
Gr�une,L.; Wirth,F.Stabilization of discrete{time bilinear systemsThe problem of feedback stabilizing a semi-linear discrete-time system is studied. Under an accessibility conditionon an associated nonlinear system on the projective space it can be shown that null controllability is equivalent tofeedback stabilizability. We present a way in which a stabilizing feedback may be computed using some ideas fromdiscounted optimal control.1. IntroductionWe consider systems on IRd of the formx(t+ 1) = A(u(t))x(t) :=  A0 + mXi=1 ui(t)Ai!x(t) ; t 2 IN ; (1)where A0; : : : ; Am 2 IRd�d do not span a subspace of non-invertible matrices, and the set of admissible controlvalues U = cl intU � IRm is compact, with connected interior and satis�es 0 2 intU . The associated system on theprojective space IPd�1 is given by�(t+ 1) = IPA(u(t))�(t) ; t 2 IN : (2)Here only those control sequences u 2 U IN are admissible for which the corresponding solution �u(t; 0)x0 6= 0 for allt 2 IN, where x0 is such that it spans �0. These control values or sequences will be denoted by U (�); U IN(�). Thesolution of (2) corresponding to an initial value � and a control sequence u is denoted by '(�; �; u). Let us note thatthe setup is a particular case of the systems studied in [3], [4]. Proofs for the statements of the theorems below canbe found in [3].We call system (1) asymptotically null-controllable if for every x 2 IRd there exists a control sequence u 2 U INsuch that limt!1 �u(t; 0)x = 0. System (1) is called (state) feedback stabilizable if there exists a map F : IRd ! Usuch that the systemx(t+ 1) = A(F (x(t)))x(t) ; t 2 IN ; (3)is globally asymptotically stable. If F can be chosen such that (3) is exponentially stable, then we call (1) exponen-tially (state) feedback stabilizable and F is called exponentially stabilizing.Recall that a nonlinear system is called forward accessible, if for each point the interior of the forward orbit isnonempty. The following theorem states the main result on exponential stabilizability of (1).T h e o r em 1. If (2) is forward accessible, then the following statements are equivalent.(i) System (1) is asymptotically null controllable.(ii) System (1) is feedback stabilizable with a piecewise constant feedback F .(iii) System (1) is exponentially feedback stabilizable with a piecewise constant feedback F .2. Construction of the feedbackIn this section we will give a constructive approach for the calculation of the exponentially stabilizing feedback forsystem (1). For this purpose we will base our construction on a dynamic programming technique using the optimalvalue function of a discounted optimal control problem. Note that this procedure yields an existence result forstabilizing feedbacks and in addition makes the problem numerically feasible, cp. Remark 3.From the application point of view one reason why feedback stabilization is preferred to open loop asymptoticnull controllability lies in the fact that one expects robustness of the closed loop system against small perturbations.



Since in this paper we follow an optimal control approach the resulting feedback will in general be discontinuous,and the desired robustness property cannot be obtained as a simple conclusion from the continuous dependencyon the initial value. However, the continuity of the associated value function may be used in order to obtain thisproperty.The construction of the feedback is related to the following optimal control problem: De�ne the functionq : IPd�1 � U ! IR [ f�1g byq(�; u) := ( log kA(u)xkkxk ; u 2 U (�)�1 ; else (4)and for � > 0 the �-discounted cost J� : IPd�1 � U IN ! IR [ f�1g de�ned byJ�(�; u) := 8<: � t�1Ps=0 e��sq('(s; �; u); u(s)) ; u 2 U IN(�) ;�1 else. (5)The associated value function on projective space is given by v�(�) := infu2UIN J�(�; u). For small � the functionv� may be interpreted as an approximation of the smallest exponential growth rate that may be attained via anarbitrary control sequence from �. Similar to [1] | where continuous time systems are discussed | our constructionof the feedback is now based on this approximating property. De�ne F� : IPd�1 ! U by the following procedure :For any point � 2 IPd�1 such that v�(�) > �1 choose a value u 2 U such thatq(�; u) + e��v�('(1; �; u))becomes minimal. To discuss the case v�(�) = �1 note that this is only possible ifU 6= Uinv := fu 2 U j det(A(u)) 6=0g. By assumption we may choose an increasing sequence of compact subsets Un � Uinv with nonvoid interior, suchthat U = clS1n=1Un and such that system (2) with control range restricted to Un is forward accessible. Denote byqn; J�;n; v�;n the function de�ned by (4); (5) with control range restricted to Un. If v�(�) = �1 choose a sequencefung such that for each n 2 INqn(�; un) + e��v�;n('(1; �; un))becomes minimal and choose u to be a limit point of the sequence fung.De�ne a feedback F�(�) := u with the choice of u as described above. It may be shown that this feedback lawis indeed an optimal control strategy for v� . Furthermore it holds thatT h e o r em 2. The following statements are equivalent:(i) System (1) is feedback stabilizable with a piecewise constant feedback F .(ii) There exists a �� > 0 such that for all 0 < � < �� the feedback F� is exponentially stabilizing.R ema r k 3. By a standard dynamic programming argument the optimal value function v� can be character-ized as the solution of a discrete Hamilton-Jacobi-Bellman equation. Using the results from [2] the feedback F canbe calculated numerically by means of a numerical approximation of v�. For this numerical treatment it is advante-geous to use one of the approximations Un that were described above, in order to avoid possible problems caused bysingularity. 3. References1 Gr�une, L.: Discrete Feedback Stabilization of Semilinear Control Systems, ESAIM: Control, Optimisation and Calculusof Variations, 1(1996), 207-2242 Gr�une, L.: An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equation, Numer. Math. 75(1997), 319-3373 Gr�une, L., Wirth, F.: Feedback stabilization of discrete-time semi-linear systems, Technical report, University of Augs-burg, (1997).4 Wirth, F.: Dynamics of time-varying discrete-time linear systems: Spectral theory and the projected system. SIAM J.Contr. & Opt., 36(2) (1998) to appear.Addresses: Dr. Lars Gr�une, Institut f�ur Mathematik, Universit�at Augsburg, 86135 Augsburg, GermanyDr. Fabian Wirth, Institut f�ur Dynamische Systeme, Universit�at Bremen, 28334 Bremen, Germany


