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Abstract
In medical treatment, it can be necessary to know the position of a motor unit in a

muscle. Recent advances in high-density surface Electromyography (EMG) measurement
have opened the possibility of extracting information about single motor units. We present
a mathematical approach to identify these motor units. On the base of an electrostatic
forward model, we introduce an adjoint approach to efficiently simulate a surface EMG
measurement and an optimal control approach to identify these motor units. We show basic
results on existence of solutions and first-order optimality conditions.

Keywords: nonlinear optimization in function spaces, electromyography, biomedical modeling,
identification problem in medical application

1 Introduction
In the human body, muscles are responsible for movement. These muscles consist of many
muscle fibers, which are organized in so-called motor units. A motor unit is thereby the smallest
controllable unit of the muscle. When we use a muscle, one or more of these motor units are
activated by the peripheral nervous system. This activation causes electrical signals, so-called
action potentials, to propagate along the muscle fibers. These propagating action potentials
create a spatially and temporally changing potential field. One can measure this potential by
electrodes, placed on the skin above the muscle.

A fundamental question in medical research and diagnosis is: what is the bioelectric source that is
responsible for a specific measured potential on the skin? To answer this question, one has to find
a way to identify these sources from the given measurements. Such an identification of bioelectric
activity from surface measurement is needed in many fields of medicine, e.g., in measuring brain
activity (EEG) or cardiac activity (ECG). Correspondingly, a lot of work has been performed
to develop tools for computational assistance, see, e.g., [16] and references therein for EEG. In
general terms, refinements of classical Tychonov regularization techniques are applied to the
spatial problem.

The corresponding technique for the identification of action potentials in muscles is called
electromyography (EMG). It can be used for purpose of research (which motor-unit is responsible
to which movement?) or in pre-operative planning (where is the location of important nerves,
which should not be harmed in operations?). Similar techniques as described above have also
been applied to electromyography measurements [20, 31, 32]. These techniques yield a smooth,
distributed reconstruction of sources, which is appropriate in those applications where the sources
are smoothly distributed within the tissue. In these approaches, mainly spatial problems are
solved, not taking into account the spatio-temporal structure of the problem.
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However, bioelectrical sources in motor units are known to have special structure. They consist
of a characteristic action potential that is concentrated along a line in space and moves along a
fiber. Approaches that directly attempt to process the spatio-temporal information and exploit
the high temporal resolution of surface EMG are less common. A notable exception is [23].
The authors consider a regularized least-squares approach for fitting the EMG signal by a linear
combination of a moderate number of analytically predefined and prelocated waveforms.

The aim of our work is to establish a mathematically sound approach to the EMG problem that,
similarly to [23], takes into account the special structure of moving action potentials in muscles.
Similar to [23], we use a least-squares tracking type functional for the identification. However,
we introduce refined approaches to simulate a surface EMG measurement from a given source.
We also represent the source to be identified more flexible via a curve that can be chosen freely
inside the muscle tissue.

Using a quasi-static approach, cf. [26], one can simulate for fixed time t the potential Φ, which
is generated from the moving action potential, by solving a Poisson equation of the form∫

Ω

(σ(x)∇Φ(x, t)) · ∇v(x) dx+
∫
∂ΩS

µΦ(s, t)v(s) ds =
∫
Ω

v(x) dρ(t). (1)

In this setting, the time dependent source density ρ(t), which is given through a moving action
potential, is spatially concentrated on the motor unit and thus modeled as a measure, concen-
trated on a line. Solutions to this problem in the sense of Stampacchia can be found in W 1,p′(Ω)
where p > d and 1/p + 1/p′ = 1, cf. e.g., [28] and a discussion concerning uniqueness can be
found in [24]. However, the direct numerical solution of (1) for all t in the time interval of
interest would incur high computational cost, i.e., for each time instant an elliptic PDE on a
three-dimensional domain would have to be solved. That would render numerical approaches to
the identification problem too costly. We overcome this difficulty by an adjoint approach and
reduce the simulation of a single measurement via (1) to the evaluation of a line integral.

Based on this simulation model, we establish a least-squares type tracking problem to identify
the motor units from a surface EMG measurement. Subject of our identification problem is
the trajectory of the moving action potential, represented by a parameterized curve. Unlike the
least-squares approach in [23], our problem is formulated in an infinite-dimensional function space
setting, which makes the analysis of the problem much more involved. Those kinds of infinite-
dimensional optimization problems emerge in many application-related problems. Therefore, the
prototype of this problem is studied very well, cf. e.g., [18,30,35] and we will employ techniques
of analysis established in the field of research to show existence of solutions and first order
optimality conditions. This lays the groundwork for an optimization based numerical approach
to our identification problem. A detailed elaboration of such an approach, however, will not be
subject to the current paper.

2 Modeling of a Surface Electromyography Measurement
Our first aim is to simulate a surface EMG measurement . Thus, for a given electric charge ρ(t)
we would like to simulate the measurement of an electric potential y(t) ∈ R, by an electrode,
located on the skin.

For this simulation, we first have to derive mathematical models for the quantities of interest.
First, we describe how those parts of the human body, where the motor unit lies, can be modeled
mathematically. Then there is a physical model that describes the connection between the
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potential we want to simulate and the source that is responsible for it. We also need a model for
the action potential, which acts as the source term.

As we will see, there are two problems when we simulate an surface EMG measurement. First,
we will notice that the computation is costly and not efficient. To overcome this problem, we
introduce an adjoint approach. Secondly, there appear so-called end-effects, modeling artifacts,
which can disturb the identification. Therefore, we present a way to reduce these effects.

2.1 A Mathematical Model of Human Tissue
We start with a mathematical description of the human body. To avoid computational overhead,
we consider only a locally truncated part, containing the region of interest. This is a reasonable
assumption, since static electric fields decay quickly far away from the source.

To represent some part of the body geometrically, we choose a bounded open domain Ω ⊂ R3

with Lipschitz boundary ∂Ω. That means locally, ∂Ω is the graph of a Lipschitz continuous
function. One can find a more detailed definition, e.g., in [8,30]. Since the human body consists
of different tissue types, we split the domain Ω into several subdomains Ωi, such that Ω = ∪Ωi.
For simplicity’s sake, we restrict our model to three different tissue types, namely muscle, fat,
and bone tissue. We use ΩM , ΩF , and ΩB as notation. Thereby, the index M stands for muscle
tissue, the index F for fat tissue, and the index B for bone tissue. From the truncation, we get
an artificial boundary, which we call ∂ΩA. Last but not least, skin tissue bounds the rest of our
domain, and we label it with ∂ΩS . We suppose that the skin part has positive measure, such
that we can place electrodes on the skin. Thus it yields

∂Ω = ∂ΩS ∪ ∂ΩA, ∅ = ∂ΩS ∩ ∂ΩA.

In the human body, each tissue type has three different electromagnetic properties. Those
properties are the conductivity σ, the permittivity ε, and the permeability µ. First, we note
human tissue is not magnetic. Thus the permeability is given by the permeability of vacuum µ0.
We also know that the upper frequency limit in human tissue is around 1kHz, see [21, 22, 26].
In this frequency range, one can assume that the tissue is purely resistive. Thus the properties
are independent of the exact frequency, see [21,29]. Furthermore, it is known that bone and fat
tissue are isotropic, concerning conductivity and the permittivity. In contrast, muscle tissue is
anisotropic. There the conductivity and permittivity are higher in the direction of the muscle
fibers, see [1, 21, 29]. Both properties depend, therefore, on the geometry of the muscle. For
simple geometries, one can assume that the muscle fibers are straight or at least only slightly
curved. Therefore, we can define, for example, the x-axis as the axial direction and rotate the
geometry such that the motor unit is approximately parallel to the x-axis. Thus we can represent
them by a 3× 3 matrix. To be consistent, we write the conductivity and permittivity as a scaled
identity matrix if the tissue is isotropic. In Tabular 1, we listed the conductivity and permittivity
values for different tissue types. Note that the permittivity is given relatively to the permittivity
of vacuum, which is ε0 = 8.8e−12 A s

V m . Since the conductivity is constant within each tissue
type we can make the following two estimates, needed for ellipticity and boundedness of the
bilinear form in (1):

σmax := max{‖σM‖∞, |σF |, |σB |} <∞ (2)
σmin := min{λmin(σM ), |σF |, |σB |} > 0. (3)
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tissue type fat bone muscle (axial) muscle (radial) skin
conductivity [S/m] 4.0e−2 2.0e−2 4.0e−1 9.0e−2 1.0
permittivity [rel.] 1.5e5 - 2.0e7 4.4e6 5.5e4

Table 1: Conductivity and permittivity for different tissue types, see [33].

Figure 1: Sketch of a motor unit

Last but not least, we have to derive a mathematical description of the motor unit. In bioelec-
tricity, a motor unit is a bundle of muscle fibers. In Figure 1 one can see a sketch of a motor
unit. Motor units are the smallest entities within a muscle that can be controlled individually
by the brain. First, our brain sends a signal to the neuromuscular junction, which lies in the
innervation zone of the muscle. The innervation zone lies thereby in the middle of the muscle.
When a motor unit is activated, it generates two action potentials that propagate towards both
ends of the motor unit, see [14] and cause a contraction of the muscle cells along the way. These
propagating action potentials also create an electric potential in the whole tissue, which can be
measured on the skin. One can assume that the activation of the muscle fibers in a motor unit
happens simultaneously, see [21]. Thus the superposition principle holds, and we can treat a
motor unit as a single fiber. We represent such a single fibered motor unit by a regular curve
u ∈ H2(−1, 1,R3). We denote by u(0) the neuromuscular junction and by u(−1) and u(1) the
two ends of the motor unit.

2.2 A Quasi-Static Model of the Electric Potential
A surface EMG measurement device measures the electric potential at the skin that is caused
by a moving electric charge within the motor unit. To simulate a measurement we need a model
that connects a moving electric charge with the corresponding electric potential in the tissue.
The velocity of these moving charges is relatively slow, such that electrodynamic effects (like
emission of electromagnetic waves) can be neglected. Thus, we will use a quasi-static model,
see [21,26].

We denote the moving electric charge by ρ(x, t), and the corresponding potential by Φ(x, t),
where x is the spatial variable and t the time. Then, in classical form we obtain the following
model, which would have to be augmented by boundary conditions and transmission conditions
to take into account jumps of σ at material boundaries:

−div σ(x)∇Φ(x, t) = ρ(x, t), (4)

see [26]. Moreover, we will model the action potential as a moving charge along a fiber, which is
a curve in 3D. So ρ(·, t) is rather a measure than a function in x. We will thus proceed to derive
an appropriate weak form of (4).

As mentioned above, there are two different boundary types, namely ∂ΩS , which represents the
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skin, and ∂ΩA, which is an artificial boundary, caused by the truncation of the domain. For ∂ΩS
we assume that there are no other sources outside of the domain, and thus the potential is zero
there. Those assumptions lead to the following Robin boundary condition

σ(x)∇Φ(s, t) · ν + µΦ(s, t) = 0 at ∂ΩS ,

where µ > 0 is the skin conductivity. For ∂ΩA, we also assume that no other sources are present
in the rest of the body. That means we can use homogeneous Neumann boundary conditions in
this case:

σ(x)∇Φ(s, t) · ν = 0 at ∂ΩA.
Combining these aspects, formal integration by parts yields the following symmetric bilinear
form

a : H1(Ω)×H1(Ω)→ R

a(Φ, v) :=
∫
Ω

(σ(x)∇Φ(x)) · ∇v(x) dx+
∫
∂ΩS

µΦ(s)v(s) ds. (5)

Due to the presence of Robin boundary conditions with µ > 0 on ∂ΩS , this bilinear form is
H1(Ω)-elliptic by a generalized Poincare inequality, cf. e.g., [30, Lemma 2.5]. Thus, by the
Lax-Milgram theorem, we obtain a continuously invertible linear operator

A : H1(Ω)→ H1(Ω)∗

(AΦ)(v) := a(Φ, v).

SinceH1(Ω) is reflexive, we may identifyH1(Ω)∗∗ ∼= H1(Ω) and also consider the adjoint operator
A∗ : H1(Ω)→ H1(Ω)∗ of A as (A∗v)(Φ) = a(Φ, v) = (AΦ)(v).

As already mentioned, we will model the electric charge at a time-instant t by a measure
ρ(t) ∈M(Ω) ∼ C(Ω)∗ on Ω. Thus, we may introduce the following weak form:

a(Φ(t), v) =
∫

Ω
vdρ(t) ∀v ∈ C∞(Ω). (6)

SinceH1(Ω) 6↪→ C(Ω) in our 3D-setting, we cannot write (6) as an operator equation AΦ(t) = ρ(t)
in H1(Ω), and thus the Lax-Milgram theorem cannot be applied directly. Nevertheless, by an
approach due to Stampacchia, see [28], solvability of (6) with Φ(t) ∈W 1,p′(Ω) for some p′ < 3/2
can be established.

In this approach the bilinear form (5) is redefined on different spaces as

ap : W 1,p′
(Ω)×W 1,p(Ω)→ R

with 1/p+ 1/p′ = 1 for p > 3, implying that W 1,p(Ω) ↪→ C(Ω). This gives rise to the following
restricted pre-dual problem for some l ∈W 1,p′(Ω)∗ ↪→ H1(Ω)∗:

find ψ ∈W 1,p(Ω) : ap(v, ψ) = l(v) ∀v ∈ H1(Ω).

By Lax-Milgram, this problem has a solution ψ ∈ H1(Ω), and it is a question of regularity theory,
if ψ is an element of W 1,p(Ω). If this is true for all l ∈ W 1,p′(Ω)∗, which is known as “maximal
regularity”, then the pre-dual operator

∗Ap : W 1,p(Ω)→W 1,p′
(Ω)∗

(∗Apψ)(v) = ap(v, ψ)

is an isomorphism by the open mapping theorem.
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Remark 1. More generally, it can be shown that ψ is an element of H1(Ω) ∩ C(Ω) if l ∈
W 1,p′(Ω)∗, cf. e.g. [17]. Then, with some additional technical effort, we can still show solvability
of (6), but an additional criterion is required to single out a unique solution. A detailed discussion
can be found in [24].

For simplicity we thus impose the following assumption:

Assumption 2.1. The domain Ω and its subdomains Ωj are sufficiently regular, such that the
operator ∗Ap : W 1,p(Ω)→W 1,p′(Ω)∗ is an isomorphism for some p > 3.

Under this assumption and by reflexivity of Sobolev spaces, we can conclude that the adjoint of
Ap := (∗Ap)∗

Ap : W 1,p′
(Ω)→W 1,p(Ω)∗

(Apφ)(w) := ap(φ,w)

is also an isomorphism, since adjoints of isomorphisms in normed spaces are isomorphisms, as
well.

Due to the continuous and dense embedding W 1,p(Ω) ↪→ C(Ω) we can use the corresponding
adjoint embedding C(Ω)∗ ↪→ W 1,p(Ω)∗ to regard the charge ρ(t) as an element of W 1,p(Ω)∗ for
each t, and we obtain unique solvability of the operator equation:

ApΦ(t) = ρ(t)

Hence, a unique electric potential Φ(t) ∈W 1,p′(Ω) that satisfies (6) exists for each ρ(t). Since all
spaces are reflexive, we can identify the adjoint operator and the pre-adjoint operator A∗p = ∗Ap.

2.3 Simulated Measurements by an Adjoint Approach
With the above model, the potential Φ(t) can in principle be computed in the whole domain
for every t if ρ(t) is given. However, the computational effort to do so with finite elements
is too large, given that we are only interested in a certain number of measurements yi(t) at
the boundary of Ω. We thus develop a more efficient adjoint approach to compute a desired
measurement y(t) ∈ R from given ρ(t).

In our setting, the potential is measured with small circular electrodes on the skin as follows

y(t) := B(Φ(t)) = 1
|D|

∫
D

Φ(s, t) ds,

where D ⊂ ∂ΩS is the area of the electrode. The trace theorem, cf. e.g. [30, Theorem 2.1],
implies that B is well defined as an element of W 1,p′(Ω)∗.

Let ρ(t) ∈W 1,p(Ω)∗ and denote by Φ(t) ∈W 1,p′(Ω) the solution of

(ApΦ(t))(v) = ρ(t)(v) ∀v ∈W 1,p(Ω). (7)

Now consider the solution ω ∈W 1,p(Ω) of the adjoint problem:

(A∗pω)(φ) = B(φ) ∀φ ∈W 1,p′
(Ω). (8)

Then we compute easily

y(t) = B(Φ(t)) = (A∗pω)(Φ(t)) = ap(Φ(t), ω) = (ApΦ(t))(ω) = ρ(t)(ω). (9)
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That means we can compute the potential at an electrode efficiently by evaluating

y(t) =
∫
Ω

ω(x) dρ(t). (10)

where ω ∈ W 1,p(Ω) ↪→ C(Ω) is the previously computed solution of the adjoint problem (8). In
the following section, we will give a physiologically meaningful definition of the measure ρ(t),
concentrated on a curve, such that (10) can be evaluated as a line integral. Then the computation
of y(t) requires just the evaluation of this line integral, which is much cheaper than computing
the solution of an elliptic equation. For several electrodes Bi, i ∈ 1 . . . nE , we obtain yi(t) via
solutions ωi of the corresponding problems A∗pωi = Bi.

For our EMG problem, we may assume that the moving charge is completely contained in the
muscular subdomain ΩM , which is disjoint with the domains of measurement Di ⊂ ∂Ωs. We can
thus invoke regularity results to obtain more smoothness of the restriction ω|ΩM

. This is useful
to render sensitivities of y(t) with respect to perturbations of the support of ρ(t) well defined,
which in turn are needed for our optimal control problem.

Lemma 2.2. The solution ω of (8) is in C∞(ΩM ) ∩W 1,p(Ω).

Proof. Restricted to ΩM , ω|ΩM
satisfies a Laplace equation, with σ|ΩM

being constant and no
sources are involved. Boundary conditions are given by ω|∂ΩM

. Such problems, however, are
known to be C∞ regular in the interior, cf. e.g. [12, Cor. 8.11].

2.4 Moving Action Potentials
In this section we provide a model for the charge ρ(t) that moves along a fiber inside the motor
unit. As described in section 2, the source density ρ is given by two action potentials moving
along a motor unit. For simplicity, we assume that the measured data corresponds only to one
active motor unit. This is a reasonable assumption, since it is possible to identify the activity of
single motor units through EMG decomposition methods, see for example [19].

Since the radius of the fiber is very small, we will model our fiber as (the trace of) a fixed curve
u in ΩM . The action potential extends spatially along that fiber, but also moves along the
fiber during the time span of the activation. The action potential takes a characteristic shape,
sketched in Figure 2, and we have to map this signal onto a certain time varying segment of the
curve that describes the fiber to obtain the line measure ρ(t) at time t. Additional difficulties
arise towards the ends of the fiber. Here special care has to be taken.

Biomedical modeling of action potentials starts with the following function

im(z) :=
{
−c(σin, r) exp(az)

(
6az + 6(az)2 + (az)3) if z ≤ 0

0 else,
(11)

in terms of a reference parameter z ∈ R. Here a > 0 is a scaling factor that determines the spatial
extension of the signal and c(σin, r) is a constant depending on the intracellular conductivity σin
and the radius of the motor unit r. For a more detailed description of the action potential we
refer to [1, 21,27]. One can easily verify that

Im(z) :=
{
−c(σin, r) exp(az)

(
3(az)2 + (az)3) 1

a if z ≤ 0
0 else

(12)
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is the antiderivative of im an thus it can be observed that∫
R
im(z) dz = Im(0)− lim

z→−∞
Im(z) = 0,

which corresponds to the principle of conservation of charge in the body. Up to now, the action
potential is defined as a function on R, so the next step is to define a pull-pack of im onto
the given curve u ∈ ΩM . A common assumption in biomedical modeling is that the velocity
ν with which the action potential propagates along the fiber is constant, see [21]. Since the
curve u represents the trajectory of the two propagating action potentials, we therefore choose
the parameterization of the curve u such that it matches with the propagation velocity ν of the
signal, in other words |u̇(τ)| ≡ ν. That means we can identify each point on the curve u with
some z ∈ R via the arc length

z(τ) =
τ∫

0

|u̇(ξ)| dξ =
τ∫

0

ν dξ = ντ.

That means z(0) = 0 corresponds to the neuromuscular junction u(0) and we can identify points
that are on the “right” side of the neuromuscular junction with some z ∈ R+ and points on
the “left” side with some z ∈ R−. To model the action potential that propagates from the
neuromuscular junction towards the “right” end of the fiber, we shift the origin of the action
potential im(z) by ν · (t0 − t) and set

ρ̃(u(τ), t) =
{
im (z(τ) + ν · (t0 − t))) if z(τ) > 0
0 else.

To model the second action potential that propagates in the opposite direction, we mirror the
signal at point zero, which is equal to adding a minus sign before z(τ) and changing z(τ) > 0 to
z(τ) < 0. By combining both action potentials we get a line-measure ρl as follows:

ρl(u(τ), t) := ρ̂l(τ, t) :=
{
im (z(τ) + ν · (t0 − t))) if z(τ) < 0,
im (−z(τ) + ν · (t0 − t))) if z(τ) > 0

}
= im (ν · (|τ |+ t0 − t)) ,

(13)

and since it ρ̂(·, t) is continuous in τ we can write (10) as

y(t) =
∫

Ω
ω(x) dρl(t) :=

∫
u

ω(x)ρl(x, t) ds =
∫ 1

−1
ω(u(τ))ρl(u(τ), t) |u̇(τ)|dτ

=
1∫
−1

ω(u(τ)) ρ̂l(τ, t)ν dτ =
1∫
−1

ω(u(τ)) im (ν · (|τ |+ t0 − t)) ν dτ.

(14)

In Figure 2 we visualized the action potential and the support projected onto the curve for
different time steps.

Conservation of charge and end-effects. As we have observed, our model im of the action
potential respects conservation of charge in the sense that its total integral over R vanishes.
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z

i_m(z)

(a) Prototype of the action potential (12)

z(-1) z(0) z(1) z

i_m(z)

(b) Action potential truncated at the tail

z(-1) z(0) z(1) z

i_m(z)

(c) Action potential with neglectable truncation

z(-1) z(0) z(1) z

i_m(z)

(d) Action potential truncated at the head

Figure 2: Action potential for different time instances

However, our definition of y(t) involves only an integral over a bounded subset of R and the
corresponding total charge is given by (taking into account the substitution of variables formula):

ρtotal(t) =
0∫
−1

im (ν · (−τ + t0 − t)) ν dτ +
1∫

0

im (ν · (τ + t0 − t)) ν dτ

= −Im(ν · (−τ + t0 − t))
∣∣∣0
−1

+ Im(ν · (τ + t0 − t))
∣∣∣1
0

(15)

which is non-zero in general. This truncation of the integral, which can be observed in Figure 2
needs to be compensated for. Otherwise, the principle of conservation of charge would be violated
and yield characteristic artifacts in simulations, so called end-effects. Those end effects can be
observed in the red simulation of Figure 4c.

The representation of (15) by boundary terms at τ = −1, 0, 1 already suggests how to construct
an appropriate compensation. We will add point (Dirac) measures at u(0), u(1) and u(−1),
scaled by the negatives of the corresponding boundary terms to the measure ρ(t). This can also
be interpreted physiologically: at the ends of the fibers, transitional imbalances of charge are
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compensated by small displacements of charge in the close vicinity of the end-plates. A similar
approach can be found in [14].

When looking at the action in Figure 2b, one can observe that the first truncation of the action
potential is at the neuromuscular junction. In (15) this corresponds to the boundary term at
τ = 0. Therefore we get

ρs(u(0), t) := 2Im(ν · (t0 − t)),

which is a Dirac measure at the neuromuscular junction u(0). In Figure 2c one can observe that
after some time the main part of the action potential lies on the motor unit, which means that
the imbalance of charges coming from the truncation at the neuromuscular junction tends to
zero, exponentially.

When the action potentials arrive at the ends u(−1) and u(1) of the motor unit, see action
potentials in Figure 2d, they are again truncated. Thus we have to compensate the boundary
terms at τ = −1 and τ = 1 in (15) by Dirac measures at u(−1) and u(1) as follows:

ρs(u(−1), t) = ρs(u(1), t) := −Im(ν · (1 + t0 − t)).

Observe that these charges are 0, if t ≤ 1 + t0, since Im(z) = 0 for z ≥ 0. In Figure 4c one
can see a comparison of simulations of y(t) with and without the source term compensation.
Without compensation the simulated signal has two characteristic extra spikes (shown in red).
These effects can be very pronounced, compared to the remaining signal, due to the smoothing
effect of the potential equation. Our above described compensation technique can eliminate these
end-effects, as seen in Figure 4c by observing the green function. By adding these stationary
source terms, the compensated model (16) reads as follows:

y(t) =
∫

Ω
ω(x)d(ρl + ρs)(t)

=
1∫
−1

ω(u(τ))νρl(u(τ), t) dτ +
∑

τ∈{−1,0,1}

ω(u(τ))ρs(u(τ), t)

=
1∫
−1

ω(u(τ))νρ̂l(τ, t) dτ + 2ω(u(0))νIm(ν(t0 − t))− (ω(u(−1)) + ω(u(1))) Im(ν(t1 − t)).

(16)

2.5 Numerical Simulation of a Surface EMG Measurement
To illustrate the properties of the forward problem, we perform the simulation of a surface EMG
measurement, using the previously established model. We consider a measurement for a single
fibered motor unit in the first dorsal interosseous (FDI) muscle of the right hand. At this point,
we would like to thank the authors of [25] for sharing the STL files of their MRI measurements.

For simplicity, our model contains only the FDI muscle and the first two metacarpal bones. The
rest of the domain was modeled as fat tissue. In Figure 3, the geometrical model is depicted. As
one can see in Figure 3, there is a grid of 24 circular electrodes placed above the FDI muscle. We
sketched the motor unit as a 2D projection onto the electrode grid by a black line. To incorporate
the electrode grid into the STL files, we used the CAD software Blender [4]. To generate a mesh
from the STL data, we used gmsh [11]. We performed all the following computations in C++,
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Figure 3: Geometrical setup for a numerical simulation: white dots: electrodes, dark brown:
FDI muscle, light brown: bones and remaining tissue, black line: motor unit.

where we used the toolbox Dune [3] for all mesh-related operations, and the finite element toolbox
Kaskade7 [15] to solve the adjoint problem.

The numerical computation of the adjoint solutions is done by a finite element method on a
triangulation T of Ω consisting of 414195 tetrahedrons. On T we used continuous piecewise
quadratic ansatz functions to discretize W 1,p(Ω) and W 1,p′(Ω) by

Wh := {w ∈ C(Ω,R) : w|K ∈ P2(K) ∀K ∈ T }.

As usual we use then a Galerkin-Method to solve the adjoint problem (8), which lead to the
discrete problem

find ωh ∈Wh s.t.
(A∗pωh)(φ) = B(φ) ∀φ ∈Wh.

After finite element discretization, we end up with a large sparse linear system of equations that
we solved with a preconditioned conjugate gradient method. As a preconditioner, we used an
incomplete Cholesky decomposition, cf. e.g., [13], which was provided by Kaskade7.

The evaluation of the line integrals (16) is performed by numerical quadrature along the trajectory
of u. As seen in Figure 2, the action potential is only nonzero on a small part of the trajectory but
shows large oscillations there. Therefore, a standard composite quadrature on uniform intervals
would be inefficient. To overcome this problem, we used an adaptive multigrid quadrature,
cf. e.g., [6]. The necessary evaluation of the finite element function ωh at a quadrature point
x requires a search for the tetrahedron K ∈ T which contains x. To do this efficiently, we
exploit that the quadrature points are ordered along the trajectory, and therefore we can use a
neighborhood search. If this fails, we fall back to a hierarchic search over the whole grid.
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In Figure 4a, we visualized the time dependent simulated signal on all 24 electrodes. For this
simulation, we used a motor unit that is placed 4 mm below the electrodes. Depending on their
location we observe quite a different behaviors. It can, for example, clearly be observed that
electrodes that are placed distantly from the source measure weaker signals.

It is well known that the identification of the depth of a source is difficult when identifying
sources from boundary measurements. We thus perform a variation in depth of the motor unit.
In Figure 4b, we show the simulated measurement of one electrode (marked in red in Figure 4a)
and for motor units with different depths. As one can see, most of the measured potential
decreases very fast if the depth is increased. But due to the concentrated stationary sources, the
potential decrease is much slower at the end of the measurement. That is a well known effect
when modeling monopolar signals, see [10,14].

Our approach reduces the required numerical effort for a simulation significantly. For our
simulation, we divided a time interval into 200 time steps. That means, with the classical
approach, we would have to solve a PDE 200 times. Using our adjoint approach, we only have
to solve a PDE as much as there are electrodes. In our example, this is 24 times. Therefore we
reduced the numerical effort for solving the PDE by a factor of 8. If one would solve the optimal
control problem, which we introduce in the next section, the factor becomes much bigger, since
there one would have to solve the PDE in each optimization step 200 times.

3 Identification of a Motor Unit from Measurements
In this section we will specify the identification problem which we want to solve. It is an inverse
problem in the following sense: up to now, the motor unit was modeled as the trace of a given
curve u and we derived a model for the simulation of the measurements yi(u, t) at nE electrodes.
From now on, we assume that measurements ym,i(t) are available and we are looking for a curve
u, such that the corresponding simulated values yi(u, t) and the measurements ym,i(t) fit well.
Collecting all these measurements and simulations in the vectors y(t), ym(t) ∈ RnE and using the
standard Euclidean norm ‖ · ‖nE ,2 on RnE , this leads to the following least-squares type tracking
term

J1(u) = 1
2

T∫
0

‖y(u, t)− ym(t)‖2nE ,2 dt.

By inspection of the given measurement ym and the subdomains of Ω, one can obtain a rough
estimate of where the motor unit u is located. Thus, we can choose a reference trajectory uref
(e.g. a piecewise linear curve that connects the estimated location of the neuromuscular junction
and the end-plates) a prior and add the following regularization term to the problem (where ‖·‖2
is the standard Euclidean norm on R3):

J2(u) := α1

2

1∫
−1

‖u(τ)− uref(τ)‖22 dτ.

Additionally, we assume that motor units are smooth in healthy tissue and therefore we add a
second regularization term, which is given through

J3(u) := α2

2

1∫
−1

‖ü(τ)‖22 dτ.
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(a) Simulated measurement on a 6x4 electrode grid. The geometric configuration corresponds
to the one, shown in Figure 3. The curves show the temporal behavior of the measured
potential.

0 25 50 75 100 125 150 175 200

Depth of the motor unit:
4 mm
6 mm
8 mm

(b) Impact of the motor unit depth on the simulated
measurement

0 25 50 75 100 125 150 175 200

End effects are modeled:
true
false

(c) Comparison of an surface EMG simulation with
(green) and without (red) correction of end effects

Figure 4: Simulated measurement for a single fibered motor unit

This term also yields the necessary compactness the show existence of optimal solutions.

Finally, we will add a constraint which ensures that the signal passes the motor unit with constant
speed ν > 0, as assumed in section 2.4. Therefore, we define the constraint function

G : H2(−1, 1,R3) 7→ H1(−1, 1,R)
[G(u)] (τ) := ‖u̇(τ)‖22 − ν2,

(17)

and demand that [G(u)] (τ) = 0 for almost every τ ∈ [−1, 1]. We also demand that the solution
is located in the muscle tissue ΩM . Combining those two constraints, we get the following
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admissible set

Uad := {v ∈ H2(−1, 1,R3) | v(τ) ∈ ΩM , G(v)(τ) = 0, for a. e. τ ∈ [−1, 1]}. (18)

We note that this definition of the admissible set makes sense, due to the fact that H2(−1, 1,R3)
is embedded in C1(−1, 1,R3). Collecting everything we get the optimization problem

min
u∈Uad

J(u) := J1(u) + J2(u) + J3(u). (19)

Alternatively, we can write this problem as an unconstrained problem by adding an indicator
function, such that we get

min
u∈H2(−1,1,R3)

F (u) := J(u) + ιUad
(u). (20)

Now that we have derived a identification problem, we want to know if the problem has a solution.

Remark 2. Some straightforward extensions of this identification problem are conceivable: for
example we may add the speed ν to the set of variables, to be identified, and similarly the scaling
parameter a. For simplicity of presentation we assume these parameters to be given.

3.1 Existence of a solution
To prove that the problem has at least one solution, we first need some auxiliary results. First
we show that the admissible set is weakly closed and that the equality constraint satisfies enough
regularity. The second result shows that the functional J is differentiable and weakly lower
continuous. We use then this two results two show that the objective functional satisfies the
properties that we need to proof the existence result. The first auxiliary lemma is:

Lemma 3.1. The admissible set Uad is weakly closed and the equality constraint G is Fréchet
differentiable.

Proof. To show that Uad is weakly closed, it is sufficient to show that the set

U1 = {v ∈ H2(−1, 1,R3)| v(τ) ∈ ΩM for a.e τ ∈ [−1, 1]}

and
U2 = {v ∈ H2(−1, 1,R3)|G(v)(τ) = 0 for a. e. τ ∈ [−1, 1]}

are weakly closed. The admissible set Uad is then as intersection of finitely many sets also weakly
closed.

Let u : [−1, 1] 7→ ΩM be a regular curve. From [5, Theorem 8.8] it follows that a compact
embedding E1 : H2(−1, 1,R3) 7→ C(−1, 1,R3) exist, and thus one can find a v ∈ H2(−1, 1,R3)
such that E1v = u. Thus U1 is well defined and not empty.
Let now {uk} ⊂ U1 be a weak convergent sequence with limit u. Since the embedding E1 is
compact there exist a subsequence ukl

such that E1ukl
→ E1u in C(−1, 1,R). Furthermore,

there exist a another subsequence E1ukli
that converges pointwise to E1u for all τ ∈ [−1, 1].

Since Ω is closed and E1ukli
(τ) ∈ Ω it follows that E1u(τ) ∈ Ω and thus also u(τ). This shows

that U1 is weakly closed.

As above there exits a compact embedding E2 : H1(−1, 1,R3) 7→W 1,4(−1, 1,R3) with E2u̇ = u̇.
From Hölder’s inequality it follows that 〈u̇, u̇〉2 ∈ H1(−1, 1,R) and thus

G :H2(−1, 1,R3) 7→ L2(−1, 1,R)
[G(u)](τ) = 〈u̇(τ), u̇(τ)〉2 − ν2
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is well defined. It is well known that, as a continuous bilinear form, G is Fréchet differentiable
with derivative

[G′(u)(v)](τ) = 〈u̇(τ), v̇(τ)〉2.

Let now {uk} ⊂ U2 be a weak convergent sequence with limit u. As above there exist a
subsequence ukl

such that Eukl
→ Eu in L4(−1, 1,R3). Since G is differentiable it is also

continuous. That means that
0 = G(Eukl

)→ G(Eu),

which shows that U2 is weakly closed.

Next we show the following Lemma:

Lemma 3.2. The functional J : H2(−1, 1,R3) ⊃ Uad 7→ R is continuous, and weakly lower
semi-continuous. If u(τ) ∈ ΩM for all τ ∈ [−1, 1], then J is Fréchet differentiable at u.

Proof. First we note that, as a sum, J is continuous, Fréchet differentiable and weakly lower semi-
continuous, if J1 and J2 are continuous, Fréchet differentiable and weakly lower semi-continuous.
To show the three properties for J1, we define for fixed t and k the mapping

ψk : ΩM × [−1, 1] 7→ R
ψk(x, τ) := ωk(x)νρ̂l(τ, t).

with derivative

ψk,x : ΩM × [−1, 1] 7→ L(R3,R)
ψk,x(x, τ)v := 〈∇ωk(x), v〉2νρ̂l(τ, t).

From Lemma 2.2 we now that ωk : ΩM 7→ R is in C∞(ΩM ) and therefore also ∇ωk ∈ C∞(ΩM ).
Thus it follows that ψk(·, τ) and ψk,x(·, τ) are continuous for all τ ∈ [−1, 1]. Thus ψk is Fréchet
differentiable, see [34, Page 192].
From [2, Theorem 6.3 and 6.7] we know that the corresponding superposition operator Ψk

maps C(−1, 1,R3) into itself if ψk is continuous and is Fréchet differentiable if ψk is Fréchet
differentiable. Furthermore, we know from [5, Theorem 8.8] that there exist a continuous
compact embedding E : H2(−1, 1,R3) 7→ C(−1, 1,R3) with Eu = u. Thus, it follows that
the superposition operator

Ψk : Uad 7→ C(−1, 1,R3)
(Ψk(u))(τ) := ψk(Eu(τ), τ)

is well defined and Fréchet differentiable with derivative

Ψ′k : Uad 7→ L
(
H2(−1, 1,R3);C(−1, 1,R)

)
(Ψ′k(u)v)(τ) = ψk,x(Eu(τ), τ)Ev(τ).

With the same argumentation it follows that the correction terms ωk(u(·))Im(·) are well defined
and Fréchet differentiable. Thus it follows immediately that

yk(u, t) =
1∫
−1

Ψk(u)(τ) dτ + 2ωk(u(0))Im(ν · (t0 − t))− (ωk(u(−1)) + ωk(u(1))Im(ν · (t1 − t))
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is well defined and Fréchet differentiable with derivative

Duyk(u, t)(v) =
1∫
−1

〈∇ωk(u(τ)), v(τ)〉2νρ̂l(τ, t) dτ + 2〈∇ω(u(0)), v(u(0))〉2Im(ν · (t0 − t))

− (〈∇ωk(u(−1)), v(u(−1))〉2 + 〈∇ωk(u(1)), v(u(1))〉2) Im(ν · (t1 − t)).

Using the chain rule it follows that J1(u) = 1
2
∫ T

0 ‖y(u, t)− ym(t)‖2nE ,2 dt is Fréchet differentiable

with derivative J ′1(u)(v) =
T∫
0
〈y(u, t)− ym(t), Duy(u, t)(v)〉nE ,2 dt.

Finally, since J1 : C(−1, 1,R3) 7→ C(−1, 1,R3) is differentiable, it is also continuous and
especially lower semi-continuous in C(−1, 1,R3). Furthermore we know that the embedding
E : H2(−1, 1,R3) 7→ C(−1, 1,R3) is compact, and thus it follows that J1 is weakly lower semi-
continuous in H2(−1, 1,R3).

J2 and J3 are obviously convex quadratic bilinear forms. Thus it is well known that they are
Fréchet differentiable from L2 into itself and weakly lower semi-continuous, cf. e.g. [9]. The
derivatives of J2 and J3 are then given through

J ′2(u)v =
1∫
−1

α1〈u(τ)− uref(τ), v(τ)〉2 dτ and

J ′2(u)v =
1∫
−1

α2〈ü(τ), v̈(τ)〉2 dτ.

Using the sum rule it follows that J is continuous and Fréchet differentiable and since the lim inf
is super-additive, J is weakly lower semi-continuous.

Collecting the derivatives from the previous proof, we get for the derivative J

J ′(u)v =
T∫

0

〈y(u, t)− ym(t), Duy(u, t)(v)〉nE ,2 dt

+
1∫
−1

α1〈u(τ)− uref(τ), v(τ)〉2 + α2〈ü(τ), v̈(τ)〉2 dτ.

Remark 3. Recall that the derivatives ∇ω(x), required in the definition of Duy(u, t) are well
defined by Lemma 2.2, since u is assumed to be contained in the muscular tissue ΩM . However,
if ω is approximated by a finite element function, ∇ω is only piecewise continuous.

The last auxiliary result is:

Lemma 3.3. The objective functional F is weakly lower semi-continuous and radially unbounded.

Proof. From Lemma 3.2 we already now that J is weakly lower semi-continuous. Thus, it remains
two show that the indicator function is lower semi-continuous.
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A function f : X 7→ R is weakly lower semi-continuous if the level sets Nαf = {x ∈ X|f(x) ≤ α}
are weakly closed for all α ∈ R, see [7, Theorem 7.4.11]. For the indicator function the level sets
are given through

NαιUad
(u) =

{
Uad if α > 0
∅ else.

From Lemma 3.1 we know that Uad is weakly closed and since the empty set is always weakly
closed it follows that the indicator function is weakly lower semi-continuous.

Obviously we have that F (u) > 0 and for ‖u‖2,2 →∞ either J2,J3 or ιUad
goes to infinity. Thus

it follows immediately that F is radially unbounded.

Using this three auxiliary results, we can proof the following existence result:

Theorem 3.4. The optimization problem (20) has at least one solution.

Proof. Let {un} be a minimizing sequence in the level sets Nα. From Lemma 3.3 we know that
F is radially unbounded and therefore the level sets Nα are bounded for all α ∈ R, i.e. un is
bounded. Since H2(−1, 1,R3) is reflexive, there exist a weakly convergent subsequence unk

with
limit u∗. From Lemma 3.3 we also know that F is weakly lower semi-continuous and thus

inf F ≤ F (u∗) ≤ lim inf F (unk
) = inf F,

which shows that the limit point u∗ is a minimizer of F .

3.2 First-Order Optimality Conditions
Now that we know that at least one solution to the problem (19) exist, we derive first-order
conditions for the problem. This is complicated by the geometric constraint u ⊂ ΩM , which we
imposed to assert existence of solution. However, from a practical point of view, we can expect
that the optimal solution u∗ is contained in ΩM without the need to enforce this as a constraint,
because the measured values orginate form a true signal, emitted from ΩM . In addition, the
objective functional is penalized by J2 if u is too far away from a reference curve uref , which
lies in ΩM . Therefore, for simplictiy, we will drop these constraints from now on, and assume
the optimal solutions u∗ lies in the muscle domain ΩM . That means we can rewrite the optimal
control problem 19 as a pure equality constrained problem:

min
u∈H2(−1,1,R3)

J(u)

s.t. G(u)(τ) = 0 for a. e. τ ∈ [−1, 1].
(21)

As usual we eliminate the equality constraint with the help of a Lagrange multiplier, which lead
to the following result:

Theorem 3.5. Let u∗ be a local minimizer of (21) that lies in ΩM . Then there exist a Lagrange
multiplier λ ∈ H1(−1, 1,R), such that

0 = J ′(u∗) +G′(u∗)∗λ
0 = G(u∗)(τ) for a. e. τ ∈ [−1, 1]
λ ∈ H1(−1, 1,R)∗

(22)
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Proof. First, we recall that λ ∈ H1(−1, 1,R)∗ is called Lagrange multiplier, if

λ ∈ K+

λ (G(u∗)) = 0
J ′(u∗)−G′(u∗)∗λ ∈ C(u∗)+

is fulfilled, cf. [35, Eq. 1.1]. Here K is a convex closed cone such that G(u) ∈ K and K+ is
the dual cone of K. Since we have pure equality constraints, K = {0} ⊂ H1(−1, 1,R) and
from the definition of the dual cone it follows that K+ = H1(−1, 1,R)∗, see [30, 35]. From the
[G(u∗)] (τ) = 0 it follows that the second condition is always fulfilled and thus we can replace it by
[G(u∗)] (τ) = 0. Furthermore, C(u∗) is the conical hull of H2(−1, 1,R3), which is H2(−1, 1,R3)
and therefore the dual cone C(u∗)+ = {0}. Thus, the third condition simplifies to

J ′(u∗)−G′(u∗)∗λ = 0.

Since we already know from Lemma 3.2 that J and G are Fréchet differentiable, it follows
from [30, Theorem 6.3] that a Lagrange multiplier λ exists, if G satisfies the regularity condition
of Zowe and Kurcyusz, which is given through

G′(u∗)C(u∗) +K(−G(u∗)) = H1(−1, 1,R).

Here K(·) is the convex hull of K. From K = {0} and G(u∗) = 0 it follows that K(G(u∗)) = {0}
and since C(u∗) = H2(−1, 1,R3), this condition is equivalent to G′(u∗) surjective. To show this,
we choose for arbitrary w ∈ H1(−1, 1,R)

v(τ) =
τ∫
−1

u̇∗(ξ)w(ξ)
ν2 dξ,

which is in H2(−1, 1,R3) and has the derivative

v̇(τ) = u̇∗(τ)w(τ)
ν2 .

It yields then

[G′(u∗)(v)] (τ) = 〈u̇∗(τ), u̇∗(τ)w(τ)
ν2 〉2 = w(τ) 〈u̇∗(τ), u̇∗(τ)〉2

ν2 = w(τ)

and since w ∈ H1(−1, 1,R) was arbitrary it follows that G′(u∗) is surjective.

From the definition of an adjoint operator it follows that G′(u∗)∗λ = λ(G′(u∗)) where λ is a
linear functional and therefore we can write the KKT condition (22) as

0 =
T∫

0

〈y(u, t)− ym(t), Duy(u, t)δu(t)〉nE ,2 dt+ λ(〈u̇, δu̇〉2)

+
1∫
−1

α1〈u(τ)− uref(τ), δu(τ)〉2 + α2〈ü(τ), δü(τ)〉2 dτ ∀δu ∈ H2(−1, 1,R3)

0 = ‖u̇(τ)‖22 − ν2 for a.e. τ ∈ [−1, 1]
λ ∈ H1(−1, 1,R)∗

(23)
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with

Duy(u, t)(v) =
1∫
−1

〈∇ω(u(τ)), v(τ)〉2νρ̂l(τ, t) dτ + 2〈∇ω(u(0)), v(u(0))〉2Im(ν(t0 − t))

− (〈∇ω(u(−1)), v(u(−1))〉2 − 〈∇ω(u(1)), v(u(1))〉2) Im(ν(1 + t0 − t))

These first order optimality conditions will be the basis of a computational approach that will
be elaborated in a forthcoming paper.
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