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Abstract We consider a distributed NMPC scheme in which the individual sys-
tems are coupled via state constraints. In order to avoid violation of the constraints,
the subsystems communicate their individual predictions to the other subsystems
once in each sampling period. For this setting, Richards and How have proposed
a sequential distributed MPC formulation with stabilizing terminal constraints. In
this paper we show how this scheme can be extended to MPC without stabilizing
terminal constraints or costs. We show theoretically and by means of numerical sim-
ulations that under a suitable controllability condition stability and feasibility can be
ensured even for rather short prediction horizons.

1 Introduction

In this paper we consider a distributed nonlinear model predictive control (NMPC)
algorithm for systems which are coupled via state constraints. NMPC is a controller
design method which relies on the online solutions of optimal control problems
on finite optimization horizons in each sampling period. In a distributed setting, the
solution of this optimal control problem is distributed among the individual systems.
This can be done in various ways, see [12, Chapter 6] or [15] for an overview. One
way is to formulate the optimization objective in a centralized way and to solve
this problem in a distributed way in each sampling period. The necessary splitting
of the optimization problem can be obtained in various ways which under suitable
assumptions guarantee that the performance of the distributed controller is similar
to that of a centralized controller; examples can be found, e.g., in [4] or [12, Chapter
6]. The drawback of this method — which is usually called cooperative control —
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is that it requires numerous information exchanges between the individual systems
during the iterative optimization procedure in each sampling interval.

A less demanding approach from the communication point of view is non-
cooperative control, in which some information from the other systems is taken into
account when a system performs its optimization but in which the optimization ob-
jectives of the individual systems are independent from each other. It is known that
for this setting a solution close to the central optimum can no longer be expected;
rather, the best one can get is a Nash equilibrium, see [12, Chapter 6]. However, un-
der suitable conditions the resulting closed loop may still be stable and maintain the
imposed coupling constraints. This is the situation we investigate in this paper. More
precisely, we consider a specific non-cooperative distributed NMPC algorithm pro-
posed by Richards and How [13, 14] in which each system sends information about
its predicted future states once in each sampling period. Via a suitable sequential
ordering of the individual optimizations it is then ensured that the coupling state
constraints are maintained whenever the optimization problems are feasible, i.e.,
when optimal solutions exist. Clearly, requiring a strict sequential order is a draw-
back of this approach which we will attempt to relax in future research. Still, the
numerical effort of this scheme is already significantly lower than for a centralized
solution of the optimization problem, cf. the discussion after Algorithm 3.1, below.

In a stabilization setting, the optimal control problem to be solved online in the
NMPC iteration usually minimizes the distance to the desired equilibrium. Often,
additional stabilizing terminal constraints and costs are imposed in order to ensure
asymptotic stability of the resulting closed loop. This means that the optimization
on the finite horizon in each sampling instant is performed over those trajectories
which — at the end of the optimization horizon — end up in the terminal constraint
set which is typically a neighborhood of the equilibrium to be stabilized. These ter-
minal constraints also play a vital role for ensuring both stability and feasibility in
the scheme of Richards and How. In certain situations, however, imposing terminal
constraints has the significant drawback that rather long optimization horizons are
needed in order to ensure the existence of trajectories which end up in the terminal
constraint sets. Furthermore, stabilizing terminal constraints may have negative ef-
fects on the performance of the scheme, see, e.g., [7, Section 8.4]. As we will see in
the detailed description in Section 3, in the distributed setting the terminal constraint
formulation has the additional drawback that possible conflicts between the individ-
ual systems, i.e., violations of the coupling state constraints, have to be resolved in
an initialization step.

The contribution of this paper is to give sufficient conditions under which we
can ensure stability and feasibility without stabilizing terminal constraints. In the
non-distributed setting, several approaches for this purpose have been developed,
e.g., in [5, 6, 8, 9]. Here we use the approach developed in [6, 8] which relies on
an asymptoptic controllability assumption taking into account the stage cost of the
finite horizon optimal control problems. We will develop an extension of this con-
dition to the distributed setting and we will verify that this condition holds for a
simple test example of moving agents in a plane where the coupling constraints are
formulated in order to avoid collisions between the agents. Numerical simulations
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for this example illustrate that with this scheme stability can be achieved with short
optimization horizons and that this scheme allows to resolve conflicts between the
individual systems once they become “visible”, i.e., at the runtime of the system
rather than in an initialization step.

The paper is organized as follows. In Section 2 we describe the problem formu-
lation and in Section 3 we present the algorithm of Richards and How [13, 14] and
discuss its main features. In Section 4 we recall the controllability based stability
analysis for NMPC schemes from [6, 8]. Section 5 contains the main result of this
paper, i.e., a distributed version of this controllability condition and the correspond-
ing stability result. In Section 6 we investigate a simple test example theoretically
and numerically. Section 7 concludes the paper and presents some ideas for future
extensions of our main result.

2 Problem setup and preliminaries

We consider P ∈ N control systems described by the discrete time dynamics

xp(k +1) = fp(xp(k),up(k)) (1)

for p = 1, . . . ,P, with xp(k) ∈ Xp, up(k) ∈Up and fp : Xp×Up → Xp, where Xp are
arbitrary metric spaces and Up are sets of admissible control values for p = 1, . . . ,P.
The solution of (1) for initial value xp(0) = x0

p and control sequence up(k) ∈ Up,
k = 0,1,2, . . . will be denoted by xu

p(k,x
0
p), i.e., we will omit the subscript p in up

in order to simplify the notation. The combined state space of all systems will be
denoted by

X = X1× . . .×XP.

Our goal is to stabilize each system at a desired equilibrium point x∗p ∈ Xp. This
means, we are looking for feedback controllers µp(xp(k), Ip(k)) ∈Up which render
the respective equilibria asymptotically stable. Here the additional argument Ip(k)
of the controller µp denotes information from the other systems. We assume that for
the purpose of exchanging such information the individual systems can communi-
cate over a network with negligible delay. The precise definition of Ip(k) and the
controller µp are given in Definition 2.3 and Formula (5), below. The closed loop
solutions of (1) with controller µp, i.e., the solutions of

xp(k +1) = fp(xp(k),µp(xp(k), Ip(k))) (2)

will be denoted by xp(k), i.e., in order to simplify the notation we will not explicitly
include the controller µp, the initial value xp(0) and the additional information Ip in
the notation.

Beyond ensuring stability, we want to design the controllers such that the com-
bined state x(k) = (x1(k), . . . ,xP(k)) of the closed loop systems satisfies state con-
straints of the form
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x(k) = (x1(k), . . . ,xP(k)) ∈ X⊆ X , (3)

i.e., the state constraints are defined via a state constraint set X. Note that these
constraints induce a coupling between the — otherwise independent — systems
which induces the need for passing information Ip(k) between the subsystems.

Example 2.1. As an example which will be used in order to illustrate our concepts
throughout this paper we consider a very simple model of p = 1, . . . ,P autonomous
agents moving in the plane1 R2 with state xp = (xp,1(k),xp,2(k))T ∈Xp = R2, control
up ∈Up = [−ū, ū]2 ⊂ R2 for some ū > 0 and dynamics

xp(k +1) = xp(k)+up(k).

Thinking of xp(k) as the position of the individual agent in the plane, the state con-
straints can be used in order to avoid collisions of the agents. To this end, for some
desired distance δ > 0 we define

X := {(x1, . . . ,xP)T ∈ R2P |‖xp1 − xp2‖ ≥ δ for all p1, p2 = 1, . . . ,P with p1 6= p2},

where ‖ · ‖ denotes an arbitrary norm in R2. If we use a specific norm in the subse-
quent computations then this will always be explicitly stated.

Clearly, in order to be able to maintain the state constraints in closed loop, i.e.,
to avoid collisions in the example, the individual controllers need to have some
information about the other systems and for this purpose we will use the so far
undefined information Ip(k). In order to define what kind of information Ip(k) the
systems should exchange, we first need to specify the control algorithm we are going
to use. In this paper we propose to use a model predictive (or receding horizon)
control approach. To this end, at each time instant k for its current state xp(k) each
agent solves the optimal control problem

minimize JN
p (x0

p,up) =
N−1

∑
j=0

`p(xu
p( j,x0

p),up( j)) with initial value x0
p = xp(k) (4)

over all admissible control sequences up(·) ∈UN,ad
p (k,x0

p, Ip(k)) ⊆UN
p on the opti-

mization horizon N ≥ 2, where the set of admissible control sequences UN,ad
p will

be defined in Definition 2.3, below. Here `p is a stage cost function which penalizes
the distance of the state from the equilibrium and the control effort. For instance,
` could be `p(xp,up) = ‖xp − x∗p‖+ λ‖up‖ or `p(xp,up) = ‖xp − x∗p‖2 + λ‖up‖2,
where λ > 0 is a weight parameter.

We denote the optimal control sequence for (4) by u∗,kp (0), . . . ,u∗,kp (N−1) and the
corresponding predicted optimal trajectory by xu∗,k

p (0), . . . ,xu∗,k
p (N− 1). According

to the usual receding horizon construction, the value of the MPC controller is given
by the first element of the optimal control sequence u∗,kp (0).

1 The example could be extended to arbitrary dimensions but for simplicity of exposition we stick
to the planar case in this paper.
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In order to define this MPC feedback law in a rigorous way, we need to define
the set of admissible control sequences in the optimization (4) for the p-th system.
To this end, we make use of the following definition.

Definition 2.2. (i) For an index set P = {p1, . . . , pm} ⊆ {1, . . . ,P} with m ∈ N,
m≤ P we define the set of partial states as

XP := Xp1 × . . .×Xpm .

Elements of XP will be denoted by xP = (xp1 , . . . ,xpm). The partial state constraint
set XP ⊂ XP is defined as

XP := {xP ∈ XP | there is x̃ ∈ X with x̃pi = xpi for i = 1, . . . ,m}.

(ii) Given an index set P , an element xP ∈ XP , an element xp ∈ Xp with p 6∈P
and a subset Q = {q1, . . . ,ql} ⊂P we write

(xp,(xq)Q) := (xp,xq1 , . . . ,xql ) ∈ X{p}∪Q.

The admissible control sequences over which we optimize in (4) are now de-
fined via the information available from the other agents according to the following
definition.

Definition 2.3. (i) We assume that at time instant k when optimizing (4) for x0
p =

xp(k) the p-th agent knows prediction sequences xkq
q (·) = (xkq

q (0), . . . ,xkq
q (N− 1))

for q ∈ {1, . . . ,P}\{p} computed at time instant kq ≤ k from the other agents. We
define

Ip(k) := {(kq,x
kq
q (·)) |q ∈ {1, . . . ,P}\{p}}.

Note that Ip(k) lies in the set

Ip := (N0×XN
1 )× . . .× (N0×XN

p−1)× (N0×XN
p+1)× . . .× (N0×XN

P ).

(ii) Given a time k ∈N0 and Ip ∈Ip with kq ≤ k for all kq contained in Ip, we define
the set of admissible control sequences for system p at time k as

UN,ad
p (k,x0

p, Ip) := {up(·) ∈UN
p | (xu

p( j,x0
p),(x

kq
q ( j + k− kq))Qp(k, j)) ∈ X{p}∪Qp(k, j)

for all j = 0, . . . ,N−1}

with
Qp(k, j) = {q ∈ {1, . . . ,P}\{p}| j + k− kq ≤ N−1}.

The trajectories xu
p(·,x0

p) for u ∈UN,ad
p (k,x0

p, Ip) are called admissible trajectories.

In words, this definition demands that the minimization of (4) is performed over
those trajectories which satisfy the state constraints together with the known predic-
tions from the other systems for j = 0, . . . ,N−1.

The resulting feedback law µp thus depends on the current state xp(k) of the p-th
closed loop system and on the other systems’ predictions xkq

q (·), q 6= p available at
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time k. For Ip(k) ∈Ip the resulting MPC controller is hence given by the map

µp : (xp(k), Ip(k)) 7→ u∗,kp (0), (5)

where u∗,kp (·) is the optimal control sequence minimizing (4). For later use we define
the associated optimal value function as

V N
p (x0

p, Ip) := min
up∈UN,ad

p (k,x0
p,Ip)

JN
p (x0

p,up).

In order not to overload the notation it does not reflect the implicit k-dependence of
µp and V N

p . Moreover, for simplicity of exposition, throughout the paper we assume
that the minimum of this expression exists whenever UN,ad

p (k,x0
p, Ip) 6= /0.

The important questions to be analyzed for this system are the following:

• do the resulting closed loop systems (2) maintain the state constraints (3)?
• are the optimization problems feasible in each step, i.e., is the set of admissible

control sequences UN,ad
p (k,x0

p, Ip(k)) in the minimization of (4) non empty?
• is the closed loop system (2) asymptotically stable; in particular, do the trajecto-

ries xp(k) converge to the fixed points x∗p as k → ∞?

These are the questions we want to investigate in this paper. Clearly, the precise way
of how the information Ip(k) is constructed is crucial for answering these questions.
To this end, in the following section we investigate an algorithm in which the con-
struction of the sets Ip(k) implies that feasibility is sufficient for maintaining the
state constraints, cf. Proposition 3.2.

3 The scheme of Richards and How

In this section we define how the information Ip(k) is constructed and according
to which schedule the information is passed from one system to the others. To this
end, we use the sequential scheme introduced by Richards and How in [13, 14]. It
should be noted that the general setting in these references is different from ours: on
the one hand, only linear dynamics are considered in these references, on the other
hand, perturbations are explicitly included in the models considered in [13, 14] and
the MPC scheme is designed to be robust against perturbations.

The main idea of the way the distributed optimization takes place, however, is
independent from these details. Using the notation introduced in the last section,
this idea is described in the following algorithm.

Algorithm 3.1 Let (x1(0), . . . ,xP(0)) ∈ X be given initial values.

(0) Initialization for k = 0.
Find control sequences up ∈UN

p such that the corresponding trajectories satisfy
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(xu
1( j,x1(0)), . . . ,xu

P( j,xP(0))) ∈ X for j = 0, . . . ,N−1. (6)

for p = 1, . . . ,P:
Set kp = 0, xkp

p ( j) = xu
p( j) for j = 0, . . . ,N−1 and send (kp,x

kp
p (·))

to all other systems
Apply the control value µp(x0

p) = up(0) in the first step.
end of p-loop

(1) Control loop for k ≥ 1.
for k = 1,2, . . .:

for p = 1, . . . ,P:
set

Ip(k) := ((k,xk
1(·)), . . . ,(k,xk

p−1(·)),(k−1,xk−1
p+1(·)), . . . ,(k−1,xk−1

P (·)))

and minimize (4) for x0
p = xp(k) with respect to up ∈UN,ad

p (k,x0
p, Ip(k)).

Denote the resulting optimal control by u∗,kp , set kp = k, xkp
p ( j) = xu∗,k

p ( j).

for j = 0, . . . ,N−1 and send (kp,x
kp
p (·)) to all other systems

Apply the control value µp(x0
p, Ip(k)) = u∗,kp (0) in the k-th step

end of p-loop
end of k-loop

This scheme is sequential in the sense that in step (1) the individual systems per-
form their optimization one after the other before the control values are eventually
applied in all systems. Note that system p always uses the most recent available
predictions of the other systems in order to construct the set of admissible control
sequences UN,ad

p , i.e., for q < p the predictions xk
q made at time k are used and for

q > p the predictions xk−1
q computed at time instant k−1 are used in Ip(k). In case

of a large number P of systems this sequential optimization may cause rather long
waiting times which may not be available in case of fast sampling. While one goal
of future research will thus be to relax the strict sequential structure, see also Section
7, below, we remark that the scheme is well applicable for small values of P and, as
pointed out in [14, Section 7], even for large P the scheme considerably reduces the
numerical effort compared to a centralized solution of the optimization problem in
each time instant.

The main advantage of the sequential scheme is that once the initialization
step (0) has been performed successfully, the validity of the state constraints for the
closed loop solution follows from feasibility. This is made precise in the following
proposition.

Proposition 3.2. Assume that in Algorithm 3.1 the initialization step (0) is success-
ful in finding up ∈UN

p satisfying (6) and that in step (1) the optimal control prob-
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lems are feasible, i.e., that UN,ad
p (k,xp(k), Ip(k)) 6= /0 holds for all p = 1, . . . ,P and

all k ≥ 1. Then the closed loop maintains the state constraints (3) for all k ≥ 0.

Proof. Condition (6) and the definition of µp in step (0) immediately imply (3) for
k = 1. Now we proceed by induction over k. Assume that (3) holds for some k ≥ 1
and that UN,ad

p (k,xp(k), Ip(k)) 6= /0 holds for all p = 1, . . . ,P. Then each µp defined
in step (1) is well defined and the definition of UN,ad

P (k,xP(k), IP(k)) implies

(xu∗,k
1 (1,x1(k)), . . . ,xu∗,k

P (1,xP(k))) ∈ X.

By definition of the µp and (2) we obtain

xp(k +1) = fp(xp(k),µp(xp(k), Ip(k))) = fp(xp(k),u∗,kp (0)) = xu∗,k
p (1,xp(k))

for all p = 1, . . . ,P and thus

(x1(k +1), . . . ,xP(k +1)) = (xu∗,k
1 (1,x1(k)), . . . ,xu∗,k

P (1,xP(k))) ∈ X.

This shows (3) for k +1. ut

In order to ensure UN,ad
p (k,xp(k), Ip(k)) 6= /0, in [14] a condition involving termi-

nal constraints sets is used. The following assumption summarizes this condition in
our notation and without the additional constructions needed for the robust design
in [14].

Assumption 3.3 There exist closed neighborhoods Tp, p = 1, . . . ,P of the equilibria
x∗p satisfying the following conditions.

(i) T1× . . .×TP ⊂ X.
(ii) On each Tp there exists a stabilizing controller Kp for xp such that Tp is forward

invariant for the closed loop system using Kp.
(iii) The control functions up in the initialization step (0) and in the optimization of

(4) in step (1) are such that xu
p(N,xp(k)) ∈ Tp holds. In the optimization, this

amounts to adding xu
p(N,xp(k)) ∈ Tp as a further condition to the definition of

the admissible control sequences UN,ad
p (k,x0

p, Ip(k)).

The benefit of this condition is that if the computation of u1, . . . ,uP satisfying
(6) in step (0) is successful at time k = 0, then UN,ad

p (k,x0
p, Ip(k)) 6= /0 is ensured

for all subsequent times k ≥ 1 and all p = 1, . . . ,P. In order to see this, consider
the control sequence u∗,k−1

p from the previous time step k− 1 in step (1) for p =
1, . . . ,P. Then the construction of Iq(k− 1) for q > p and Iq(k) for q < p ensures
u∗,k−1

p (·+1) ∈UN−1,ad
p (k,x0

p, Ip(k)). Since xu∗,k−1
p (N−1,xp(k)) = xu∗,k−1

p (N,xp(k−
1)) ∈ Tk, by setting up( j) = u∗,k−1

p ( j + 1) for j = 0, . . . ,N − 2 and up(N − 1) =
Kpxu∗,k−1

p (N − 1,xp(k)) we obtain xu
p(N,xp(k)) ∈ Tp. Since the predictions of all

other systems q 6= p also end up in their respective sets Tq and T1× . . .×TP ⊂X, we
obtain up ∈UN,ad

p (k,x0
p, Ip(k)).
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Besides ensuring feasibility, Assumption 3.3 also ensures stability. Indeed, a
standard MPC stability proof (cf. [10] or [12, Section 2.4]) shows that under a com-
patibility condition between the stage cost `p and a suitably chosen terminal cost
which is defined on Tp and added to JN in (4), the optimal value function Vp be-
comes a Lyapunov function of the system which proves stability. For this reason,
the sets Tp in Assumption 3.3 are usually called stabilizing terminal constraints.

In the context of Example 2.1, the stabilizing terminal constraints demand that
already in the initialization step (0) we have to plan collision free trajectories for all
systems from the initial value xp(0) to a neighborhood Tp of x∗p. On the one hand,
this implies that we may need to use rather large optimization horizons N if we
consider initial conditions xp(0) far away from the terminal sets Tp. On the other
hand, and more importantly in our distributed setting, Assumption 3.3 implies that
all conflicts, i.e., possible collisions, until the “safe” terminal constraint sets Tp are
reached have to be resolved in the initialization step (0). Although in each iteration
in step (1) the optimization algorithm is allowed to replan the trajectory, condition
(6) is crucial in order to ensure feasibility for k = 1 and thus — via Proposition 3.2
— to ensure that the state constraints are maintained for all k ≥ 1.

The goal of this paper is now to relax these two drawbacks. While we will keep
using Algorithm 3.1, we will not use Assumption 3.3 and in particular we will not
require the solutions to end up in terminal constraint sets Tp. The hope is that this
will enable us to obtain an MPC scheme which is stable and maintains the state
constraints with considerably smaller optimization horizon N and — in the context
of Example 2.1 — which is able to solve possible conflicts at the times k ≥ 1 when
they become visible and not necessarily in the initialization step 0.

To this end, in the next section we first revisit a stability condition for NMPC
schemes without stabilizing terminal constraints.

4 Stability of NMPC without stabilizing terminal constraints

In this section we recall the stability analysis of NMPC controllers without stabiliz-
ing terminal constraints from [6, 8]. We will present the analysis for a single system
of type (1). In the subsequent Section 5, we extend these results to our setting with
P systems.

Since in this section we deal with a single system of type (1), we will omit the
index p in all expressions as well as the dependence of V N and µ on information
from the other systems. Analogous to Definition 2.3, admissibility for a control
sequence u ∈UN and an initial value x0 ∈ X means that u( j) ∈U and xu( j,x0) ∈
X for j = 0, . . . ,N− 1, i.e., that the state constraints are maintained. Since in this
section we do not consider couplings between different systems, Definition 2.3(ii)
simplifies to

UN,ad(x0) := {u(·) ∈UN |xu( j,x0) ∈ X for all j = 0, . . . ,N−1}. (7)
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We assume that for each x ∈X and each N ∈N this set satisfies UN,ad(x) 6= /0 which
means that the state constraint set X⊂X is forward invariant or viable. This assump-
tion provides the easiest way to ensure feasibility of the resulting NMPC scheme
and is used here in order to simplify the exposition. If desired, it can be relaxed in
various ways, see, e.g., [7, Sections 8.2–8.3] or [11, Theorem 3].

Stability of the NMPC closed loop is established by showing that the optimal
value function V N is a Lyapunov function for the system. More precisely, we aim at
giving conditions under which for all x ∈ X we can establish the inequalities

α1(‖x− x∗‖)≤V N(x)≤ α2(‖x− x∗‖) (8)

and
V N( f (x,µ(x)))≤V N(x)−α`(x,µ(x)) (9)

for α1,α2 ∈K∞ and α ∈ (0,1]. Then, under the additional assumption that

α3(‖x− x∗‖)≤ `∗(x)≤ α4(‖x− x∗‖) (10)

holds for all x ∈ X, suitable α3,α4 ∈K∞ and `∗(x) := minu∈U `(x,u), we can con-
clude asymptotic stability as stated by the following theorem.

Theorem 4.1. Assume that the inequalites (8), (9) and (10) hold for the optimal
value function V N and the stage cost ` of the optimal control problem (4) for one
system, i.e., for p = P = 1. Then the closed loop system (2) with the NMPC feedback
(5) is asymptotically stable on X.

Proof. The proof follows from by standard Lyapunov function arguments using V N

as a Lyapunov function, see [6, Theorem 5.2]. ut

The inequalities (8) and (9) can be ensured by an asymptotic controllability con-
dition of the equilibrium x∗. Here we work with the special case of exponential
controllability, more general versions can be found in [6, 8].

Assumption 4.2 Given constants C > 0, σ ∈ (0,1), for each x ∈ X and each N ∈N
there exists an admissible control function ux ∈UN,ad(x) satisfying

`(xux( j,x),ux( j))≤Cσ
j`∗(x)

for all j ∈ {0, . . . ,N−1} with `∗ from (10).

Observe that the controllability condition is defined here in a slightly weaker
form than in [6, 8] in the sense that the control function ux is implicitly allowed
to depend on N while in [6, 8] the existence of one ux for all N ∈ N is assumed.
However, it is straightforward to see that the weaker condition given here is suffi-
cient for all arguments used in the proofs in these references. Note that the constant
C > 0 allows for an increase of `(xux( j,x),ux( j)) for small j before it must eventu-
ally decrease. In particular, ` does not need to be a control Lyapunov function for
the system.
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Example 4.3. Consider Example 2.1 with only one system, which in particular im-
plies that the state constraint X does not include any coupling terms. Instead, we
use the state constraint set X = [−1,1]2. As stage cost we use `(x,u) = ‖x− x∗‖2 +
λ‖u‖2 for some x∗ ∈ [−1,1] and some λ ≥ 0. Moreover, let c := maxx∈X ‖x− x∗‖
denote the maximal distance in X from x∗.

We inductively define a control u ∈UN,ad(x) by

u(k) = κ(x∗− xu(k,x)) with κ = min{ū/c, ρ}

for some design parameter ρ ∈ (0,1). Note that the choice of κ implies u(k) ∈
[−ū, ū]2 for xu(k,x) ∈ X. Moreover, this definition implies

xu(k +1,x) = xu(k,x)+κ(x∗− xu(k,x)) (11)

and, as a consequence,

‖xu(k +1,x)− x∗‖= (1−κ)‖xu(k,x)− x∗‖. (12)

Due to the convexity of X and κ ∈ (0,1), the identity (12) ensures feasibility of
xu(·). Using the definition of u(k) and (12) yields

`(xu(k,x),u(k)) = ‖xu(k,x)− x∗‖2 +λ‖u(k)‖2

= (1+λκ
2)‖xu(k,x)− x∗‖2

= (1+λκ
2)(1−κ)2k‖xu(0,x)− x∗‖2

= (1+λκ
2)(1−κ)2k`∗(xu(0,x))

which shows Assumption 4.2 for ux = u with C = 1+λκ2 and σ = (1−κ)2. Anal-
ogously, one obtains Assumption 4.2 for `(x,u) = ‖x−x∗‖+λ‖u‖ with C = 1+λκ

and σ = 1−κ .

Under Assumption 4.2, the following properties hold.

Lemma 4.4. Let Assumption 4.2 hold and define

BN(r) :=
N−1

∑
n=0

Cσ
nr = C

1−σN

1−σ
r.

Then for each x ∈ X the following properties hold.
(i) The inequality

V N(x)≤ JN(x,ux)≤ BN(`∗(x)) (13)

holds.
(ii) Let u∗ be an optimal control sequence for (4). Then for each k = 0,1, . . . ,N−

2 the inequality

JN−k(xu∗(k,x),u∗(k + ·))≤ BN−k(`∗(xu∗(k,x))) (14)

holds.
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(iii) Let u∗ be an optimal control sequence for (4). Then for each j = 0,1, . . . ,N−
2 the inequality

V N(xu∗(1,x))≤ J j(xu∗(1,x),u∗(1+ ·))+BN− j(`∗(xu∗(1+ j,x))) (15)

holds.

Proof. (i) This follows immediately from Assumption 4.2.
(ii) This inequality follows from (i) applied to x = xu∗(k,x) using the fact that by

the dynamic programming principle tails of optimal trajectories are again optimal
trajectories, see [6, Lemma 3.4] for details.

(iii) Follows from the inequality V N(xu∗(1,x)) ≤ JN(xu∗(1,x), ũ) using the con-
trol function

ũ(n) =
{

u∗(1+n), n≤ j−1
ux(n), n≥ j

with ux from Assumption 4.2 with x = xu∗(1+ j,x) and (i), for details see [6, Lemma
3.5]. ut

Remark 4.5. Lemma 4.4 (i) yields that under Assumption 4.2 the inequalities in (10)
imply (8). Indeed, the inequality

V N(x) = JN(x,u∗)≥ `(x,u∗(0))≥ `∗(x)≥ α3(‖x− x∗‖)

implies the lower inequality in (8) with α1 = α3 and

V N(x)≤ BN(`∗(x)) = C
1−σN

1−σ
`∗(x)≤C

1−σN

1−σ
α4(‖x− x∗‖)

implies the upper inequality in (8) with α2 = C 1−σN

1−σ
α4.

It remains to establish (9) for which we use Lemma 4.4(ii) and (iii) in the follow-
ing way.

Proposition 4.6. Assume Assumption 4.2 and consider N ≥ 1, a sequence λn > 0,
n = 0, . . . ,N−1, and a value ν > 0. Let x∈X and let u∗ ∈UN be an optimal control
sequence for (4) such that λn = `(xu∗(n,x),u∗(n)) holds for n = 0, . . . ,N−1. Then

N−1

∑
n=k

λn ≤ BN−k(λk), k = 0, . . . ,N−2 (16)

holds. If, furthermore, ν = V N(xu∗(1)) holds then

ν ≤
j−1

∑
n=0

λn+1 +BN− j(λ j+1), j = 0, . . . ,N−2 (17)

holds.
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Proof. If the stated conditions hold, then λn and ν must meet inequalities (14) and
(15), which is exactly (16) and (17). ut

The conditions (16) and (17) lead to the following sufficient condition for (9).

Theorem 4.7. Let N ≥ 1, assume that Assumption 4.2 holds and that the optimiza-
tion problem

α := inf
λ0,...,λN−1,ν

∑
N−1
n=0 λn−ν

λ0

subject to the constraints (16), (17), and

λ0 > 0,λ1, . . . ,λN−1,ν ≥ 0

(18)

has an optimal value α ∈ (0,1]. Then (9) holds for this α for each x ∈ X.

Proof. The optimization objective in (18) implies that for all values λ1, . . . ,λN−1,ν
satisfying (16), (17) the inequality

ν ≤
N−1

∑
n=0

λn−αλ0

holds. Proposition 4.6 then implies that for each optimal trajectory starting in some
arbitrary x∈X the values λn = `(xu∗(n,x),u∗(n)) and ν =V N(xu∗(1,x)) satisfy (16)
and (17), which yields

V N(xu∗(1,x)) ≤
N−1

∑
n=0

`(xu∗(n,x),u∗(n))−α`(xu∗(0,x),u∗(0))

= V N(x)−α`(x,u∗(0)).

Since by definition of the MPC feedback law we obtain µ(x) = u∗(0) and thus
f (x,µ(x)) = xu∗(1,x), this proves (9). ut

The characterization of α via the optimization problem (18) is particularly useful
because it admits the following explicit analytic solution.

Theorem 4.8. Under Assumption 4.2 the optimization problem (18) has the solution

α = 1−
(γN −1)

N
∏

k=2
(γk−1)

N
∏

k=2
γk−

N
∏

k=2
(γk−1)

with γk = C
1−σ k

1−σ
(19)

for C > 0 and σ ∈ (0,1) from Assumption 4.2. Furthermore, for each pair of values
C > 0 and σ ∈ (0,1) the value α in (19) satisfies α → 1 as N → ∞.

Proof. Formula (19) follows from [8, Theorem 5.4] and the convergence α → 1
from [8, Corollary 6.1]. ut
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Remark 4.9. An inspection of the proof of [8, Theorem 5.4] shows that some in-
equalities provided by Lemma 4.4 are not needed in order to prove (19) since in
this proof a relaxed problem [8, Problem 5.3] with fewer constraints was used. It
turns out that the inequalities not needed in this relaxed problem are exactly (14)
for k = 1, . . . ,N−2 or, equivalently, (16) for k = 1, . . . ,N−2, see [7, Remark 6.35].
While this has no consequence for the analysis in this section since we get all in-
equalities in (14) “for free” from Assumption 4.2, this observation will turn out very
useful in the next section.

Combining the three Theorems 4.1, 4.7 and 4.8 yields the following corollary.

Corollary 4.10. Consider a single system of type (1) and the NMPC feedback law
(5) for some N ≥ 2. Let Assumption 4.2 and (10) hold and assume that α > 0 holds
for α from (19). Then the closed loop system (2) is asymptotically stable on X.

Using the convergence α → 1 for N → ∞ we can use this corollary in order to
conclude that when (10) and Assumption 4.2 hold, then asymptotic stability can be
guaranteed for each sufficiently large optimization horizon N. Beyond this asymp-
totic result, however, the condition α > 0 in (19) also gives a useful stability criterion
for small optimization horizons N, as the following example shows.

Example 4.11. We reconsider Example 4.3 with N = 2. Formula (19) simplifies to
α = 1− (C+σC−1)2. Since κ ∈ (0,1), C = 1+λκ2, σ = (1−κ)2 we obtain with
λ ∈ (0,1)

C +σC−1 = (1+λκ
2)(1−κ

2)≤ (1+κ)(1−κ)2 = (1−κ
2)(1−κ) < 1

which implies α > 0. For instance, for λ = 0.1, ρ = 0.5 we obtain α ≈ 0.8102
or α ≈ 0.9209 for the Euclidean and the ∞-norm respectively. This shows that the
MPC closed loop is asymptotically stable for N = 2 which is the shortest possible
optimization horizon given that the sum in (4) only includes the states xu( j,x0) for
j = 0, . . . ,N−1.

More complex examples of this kind including infinite dimensional PDE models
can be found, e.g., in [6, Sections 6 and 7] or [1, 2, 7]. Finally, we remark that α

also allows to estimate the performance of the MPC feedback law µ in terms of an
infinite horizon optimization criterion; for details see, e.g., [6, Theorem 4.2].

5 Stability of distributed NMPC without stabilizing terminal
constraints

In this section we adapt the results of the previous section to the distributed MPC
setting introduced in Section 2 using Algorithm 3.1. The goal is to adapt Assump-
tion 4.2 to the distributed setting. This way we derive a sufficient condition for
distributed NMPC without stabilizing terminal constraints which ensures feasibility



A distributed NMPC scheme without stabilizing terminal constraints 15

of the optimal control problems in Algorithm 3.1(1) — and thus via Proposition 3.2
guarantees that the state constraints are maintained — and stability of the NMPC
closed loop. Stability will be guaranteed by showing that each optimal value func-
tion V N

p will satisfy the inequalities (8) and (9), i.e., that each V N
p is a Lyapunov

function for the corresponding system.
Comparing the distributed setting of Section 2 with the non-distributed setting of

Section 4, the main difference is that the set of admissible control sequences UN,ad
p

in Definition 2.3(ii) changes with time k due to the fact that the information Ip(k)
in Algorithm 3.1(1) also changes with time. In contrast to this, the set UN,ad in (7)
is constant over time. In order to include the time dependence in the controllability
assumption we make use of sets of admissible control sequences according to the
following definition.

Definition 5.1. (i) For m1 > m2 ∈ N and a control sequence u = (u(0), . . . ,u(m1−
1)) ∈Um1

p we define the restriction

u|m2 := (u(0), . . . ,u(m2−1)) ∈Um2
p .

(ii) A family of sets W m
p ⊂ Um

p , m ∈ {1, . . . ,N}, N ≥ 2, of admissible control
sequences is called nested if for all m1,m2 ∈ {1, . . . ,N} with m1 > m2 and all u ∈
Um1

p the implication
u ∈W m1

p ⇒ u|m2 ∈W m2
p

holds.
(iii) For a nested family of admissible control sequence sets W m

p ⊂ Um
p , m ∈

{1, . . . ,N}, integers l,m ∈ N, l +m≤ N, and a control sequence u ∈W l
p we define

Wp[u, l,m] := {ũ ∈Um
p |(u(0), . . . ,u(l−1), ũ(0), . . . , ũ(m−1)) ∈W l+m

p }.

Recalling that in our setting the admissible control sequences are derived from
the state constraint sets X and the predicted trajectories of the other systems con-
tained in Ip via Definition 2.3(ii), a little computation reveals that for each time
instant k ≥ 0 the sets W m

p = Um,ad
p (k,x0

p, Ip), m ∈ N are nested and that this choice
of W m

p implies
Wp[u, l,m] = Um,ad

p (k + l,xu
p(l,x

0
p), Ip).

Another issue we take into account when adapting Assumption 4.2 is that in
the distributed setting it is quite demanding to assume that controllability holds for
all possible initial values. Instead, we will formulate the respective condition for
fixed initial conditions. The following theorem presents this variant in an abstract
setting with nested admissible control sequence sets W m

p and W̃ m
p . In the subsequent

Theorem 5.3 we will then show how this condition fits into Algorithm 3.1.

Theorem 5.2. Consider some p∈ {1, . . . ,P}, two families of nested admissible con-
trol sequence sets W m

p , W̃ m
p ⊆Um

p , m ∈ {1, . . . ,N} for N ≥ 2, a point x0
p ∈ Xp and

the optimal values
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V N := min
up∈W N

p

JN
p (x0

p,up) and Ṽ N := min
ũp∈W̃ N

p

JN
p (x̃p, ũp)

with x̃p = fp(x0
p,u

∗
p(x

0
p)) where u∗p ∈W N

p denotes the optimal control for V N , i.e.,
V N = JN

p (x0
p,u

∗
p).

For given constants C > 0, σ ∈ (0,1) assume that the following holds.
(i) The inequality V N ≤ BN(x0

p) holds for BN from Lemma 4.4.
(ii) The optimal control u∗p ∈W N

p satisfies (u∗(1), . . . ,u∗(N−1)) ∈ W̃ N−1
p .

(iii) For each j = 0, . . . ,N−2 there exists ũ ∈ W̃p[u∗(1+ ·), j,N− j] with

`p(xũ
p(s,x

u∗
p (1+ j,x0

p)), ũ(s))≤Cσ
s`∗p(x

u∗
p (1+ j,x0

p)), s = 0,1, . . . ,N− j−1.

Then the inequality
Ṽ N ≤V N −α`p(x0

p,u
∗(0))

holds for α from (19).

Proof. It is sufficient to show (13)–(15) for x = x0
p, V N(x) =V N and V N(xu∗(1,x)) =

Ṽ N . This implies that λn = `p(xu∗(n,x0
p),u

∗(n)) and ν = Ṽ N satisfy (16), (17) and
by the same argument as in the proof of Theorem 4.7 we obtain the assertion when
we use Theorem 4.8 in order to solve (18). By Remark 4.9 it is sufficient to show
(14) for k = 0.

In order to prove these inequalities, observe that (13) and (14) for k = 0 follow
directly from (i). In order to prove (15) we use that (iii) implies

JN− j
p (xu∗

p (1+ j,x0
p), ũ)≤ BN− j(`∗p(x

u∗
p (1+ j,x0

p))), j = 0,1, . . . ,N−2 (20)

for BN from Lemma 4.4. Observe that (ii) is needed in order to ensure that
W̃p[u∗(1+ ·), j,N− j] in (iii) is well defined.

Now (15) follows from (20) using the inequality

V N(xu∗
p (1,x0

p))≤ J j
p(x

u∗
p (1,x0

p),u
∗(1+ ·))+ JN− j

p (xu∗
p (1+ j,x0

p), ũ),

which holds since (ii) and ũ ∈ W̃p[u∗(1+ ·), j,N− j] imply (u∗(1), . . . , u∗( j), ũ(0),
. . . , ũ(N− j−1)) ∈ W̃ N

p . ut

The following theorem incorporates this condition into Algorithm 3.1.

Theorem 5.3. Consider Algorithm 3.1 with optimization horizon N ∈ N in (4),
let C > 0 and σ ∈ (0,1) and assume that the stage costs `p satisfy (10) for all
p ∈ {1, . . . ,P} and suitable α3, α4 ∈K∞. Assume that step (0) of the algorithm is
successful and denote the resulting control functions by u∗,0p . Assume, furthermore,
that in step (1) of the algorithm for each k≥ 1 and each p∈ {1, . . . ,P} condition (iii)
of Theorem 5.2 holds with u∗ = u∗,k−1

p , x0
p = xp(k−1) and

W̃ m
p = Um,ad

p (k,xp(k), Ip(k)), m = 1, . . . ,N.
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Then, the closed loop solutions maintain the state constraints (3) and there exists
α1,α2 ∈K∞ such that the optimal value functions V N

p satisfy

α1(‖xp(k)− x∗p‖)≤V N
p (xp(k), Ip(k))≤ α2(‖xp(k)− x∗p‖) (21)

for all k ≥ 1 and the inequality

V N
p (xp(k +1), Ip(k +1))≤V N

p (xp(k), Ip(k))−α`(xp(k),µp(xp(k), Ip(k))) (22)

holds for α from (19) and all k ≥ 1.
In particular, if α > 0 (which always holds for N > 0 sufficiently large) then the

V N
p are Lyapunov functions for the closed loop systems for k≥ 1 and thus asymptotic

stability of the equilibria x∗p follows.

Proof. We show that for each k ≥ 2 the assumptions of Theorem 5.2 hold with
W m

p = Um,ad
p (k− 1,xp(k− 1), Ip(k− 1)), W̃ m

p = Um,ad
p (k,xp(k), Ip(k)), x0

p = xp(k−
1), x̃p = xp(k) and u∗ = u∗,k−1

p . To this end, first observe that in the discussion
after Assumption 3.3 we have shown that in step (1) the relation u∗,k−1

p (1 + ·) ∈
UN−1,ad

p (k,xp(k), Ip(k)) holds which implies that condition (ii) of Theorem 5.2 is
satisfied.

Condition (iii) of Theorem 5.2 holds by assumption and condition (i) of Theorem
5.2 at time k follows from condition (iii) for j = 0 at time k− 1, since xp(k) =
xu∗,k−1

p (1,xp(k−1)) and W m
p at time k equals W̃ m

p at time k−1.
Thus, Theorem 5.2 is applicable which proves (22).
Inequality (21) is then obtained with the same arguments as in Remark 4.5.

Finally, since the assumed condition (iii) of Theorem 5.2 in particular demands
UN,ad

p (k,xp(k), Ip(k)) 6= /0, Proposition 3.2 yields feasibility of the problem and im-
plies that the closed loop solutions satisfy the state constraints (3). ut

The central assumption in this theorem is that condition (iii) of Theorem 5.2
holds. In words, this assumption requires two things: first, UN,ad

p (k,xp(k), Ip(k))
needs to be non empty which means that given the predictions of the other systems
xu

q, q 6= p, contained in Ip there is still enough space to “squeeze in” a solution
xu

p. Second, the condition requires that starting from any point on the optimal open
loop trajectory from the last time instant, there are solutions which approach the
equilibrium x∗p sufficiently fast in the sense of the controllability assumption. The
important fact in this condition is that when the p-th system selects its control it
knows the other systems’ predictions. For this reason this rather technical condition
can be rigorously verified at least for simple systems, as the example in the following
section shows.

Note that even though step (0) remains formally identical to Algorithm 3.1, with-
out the additional terminal condition from Assumption 3.3(iii) and with smaller N it
is much easier to satisfy (6). This is illustrated in the numerical simualations at the
end of the next section, in which for most of the systems the state constraints only
become relevant after several steps of the algorithm.
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6 An example

In this section we first verify that Example 2.1 satisfies the conditions of Theorem
5.3 for P = 2 under suitable conditions. Afterwards we numerically illustrate the
performance of the scheme for this example with P = 2 and P = 4.

In order to verify the conditions of Theorem 5.3, we consider Example 2.1 with
P = 2 and show that the conditions hold for p = 1 and all initial values x0

1 which
are bounded by ‖x0

1‖ ≤ K for some K > 0. Analogous arguments then show the
condition for p = 2. Without loss of generality we may assume x∗1 = 0. Since a priori
it is not clear how the predictions xu∗,k2

2 contained in I1(k) defining the sets Um,ad
p in

Theorem 5.3 look, we show the stronger property that the conditions hold for p = 1
for all possible trajectories xu

2. The only thing we have to exclude here is that xu
2 stays

too close to the equilibrium x∗1, because then it will never be possible for xu
1 to reach

x∗1 without collision and thus to reduce `1(xu
1(k),u1(k)) to 0. Hence, in what follows

we consider all possible trajectories xu
2(k) which stay outside a neighborhood around

x∗1 = 0.
We show the following lemma, which implies the conditions of Theorem 5.3

whenever the trajectory x∗,k2
2 contained in I1(k) remains outside the neighborhood

with radius R +δ around x∗1. In order to streamline the exposition, in the following
lemma the norm ‖ · ‖ is either the Euclidean or the ∞-norm. Without loss of gener-
ality we furthermore assume δ > ū; otherwise we can restrict ourselves to smaller
control values than actually allowed.

Lemma 6.1. We consider the stage cost `1(x1,u1) = ‖x1‖2 + λ‖u1‖2 and the state
constraint set X from Example 2.1 for P = 2. Given K > 0 and R > δ > ū there
exists C > 0, σ ∈ (0,1) such that for each trajectory xu

2(k) satisfying ‖xu
2(k)‖∞ ≥

R + δ or ‖xu
2(k)‖2 ≥

√
2(R + δ ) for all k ∈ N0 and each initial value x0

1 with
‖x0

1‖ ≤ K and (x0
1,x

u
2(0)) ∈ X there exists a control sequence u1(k) ∈ [−ū, ū]2 with

(xu
1(k,x

0
1),x

u
2(k)) ∈ X and

`1(xu
1(k,x

0
1),u(k))≤Cσ

k`∗1(x
0
1) for all k ∈ N0. (23)

Proof. For x0
1 6∈ T , the fact that ‖xu

2(k)‖∞ ≥ R + δ , whenever x0
1 ∈ T = [−R,R]2

implies that the control u1 = u constructed in Example 4.3 satisfies (23) for suitable
C̃ and σ since the resulting trajectory remains in T and thus (xu

1(k),x
u
2(k))∈X holds

for all k ∈ N0.
For x0

1 6∈ T , Lemma 8.1 applied with xu(·) = xu
1(·) and y(·) = xu

2(·) shows
the existence of a constant k and a control u1 = u such that xu

1(k
∗) ∈ T for a

k∗ ≤ k, cf. Remark 8.2 for the Euclidean norm. Since ‖u1(k)‖∞ is bounded by ū,
the trajectory xu

1(k,x
0
1) from (8.1) is bounded in the ∞-norm by K + kū and thus

`(xu
1(k,x

0
1),u1(k)), k = 0, . . . ,k is bounded by some constant L independent of x0

1.
Using u from Example 4.3 from time k∗ on, the resulting overall control sequence
satisfies (xu

1(k,x
0
1),x

u
2(k)) ∈ X for all k ≥ 0,
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`1(xu
1(k,x

0
1),u(k))≤ L≤ L‖x0

1‖2/R2 = (L/R2)`∗(x0
1)≤ (Lσ

−k/R2)σ k`∗(x0
1)

for k = 0, . . . ,k and

`1(xu
1(k,x

0
1),u(k))≤ C̃σ

k−k`∗1(x
u
1(k,x

0
1))≤ C̃σ

k−k2`∗1(x
0
1),

for k ≥ k. Here the last inequality follows from `∗(xu
1(k,x

0
1)) = ‖xu

1(k,x
0
1)‖2 ≤

2‖xu
1(k,x

0
1)‖2

∞ ≤ 2R2 ≤ 2‖x0
1‖2

∞ ≤ 2‖x0
1‖2 = 2`∗1(x

0
1). Together this yields

`1(xu
1(k,x

0
1),u(k))≤max{Lσ

−k/R2,2C̃σ
−k}σ

k`∗1(x
0
1)

and thus (23) with C = max{Lσ−k/R2,2C̃σ−k}.

Remark 6.2. (i) The construction used in the proof of Lemma 8.1 and, thus, in this
example heavily relies on the knowledge of xu

2. Indeed, without this knowledge the
construction of k∗ and u1 would not be possible. Hence, the communication of Ip in
the algorithm is crucial for ensuring the conditions of Theorem 5.3 in this example.

(ii) The additional condition ‖xu
2(k)−x∗1‖∞ ≥R+δ (and vice versa for xu

1(k)−x∗2)
could be ensured by including it into the state constraint set X. However, when x∗1
and x∗2 are sufficiently far apart, then there is no incentive for the finite horizon
optimal trajectory xu

2 to stay near x∗1 and vice versa. This is the situation in the
following examples in which we did not explicitly include this condition in the
optimization.

The following numerical simulation of the MPC control of this example con-
firms that the scheme yields a feasible and stable closed loop. The numerical exam-
ples were performed with MATLAB2 using the stage cost `p(xp,up) = ‖xp− x∗p‖+
0.1‖up‖ converting the optimal control problems in static optimization problems
which are solved with MATLAB’s fmincon-routine. Here the control functions in
step (0) of Algorithm 3.1 are computed using optimal control similar to step (1),
where the admissible control sequences for the p-th system are defined via the state
constraints induced by the predictions xu

1(k), . . . ,x
u
p−1(k). In all examples we have

added the additional constraints xp ∈ [−1,1]2 to X and we have chosen the initial
conditions xp(0) at the boundary of [−1,1]2 and the desired equilibria on the oppo-
site side of [−1,1]2, i.e., x∗p = −xp(0). This implies that the agents meet far away
from the boundary of [−1,1]2 and from the equilibria x∗p, thus the theoretical analy-
sis from the first part of this section remains valid. Figure 1 shows a corresponding
simulation in which N = 3 turns out to be sufficient for stability.

Further numerical simulations show that the scheme is stable also for a larger
number P of agents. However, in this case it becomes more difficult to control the
individual systems to their equilibria which is reflected by the fact that for P = 4
systems and the initial values from Figure 2 — which extend those of Figure 1 —
stability is only obtained for N ≥ 8. However, even with N = 8 the horizon is con-
siderably shorter than the optimization horizon needed in order to find predictions
which end up in stabilizing terminal constraint sets around the equilibria.

2 all MATLAB-Files are available on www.math.uni-bayreuth.de/∼lgruene/publ/disNMPC.html



20 Lars Grüne and Karl Worthmann

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x
2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x
2

Fig. 1 MPC for Example 2.1 with P = 2 systems with initial values x1(0) = (1,0)T , x2(0) =
(−1,0)T and optimization horizon N = 3. Prediction for k = 0 (left) and final trajectories at k = 16
(right).
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Fig. 2 MPC for Example 2.1 with P = 4 systems with initial values x1(0) = (1,0)T , x2(0) =
(−1,0)T , x3(0) = (0,1)T , x4(0) = (0,−1)T and optimization horizon N = 8. Prediction for k = 0
(left) and final trajectories at k = 16 (right)

Our final numerical experiment shows that the optimization horizon N needed in
order to obtain stability of the closed loop heavily depends on the initial values, i.e.,
on the way how the individual agents meet and which way they are heading when
they meet. Due to the fact that the control constraints up ∈ [−ū, ū] are box constraints
which allow the systems to move faster and more flexible in diagonal direction, it is
not surprising that avoiding conflicts is easier when the agents are approaching each
other in a diagonal way. This explains why resolving the conflict is easier in the
situation of Figure 3 in which the optimization horizon N = 3 is sufficient in order
to stabilize all P = 4 agents. A further interesting observation in this example is that
the resulting trajectories are not symmetric as in Figures 1 and 2. Rather, here one
sees the effect of the sequential ordering since x1 and x3 approach their respective
equilibria directly (with x3 performing a shorter step at time k = 7 in order to avoid
the collision with x1) while x2 and x4 are forced to take small detours.
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Fig. 3 MPC for Example 2.1 with P = 4 systems with initial values x1(0) = (−1,1)T , x2(0) =
(1,−1)T , x3(0) = (1,1)T , x4(0) = (−1,−1)T , optimization horizon N = 3 and different initial
condition as in Figure 2. Prediction for k = 0 (left) and final trajectories at k = 18 (right)

Due to the short horizons N, most of the conflicts, i.e., the possible collisions,
are resolved by the optimization at runtime in step (1) and not in the initialization
in step (0) of Algorithm 3.1. The only exception is the fourth system starting at
x4(0) = (0,−1)T in Figure 2, which at the time of its first optimization in step (0)
already knows all other systems’ predictions. Hence, the simulations nicely illustrate
our schemes’ ability to resolve conflicts at runtime.

7 Conclusion and future work

In this paper we have shown that the non-cooperative distributed model predictive
control scheme from [13, 14] can be formulated without stabilizing terminal con-
straints. An extension of the controllability based NMPC stability analysis from
[6, 8] yields a sufficient distributed controllabilty condition ensuring stability and
feasibility. Numerical examples show that the resulting scheme is able to stabilize a
test system with small optimization horizons N and illustrate the schemes’ ability to
resolve conflicts at runtime.

We regard the analysis in this paper as a first step which can and needs to be
improved in many ways. The controllability conditions (i) and (ii) required in The-
orem 5.3 are certainly difficult to check for systems more complex than Example
2.1 and even for Example 2.1 with large P a rigorous verification currently appears
out of reach. In fact, the inequality (22) resulting from the controllability condition
is a quite strong property by itself in the sense that in each sampling period each
optimal value function Vp is decreasing. This property is most likely too demanding
in many applications in which one would rather expect that in each step only some
of the Vp decrease while others may even increase. ISS-small gain arguments for
large systems as in [3] may be suitable for handling such situations, however, so far
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it is an open questions what kind of controllability properties are needed in order to
ensure the appropriate small gain properties of the NMPC closed loop systems.

Another extension will be to relax the requirement of strict sequential optimiza-
tion imposed in Algorithm 3.1. A first step in this direction could be to exploit the
fact that stability can also be expected if the optimization is performed only in each
m-th sampling period for m ∈ {1, . . . ,N − 1}, cf. [8]. This enables us to set up a
cyclic scheme in which in each sampling period only a subset of systems performs
an optimization. While this reduces the waiting time, it does not completely remove
the sequential order of the optimization. The development of a scheme in which the
optimization is performed completely in parallel remains a major challenge.

8 Appendix

In this section we prove an auxiliary result which is needed for the analysis of the
example in Section 6. In Lemma 8.1 we assume that the norm used in the definition
of X is the maximum norm ‖ · ‖∞. For the Euclidean norm see Remark 8.2.

Lemma 8.1. Let K > 0, R > δ > ū and a trajectory y(·) with ‖y(k)‖∞ ≥ R + δ ,
k ∈ N0 be given and define the set X according to Example 2.1 for P = 2. Then
there exists k ∈ N such that for each x0 /∈ T = [−R,R]2 with ‖x0‖ ≤ K and
(x0,y(0)) ∈ X there is a finite number k∗ ∈ N with k∗ ≤ k and a control u(·) sat-
isfying (xu(k,x0),y(k)) ∈ X for all k = 0, . . . ,k∗ and xu(k∗,x0) ∈ T .

Proof. Note that (x0,y(0))∈X implies ‖x0−y(0)‖∞ ≥ δ . We construct u(·) in three
steps and start by finding a control sequence such that

min{|xu
1(k1)|, |xu

2(k1)|}< ū (24)

holds for some k1 ∈ N. If this inequality holds for k = 0, then there is nothing left
to do. Otherwise, at each time k = 0,1,2, . . . such that (24) does not hold we choose
one of the following control sequences. If |x0

1− y1(0)| ≥ δ then we set

u(k) =
(

y1(k +1)− y1(k)
−ū sign(xu

2(k))

)
.

which implies |xu
1(k)− y1(k)|= |x0

1− y1(0)| ≥ δ and |xu
2(k)|= |x0

2|− kū for k ≤ k1.
Thus, the trajectory is admissible and (24) is satisfied for k1 = b|x0

2/ū|c. Note that
|u1(k)| ≤ ū since y1(k + 1)− y1(k) equals the control applied at time k in order to
generate y(·). If |x0

1−y1(0)|< δ then ‖x0−y(0)‖∞ ≥ δ implies that |x0
2−y2(0)| ≥ δ

holds and we can do the analogous construction exchanging x0
1 and x0

2 which implies
(24) for k1 = b|x0

1/ū|c. All in all this shows that (24) can always be satisfied with
k1 ≤b‖x0‖∞/ūc. Furthermore, note that ‖xu(k1)‖∞ ≤‖x0‖∞ +b‖x0‖∞/ūcū≤ 2‖x0‖∞

holds.
In the following second step we construct u(k1), u(k1 +1), . . ., u(k2) such that we

approach T as fast as possible until we either reach T or are blocked by y(·). To this
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end, we assume without loss of generality |xu
1(k1)| < ū and xu

2(k1) > 0; otherwise
we use symmetric arguments in the sequel. We set

u(k) =
(
−xu

1(k)
−ū

)
for k = k1,k1 +1, . . . ,k2 where k2 ≥ k1 is the minimal time at which either xu(k2)∈ T
or ‖xu(k2 +1)− y(k2 +1)‖∞ < δ holds. Note that since xu

1(k2) ∈ (−ū, ū)⊂ [−R,R]
and xu

2(k2) = xu
2(k1)− (k2−k1)ū ∈ [−R,R] for (k2−k1)ū ∈ [xu

2(k1)−R,xu
2(k1)+R],

we obtain k2 ≤ k1 + b‖xu(k1)‖∞/ūc ≤ k1 +
⌊
2‖x0‖∞/ū

⌋
.

If xu(k2) ∈ T then we set k∗ = k2 and are done, otherwise, we continue with the
third part of our construction for u1(k2),u1(k2 + 1), . . .. To this end we distinguish
two cases. The first case is that xu

2(k2)≥ y2(k2)+δ holds. In this case we set

u(k2) =
(
−xu

1(k2)
y2(k2 +1)+δ − xu

2(k2)

)
which implies xu

2(k2 +1) = y2(k2 +1)+δ and thus ‖xu(k2 +1)− y(k2 +1)‖∞ = δ .
Furthermore we have ‖xu(k2 +1)‖∞ ≤ ‖xu(k2)‖∞ + ū. Observe that by choice of k2
the relation xu(k2) 6∈ T implies xu

2(k2) > y2(k2)−δ .

*
**

x2
u
x1
u r

R

x1
ul

R

≥2

R

x1
ul

x1
uu

u

Fig. 4 Illustration of the trajectories used in the construction of xu
1.

Now we continue by constructing two alternative trajectories xur
(k) and xul

(k)
for k ≥ k2 + 1, cf. Figure 4 (left). At least one of them is admissible and reaches T
in a predetermined number of steps. The first elements of the corresponding control
sequences are

ur(k) =
(

ū
y2(k +1)− y2(k)

)
and ul(k) =

(
−ū

y2(k +1)− y2(k)

)
.
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As soon as |xu j

1 (k+1)−y1(k+1)| ≥ δ holds for j ∈ {l,r} and the following control
values, we change the control inputs to

ur
1(k) =

{
−min{ū,max{xur

1 (k)−δ ,−ū}}, y1(k)+δ ≤ δ

y1(k +1)+δ − xu
1(k), otherwise

and ur
2(k) =−ū if xur

2 (k) > R and ur
2(k) = 0 otherwise, and

ul
11(k) =

{
min{ū,max{−xur

1 (k)−δ ,−ū}}, y1(k)−δ ≥−δ

y1(k +1)−δ − xu
1(k), otherwise

and ul
2(k) = −ū if xul

2 (k) > R and ul
2(k) = 0 otherwise, respectively. We de-

note the times at which this is done as kl
3 and kr

3. Observe that at least for one
j ∈ {l,r} we have k j

3 ≤ k2 + dδ/ūe and for the corresponding trajectory we get
xu j

2 (k j
3)≤ xu

2(k2)+δ + ū. Moreover, the choice of u j
1(k) implies that u j(k) is admis-

sible for all k ≥ k j
3, j ∈ {r, l} and that for each k ≥ k2 +1 we have xu j

1 ∈ [−δ ,δ ] for
at least one j ∈ {r, l}. Since after the times k j

3 the trajectories move down as fast as

possible, we obtain xu j

2 (k) ∈ [−R,R] for all k ≥ k j
4 with k j

4 ≤ k j
3 +

⌊
xu

2(k2)+δ+ū
ū

⌋
≤

k j
3 +

⌊
2‖x0‖∞+δ+ū

ū

⌋
. Without loss of generality let kl

4 ≤ kr
4 which implies kl

4 ≤ k2 +

dδ/ūe+
⌊

2‖x0‖∞+δ+ū
ū

⌋
. Then, by construction of ul we have that either xul

(kl
4) ∈ T

or y1(kl
4) < 0. In the latter case our construction implies kr

3 ≤ kl
4. This, in turn, im-

plies kr
4 ≤ kl

4 +
⌊

2‖x0‖∞+δ+ū
ū

⌋
+ kl

4 − k2 ≤ k2 + 3
⌊

2‖x0‖∞+δ+ū
ū

⌋
+ 2dδ/ūe. At time

kr
4 we have xu j

2 (kr
4) ∈ [−R,R] for all j ∈ {r, l} which together with xu j

1 ∈ [−δ ,δ ]
for at least one j ∈ {r, l} implies xu j

1 (kr
4) ∈ T for at least one j ∈ {r, l}. Hence, at

least one of the trajectories reaches T in the time k∗ = kr
4 ≤

⌊
‖x0‖∞

ū

⌋
+

⌊
2‖x0‖∞

ū

⌋
+

3
⌊

2‖x0‖∞+δ+2ū
ū

⌋
+2dδ/ūe.

It remains to deal with the case xu
2(k2) < y2(k2)+ δ and |xu

1(k2)| ≤ ū. Again we
construct two alternative trajectories for k≥ k2, cf. Figure 4 (right). Recall that from
the construction of k2 and xu

1(k2) 6∈ T the inequality xu
2(k2) > y2(k2)− δ follows.

Since ‖xu(k2)−y(k2)‖∞ ≥ δ this implies |xu
1(k2)−y1(k2)| ≥ δ . Without loss of gen-

erality we assume xu
1(k2) ≤ y1(k2)− δ . We define two different control sequences

for k ≥ k2 whose first elements are given as

uu(k) =
(
−ū

0

)
and ul(k) =

(
−ū
−ū

)
.

Since xu j
, j ∈ {u, l}, moves left with maximal speed, xu j

1 (k) ≤ y1(k)− δ holds im-
plying feasibility, i.e., (xu j

(k),y(k))∈X. Furthermore, this choice implies xuu

2 (k3)−
xul

2 (k3)≥ 2δ at time k3 = k2 + d2δ/ūe. Then, for k ≥ k3, we use the controls
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uu(k) =
(

min{−xuu

1 (k), ū}
−ū

)
and

ul
1(k) =

{
−ū, −xul

1 (k)≤ xul

2 (k)+2(R− ū)
ū, otherwise

, ul
2(k) =−ū.

By kl we denote the minimal time at which ul
1(k

l) = ū holds. Provided that the
resulting trajectories are admissible, they both reach T before time k4 ≤ k2 +⌈
(2‖x0‖+R)/ū

⌉
. Furthermore, they satisfy xuu

2 (k)−xul

2 (k)≥ 2δ for k∈{k3, . . . ,k4}.
Since xul

moves left with maximal speed for k = k3, . . . ,kl and satisfies xul

1 (k3) ≤
y1(k3)−δ , we obtain that the trajectory is admissible at least until time k = kl .

Now assume that there exists k̃ ∈ {kl + 1, . . . ,k4− 1} at which xul
is not admis-

sible, i.e., at which ‖xul
(k̃)− y(k̃)‖∞ < δ holds. Since xul

moves downwards with
maximal speed, this is only possible if y2(k)≤ xul

2 (k)+δ holds for k ∈ {k3, . . . , k̃}.
Since this implies that xuu

2 (k) ≥ xul

2 (k) + 2δ ≥ y2(k) + δ holds, xuu
(k) is admis-

sible for k = k3, . . . , k̃. On the other hand, ‖xul
(k̃)− y(k̃)‖∞ < δ for k̃ ≥ kl + 1

and a little computation based on the definition of kl reveals that y1(k) ≤ −δ

holds as long as xuu
(k) /∈ T . Hence, xuu

is admissible until it reaches T and con-
sequently, at least one of the trajectories is admissible and reaches T in a time
k∗ ≤ k4 ≤

⌊
‖x0‖∞

ū

⌋
+

⌊
2‖x0‖∞

ū

⌋
+

⌈
2‖x0‖+R

ū

⌉
.

Summarizing, we have shown that u and a finite number k∗ with the required
properties required exist. Since ‖x0

1‖∞ is bounded from above by K, the correspond-
ing time k∗ satisfies k∗ ≤ k for some suitable k depending on K and R which com-
pletes the proof.

Remark 8.2. Using the Euclidean norm ‖ · ‖2 in Lemma 8.1 is also possible. To this
end, one has to assume ‖y(k)‖2 ≥

√
2(R + δ ) which implies ‖y(k)‖∞ ≥ (R + δ ).

Moreover, an additional prelimary step is required since ‖x0− y(0)‖2 ≥ δ does not
imply ‖x0− y(0)‖∞ ≥ δ . However, since y(·) is known, this can be easily obtained
in a finite number of steps. Then, one may proceed as in the proof of Lemma 8.1
since ‖xu(k)− y(k)‖∞ ≥ δ implies (xu(k),y(k)) ∈ X for the Euclidean norm ‖ · ‖2
as well. Apart from this initialization step, the term ‖x0‖∞ in the estimates for k∗

remains the same.
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