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EXTENDED ABSTRACT.

Problem formulation. We consider discrete time control systems with state
x ∈ X and control values u ∈ U , where X and U are normed spaces with norms
denoted by ‖ · ‖. The control system under consideration is given by

x(k + 1) = f(x(k), u(k)) (1)

with f : X × U → X. For a given control sequence u = (u(0), . . . , u(K − 1)) ∈ UK
or u = (u(0), u(1), . . .) ∈ U∞, by xu(k, x) we denote the solution of (1) with initial
value x = xu(0, x) ∈ X.

For given admissible sets of states X ⊆ X and control values U ⊆ U and an initial
value x ∈ X we call the control sequences u ∈ UK satisfying xu(k, x) ∈ X for all
k = 0, . . . ,K admissible. The set of all admissible control sequences is denoted by
UK(x). Similarly, we define the set U∞(x) of admissible control sequences of infinite
length. For simplicity of exposition we assume U∞(x) 6= ∅ for all x ∈ X, i.e., that for
each initial value x ∈ X we can find a trajectory staying inside X for all future times.

Given a feedback map µ : X → U , we denote the solutions of the closed loop
system

x(k + 1) = f(x(k), µ(x(k)))

by xµ(k) or by xµ(k, x) if we want to emphasize the dependence on the initial value
x = xµ(0). We say that a feedback law µ is admissible if it renders the admissible set
X (forward) invariant, i.e., if f(x, µ(x)) ∈ X holds for all x ∈ X. Note that U∞(x) 6= ∅
for all x ∈ X immediately implies that such a feedback law exists.

Our goal is now to find an admissible feedback controller which yields approxi-
mately optimal average performance. To this end, for a given running cost ` : X×U →
R we define the averaged functionals and optimal value functions

JN (x, u) :=
1
N

N−1∑
k=0

`(xu(k, x), u(k)), VN (x) := inf
u∈UN (x)

JN (x, u),

J∞(x, u) := lim sup
N→∞

JN (x, u) and V∞(x) := inf
u∈U∞(x)

J∞(x, u).

Here we assume that ` is bounded from below on X, i.e., that `min := infx∈X,u∈U `(x, u)
is finite. This assumption immediately yields JN (x, u) ≥ `min and J∞(x, u) ≥ `min for
all admissible control sequences. In order to simplify the exposition in what follows,
we assume that (not necessarily unique) optimal control sequences for JN exist which
we denote by u∗.
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Similarly to the open loop functionals, we can define the average cost of the closed
loop solution for any feedback law µ by

JclK(x, µ) :=
1
K

K−1∑
k=0

`(xµ(k, x), µ(xµ(k, x))) and Jcl∞(x, µ) := lim sup
K→∞

JK(x, µ).

In order to construct the desired feedback law, henceforth denoted by µN , we
employ a model predictive control (MPC) approach: in each time instant k, we
compute the optimal control u∗ ∈ UN (x0) minimizing JN (x0, ·) for the initial value
x0 = xµN

(k, x) and define the feedback value as µN (x0) := u∗(0), i.e., as the first
element of the finite horizon optimal control sequence.

Terminal constrained economic MPC. The approach just introduced is re-
ferred to as economic MPC in the literature since the stage cost reflects an economic
criterion rather than a distance to some desired reference solution as in the more
standard stabilizing or tracking MPC. In a series of papers ([2, 3, 6, 1]), a theory
of economic MPC with terminal constraints has been developed. We briefly sketch
some of the main results of these papers for the special case where xe ∈ X is an
equilibrium, i.e., f(xe, ue) = xe holds for some ue ∈ U (some of these references also
treat the case of periodic solutions which we will also briefly discuss in the talk but
not in this extended abstract). For any equilibrium xe it is shown that if we use
the MPC approach with the additional terminal constraint xu(N, x) = xe when min-
imizing JN (x, ·) (assuming that this constraint is feasible for the given initial value
x ∈ X), then the inequality Jcl∞(x, µN ) ≤ `(xe, ue) holds. Particularly, if `(xe, ue) is
an optimal equilibrium (in the sense that the equilibrium cost `(xe, ue) is less or equal
than the infinite horizon averaged functional along any other trajectory) then optimal
performance of the closed loop follows.

In general, this result does not necessarily imply convergence of the closed loop
trajctories to xe. In order to ensure convergence, the following assumption (cf. [3])
can be employed. We define a modified cost

˜̀(x, u) := `(x, u) + λ(x)− λ(f(x, u)) (2)

for a given function λ : X→ R. Then the inequality minx∈X,u∈U ˜̀(x, u) ≤ ˜̀(xe, ue) =
`(xe, ue) holds. The assumption for convergence then reads as follows.

Assumption 2. The function λ in (2) is bounded on X and there exists an
equilibrium (xe, ue) ∈ X× U and α` ∈ K∞ such that

min
u∈U

˜̀(x, u) ≥ `(xe, ue) + α`(‖x− xe‖)

holds for all x ∈ X with ˜̀ from (2).

Economic MPC without terminal constraints. The aim of this talk is to
show to what extent these results remain true if we do not impose the terminal
constraint xu(N, x) = xe when computing µN . The motivation for removing these
constraints are, among others, a potentially larger feasible region for the problem and
a simplification of the optimal control problem to be solved in each step of the MPC
scheme. A first step in this direction is provided by the following proposition.

Proposition 2. Let N ≥ 2, abbreviate `e = `(xe, ue) and assume that the
optimal value function VN and the MPC feedback law µN satisfy the inequality

VN (f(x, µN (x)))− VN (x) ≤ `(x, µN (x)) + `e + ε(N) (3)
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for all x ∈ X and a function ε : N→ R+
0 Then the inequality Jcl∞(x, µN ) ≤ `e + ε(N)

holds for all x ∈ X.
The proof of this proposition follows from [7, Proof of Proposition 4.1] by observ-

ing that (3) is equivalent to VN+1(x)− VN (x) ≤ `e + ε(N).
Proposition 2 means that we can prove value convergence for the closed loop. If,

moreover, Assumption 2 holds and Nε(N)→ 0 as N →∞, then also convergence of
the closed loop solution xµ(k, x) to a neighborhood of xe can be shown, where the
size of this neighborhood shrinks to 0 as N →∞, cf. [7, Theorem 7.6]. Hence, under
the additional condition Nε(N)→ 0 we can also conclude trajectory convergence. In
the talk we will present several numerical examples in which one observes exponential
decay ε(N) ≤ CθN , θ ∈ (0, 1), which implies Nε(N)→ 0, see also [7].

The central question is thus whether we can ensure the inequality (3), preferably
with Nε(N) → 0 as N → ∞. Inequality (3) can be concluded by constructing a
control sequence u for initial value f(x, µN (x)) from the optimal control sequence u∗

for initial value x and using JN (f(x, µN (x)) as an upper bound for VN (f(x, µN (x))).
Details will be presented in the talk and can also be found in [7, Proof of Theorem
4.2]. Besides some continuity and boundedness conditions on f , ` and VN , the main
requirement for this proof to work is that the open loop optimal trajectory for horizon
N satisfies xu∗(k, x) ≈ xe for some k ∈ {0, . . . , N}. In quantitative terms, this leads
to the following assumption.

Assumption 3. There exists σ : N→ R+
0 with σ(N)→ 0 as N →∞ and N1 ∈ N

such that for each x ∈ X and each N ≥ N1 there exists an optimal trajectory xu∗(·, x)
satisfying ‖xu∗(kx, x)− xe‖ ≤ σ(N) for some kx ∈ {0, . . . , N}.

Assumption 3 is a particular form of a so called turnpike property, see, e.g., [4,
Section 4.4] and [8] and the references therein.

The proof of [7, Theorem 4.2] shows that under suitable continuity and bound-
edness assumptions on f , ` and VN in a neighborhood of xe, the estimate ε(N) ≤
p(σ(N)) can be obtained, where p is a polynomial with p(0) = 0. Particularly, this
shows that σ(N) → 0 implies ε(N) → 0 and if σ(N) converges to 0 exponentially
fast, then ε(N) will do so, too.

In what follows we will sketch two ways for deriving Assumption 3 from Assump-
tion 2. In order to simplify the computations, for the subsequent considerations we
will assume `(xe, ue) = 0 and λ(xe) = 0 which also implies ˜̀(xe, ue) = 0. These
assumptions can be made without loss of generality by adding suitable constants to `
and λ. Note that adding such constants does neither change the optimal trajectories
and control sequences nor does it affect the validity of Assumption 2 and the function
α in this assumption. Moreover, we define the modified cost functional

J̃N (x, u) :=
N−1∑
k=0

˜̀(xu(k, x), u(k)).

Observe that by definition of the modified cost ˜̀the functionals JN and J̃N are related
via

J̃N (x, u) = JN (x, u) + λ(x)− λ(xu(N, x)). (4)

Version 1: Let Assumption 2 hold and let C := 2 supx∈X |λ(x)| < ∞. Assume
moreover that VN (x) is bounded from above on X, i.e., VN (x) ≤M holds for all x ∈ X
and some M ∈ R. Then from (4) we obtain

J̃N (x, u∗) ≤ JN (x, u∗) + C = VN (x) + C ≤M + C.
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for all N ∈ N. This implies ˜̀(xu∗(k, x), u∗(k)) ≤ (M+C)/N for some k ∈ {0, . . . , N−
1}. Assumption 2 then implies ‖xu∗(k, x)− xe‖ ≤ α−1((M + C)/N) =: σ(N) with α
from Assumption 2 which shows Assumption 3.

Unless α−1 happens to be very “flat” near 0 (which is an exceptional case), the
proof just sketched will not yield exponential convergence σ(N) → 0. Consequently,
this proof (which follows [7, Theorem 5.3]) implies value convergence but in general no
trajectory convergence. In order to improve the estimate, we present an alternative
way to estimate σ(N) which, however, needs stronger assumptions.

Version 2: Let Assumption 2 hold, assume that ˜̀ is bounded on X × U and
consider the following terminal constrained optimal value function

Ṽ tN (x0, xT ) := inf
u∈UN (x0)

xu(N,x0)=xT

J̃N (x0, u).

Assume that there exists γ ≥ 1 such that for all x0, xT ∈ X for which a trajectory
from x0 to xT exists the inequality

Ṽ tN (x0, xT ) ≤ γmin
u∈U

`(x0, u) + (γ − 1) min
u∈U

`(xN , u) (5)

holds. Then, exploiting that any piece of length K of an optimal trajectory for JN is
an optimal trajectory for Ṽ tK(x0, xT ) for appropriate x0 and xN , and using a dynamic
programming induction we obtain either

˜̀bN/2c ≤ γ
(
γ − 1
γ

)bN/2c−1

˜̀
0 or ˜̀dN/2e ≤ γ

(
γ − 1
γ

)bN/2c−1

˜̀
N

for ˜̀
k := ˜̀(xu∗(k, x), u∗(k)), details will be presented in the talk and in [5].
Since we assumed ˜̀ to be bounded on X (say, by a constant M), this implies

Assumption 3 with

σ(N) = α−1

(
Mγ

(
γ − 1
γ

)bN/2c−1
)
.

If α has at least polynomial growth near 0, this σ indeed decays exponentially and
thus implies the desired exponential convergence of ε(N)→ 0.
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