nctx: Networks in ConTeXt

Mirco Schoenfeld
mirco.schoenfeld@Quni-bayreuth.de

University of Bayreuth
Nuernberger Str. 38
95447 Bayreuth, Germany

July 2021

Abstract

In this paper, the programming library nctz is proposed. It is a collection of
algorithms tailored to the analysis of attributed networks that have context
information associated to nodes or edges. Key feature of this library is the
ability to guide network analysis tasks by means of user-defined functions.
These functions receive the current state of an analysis task such that context
information can be accessed easily. The user-defined function is able to guide
further execution of the analysis task providing a novel way of considering
context information during the analysis of complex structure.

Keywords: network analysis, attributed networks, context-awareness, li-
brary, python, R, C++



1 Technical Report

1.1 Motivation

Analyzing complex phenomena by means of network analysis is a common way to gain
knowledge about an underlying structure and the sensible mechanisms that influence
interrelations between entities. Network analysis translates complex data into groups of
nodes, metrics about the structure, or even rankings of nodes and edges. Such transla-
tions are easy to understand and well interpretable in terms of the metaphors for nodes
and edges.

However, taking only structural aspects of complex data into account means leaving
out a large part of the data that might illustrate or explain emergence and formation
of the structure at hand [11]. Such illustrating information is called context informa-
tion. Considering context information during the analysis of networks is the central
advantage of the nctz-library compared to existing libraries providing network analysis
functionality.

With nctz, researchers can define functions that are executed as part of a network
analysis task and that allow to guide the task itself. Therefore, the functions are passed
the current state of a network analysis task, i.e. the nodes that are currently processed
or visited, such that context information can be accessed easily. The defined function
can then use context information to allow or prohibit further processing of the current
state of the network analysis task.

The nctz-library is built on top of Boost Graph Library [12] and is accessible via
C++, R [10], and Python [13].

1.1.1 Objectives

The key objective of the nctz-library is to enable researchers to consider context infor-
mation during the analysis of network data. Researchers are in control to model the way
and the extent to which context information influence path discovery, path traversal,
and centrality calculations. Further, researchers can use the provided functionality in
C++, R, and Python.

1.1.2 Contributions

e We build a framework for modeling and analysing attributed networks

e Researchers can define custom functions that can guide shortest-path discovery,
path traversal, and centrality calculations. This gives control to researchers how
and to what extent attribute information have an influence on the analysis.

e We build on top of the Boost Graph Library, a peer-reviewed C++ library provid-
ing robust and efficient implementations of algorithms for network analysis

e The library can be used in C++, R, and Python



1.1.3 Outline

This work is structured as follows. The first part of this report provides information
about the

The second part covered in Chapter 2 contains the library manual. The chapter
provides information about installing the library in Section 2.1. It is

1.2 Related Work

There are a few libraries available that provide functionality for network analysis. One
of the largest libraries that is also accessible cross-platform (in C/C++, R, and Python)
is igraph [2]. It aims to provide efficient implementations of a large collection of network
analysis tools with an easy-to-use interface to researchers.

A library with an emphasis on statistical analysis of networks is called graph-tool [9].
It is written in C++ and built upon the Boost Graph Library like the nctz-library. It
is intended to be used via Python.

SNAP is a framework built for analysis and manipulation of large networks. SNAP is
also written in C++ and provides interfaces in Python. SNAP is optimized for maximum
performance and compact graph representation and, with SNAP, it is possible to process
massive networks with hundreds of millions of nodes, and billions of edges [8].

A library only available in Python is networkx [7]. It provides a large collection of
network analysis algorithms. Code written for networkx adheres to the look-and-feel of
the Python language, i.e. nodes can be arbitrary objects like Python dictionaries, for
example.

All of the above-mentioned libraries lack a core feature of nctx-library which is the
ability to define functions that guide network analysis algorithms.

1.3 Concept

The general idea of the nctz-library is to enable researchers to consider context infor-
mation during tasks of network analysis guiding, for example, shortest-path discovery
or centrality calculations.

The library is therefore aimed at the analysis of attributed networks in which context
information is associated with either nodes or edges. The type of context information
is not restricted by the library. All conceivable data types are supported - from atomic
Boolean or numeric values, to word strings, to complex data structures. For the most
part, it is left to the researcher to manage the context information.

The library provides assistance where needed to make the data structures accessible
for algorithmic analysis. This is especially true for the python-port of the library, where
appropriate auxiliary structures are defined.

To take advantage of the special strength of the nctz-library, researchers can define



functions that are executed during shortest-path discovery or centrality calculations. The
functions are passed the status of the analysis by means of parameters. This ensures
that the researcher can react to the current status of the analysis.

The intended use of the library is to retrieve context information about nodes dur-
ing shortest-path discovery, for example, and to use the context information to de-
cide whether certain subpaths should be followed or discarded. This allows for node-
dependent and dynamic decision of how to process context information.

1.4 Implementation

The core of the nctz-library is written in C++. It is basically an adaptation of algorithms
of the BGL, the Boost Graph Library [12].

Central elements of the C4++ core of the library are a custom visitor to the BGL
implementation of Dijkstra’s algorithm for shortest path discovery, as well as a custom
visitor to the implementation of Brandes’ algorithm of Betweenness centrality. These
visitors are responsible for calling the user-defined functions at each step of the algo-
rithms. If a call to such a user-defined function prohibits the use of a certain edge, these
visitors handle the required distance and centrality updates accordingly.

On top of this core there are two adaptors making the functionality available in R
and Python. For Python, the adaptors make heavy use of Boost.Python [1]. For R, the
adaptors are built around Repp [6, 3, 4] and the Boost library for Repp [5].

The Python port of nctx is split into three sub-modules, a sub-module for directed
graphs, a sub-module for undirected graphs, and a sub-module containing utility func-
tions. The decision for splitting the functionality for directed and undirected graphs
into different submodules was due to the strongly typed nature of C+4 and the BGL
algorithms. They require a fixed type of graph at compile-time and, in BGL, the type
specifies if the graph is directed or not. Using specific sub-modules allow to fix the type
and directedness of the graph at compile time.

Beyond that, the most part of the Python port consists of details about type conver-
sions between C++ and Python data structures and iterators for vertices and edges. An
important part of that is passing BGL property maps to Python allowing researchers to
save attribute information together with the graph and to export these information to
files.

The R port of nctx is much more straightforward since Rcpp does a great job in map-
ping data structures between R and C++4. This eases passing lists of data between R
and C++ and less code is used to provide type conversions and details about iterators.
The core of the adaptor is a C++ class consisting of templated calls to the library func-
tions, and a mapping to specific S4 classes with concrete values for template parameters



resulting in a S4 class for a directed graph and one for an undirected graph.

1.5 Future Work

At this point, the library is based on a single-core implementation of the Boost Graph
Library. That means that shortest-path discovery and centrality calculations are exe-
cuted on single-cores only while they could benefit tremendously from using all available
cores instead. Future versions of this library will be adapted accordingly.

Further, we aim to integrate additional algorithms of network analysis into the library.
For example, the PageRank algorithm is very well suitable to consider context informa-
tion as well by replacing the damping-factor with a weight obtained from a user-defined
function.

1.6 Conclusion

We built a library that assists in working with attributed networks having attributes
or context information associated to nodes or edges. The novelty of nctr lies in the
user-defined functions that can guide shortest-path discovery or centrality calculations
allowing to enforce contextual constraints at the core of network analysis algorithms.

2 Library Manual

This Section provides a brief overview of how to install and use the library. For an up-to-
date information on how to work with the library, visit https://nctx.mircoschoenfeld.
de. The latest version of the library is available online: https://github.com/nctx.

2.1 Installation

This Section provides a brief overview of the steps required to use the nctz-library.

2.1.1 C4++

To use this library as part of a C++ project, make sure to include the nctx.hpp in your
source files, and link the boost_graph-library against your project. Make sure to include
the directory of the nctx.hpp as well as the Boost include path.

2.1.2 Python

Installing the nctz-package for Python requires some compilation of source files. That
requires the Boost Graph Library (> 1.65.0) to be installed on the system.


https://nctx.mircoschoenfeld.de
https://nctx.mircoschoenfeld.de
https://github.com/nctx

The compilation is then taken care of by the skbuild-package, however. If that
package is installed, one needs to execute the following command in the directory of the
package in order to build a whl-file:

python3 setup.py bdist_wheel
Inside the dist-folder there appears a *.whl file which needs to be installed:
pip install dist/nctx-0.1-*.whl

More detailed instructions on how to install this library can be found on https:
//github.com/nctx/py3nctx.

213 R

To install the nctr-extension for R use the devtools-library and install the library
directly from github by executing the following lines in a R session:

library(devtools)
install_github("nctx/rnctx")

More detailed instructions on how to install this library can be found on https:
//github.com/nctx/rnctx.

2.2 Usage

The usage of this library is highlighted very briefly in the following Sections. For more
details refer to the websites mentioned in the Sections.

The general idea is to have user-defined functions with the signature (vertex index,
vertex index, vertex index) -> bool. These functions accept three vertex indices:
the start vertex, the current vertex, and the descending vertex. The start vertex is the
vertex for which the centrality is to be obtained, the source vertex of the shortest-path-
discovery in the network, or the like. The current vertex is the one where the path
traversal is currently at, deciding whether to visit the descending next vertex. The next
vertex has a connection to the current vertex and the analysis algorithm is about to
visit it. If the user-defined function evaluates to false, the edge to the next vertex is
discarded.

2.2.1 C++

In C+4+, the user-defined function can be given using a lambda expression. The example
demonstrates the use of a property map that is accessed inside the lambda expression.
The nxt vertex is only visited if the lambda expression evaluates to true.


https://github.com/nctx/py3nctx
https://github.com/nctx/py3nctx
https://github.com/nctx/rnctx
https://github.com/nctx/rnctx

#include<nctx.hpp>
typedef typename b::graph_traits<Graph>::vertex_descriptor
Vertex;
Graph g;
auto ctx_map = boost::make_vector_property_map<
std::vector<double_t> >( boost::get(
boost::vertex_index, g));
// ... fill the ctz_map here
auto weight_map = boost::make_constant_property< typename
Graph::edge_descriptor >(1.0);
std::vector<double> centralityS(num_vertices(g), 0);
brandes_betweenness_centrality_ctx(g,
centrality_map(make_iterator_property_map(centralityS.begin(),
boost::get(boost::vertex_index, g)))
.vertex_index_map (boost::get(boost::vertex_index, g))
.weight_map(weight_map),
[¥ctx_map] (Vertex start, Vertex current, Vertex nxt) ->
bool {
auto d_1 =
kl_divergence (ctx_map[current].begin(),ctx_map[current].end(),

ctx_map[nxt].begin(),ctx_map[nxt].end());
return d_1 <= .35;

B

More information can be found on https://nctx.mircoschoenfeld.de/cpp.

2.2.2 Python

In Python, we need to import either the submodule undirected or directed for the
analysis of undirected or directed networks. The example demonstrates the use of a
simple list consisting nominal data. The discovery of shortest paths between all pairs
of nodes is guided by this attribute data such that edges are only allowed if both ends
have the same attribute value in common.

import nctx.undirected as nctx
g = nctx.Graph()
# ... fill the graph here
context = [1,1,0,1,1,1,1,0,1,0]
def decision(strt, crnt, nxt):
return context[crnt] == context[nxt]
distances = nctx.AlgPaths.dijkstra_apsp_ctx(g, decision)

More information can be found on https://nctx.mircoschoenfeld.de/python3.


https://nctx.mircoschoenfeld.de/cpp
https://nctx.mircoschoenfeld.de/python3

223 R

The example demonstrates the use of a simple list consisting nominal data. The discovery
of shortest paths between all pairs of nodes is guided by this attribute data such that
edges are only allowed if both ends have the same attribute value in common.

require (nctx)

g <- create_graph(directed=FALSE)

# ... fill the graph here

context <- ¢(1,1,0,1,1,1,1,0,1,0)

decision_fct <- function(strt, crnt, nxt){
context [crnt] == context[nxt]

3

distances <- all_pairs_shortest_paths_ctx(g, decision_fct)

More information can be found on https://nctx.mircoschoenfeld.de/R.

References

[1] David Abrahams and Ralf W Grosse-Kunstleve. “Building hybrid systems with
Boost.Python”. In: C/C++ Users Journal 21.7 (May 2003). URL: https://www.
osti.gov/biblio/815409.

[2] Gabor Csardi and Tamas Nepusz. “The igraph software package for complex net-
work research”. In: InterJournal Complex Systems (2006), p. 1695. URL: https:
//igraph.org.

[3] Dirk Eddelbuettel. Seamless R and C++ Integration with Repp. ISBN 978-1-4614-
6867-7. New York: Springer, 2013. DOI: 10.1007/978-1-4614-6868-4.

[4] Dirk Eddelbuettel and James Joseph Balamuta. “Extending R with C++: A Brief
Introduction to Repp”. In: The American Statistician 72.1 (2018), pp. 28-36. DOIL:
10.1080/00031305.2017.1375990.

[5] Dirk Eddelbuettel, Jay Emerson, and Michael Kane. bh: Boost Headers for R. 2014.
URL: http://dirk.eddelbuettel.com/code/bh.html.

[6] Dirk Eddelbuettel and Romain Frangois. “Rcpp: Seamless R and C++ Integra-
tion”. In: Journal of Statistical Software 40.8 (2011), pp. 1-18. DOI: 10. 18637/
jss.v040.108. URL: https://www. jstatsoft.org/v40/108/.

[7] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. “Exploring Network Struc-
ture, Dynamics, and Function using NetworkX”. In: Proceedings of the 7th Python

in Science Conference. Ed. by Gaél Varoquaux, Travis Vaught, and Jarrod Mill-
man. Pasadena, CA USA, 2008, pp. 11-15.

[8] Jure Leskovec and Rok Sosi¢. “SNAP: A General-Purpose Network Analysis and
Graph-Mining Library”. In: ACM Transactions on Intelligent Systems and Tech-
nology (TIST) 8.1 (2016), p. 1.


https://nctx.mircoschoenfeld.de/R
https://www.osti.gov/biblio/815409
https://www.osti.gov/biblio/815409
https://igraph.org
https://igraph.org
https://doi.org/10.1007/978-1-4614-6868-4
https://doi.org/10.1080/00031305.2017.1375990
http://dirk.eddelbuettel.com/code/bh.html
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.18637/jss.v040.i08
https://www.jstatsoft.org/v40/i08/

[12]

[13]

Tiago P. Peixoto. “The graph-tool python library”. In: figshare (2014). pOI: 10.
6084/m9.figshare.1164194. (Visited on 09/10/2014).

R Core Team. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing. Vienna, Austria, 2020. URL: https://www.R-
project.org.

Mirco Schoenfeld and Juergen Pfeffer. “Networks and Context: Algorithmic Chal-
lenges for Context-Aware Social Network Research”. In: Challenges in Social Net-
work Research: Methods and Applications. Ed. by Giancarlo Ragozini and Maria
Prosperina Vitale. Cham: Springer International Publishing, 2020, pp. 115-130.
ISBN: 978-3-030-31463-7. DOI: 10.1007/978-3-030-31463-7_8.

Jeremy Siek, Andrew Lumsdaine, and Lie-Quan Lee. The boost graph library: user
guide and reference manual. Addison-Wesley, 2002.

Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Scotts Valley,
CA: CreateSpace, 2009. 1SBN: 1441412697.


https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.6084/m9.figshare.1164194
https://www.R-project.org
https://www.R-project.org
https://doi.org/10.1007/978-3-030-31463-7_8

	Technical Report
	Motivation
	Objectives
	Contributions
	Outline

	Related Work
	Concept
	Implementation
	Future Work
	Conclusion

	Library Manual
	Installation
	C++
	Python
	R

	Usage
	C++
	Python
	R



