA and documents d−1, d1 ∈ Σ∗ such that
Count(JA−1K, d−1) = (a − 1) · 2n and Count(JA1K, d1) = (b − a − 1) · 2n. Let W−1
(resp., W1) be the same as A−1 (resp., A1) interpreted as weighted automaton over the
tropical semiring, such that all transitions are assigned weight 0 and the final weight
function assigns weight −1 (resp., 1) to all accepting states. Let w−1 (resp., w1) be the
weight function, represented by W−1 (resp., W1) Thus, w−1(d−1, t) = −1 if and only if
t ∈ JA−1K(d−1) and w1(d1, t) = 1 if and only if t ∈ JA1K(d1). Let σ be a new alphabet
symbol. We construct A′, d′, and W ′ as follows.

d′ = d−1 · σ · d · σ · d1

A′ = (A−1 · σ · d · σ · d1) ∨ (d−1 · σ ·A · σ · d1) ∨ (d−1 · σ · d · σ ·A1)
W ′ = (W−1 · σ · d · σ · d1) ∨ (d−1 · σ ·W · σ · d1) ∨ (d−1 · σ · d · σ ·W1) .

Furthermore, let w′ be the weight function, represented by W ′. It follows that

Count<0(JA′K, d′, w′) = (a− 1) · 2n + Count<0(JAK, d, w)
Count≤0(JA′K, d′, w′) = (a− 1) · 2n + Count≤0(JAK, d, w)

Count(JA′K, d′) = (a− 1) · 2n + 2 · 2n + (b− a− 1) · 2n = b · 2n .

We make a case distinction on S. If S has a perfect partition, Count<0(JAK, d, w) < 2n and
Count≤0(JAK, d, w) ≥ 2n. Thus, q-Quantile(A′, d′, w′) = 0. Otherwise, if S has no perfect
partition, Count<0(JAK, d, w) = 2n and therefore q-Quantile(A′, d′, w′) < 0. Therefore,
q-Quantile(A′, d′, w′) = 0 if and only if S has a perfect partition. This concludes the
proof.

We note that the case of approximating q-Quantile[ufVSA,URegQ] does not follow
analogous to the proof for q-Quantile[ufVSA,URegT]. The main reason is the fact
that #Partition can be encoded into an weight function automaton wT ∈ URegT,
such that perfect partitions correspond to tuples with weight 0, whereas #Product-
Partition is encoded into an weight function wQ ∈ URegQ, such that perfect product
partitions correspond to tuples with weight 1. Furthermore, all weights assigned by wT
are integers, whereas wQ assigns rational numbers. Therefore it is not obvious whether
or not q-Quantile[ufVSA,URegQ] can be approximated by an FPRAS. This case is
left open for future research.

6.7.2 When an FPRAS is Possible
We show that Theorem 6.7.5 is very much on the intractability frontier: it shows that
approximation is intractable if weight functions can assign 1 and −1. On the other hand,
if the weight functions are restricted to nonnegative numbers, then approximating Sum
and Average is possible with an FPRAS.

Theorem 6.7.8. Sum[fVSA,CWidthQ+ ] and Average[fVSA,CWidthQ+ ] can be ap-
proximated by an FPRAS.
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Proof. By Corollary 6.7.2 and Theorem 6.2.1, there are FPRAS for the problems
Sum[fVSA,CWidthN] and Count[fVSA]. We will use these FPRAS to give an FPRAS
for Sum[fVSA,CWidthQ+ ] and Average[fVSA,CWidthQ+ ].

In the following, we will denote an FPRAS approximation with error rate δ of the
problem Count(JAK, d) (resp., Sum(JAK, d, w) and Avg(JAK, d, w)) by Count(JAK, d, δ)
(resp., Sum(JAK, d, w, δ) and Avg(JAK, d, w, δ)).

We begin by showing that Sum[fVSA,CWidthQ+ ] admits an FPRAS. Let A ∈ fVSA
be a vset-automaton, d ∈ Σ∗ be a document, and w ∈ CWidthQ+ be a weight function.
Recall that every weight x ∈ Q+ is encoded by its numerator and its denominator. Let
D be the set of denominators used by w and let lcm be the least common multiple
of all elements in D. We note that, as argued in the proof of Proposition 5.4.4, lcm
can be computed in polynomial time. Let wN(d, t) = w(d, t) · lcm. Per definition of
lcm, wN ∈ CWidthN only assigns natural numbers. Furthermore, w(d, t) = wN(d,t)

lcm . It
follows that Sum(JAK, d, w, δ) := Sum(JAK,d,wN,δ)

lcm is an δ-approximation of Sum(S, d, w)
with success probability 3

4 , concluding this part of the proof.

It remains to show that Average[fVSA,CWidthQ+ ] admits an FPRAS. We show
that the algorithm which, with success rate ( 3

4 )0.5, calculates an δ
3 -approximations

for Count and Sum, and then returns the quotient of the results, is an FPRAS for
Average[fVSA,CWidthQ+ ]. We note that the probability that both approximations
are successful is ( 3

4 )0.5 · ( 3
4 )0.5 = 3

4 .

It remains to show that the quotient of both results, Avg(JAK, d, w, δ) := Sum(JAK,d,w, δ3 )
Count(JAK,d, δ3 ) ,

is indeed a δ-approximation of Avg(JAK, d, w). Formally, we have to show that

(1− δ) ·Avg(S, d, w) ≤ Avg(JAK, d, w, δ) ≤ (1 + δ) ·Avg(JAK, d, w) .

We begin with the first inequality:

Avg(JAK, d, w, δ) =
Sum(JAK, d, w, δ3 )
Count(JAK, d, δ3 )

≥
(1− δ

3 ) · Sum(JAK, d, w)
(1 + δ

3 ) · Count(JAK, d)

=
1− δ

3
1 + δ

3
· Sum(JAK, d, w)

Count(JAK, d)
≥ (1− δ) ·Avg(JAK, d, w) .
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6.7 Aggregate Approximation

Procedure PositionalQuantileApprox(A, d,w, q, δ)
Input: A ∈ fVSA, d ∈ Σ∗, w ∈ Poly, 0 ≤ q ≤ 1, 0 ≤ δ ≤ 1
Output: A positional δ-approximation of q-Quantile(JAK, d, w) with success

rate 3
4 .

1 W ← ⦃·⦄
2 for 1 ≤ i ≤ 4 · d ln(16)

2δ2 e do
3 t← Sample(A, d, δ3 )
4 Add w(d, t) to W
5 if |W | < d ln(16)

2δ2 e then
6 Fail B Sample size to small
7 Return q-Quantile(W)

It is straightforward to verify that 1− δ3
1+ δ

3
≥ (1− δ) holds for every 0 ≤ δ ≤ 1. The second

inequality follows analogously:

Avg(JAK, d, w, δ) =
Sum(JAK, d, w, δ3 )
Count(JAK, d, δ3 )

≤
(1 + δ

3 ) · Sum(JAK, d, w)
(1− δ

3 ) · Count(JAK, d)

=
1 + δ

3
1− δ

3
· Sum(JAK, d, w)

Count(JAK, d)
≤ (1 + δ) ·Avg(JAK, d, w) .

Again, it is straightforward to verify that 1+ δ
3

1− δ3
≤ (1 + δ) holds for every 0 ≤ δ ≤ 1.

Our second positive result is about approximating quantiles in a positional man-
ner. Let d be a document, S be a document spanner, w be a weight function and
0 ≤ q ≤ 1 with q ∈ Q. Then, for δ > 0, we say that k ∈ Q is a positional δ-
approximation of q-Quantile(S, d, w) if there is a q′ ∈ Q, with q − δ ≤ q′ ≤ q + δ and
k = q′-Quantile(S, d, w).20

Lemma 6.7.9 (Hoeffding’s Inequality). Let X1, . . . , Xn be independent random variables
with 0 ≤ Xi ≤ 1 for 1 ≤ i ≤ n. Let X = Σni=1Xi and let EX denote the expectation of X.
Then, for any λ > 0, Pr(X − EX ≥ λ) ≤ e−2λ2

n .

Theorem 6.7.10. Let 0 ≤ q ≤ 1. There is a probabilistic algorithm that calculates a
positional δ-approximation of q-Quantile[fVSA,Poly] with success probability at least
3
4 . Furthermore, the run time of the algorithm is polynomial in the input and 1

δ .
20The idea of positional quantile approximations was originally introduced by Manku et al. [100] in the

context of quantile computations with limited memory.
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Proof. Let A ∈ fVSA be a functional vset-automaton and d ∈ Σ∗ be a document. Arenas
et al. [12, Corollary 4.1] showed that given a functional vset-automaton, one can sample
tuples t ∈ JAK(d) uniformly at random with success probability ≥ 1

2 .21 We will use this
sampling algorithm to first create a sample of the assigned weights and then return the
q-Quantile of this sample. The algorithm is depicted in Procedure PositionalQuantileAp-
prox.
We note that this algorithm has two points of failure. On one hand, it can happen

that less then s := d ln(16)
2δ2 e calls to the sampling algorithm of Arenas et al. [12] are

successful. On the other hand, it can happen that the returned quantile is no positional
δ-approximation of the quantile. We show that both of these points of failure have a
probability of less than 1

8 . Thus, the probability that the whole algorithm is successful is
7
8 ·

7
8 >

3
4 . We will first show that Line 6 is reached with probability less than 1

8 .
The success probability of each call to the sampling algorithm of Arenas et al. [12] is at

least 1
2 . Thus, the expected number of samples, generated by 4s consecutive calls to the

algorithm is at least 2s. Using Hoeffding’s Inequality, the probability that 4s consecutive
calls to the sampling algorithm yield less than s samples is less than e−s and therefore
less than 1

8 for every s ≥ 3.22

It remains to show that a total of s samples is enough to guarantee that the q-Quantile
of W is a positional δ-approximation of q-Quantile(JAK, d, w) with probability at least 7

8 .
Let wq−δ = (q − δ)-Quantile(JAK, d, w) and wq+δ = (q + δ)-Quantile(JAK, d, w). Fur-

thermore, let Wq−δ = ⦃x ∈ W | x < wq−δ⦄ and Wq+δ = ⦃x ∈ W | x > wq+δ⦄. We say
that a sample is bad, if either |Wq−δ| ≥ q · s or |Wq+δ| ≥ (1− q) · s. We will first show
that the probability that |Wq−δ| ≥ q · s is at most e−2δ2·s. For each element x ∈W the
probability that x ∈Wq−δ is at most (q−δ). Thus, the expected size of Wq−δ is (q−δ) ·s.
Using Hoeffding’s Inequality, with λ = δ · s the probability that |Wq−δ| ≥ q · s is at most
e−2δ2·s. On the other hand, the for each element x ∈W the probability that x ∈Wq+δ is
at most (1− (q+ δ)) = 1− q− δ. Thus, the expected size of Wq+δ is (1− q− δ) · s. Again,
using Hoeffding’s Inequality, with λ = δ · s the probability that |Wq+δ| ≥ (1− q) · s is at
most e−2δ2·s. Therefore, the probability for a bad sample is at most 2 · e−2δ2·s. Due to
s = d ln(32)

2δ2 e, the probability of a bad sample is at most 1
8 , concluding the proof.

21We note that the sampling algorithm by Arenas et al. [12, Corollary 4.1] detects and reports failures.
22Obviously, we can call the sampling algorithm 16 times for s = 1 and s = 2 to ensure a failure rate of

less than 1
8 .
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Chapter 7

Summary and Directions for Future
Research
Throughout this thesis, we studied multiple aspects of document spanners. That is, we
studied parallel evaluation in Part I and quantitative aspects of document spanners in
Part II. We will now summarize the results and discuss open problems and directions for
future research.

7.1 Parallel Evaluation of Document Spanners
In Part I, we embarked on an exploration of the task of automating the distribution of
information-extraction programs across splitters. Adopting the formalism of document
spanners and the concept of parallel-correctness, our framework focuses on two compu-
tational problems, Split-Correctness and Splittability, as well as their special
case of Self-Splittability. We presented an analysis of these problems and studied
their complexity within the class of regular spanners. We have also discussed several
natural extensions of the framework, considering the reasoning about splittability, schema
constraints, and black-box spanners with split constraints. Our principal objective is
to open up new directions for research within the framework, and indeed, several open
problems are left for future investigation.
One open problem is the exact complexity of Splittability, as we do not have

matching upper- and lower-bounds in the general case. The complexity is also open
if the input is restricted to unambiguous sequential vset-automata and the highlander
condition holds.
We know more about Split-Correctness and Self-Splittability, but there are

some basic open problems there as well. For instance, when considering more expressive
languages for spanners (e.g., the class of core spanners [45, 53] that allow for string
equalities or context-free spanners [122]), all problems reopen.

A variant of Splittability that we barely touched upon is that of deciding, given a
spanner S, whether it can be decomposed in a non-trivial way. We showed (Observa-
tion 4.5.1) that this variant closely relates to the Language-Primality problem—can a given
regular language be decomposed as the concatenation of non-trivial regular languages?
Interestingly, Martens et al. [103] showed that Language-Primality is also related to the
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work of Abiteboul et al. [1] on typing in distributed XML, which is quite reminiscent, yet
different from, our work.

For the extensions of reasoning about splitters, and deciding on splittability with black-
box spanners, we barely scratched the surface. Specifically, we believe that reasoning
about split constraints over black-box extractors can have a profound implication on the
usability of IE systems to developers at varying degrees of expertise, while embracing
the advances of the Machine Leaning and Natural Language Processing communities on
learning complex functions such as artificial neural networks.

7.2 Quantitative Aspects of Document Spanners
Part II consists of two Chapters, which we will summarize now.

7.2.1 Weight Annotators
In Chapter 5 we embarked on a study that incorporates annotations or weights in
information extraction and propose K-annotators as a candidate formalism to study this
problem. The K-annotators can be instantiated with weighted vset-automata, thereby
obtaining regular K-annotators, which are powerful enough to capture the extension of
the traditional spanner framework with parametric factors. Furthermore, the regular
K-annotators have favorable closure properties, such as closure under union, projection,
natural join, and, depending on the semiring, also under string selection using regular
relations. The first complexity results on evaluation problems are encouraging: answer
testing is tractable and, depending on the semiring, problems such as the threshold
problem, the max tuple problem, and enumeration of answers are tractable too.

We note that the addition of weights to vset-automata also introduces new challenges.
For instance, some questions which are typically studied in database theory are not yet
fully understood for weighted automata, which are the basis of weighted vset-automata.
Examples are equivalence and emptiness. Concerning equivalence, it is known that
equivalence is undecidable for weighted vset-automata over the tropical semiring (cf.
Proposition 5.3.3). In general, however, it is not completely clear for which semirings
equivalence is decidable or not. Concerning emptiness, the definition in weighted automata
literature is not as database theoreticians would expect. That is, it does not ask if there
exists a document d such that the automaton returns at least one tuple with nonzero
weight on d, but is additionally given a threshold (as in our Threshold problem) and
asks if the automaton returns a tuple with at least the threshold weight (which requires
an order on the semiring). It is not yet clear how much this threshold influences the
complexity of the problem.
An additional challenge is determinization of weighted automata, which is a complex

matter and not always possible. It is well-known to be possible for the Boolean semiring
but, for the tropical semiring (defined as (Q ∪ {−∞},max,+,−∞, 0)) deterministic
weighted automata are strictly less expressive than unambiguous weighted automata,
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which are strictly less expressive than general weighted automata (cf. Klimann et al. [83,
Section 3.5]).

A possible direction for further exploration could be the study of annotators which use
regular cost functions (cf. Colcombet [26]) instead of weighted automata. Since regular
cost functions are restricted to the domain of the natural numbers, this would probably
be most interesting in the case where the semiring domain is (a subset of) the natural
numbers. Indeed, in this case, it is known that regular cost functions are strictly more
expressive than weighted automata over the tropical semiring (cf. Colcombet et al. [27])
and therefore could provide a useful tool to annotate document spanners. On the other
hand, it is not yet clear to us how to associate regular cost functions in a natural way to
annotated relations, which require semirings.

7.2.2 Aggregation Functions for Document Spanners
In Chapter 6, we investigated the computational complexity of common aggregate func-
tions over regular document spanners given as regex formulas and vset-automata. While
each of the studied aggregate functions is intractable in the general case, there are
polynomial-time algorithms under certain general assumptions. These include the as-
sumption that the numerical value of the tuples is determined by a constant number
of variables, or that the spanner is represented as an (unambiguous) vset-automaton.
Moreover, we established quite general tractability results when randomized approxima-
tions (FPRAS) are possible. The upper bounds that we obtained for general (functional)
vset-automata immediately generalize to aggregate functions over queries that involve
relational-algebra operators and string-equality conditions on top of spanners, whenever
these inner queries can be efficiently compiled into a single vset-automaton [54, 123].
Moreover, these upper bounds immediately generalize to allow for grouping (i.e., the
GROUP BY operator) by computing the tuples of the grouping variables and applying
the algorithms to each group separately.
We identified several interesting cases where the computation of α(S(d)) can avoid

the materialization of the exponentially large set S(d), where, d is the document, S is
the spanner, and α is the aggregate function. Notably, this is the case (1) for Min with
general vset-spanners and weight functions in RegT, UReg, and CWidth, (2) for Max
with general vset-spanners and weight functions in UReg and CWidth, (3) for Sum and
Average with ufVSA-spanners and weight functions in RegQ, UReg and CWidth,
and (4) for q-Quantile with ufVSA-spanners and CWidth weight functions.

Yet, several basic questions are left for future investigation. A natural next step would
be to seek additional useful assumptions that cast the aggregate queries tractable: Can
monotonicity properties of the numerical functions lead to efficient algorithms in cases
that are otherwise intractable? What are the regex formulas that can be efficiently
translated into unambiguous vset-automata (and, hence, allow to leverage the algorithms
for such vset-automata)? Another important direction is to generalize the results in
a more abstract framework, such as the Functional Aggregate Queries (FAQ) [81], in
order to provide a uniform explanation of our findings and encompass general families
of aggregate functions rather than specific ones. Finally, the practical side of our work
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remains to be studied: How do we make our algorithms efficient in practice? How effective
is the sampling approach in terms of the balancing between accuracy and execution cost?
Can we accurately compute estimators of aggregate functions over (joins of) spanners
within the setting of online aggregation [66, 92]?
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Appendix A

Proof of Lemma 4.4.3
Lemma 4.4.3. The problems Self-Splittability[dfVSA], Splittability[dfVSA],
and Cover[dfVSA] are PSPACE-hard, even if P is disjoint.

Proof. In order to proof this result, we use a reduction by Smit [153, Proposition 3.3.7],
who shows that Split-Correctness[dfVSA] is PSPACE-hard, even if P is disjoint.

We give a reduction from the PSPACE complete problem of DFA union universality [84].
Given deterministic finite automata A1, . . . , An over the alphabet Σ, the union universality
problem asks whether

L(Σ∗) ⊆
⋃

1≤i≤n
L(Ai) . (†)

Let A1, . . . , An be DFAs over the alphabet Σ and let a /∈ Σ be a new alphabet symbol.
Slightly abusing notation, we define the dfVSA by a hybrid regex-formula, where the
automata Ai are plugged in. In particular,

AS = a ∨ an+1Σ∗ , and

AP = x{a} ∨ a · x{a} · an−1 ·A1 ∨ a2 · x{a} · an−2 ·A2 ∨ · · · ∨ an · x{a} ·An .
Furthermore, let S = JASK and P = JAP K. We show that the following statements are
equivalent:

1. S is self-splittable by P ,

2. S is splittable by P ,

3. † holds,

4. P covers S.

We observe that (1) implies (2). Thus, we only need to show that (2) implies (3), (3)
implies (4), and (4) implies (1).
(2) implies (3): Assume that † does not hold. Therefore, there is a document d ∈ Σ∗

with d /∈ L(Ai), for every 1 ≤ i ≤ n. Thus, P (an+1 · d) = ∅, but () ∈ S(an+1 · d), which
leads to the desired contradiction that S can not be splittable by P .
(3) implies (4): Assume that † holds. Let d′ ∈ (Σ∪{a})∗ be a document and t ∈ S(d′)

be a tuple. As S does not use variables, we have that t = (). We make a case distinction
on d′:
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• d′ = a,
• d′ ∈ L(an+1Σ∗),
• d′ /∈ {a} ∪ L(an+1Σ∗).

If d′ = a, we have that P (d′) = {[1, 2〉} and therefore the cover condition is satisfied.
On the other hand, if d′ ∈ L(an+1Σ∗) there is a document d ∈ Σ∗ such that d′ = an+1d.
Thus, there is an index 1 ≤ i ≤ n, such that d ∈ L(Ai) and therefore [i+ 1, i+ 2〉 ∈ P (d′),
covering (). In the last case, S(d′) = ∅ which contradicts the assumption that t ∈ S(d′).

(4) implies (1): We will show that S = S ◦ P . Let d ∈ (Σ ∪ {a})∗ be a document and
let t ∈ S(d) be a d-tuple. Again, as S does not use variables, we have that t = (). As P
covers S, there is a span s ∈ P (d) which covers t. Using () = ()� s and () ∈ (S ◦ P )(d),
we can conclude that S ⊆ S ◦P . For the other direction, let d ∈ (Σ∪{a})∗ be a document
and t ∈ (S ◦ P )(d). As S ◦ P does not use any variables, we have that t = () = ()� s,
for every s ∈ P (d). By definition of S we have that () ∈ S(d) showing S ◦ P ⊆ S.
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Appendix B

A Note on the CSV Schema Language
SCULPT
Despite the availability of numerous standardized formats for semi-structured and semantic
web data such as XML, RDF, and JSON, a very large percentage of data and open
data published on the web remains tabular in nature.1 Tabular data is most commonly
published in the form of comma separated values (CSV) files because such files are open
and therefore processable by numerous tools, and tailored for all sizes of files ranging
from a number of KBs to several TBs. Despite these advantages, working with CSV files
is often cumbersome [160] since they are typically not accompanied by a schema that
describes the file’s structure (i.e., “the second column is of integer datatype”, “columns
are delimited by tabs”, . . . ) and captures its intended meaning. In fact, without schema
information, already converting CSV-like data into a relational database is a challenging
engineering problem [160]. In recognition of this problem, the CSV on the Web Working
Group of the World Wide Web Consortium (W3C) [71] argues for the introduction
of a schema language for tabular data to ensure higher interoperability when working
with datasets using the CSV or similar formats. Inspired by the W3C effort towards a
recommendation for tabular data and metadata on the Web, Martens et al. [101] proposed
the tabular schema language SCULPT. At its core, SCULPT is a rule-based language
with rules of the form ϕ→ ρ where ϕ selects a set of regions2 of the input table and ρ
constrains the allowed structure and content of each such region. The region selection
expressions ϕ are not limited to selecting columns but can navigate through a table,
much like XPath expressions can navigate the nodes of an XML tree. This generalization
beyond columns is necessary since there are natural cases in practice in which CSV-like
data is not rectangular [14, 159] (see also Figure B.1).

In Doleschal et al. [37], we study static optimization of SCULPT schemas. In particular,
we address the satisfiability problem that asks whether for a given SCULPT schema there
is a CSV file that satisfies it. Not only is satisfiability a core problem in the foundations
of database management field that has been studied in depth for a variety of formalisms,
it is also particularly relevant for schema design as it allows to detect schemas that are
not well-defined.

1Jeni Tennison, one of the two co-chairs of the W3C CSV on the Web working group claims that over
90% of the data published on data.gov.uk is tabular data [160].

2A region is a set of cells.
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1 2 3 4 5 6 7 8 9 10

1 subject predicate object provenance
2 :e4 type PER
3 :e4 mention "Bart" D00124 283-286
4 :e4 mention "JoJo" D00124 145-149 0.9
5 :e4 per:sibling :e7 D00124 283-286 173-179 274-281
6 :e4 per:age "10" D00124 180-181 173-179 182-191 0.9
7 :e4 per:parent :e9 D00124 180-181 381-380 399-406 D00101 220-225 230-233

Figure B.1: Fragment of a CSV-like file (added row and column numbers), inspired by
use case 13 in [159].

Unsurprisingly, satisfiability of SCULPT quickly turns out to be undecidable, which
we show by an easy reduction from the domino tiling problem [163]. Indeed, using
only one rule, a region selection expression can be used to ‘walk’ over a grid testing
all horizontal and vertical constraints, or alternatively many much simpler rules can
be used to test all horizontal and vertical constraints in parallel for every domino type.
Even though these observations are valid to demonstrate undecidability they use rather
artificial constructions.
For this reason, we introduce a restricted variant of SCULPT called Lego SCULPT

(L-SCULPT) that not only suffices to express the W3C use cases but also admits tractable
satisfiability. In brief, L-SCULPT restricts region selection expressions to only select
rectangular shaped areas, that is, (parts of) rows, columns, and rectangles, thereby
constraining the structural power of the language. A second restriction is that L-SCULPT
only considers tables on which no two selected regions intersect. Specifically, we make
the following contributions:

1. We show that the safisfiability problem for the structural core of SCULPT is
undecidable.

2. We define a fragment of SCULPT called L-SCULPT that is powerful enough to
capture the structural core of the schemas for tabular data in the W3C recommen-
dation [125, Section 5.5]. Intuitively, L-SCULPT allows selections of rows, columns,
rectangles, and bounded-size regions in the directions up, left, down, and right,
whereas the W3C’s recommendation only allows column selection.3

3. Depending on which axes are used, we show that satisfiability of L-SCULPT
is PTIME-complete or undecidable. Our main technical result shows that for
L-SCULPT using only row, column, right, and rectangle selections satisfiability
is in PTIME. The proof is an intricate reduction to the emptiness problem of
nondeterministic tree automata where tables are encoded as trees.

Furthermore, in Doleschal et al. [32], we present Chisel, a tool for flexible manipu-
lation of CSV-like data. In brief, Chisel supports SCULPT as an expressive built-in

3We only focus on the structural core of the languages. The W3C’s proposal also supports key and
foreign key constraints, which are out of scope here but easy to add to the language. (In fact, we
implemented them in [32].)
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schema language for CSV-like data, that can handle both tabular and non-tabular data.
Furthermore, it supports a simple programming language for transforming tabular and
non-tabular CSV-like data. Chisel enables the user to develop SCULPT schemas, build
data transformations, and set up a pipeline for automatic conversion of “wild” CSV-like
data into structured tabular data. The source code and the tool can be obtained at
https://github.com/PoDMR/Chisel.
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List of Notations

Automata and Regex-formulas
RGX Set of all regex-formulas
fRGX Set of all functional regex-formulas
sRGX Set of all sequential regex-formulas
VSA Set of all variable-set automata
fVSA Set of all functional variable-set automata
sVSA Set of all sequential variable-set automata
dVSA Set of all deterministic variable-set automata
dfVSA Set of all deterministic functional variable-set automata
dsVSA Set of all deterministic sequential variable-set automata
uVSA Set of all unambiguous variable-set automata
ufVSA Set of all unambiguous functional variable-set automata
usVSA Set of all unambiguous sequential variable-set automata

Weight Functions
CWidth Constant-width weight function
Poly Polynomial-time weight function
Reg Regular weight function (over the numerical or tropical semiring)
RegQ Regular weight function over the numerical semiring
RegT Regular weight function over the tropical semiring
UReg Unambiguous regular weight function (over the numerical or tropical semiring)
URegQ Unambiguous regular weight function over the numerical semiring
URegT Unambiguous regular weight function over the tropical semiring

Other symbols
ΓV Set of variable operations over the variables in V
Σ Alphabet
Σ∗ Set of all documents over Σ
| x | Size of x

173



List of Notations

[i, j〉 Span from index i to index j
JAK Spanner defined by A
a� b Shift a by b
a� b Left shift a by b
D Datavalues
d Document
dt String tuple (dt(x1), . . . , dt(xn)), where Vars(t) = {x1, . . . , xn}
doc(r) Document encoded by ref-word r
FPRAS Fully polynomial-time randomized approximation scheme
L(A) Language accepted by A
R Ref-word Language
r Ref-Word
ref(d, t) Ref-Word encoded by d and t, which satisfies the variable order condition
S ◦ P Composition of S and P
Spans(d) Set of all possible spans over document d
Spans Set of all possible spans
t Tuple
tup(r) Tuple encoded by r
Vars Span variables
Vars(A) Variables of A
V -Tup Set of all V -tuples
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Index

aggregation functions, 109
results, 112

alphabet, 13
Average[S], 109

bipotent
monoid, 69
semiring, 70

black box splittability, 39

Count[S], 109
Cover[S], 33
cover condition, 32

d-tuple, 13
deterministic

variable-set automaton, 20
Disjoint[S], 33
document, 13
document spanner, 15
document splitter, 29

FPRAS, 110
functional, 15

ref-word language, 17
regex-formula, 16
variable-set automaton, 19

Highlander[S], 33
highlander condition, 32

K-annotator, 72
regular, 75

K-relation, 71
K-weighted DAG, 126

matrix multiplications ststem, 79
Max[S], 109
MaxTuple, 97
middle extractors, 64
Min[S], 109
monoid, 53, 69

(positively) ordered, 97
bipotent, 69

multiset, 13

parsimonious reduction, 110
possitional quantile approximation, 145
Proper[S], 33

q-Quantile[S], 109

RA-Enum, 104
ref-word, 17

language, 17, 74
valid, 17

regex-formula, 16
functional, 16
sequential, 16

regular document spanner, 15
containment, 46

relational algebra
K-relation, 71

relational algebra
spanner, 15

run
variable-set automaton, 19
weighted variable-set automaton, 74
valid, 74

schema constraints, 40
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Index

Self-Splittability[S], 31
semiring, 70

(positively) ordered, 97
bipotent, 70
efficient encoding, 80
positive, 70
subsemiring, 70

semiring encodings, 79
sequential

ref-word language, 17
regex-formula, 16
variable-set automaton, 19

size of
multiset, 13
regex-formula, 16
variable-set automaton, 19
weighted variable-set automaton, 74

soft spanner, 77
span, 13

covers, 14
disjoint, 14
equal, 14
minimal covering tuple, 14
overlap, 14
shift by, 14

span relations, 13
spanner, 15

composition, 30
equivalence, 15
proper, 15
regular, 15
relational algebra, 15

spanner signature, 39
split constraints, 39
Split-Correctness[S], 31
Split-Existence[S,P], 31
Splittability[S], 31
splitter, 29

disjoint, 29
string relation, 13

recognizable, 91
selectable by document spanners, 91
selectable by regular K-annotators,

91

Sum[S], 109

Threshold, 97
transition monoid, 53
tuple, 13

arity, 13
compatible, 15
empty, 13
projection, 13
shift by, 14, 29
variables, 13

Turing reduction, 110

unambiguous
variable-set automaton, 20
weighted variable-set automaton, 75

variable order condition, 17
variable-set automaton, 19

variable-set automaton
equivalent, 19
functional, 19

variable-set automaton, 18
deterministic, 20
epsilon removal, 19
extended, 87
sequential, 19
unambiguous, 20
variable order condition, 19
weighted, 73

weakly deterministic
variable-set automaton, 20

weight function
constant width, 113
polynomial-time, 113
regular, 114
unambiguous regular, 114

weighted variable-set automaton
ε-cycles, 74
functional, 74
unambiguous, 75
weight, 74
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