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Abstract: In this paper we are concerned with estimates of the prediction horizon length
in nonlinear model predictive control (MPC) without terminal constraints or costs for systems
governed by ordinary differential equations. A growth bound — which is known to be the crucial
condition in order to determine a horizon length for which asymptotic stability or a desired
performance of the MPC closed loop is guaranteed — is numerically deduced for an example
of a synchronous generator. Then, the system dynamics are discretized and the computations
are repeated for the resulting sampled data system. We investigate how the obtained estimates
are related — in particular, for sampling periods tending to zero. Furthermore, it is shown
that a suitable design of the running costs in the sampled data setting can lead to improved
performance bounds and, thus, can ensure stability for significantly shorter prediction horizons.
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1. INTRODUCTION

Model predictive control (MPC) is a control strategy in
order to approximately solve an optimal control problem
on an infinite time horizon. To this end, a sequence of
optimal control problems on a truncated and, thus, finite
time horizon is iteratively solved. MPC is particularly at-
tractive due to its ability to take hard constraints directly
into account, cf. Maciejowski (2002). However, stability of
the original problem may get lost if the prediction horizon
is chosen too short, see, e.g., Raff et al. (2006). Such draw-
backs can be excluded if (artificial) terminal constraints
and/or costs are incorporated as shown in Keerthi and
Gilbert (1988); Chen and Allgöwer (1998). In this setting
the stability analysis is quite mature, even for nonlinear
and infinite dimensional systems, cf. Camacho and Bor-
dons (1999); Rawlings and Mayne (2009); Ito and Kunisch
(2002). However, the construction of suitable stabilizing
terminal constraints and/or costs remains a challenging
task which explains why so called unconstrained MPC is
often used in practice, cf. Qin and Badgwell (2003). Here,
the term unconstrained emphasizes that no additional
terminal constraints and/or costs are used, control and
state constraints can, however, be taken into account.

For unconstrained MPC schemes stability can be con-
cluded for sufficiently long prediction horizons, cf. Jad-
babaie and Hauser (2005). The first estimates of the re-
quired horizon length in a nonlinear setting can be found in
Grimm et al. (2005); Tuna et al. (2006). A further improve-
ment was obtained by using the methodology introduced in
Grüne (2009); Grüne et al. (2010), cf. Worthmann (2012)
for a comparison. All these techniques have in common
that a growth condition is assumed in which optimal open
loop costs are set in relation to a “reference quantity”
depending on the corresponding initial state. In these
references a discrete time framework is considered, the ap-
proach, however, can also be applied in a continuous time

setting, cf. Reble and Allgöwer (2011). The connection
between the resulting estimates of the prediction horizon
is investigated in Worthmann et al. (2012) for systems
satisfying an exponential controllability condition.

In this paper this investigation is continued, however,
without supposing exponential controllability. Instead a
growth condition is numerically verified. Then, different
approximations of the continuous time cost functional are
considered. Two main conclusions can be drawn: firstly,
convergence of the horizon estimates seems to hold for
sampling periods tending to zero which substantiates the
conjecture that the results from Worthmann et al. (2012)
can be transferred to our setting based on the weaker
growth condition. Secondly, for a given sampling period,
the use of a suitably chosen discrete time approximation
may significantly enhance the corresponding performance
estimates — even in comparison to the continuous time
setting. This allows to ensure asymptotic stability for
much shorter prediction horizons although the MPC cost
functional and, thus, the (numerical) effort in order to
verify the required growth condition remain unchanged.
The reason for this phenomenon is that both the current
state and the influence of the control are reflected by the
reference quantity in the growth condition if the discrete
time running costs are suitably designed.

The paper is organized as follows. In the ensuing Section
2 an MPC scheme and a methodology in order to compute
a prediction horizon, for which asymptotic stability of the
MPC closed loop is guaranteed, are presented. Then, in
Section 3 the results are applied for a nonlinear example.
In the following Section 4 the technique introduced in
Section 2 is transferred to sampled data systems. To this
end, the concept of multistep feedback laws is required. In
Section 5 the main results dealing with the relation of the
continuous setting and its sampled data implementation
are presented. Finally, conclusions are drawn in Section 6.



2. PROBLEM FORMULATION & RECAP

A continuous function η : R≥0 → R≥0 is said to be of class
K∞ if it is strictly increasing, unbounded, and zero at zero.
Furthermore, a continuous function β : R≥0×R≥0 → R≥0

is called a KL-function if β(·, t) is of class K∞ for each
t ≥ 0 and β(r, t)→ 0 for t→∞ holds for all r > 0.

We consider systems governed by nonlinear autonomous
(ordinary) differential equations

ẋ(t) = f(x(t), u(t)). (1)

Here, x(t) ∈ Rn and u(t) ∈ Rm represent the state
and the control at time t, respectively. State and control
constraints are modeled by suitably chosen subsets X ⊆
Rn and U ⊆ Rm. For a given state x̂ and time T a control
function u : [0, T )→ Rm is said to be admissible — which
is denoted by u ∈ U(x̂, T ) — if the corresponding solution
x(t; x̂, u) exists for each t ∈ [0, T ] and the conditions

u(t) ∈ U, t ∈ [0, T ), and x(t; x̂, u) ∈ X, t ∈ [0, T ], (2)

are satisfied. Furthermore, u : R≥0 → Rm is called
admissible on the infinite horizon, written u ∈ U(x̂,∞), if
the restriction u|[0,T ) is contained in U(x̂, T ) for all T > 0.

2.1 Problem Formulation & Model Predictive Control

Let x? ∈ X be a state for which a control input u? ∈ U
exists such that f(x?, u?) = 0 holds. (x?, u?) is said to
be an equilibrium pair. Furthermore, let running costs
` : Rn×Rm → R≥0 with `(x?, u?) = 0 be defined. Then, for
given initial state x0 ∈ X and admissible control function
u ∈ U(x0,∞), the performance on the infinite time horizon
can be evaluated by using the cost functional

J∞(x0, u) =

∞∫
0

`(x(t;x0, u), u(t)) dt. (3)

Our goal is to find a feedback map µ : X → U such that,
for each feasible initial state x0 ∈ X, the resulting closed
loop solution xµ(·;x0) generated by

ẋµ(t;x0) = f(xµ(t;x0), µ(xµ(t;x0))), xµ(0;x0) = x0,

exists, satisfies the constraints (2), minimizes the costs
(3), and asymptotically converges to x?, i.e. there exists
β ∈ KL such that ‖xµ(t;x) − x?‖ ≤ β(‖x − x?‖, t) holds
for all t ≥ 0. In order to ensure that this task can be
satisfied, the following assumption is necessary.

Assumption 1. Let for each x ∈ X a control u ∈ U(x,∞)
exist such that J∞(x, u) <∞ holds.

Since infinite horizon optimal control problems are, in
general, hard to solve, we use model predictive control
(MPC) as a remedy. For a given initial condition x̂ := x0,
an MPC algorithm typically consists of three steps:

(1) Solve the optimal control problem on a truncated
and, thus, finite time horizon, i.e. compute a control
function û which minimizes

JT (x̂, u) :=

T∫
0

`(x(t; x̂, u) dt (4)

over all admissible control functions, i.e. u ∈ U(x̂, T ).
Here, in order to keep the presentation technically
simple, existence of a minimizer is assumed.

(2) For given δ ≤ T , define a feedback law µT : [0, δ) ×
Rn → Rm by µT (t, x̂) := û(t). The first piece û|[0,δ)
of the computed control function û is implemented at
the plant by using the MPC feedback law µT .

(3) Then, the current state is updated by setting x̂ :=
xµT (δ; x̂) = x(δ; x̂; û) and the prediction horizon is
shifted forward in time.

Iterative application of this procedure generates a solution
xµT (·;x0) on the infinite time horizon. The corresponding
control function is denoted by µMPC(·;x0).

2.2 Estimates of the Prediction Horizon & Stability

In Reble and Allgöwer (2011) a methodology was intro-
duced which allows to determine a prediction horizon
length T for which asymptotic stability or a desired per-
formance of the MPC closed loop is guaranteed. To this
end, the notation of the optimal value function VT (x̂) :=
infu∈U(x̂,T ) JT (x̂, u), T ∈ R≥0 ∪ {∞}, is required.

Theorem 2. Let δ > 0 and a monotone bounded function
B : R≥0 → R≥0 satisfying

Vt(x̂) ≤ B(t) inf
u∈U

`(x̂, u) =: B(t)`?(x̂) ∀ t ≥ 0 (5)

for all x̂ ∈ X be given. In addition, let T > δ be chosen
such that αT > 0 holds with

αT,δ := 1− e
−
∫ T
δ
B(t)−1dt

e
−
∫ T
T−δ

B(t)−1dt[
1− e−

∫ T
δ
B(t)−1dt

] [
1− e−

∫ T
T−δ

B(t)−1dt
] .(6)

Then, the relaxed Lyapunov inequality

VT (xµT (δ; x̂))≤ VT (x̂)−αT

δ∫
0

`(xµT (t; x̂), µT (t; x̂)) dt (7)

holds for all x̂ ∈ X and, as a consequence, the performance
estimate

∞∫
0

`(xµT (t;x0), µMPC(t;x0)) dt ≤ α−1
T V∞(x0) (8)

holds for all x0 ∈ X. If, additionally, K∞-functions η, η
exist such that the conditions

`?(x̂) ≥ η(x̂) and VT (x̂) ≤ η(x̂) (9)

hold for x̂ ∈ X, the MPC closed loop is asymptotically
stable with prediction horizon T .

Proof. Theorem 2 mainly summarizes results from Re-
ble and Allgöwer (2011) with two modifications. Firstly,
continuity of the function B(·) is not assumed. Secondly,
state constraints are included in our setting. Both changes
are based on the observation that the respective proofs
presented in Reble and Allgöwer (2011) remain valid, see
also the corresponding results derived for a discrete time
system in Grüne (2009) and Grüne et al. (2010).



The main assumption needed in order to apply Theorem
2 and, thus, to conclude asymptotic stability or a per-
formance guarantee is the growth condition (5). If this
inequality is satisfied, αT > 0 always holds for a sufficiently
large prediction horizon.

Corollary 3. Let B : R≥0 → R≥0 be a monotone and
bounded function with B(t) > 0 for t > 0. Then, the
performance bound αT given by (6) converges to unity for
T approaching infinity, i.e. limT→∞ αT = 1.

Proof. Let an arbitrary but fixed δ > 0 be given. Since
B(·) is monotone, bounded and satisfies B(t) > 0 for t > 0,
∞ > B(δ)−1 ≥ B(t)−1 ≥ c holds for all t ≥ δ with a
constant c ∈ R>0 if T is sufficiently large (T −δ ≥ δ). This
implies the convergence

lim
T→∞

exp

(
−
∫ T

δ

B(t)−1 dt

)
= 0.

In addition, the inequality e
−
∫ T
T−δ

B(t)−1 dt ≤ e−δc < 1
can be concluded. Hence, Corollary 3 can be shown by
combining these two assertions.

Corollary 3 generalizes (Reble and Allgöwer, 2011, Section
4) to systems which are not exponentially controllable in
terms of the stage costs.

Remark 4. We point out that Condition (5) is only needed
on the interval [0, T ] in order to prove Theorem 2 — a fact
which facilitates verifying this assumption numerically.

3. SYNCHRONOUS GENERATOR

We consider the example of the synchronous generator
given by

ẋ(t) =

(
ẋ1(t)
ẋ2(t)
ẋ3(t)

)
=

(
x2(t)

−b1x3(t) sinx1(t)− b2x2(t) + P
b3 cosx1(t)− b4x3(t) + E + u(t)

)

with parameters b1 = 34.29, b2 = 0.0, b3 = 0.149,
b4 = 0.3341, P = 28.22, and E = 0.2405, cf. Galaz et al.
(2003). We want to stabilize this system at the equilibrium
pair (x?, u?) with x? ≈ (1.124603730, 0, 0.9122974248)T

and u? = 0. The running costs

`(x, u) = ‖x− x?‖2 + λ‖u‖2 (10)

are used where ‖ · ‖ denotes the Euclidean norm. The
parameter λ = 0.01 penalizes the control effort used
to manipulate the system behavior. Furthermore, the
physically motivated state constraints 0 ≤ x1 < π/2 and
x3 ≥ 0 have to be taken into account.

Our goal is to numerically verify the introduced growth
condition (5) for the sub-level set X := {x ∈ R3 :
V0.6(x) ≤ 0.092} which is control invariant according to
our numerical experiments, see, e.g., Blanchini and Miani
(2008) for a definition of control invariance. To this end,
we proceed in two steps:

(1) For each state x ∈ X a function Bx : [0, T ]→ R≥0 is
determined such that (5) holds. Here, the subscript x
indicates the dependence on the state x.

(2) Then, the desired function B(·) is obtained as point-
wise supremum, i.e. B(t) := supx∈X Bx(t), t ∈ [0, T ].

The first step is only carried out approximately. The sub-
level set X is contained in the interior of the cube

[x?1 − a1, x
?
1 + a1]× [x?2 − a2, x

?
2 + a2]× [x?3 − a3, x

?
3 + a3]

with a1 := 0.4, a2 := 0.5, and a3 := 0.9. This cube is
discretized with stepsize ∆xi = 0.02, i ∈ {1, 2, 3}, in each
coordinate direction which results in a grid G. Then, the
set X̄ is defined as the intersection X∩G, i.e. a sub-level set
of the constructed grid consisting of 8309 grid points, see
Fig. 1 for an illustration. Hence, the following derivation
is rigorous apart from verifying (5) on the set X̄ instead
of X and, thus, only for a finite number of points.
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Fig. 1. Convex hull of the sub-level set X̄ := X ∩ G.

For a given state x ∈ X̄\{x?} and time t, the condition

Bx(t) ≥ Vt(x)/`?(x) = Vt(x)/‖x− x?‖2 (11)

has to be satisfied. Hence, an upper bound of Vt(x) =
infu∈U(x,t) Jt(x, u) has to be computed. To this end, we
make use of the fact that optimality of B(t) and, thus,
Bx(t) is not needed. In principal, arbitrary L∞([0, t),R)-
functions are contained in the set of admissible control
functions U(x, t). However, we restrict ourselves to piece-
wise constant control functions. To be more precise, the
time domain is discretized with stepsize τ = 0.0125 and
control functions u : [0, T )→ R are confined to be constant
on each interval [nτ, (n+ 1)τ), n = 0, 1, 2, . . . , T/τ −1. On
the one hand doing so leads to slightly more conservative
bounds Bx(t), t ∈ τN, since the set of admissible control
functions becomes smaller. On the other hand, for each
x ∈ X̄ and t ∈ τN, the value Vt(x) and, thus, Bx(t) can be
estimated by solving a nonlinear optimization problem. 1

In addition, since neither terminal constraints nor terminal
costs were used, Vt(x) ≤ V(n+1)τ (x) and, as a consequence,
Bx(t) ≤ Bx((n+ 1)τ) hold for each t ∈ (nτ, (n+ 1)τ ].

Then, a bound B(t) is given by supx∈X̄ Bx(t) for each
t ∈ [0, T ]. In conclusion, this approach yields a function
B(t) satisfying (5) for each x ∈ X̄ ⊂ X, cf. Fig. 2.

Next, Theorem 2 is applied in order to determine a predic-
tion horizon for which asymptotic stability is guaranteed
for the MPC closed loop with δ = 0.1. Here, we want to

1 We used the NMPC software package available at
http://www.nonlinearmpc.com/.



Fig. 2. Visualization of the bound B(·) in (5) resulting
from our numerical computations in dependence of
the parameter τ .

determine T as a multiple of δ. Then, T = 2.1 ensures the
relaxed Lyapunov inequality (7) with α = 0.048518. Note
that the coarser discretizations depicted in Fig. 2 require
a prolongation to T = 2.2 and T = 2.3, respectively, which
shows that improving the bound B pays off.

4. SAMPLED DATA SYSTEMS

Applying Theorem 2 requires that the input signal can be
switched at each time instant t ∈ [0, T ) — an assumption
which typically cannot be satisfied in practice. Instead,
only a limited number of such switching instants is pos-
sible, a restriction which fits well to the derivation of the
upper bounds with piecewise constant control functions as
carried out in the previous Section 3. Here, we consider a
sampled data system with zero order hold in order to take
this into account, i.e. the successor state is given by the
discrete time dynamics f̃ : Rn × Rm → Rn defined as

x(n+ 1) = f̃(x(n), u(n)) := Φ(τ ;x(n), ũ), (12)

x(0) = x0, with ũ(t) = u(n) for all t ∈ [0, τ). Here, τ > 0
denotes the discretization parameter (sampling period)
and Φ(·;x(n), ũ) denotes the solution of the differential
equation (1) with constant control function ũ emanating
from initial state x(n). Again, the state and control are
denoted by x and u with a slight abuse of notation.

A sequence u = (u(0), u(1), . . . , u(N − 1)) of N control
values is called admissible for x̂ and N , denoted by UN (x̂),
if the state trajectory xu(n; x̂), n = 1, 2, . . . , N , governed
by system dynamics (12) exists and the conditions

f̃(xu(n; x̂), u(n)) ∈ X and u(n) ∈ U (13)

hold for each n ∈ {0, 1, 2, . . . , N−1}. Furthermore, U∞(x̂)
is defined analogously to the continuous time setting. In
addition, Assumption 1 is still required for the optimal
value function

V∞(x̂) := inf
u∈U∞(x̂)

∞∑
n=0

˜̀(xu(n; x̂), u(n)) (14)

for each x̂ ∈ X with running costs ˜̀ : Rn × Rm → R≥0,
˜̀(x?, u?) = 0. A necessary condition for this assumption

is that the set X is control invariant, see, e.g., Kerrigan
and Maciejowski (2000); Primbs and Nevistić (2000) for
methods to ensure control invariance in MPC.

The MPC algorithm described in Section 2 has to be
modified in step (2). Since now a sequence of control values
is computed in step (1), the first p = δ/τ ∈ N elements of
this sequence are implemented. To this end, the definition
of a multistep feedback law µN,p : {0, 1, 2, . . . , p − 1} ×
X → U is required, cf. Grüne (2009). For the considered
MPC algorithm µN,p(n, x̂) is defined as the (n + 1)-st
element of the control sequence u ∈ UN (x̂) satisfying
JN (x̂, u) = VN (x̂) for

JN (x̂, u) =

N−1∑
n=0

˜̀(xu(n; x̂), u(n)). (15)

Next, we give conditions under which asymptotic stabil-
ity or a desired performance bound can be guaranteed,
cf. Grüne et al. (2010) and Worthmann (2012) for a proof.

Theorem 5. Let p ∈ N be given and suppose that a mono-
tone bounded sequence (Mi)i∈N ⊂ R≥1 exists satisfying

Vi(x̂) ≤Mi inf
u∈U :f(x,u)∈X

˜̀(x̂, u) = V1(x̂) ∀ i ∈ N (16)

for each x̂ ∈ X. In addition, let N > p be chosen such that
αN,p > 0 holds with αN,p given by

1−
∏N
i=p+1(Mi − 1)

∏N
i=N−p+1(Mi − 1)[

N∏
i=p+1

Mi −
N∏

i=p+1

(Mi − 1)

][
N∏

i=N−p+1

Mi −
N∏

i=N−p+1

(Mi − 1)

] .
Then, the relaxed Lyapunov inequality

VN (xµN,p(p; x̂)) ≤ VN (x̂)−
p−1∑
n=0

˜̀(xµN,p(n; x̂), µN,p(n; x̂))

and, as a consequence, a performance estimate analogously
to (8) with αN,p instead of αT hold for all x0 ∈ X
and the MPC feedback law with prediction horizon N .
If, additionally, K∞-functions %, % exist such that the
inequalities V1(x̂) ≥ %(x̂) and VN (x̂) ≤ %(x̂) hold for all
x̂ ∈ X, the MPC closed loop is asymptotically stable.

The origin of Theorems 5 and 2 is the construction of
a linear program which characterizes optimal solutions
by Bellman’s principle of optimality and a controllability
condition instead of the growth conditions (16) and (5),
cf. Grüne (2009). If the involved coefficients in this con-
trollability condition exhibit a “submultiplicativity condi-
tion”, the expressions αN,p and αT coincide with the corre-
sponding solution. Otherwise solving the respective linear
programs may improve the deduced bounds, cf. Grüne
et al. (2010). We like to point out that the linear program
has infinitely many constraints in the continuous time
setting which explains why switching at each time instant
is a required condition in order to ensure their satisfaction,
cf. Reble and Allgöwer (2011) for further details.

5. CONNECTION BETWEEN THE CONTINUOUS
AND THE DISCRETE TIME SETTING

The discrete time system dynamics (12) are a sampled
data implementation with zero order hold of their contin-



uous time companion piece (1). Furthermore, the integral
in the optimal value function VT , T ∈ R>0 ∪ {∞}, is
straightforwardly replaced by a sum of appropriate length.
Intuitively, the running costs ˜̀ employed in the discrete
time setting should then approximate the integral over `
on a sampling interval. Hence, one option is to use the
running costs

˜̀
1(x(n), u(n)) :=

τ∫
0

‖Φ(t;x(n), ũ), ũ(t))−x?‖2 +λ‖ũ(t)‖2dt

with ũ(t) = u(n), t ∈ [0, τ) which reproduces the continu-
ous time cost functional with the restriction to piecewise
constant control functions ũ. However, the right hand side
of Assumption (5) is based on `?(x̂) = ‖x̂ − x?‖2 for the
running costs defined by (10) whereas its counterpart in

(16), i.e. V1(x̂) := infu∈U :f̃(x̂,u)∈X
˜̀
1(x̂, u), can be influ-

enced by the control input u.

Another possible choice for the running costs is

˜̀
2(x(n), u(n)) := τ(‖x(n)− x?‖2 + λ‖u(n)‖2).

Since sampled data systems with zero order hold are
considered, this definition leads to an approximation error
with respect to the state trajectory. On the other hand,
assuming admissibility of u = 0 the equality τ`?(x̂) =
V1(x̂) holds. Hence, the reference quantity used in the right
hand side of Assumptions (5) and (16) remains essentially
the same.

For systems exponentially controllable in terms of their
stage costs it has been shown that the continuous time
estimates can be arbitrarily well approximated for sam-
pling periods tending to zero, cf. Worthmann et al. (2012).
In addition, the corresponding performance index αT has
proven to be an upper bound for the ones resulting from
the discrete time setting. Do these assertions also hold
without such an exponential controllability condition?

Moreover, we want to investigate whether the possibility to
influence the reference quantity V1 in ˜̀

1 can be exploited
in order to obtain better suboptimality estimates?

5.1 Numerical Results for ˜̀
2

We begin our investigation with ˜̀
2 and δ = 0.1. The

control is allowed to change its value p ∈ {1, 2, 4, 8} times
on the interval [0, δ), i.e. τ ∈ {0.1, 0.05, 0.025, 0.0125}.
Hence, the concept of multistep feedback laws is required
in order to take this into account. Then, for each point
x ∈ X̄, a sequence Mi is computed analogously to the
continuous time setting considered in Section 3. Assuming
f(x, 0) ∈ X the equality V1(x) = τ`?(x) holds. Hence, the
reference quantity V1(x) does not depend on the control. In
this setting, one observes that using a finer discretization
leads to improved bounds (Mi)i∈N, as shown in Fig. 2 for
the continuous time setting, and, thus, to improved subop-
timality estimates. Indeed, the continuous time estimates
are approximated by using smaller sampling periods in
combination with multistep feedback laws, cf. Fig. 3.

We conjecture that carrying out a few additional refine-
ment steps leads to estimates converging to the continuous
time ones — analogously to the results rigorously derived

Fig. 3. Visualization of αN,p in comparison to αT based on

the estimates resulting from Theorem 5 with ˜̀
2 and

Theorem 2.

for a setting based on systems exponentially controllable
in terms of their stage costs, cf. Worthmann et al. (2012).
This observation meets our expectations.

5.2 Design of suitable running costs

In this subsection we repeat our computations for the
discrete time setting based on running costs ˜̀

1 instead
of ˜̀

2. Then, the optimal value functions from the left
hand side of our growth condition (16) coincide with
their counterparts from (5) apart from the restriction to
piecewise control inputs. However, V1 reflects the influence
of the first control input which may lead to using a control
input not equal to zero. As a consequence, the reference
quantity may not be a scaled version of `? anymore.

The numerical computations lead to the estimates de-
picted in Fig. 4. Here, we observe a significant decrease
in the required prediction horizon length needed in order
to guarantee asymptotic stability or a desired performance
specification in comparison to the continuous time setting
for τ = δ = 0.1 — despite the restriction to piecewise con-
stant control inputs which implies that changes are only
permitted at multiples of the sampling rate τ . Moreover,
τ = 0.1 yields the best estimates although these bounds
result from the smallest class of control inputs. Hence,
at least a slight improvement seems to be attainable by
allowing for multirate sampling, cf. Lee et al. (1992). How-
ever, using smaller τ and, thus, larger p in order to keep δ
constant worsens the performance bounds resulting from
Theorem 5. Here, we point out that the reference quantity
V1(·) depends on τ and, as a consequence, changes. Again,
the suboptimality estimates obtained in the sampled data
setting seem to converge to their continuous time counter-
parts for τ tending to zero.

The reference quantity V1(x̂) reflects both the state x̂ as
well as the dynamical behavior of the system which is
determined by the interplay of the system dynamics and
the control. Although the involved bounds (Mi)i∈N are
worse due to the coarser discretization, the use of this
accumulated information in the reference quantity reduces
the required prediction horizon length in order to ensure



Fig. 4. Visualization of αN,p in comparison to αT based on

the estimates resulting from Theorem 5 with ˜̀
1 and

Theorem 2.

asymptotic stability compared to their counterparts result-
ing from the continuous time setting. In conclusion, the
discrete time approach allows to derive improved perfor-
mance estimates by choosing the stage costs appropriately,
e.g. ˜̀

1 instead of ˜̀
2 for the considered example, and, thus,

using additional information on the system behavior.

6. CONCLUSIONS AND OUTLOOK

In this paper a methodology in order to determine a pre-
diction horizon length for which asymptotic stability or a
desired degree of suboptimality is guaranteed for the MPC
closed loop is numerically investigated for the example of
the synchronous generator. Firstly, we showed that the
results obtained in a sampled data setting converge to
their counterparts derived in a purely continuous time
setting for sampling periods tending to zero. Secondly, we
observed that using the discrete time approach can lead
to significantly better estimates since its growth condition
allows to take more information into account by using a
suitably constructed reference quantity.
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F. (2012). The role of sampling for stability and
performance in unconstrained model predictive control.
Preprint, University of Bayreuth. Submitted.


