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Abstract: In this work we study the problem of step size selection for numerical schemes, which
guarantees that the numerical solution presents the same qualitative behavior as the original system
of ordinary differential equations. We apply tools from nonlinear control theory, specifically Lyapunov
function and small-gain based feedback stabilization methods for systems with a globally asymptotically
stable equilibrium point. Proceeding this way, we derive conditions under which the step size selection
problem is solvable (including a nonlinear generalization of the well-known A-stability property for the
implicit Euler scheme) as well as step size selection strategies for several applications.
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1 Introduction

It is well-known that step size control can enhance the performance of numerical schemes for
solving ordinary differential equations (ODEs). In fact, the use of the word “control” suggests
that methods and techniques from mathematical control theory can in principle be used in order
to achieve certain objectives for the numerical solution. For example, in [16] the authors use a
“Proportional-Integral” technique which is similar to the “Proportional-Integral” controller used
in Linear Systems Theory in order to keep the local discretization error within certain bounds, see
also [14, 15, 19]. Theoretical results on the behavior of adaptive time stepping methods have been
presented in [27, 29] and the control theoretic notion of input-to-state stability (ISS) has been
successfully used in [11, 12] in order to explain the behavior of attractors under discretization.

In this work, we develop tools for numerical schemes which are similar to methods used in
nonlinear control theory. We consider the problem of selecting the step size for numerical
schemes so that the numerical solution presents the same qualitative behavior as the original
nonlinear ODE. It is well-known that any consistent and stable numerical scheme for ODEs
inherits the asymptotic stability of the original equation in a practical sense, even for more
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general attractors than equilibria, see for instance [11, 12, 26] and [35, Chapter 7] for fixed step
size and [5, 27] for schemes with variable step size. Practical asymptotic stability means that
the system exhibits an asymptotically stable set close to the original attractor, i.e., in our case
a small neighbourhood around the equilibrium point, which shrinks down to the attractor as
the time step h tends to 0. In contrast to these results, in this paper we investigate the case
in which the numerical approximation is asymptotically stable in the usual sense, i.e., not only
practically.

Here, we concentrate on nonlinear systems for which an equilibrium point is the global attractor.
In Section 2 of the present work it is shown how the problem of appropriate step size selection
can be converted to a rigorous abstract feedback stabilization problem for a particular hybrid
system. The idea of representing numerical schemes as hybrid systems goes back to [22] and the
reader should notice that the standard stability analysis of numerical schemes uses discrete-time
system, see, e.g., [19, 17, 21, 28, 35], rather than hybrid systems. With this approach, we are
in the position to use all methods of feedback design for nonlinear systems. Specifically, we
consider methods based on small-gain theorems and methods based on Lyapunov functions.

Both methods have been used widely in nonlinear systems theory for the solution of feedback
stabilization problems, see [1, 4, 20, 23, 25, 33, 34] and references therein. In the present work,
the above methods are used for the step size selection for numerical schemes for ODEs, see
Section 3 and Section 4. While the small-gain method allows for the design of novel numerical
schemes for nonlinear systems with specific structures, cf. Theorem 3.1 and Theorem 3.3, the
Lyapunov function based method allows for results for general nonlinear systems. It applies to
arbitrary consistent Runge-Kutta schemes (see Theorem 4.5, Theorem 4.9 and Theorem 4.12) as
well as to specific Runge-Kutta schemes, see Corollary 4.7 and Theorem 4.17. Some of our results
constitute nonlinear extensions of well-known properties of numerical schemes like, e.g., A-
stability, cf. Corollary 4.18. While the idea behind this Lyapunov based approach is conceptually
similar to the geometric integration method recently proposed in [10], our methodology relies
on the appropriate selection of the time step rather than on the modification of the numerical
scheme.

The kea idea used in small-gain approach is to formulate numerical schemes in such a way
that small-gain criteria from the hybrid control systems literature become applicable. These
criteria then induce an upper bound on the time step for which stability of the numerically
computed solutions can be guaranteed. In the Lyapunov based approach, the basic idea is
to use a Lyapunov function for the continuous time system as a Lyapunov function for the
numerical approximation, which in turn implies the desired stability property by Lemma 4.1.
Conditions under which this is possible and corresponding bounds on the time step are derived
either from estimates on the discretization error as in Theorem 4.5, Theorem 4.9 and Theorem
4.12, or from structural properties of the scheme and the Lyapunov function as in Theorem 4.17.

A number of applications of the obtained results is developed in Sections 5 and 6. For instance,
in Section 6 we consider the possibility of using explicit schemes for stiff linear systems of ODEs.
An application of the stabilization method based on the small-gain analysis for systems described
by partial differential equations (PDEs) is presented in Section 5.

Thus, the contribution of the paper is twofold. On the one hand, our control theoretic approach
yields new insight into the stability properties of numerical schemes and as such it adds another
means to the toolbox for stability investigations of numerical schemes. On the other hand, our
method leads to the design of new discretization schemes and step size control algorithms, which
instead of the usual control of the local discretization error take care of the global qualitative
behaviour.

Notation Throughout this paper we adopt the following notation:

Let A C R" be a set. By C°(I ; ), we denote the class of continuous functions on I, which
take values in Q. By C¥(I ; ), where k > 1 is an integer, we denote the class of differentiable
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functions on A with continuous derivatives up to order k, which take values in Q. By C*°(A4;Q),
we denote the class of differentiable functions on A having continuous derivatives of all orders,
which take values in €, i.e., C*°(4; Q) =5, Ck(A; Q).

For a vector z € R™ we denote by |z| its usual Euclidean norm and by ' its transpose. By
B.(x), where ¢ > 0 and x € R", we denote the ball of radius € > 0 centered at x € R", i.e.,
B.(z) :=={yeR": |y—z| <e}. For areal matrix A € R"*™ we denote by |A| its induced
norm, i.e., |A| := max{|Az| : x e R™, |z| =1} and by A’ € R™*™ its transpose.

RT denotes the set of non-negative real numbers and Z ™ the set of non-negative integer numbers.
C denotes the set of complex numbers. By K, we denote the set of all increasing and continuous
functions p : RT — R with p(0) = 0 and lims_, 1« p(s) = +o0.

For every scalar continuously differentiable function V' : R™ — R, VV(z) denotes the gradient
of V at x € R", ie., VV(x) = (%(m),,%(m)) We say that a function V : R® — R7T is
positive definite if V(z) > 0 for all z # 0 and V(0) = 0. We say that a continuous function
V : R — RT is radially unbounded if for every M > 0 the set {x € R* : V(z) < M} is
compact.

For a sufficiently smooth function V' : R®™ — R we denote by L;V(x) := VV (z)f(x) the Lie
derivative of V along f and we define recursively L(le)V(m) = Lf(L(z V(x)) for i > 1.

2 Setup, preliminaries and problem formulation

Consider the autonomous system

2(t) = f(=2(t) , 2(t) e R" (2.1)

where f : R" — R™ is a locally Lipschitz vector field with f(0) = 0. For every zp € R™ and
t > 0, the solution of (2.1) with initial condition z(0) = zy will be denoted by z(t, zp).

There are several ways of formalizing numerical approximations of system (2.1) schemes with
varying step-sizes as dynamical systems. In this paper we will use hybrid systems for this
purpose. After introducing this class of systems, establishing its relation to numerical schemes
and deriving some of its properties, we will discuss in Remark 2.1 why we prefer to use this
formulation. The hybrid system we are considering is given by

l’(t) = F(h“x(n)) , t e [’7’2‘7Ti+1)
=0, Ti+1 =7+ h;

hi = o(z(7;)) exp(—u(r;))

z(t) € R™, u(t) € [0, 400)

(2.2)

where ¢ € C°(R";(0,r]), » > 0 is a constant, F : |J,cgn ([0,0(x)] X {z}) — R™ is a (not
necessarily continuous) vector field with F'(h,0) = 0 for all h € [0, ¢(0)], lim;, o+ F'(h, 2) = f(2),
for all z € R™. More specifically, the solution z(t) of the hybrid system (2.2) is obtained for
every locally bounded w : RT — R* and zg € R" by setting 79 = 0, 2(0) := x¢ and then
proceeding iteratively for ¢ = 0,1,... as follows (cf. [22]):

(i) Given 7; and z(7;), calculate 7;41 using the equation 7,41 = 7; + @(z (7)) exp(—u(7;))

(ii) Compute the state trajectory z(t), t € (7;, Ti+1] as the solution of the differential equation
1’(t) = F(hz,:r(n)), i.e.7 1’(t) = .’E(’TZ) + (t - TZ)F(hl,SIJ(TZ)) fort e (Ti,Ti+1].
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We denote the resulting trajectory by z(t,xg,u) or briefly z(¢) when xg snd u are clear from
the context.

We will further assume that there exists a continuous, non-decreasing function M : R™ — RT
such that

|F(h,2)| < || M (|Jz|) for all x € R™ and h € [0, ¢(z)] (2.3)

It should be noticed that the hybrid system (2.2) under hypothesis (2.3) is an autonomous
system, which satisfies the “Boundedness-Implies-Continuation” property and for each locally
bounded input % : R™ — R and xy € R™ there exists a unique absolutely continuous function
[0,400) 3t — x(t) € R with (0) = z, which satisfies (2.2), see [22]. Some remarks are needed
in order to explain the name “numerical approximation of system (2.1)” for the hybrid system
(2.2).

(i) The condition limy, g+ F'(h, z) = f(2) is the usual consistency condition for the numerical
scheme applied to (2.1).

(ii) The sequence {h;}&° is the sequence of step sizes used in order to obtain the numerical
solution. Notice that for the case p(x) = r, constant inputs u(t) = v > 0 will produce
constant step sizes with h; = rexp(—u). Arbitrary variable step size sequences h; €
(0, p(x(7;)] can be represented easily by selecting appropriate inputs u : Rt — R™.

(iii) The constant r > 0 is the maximal allowable step size.

(iv) The function ¢ € C°(R"; (0,7]) determines the maximum allowable step size ¢(x(7;)) for
each x(7;) € R™. This is important for implicit numerical schemes as shown below.

All consistent s-stage Runge-Kutta methods can be represented by the hybrid system (2.2).
More specifically, let 2o € R™ and consider a consistent s-stage Runge-Kutta method for (2.1):

Y, = wo+hy ayf(V;), i=1,...,s (2.4)
j=1

x = zo+hY bif(V;) (2.5)
=1

with >°7_, b; = 1. If the scheme is explicit, i.e., if a;; = 0 for j > 4, then there always exists
a unique solution to equations (2.4). If the scheme is implicit, then in order to be able to
guarantee that equations (2.4) admit a unique solution it may be necessary to restrict the step
size to h € [0, ¢(z0)] for some maximal step size ¢(z) depending on the state zy € R™. In
all subsequent statements on implicit schemes, we will tacitly assume that such a step size
restriction is imposed if necessary.

A suitable choice for p(z) may be obtained in the following way. Let v : RT — RT be a
continuous, non-decreasing function with |f(x)| < |z|v (|z|) for all x € R™ (such a function
always exists since f : R™ — R™ is a locally Lipschitz vector field with f(0) = 0). Let Ly : R® —

(0,400) be a continuous function with Ly(zo) > sup {% t 2,y € Na(zo), x # y} for

all o € (R™\{0}), with Ny(zg) := {x € R : |x — a0 < A|zo| }, A € (0,1). The continuous
function @(x) = m, where |A| := max;=1, s Zj la;j|, guarantees that for all
2o € R™ and h € [0, p(x0)] the equations (2.4) have a unique solution satisfying Y; € Ny(xo),
t=1,...,8s.
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Note, however, that this bound may be conservative. For instance, we may apply the implicit
Euler scheme (s = 1,a3; = by = 1) to an asymptotically stable linear ODE of the form & = Qx
with a matrix @ € R"*™ i.e., all eigenvalues of @) have negative real part. Then (2.4) becomes

Yi =20+ hQYl <~ ([ — hQ) Y =xp

which always has a unique solution because all eigenvalues of —(Q and thus of I — h(Q) have
positive real parts for all h > 0; hence I — h(@ is invertible for all A > 0.

In order to obtain the hybrid system (2.2) from (2.4), (2.5), we define

F(h,x0) = h~t (z — o) Zb f(; (2.6)

A moment’s thought reveals that for every locally bounded v : RT — R* and zp € R" the
solution of (2.2) with (2.6) coincides at each 7;, ¢« > 0 with the numerical solution of (2.1)
with 2(0) = x¢ obtained by using the Runge-Kutta numerical scheme (2.4), (2.5) and using
the discretization step sizes h; = ¢(x(7;)) exp(—u(7;)), @ > 0. The reader should notice that
other ways (besides (2.6)) of defining the vector field F' : (J, g ([0, p(7)] x {x}) — R" may
be possible; here we have selected the simplest way of obtaining a piecewise linear numerical
solution.

Appropriate step size restriction can always guarantee that (2.3) holds for F' from (2.6). For

example, if p(z) := m is the step size restriction described above, then F' from (2.6)

satisfies |F(h,z)| < |z|[1+r(1+X) X, [b:]) 7 ((L+A) |z])] for all 2 € R™ and h € [0, p(z)].
Thus (2.3) holds with M (y) :=1+r(1+X) (3o [bi]) v (1 + A)y).

Before we turn to the problem formulation, we collect some further estimates on Runge-Kutta
schemes which will be useful in the following sections.

If the Runge-Kutta scheme (2.4), (2.5) is of order p > 1, we will occasionally further assume
that f € CP(R™;R™) and for each fixed € R™ the mapping [0, o(x)] 2 h — F(h,z) is p times
continuously differentiable with

[F'(h, ) F(h,z)| < G(|z]) max{|f(y)] : y € R", |y — x| < [z| p(z)M(|z]) } (2.7)

Ohi
Jj=1

for all z € R™ and h € [0, ¢(z)] and some continuous, non-decreasing function G : R™ — RT,
where M : RT™ — R* is the function involved in (2.3). Again, appropriate step size restriction
can always guarantee that (2.7) holds for F from (2.6). Notice that the implicit function
theorem for (2.4) guarantees for each fixed x € R" the existence of (x) > 0 such that the
mapping [0, o(x)] 2 h — F(h,z) is p times continuously dlfferentlable A suitable choice for
() may be obtained by the formula p(z) := Tl AT ‘Df(z)‘ FEaEyE T Where A € (0,1),
|A| :== max;=1,_ Zj |a;;|. However, again this step size restriction may be conservative, e.g.,
for explicit schemes.

Using Theorem I1.3.1 in [18], (2.7), the fact that f € CP(R";R™) and the fact that gi(z(h,z)) =

—kkz h,x) for k > 1, where g, : R* — R™ for £k = 1,...,p + 1 are vector fields obtained by
aah

the recursive formulae g1(z) = f(2), gi+1(2) = Dgi(2)f(z), we may conclude that there exist
continuous functions N : R™ — (0, +00), C': R™ — R such that the inequalities

Cx) < N (z) [max{ FW)l =y e R, Jy —af < || o(z) M(|]) }

(2.8)
+ max{|f(z(h,x))| : h€[0,p(x)]}
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and
|z(h,x) — & — hF(h,z)| < hPT1C(2) (2.9)

hold for all z € R™ and h € [0, p(z)].
If we further assume that there exists a neighborhood A/ C R™ with 0 € A satisfying

(i) there exists a constant A > 0 and an integer ¢ > 1 such that |f(z)| < Alz|? for all z € N

(ii) there exists a constant @ > 0 such that |z(h,z)| < Q |z| for all z € N and h € [0, ¢(z)]

then it follows from (2.8) that there exists a neighborhood N C N with 0 € N and a constant
K > 0 such that _
C(x) < KhPT |z]? for all z € N. (2.10)

Remark 2.1 Modelling numerical schemes as hybrid systems is nonstandard since usually nu-
merical approximations are represented as discrete time dynamical systems. In this context,
varying time steps can either be handled as part of an extended state space, cf. [29], or by
defining the discrete time system on the nonuniform time grid {79, 71, 72,...} induced by the
time steps, cf. [27] or [5]. In particular, the formulation in [5] in which the time steps h; are
included as additional arguments in the solution maps is very similar to our approach and we
conjecture that with this setting one could obtain similar results as in this paper. Still, we
believe that for our purposes hybrid systems have some advantages over the alternative discrete
time approaches as summarized in the following points.

(i) In our problem formulation, below, we aim at stability statements for all step size sequences
(hi)ien, with h; > 0 and h; < o(x(7;)), cf. the discussion after Definition 2.3. Once ¢ is fixed, for
the hybrid system (2.2) this is equivalent to ensuring the desired stability property for all locally
bounded functions u : R™ — R™*. Hence, our hybrid approach leads to an explicit condition
(“for all v”) while the discrete time approach leads to a more technical implicit condition (“for
all h; satisfying h; < p(z(1))”).

(ii) The interpolation of the solution in between the grid points 7; as induced by the definition
of F'in (2.6) does not complicate our analysis. Indeed, it is well known that any meaningful
interpolation of numerical solutions does not change the stability behavior of the resulting
solution. We have decided to include the interpolation in order to make our definition of hybrid
systems compatible with the literature we are using. While on the one hand this makes the
definition of the numerical approximation somewhat more technical, on the other hand we do
not have to keep track of the grid points 7, or time steps h; in formulating our results which
enhances the readability of these statements.

(iii) Last but not least, the formulation via hybrid models enables us to use readily available
stability results from the hybrid control systems literature, while for other formulations we would
have to rely on ad hoc arguments in several places in this paper. <

Let us now turn to the formulation of the problem we will consider in this paper. We assume
that (2.1) satisfies the following property, cf. [30] (see also [22, 25]).

Definition 2.2 We say that the origin 0 € R™ is uniformly globally asymptotically stable
(UGAS) for (2.1) if it is

(i) Lyapunov stable, i.e., for each € > 0 there exists § > 0 such that |z(¢,20)| < e forall t > 0
and all zp € R™ with |z9] < J and

(ii) uniformly attractive, i.e., for each R > 0 and & > 0 there exists T' > 0 such that |z(¢, z0)| < e
for all t > T and all zp € R™ with |z9| < R.

Furthermore, we say that 0 € R™ is locally exponentially stable if there exists C' > 0, ¢ > 0 and
§ > 0 such that |z(¢, z0)| < Cexp(—ot)|zo| holds for all ¢ > 0 and all zp € R™ with |zg] < 4. <
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Given an ordinary differential equation (2.1) for which the origin is UGAS, our goal is to be
able to produce numerical solutions which inherit this qualitative property. That is, we would
like to know a continuous function ¢ : R™ — (0, r] such that the numerical solution produced
by (2.2) has the correct qualitative behavior, i.e., that x(¢,zo,u) (instead of z(¢,zp)) satisfies
Definition 2.2(i) and (ii). Continuity of the function ¢ : R™ — (0, 7] is essential because without
continuity it may happen that liminf,_, ¢(z) = 0. This would require discretization step sizes
of vanishing magnitude as t — 400 which we would like to avoid.

More specifically, we would like to be able to guarantee the correct behavior for the numerical
solution uniformly for arbitrary positive discretization step sizes h; < ¢(z(7;)). By means of
our choice of the step size as h; = p(x(7;)) exp(—u(7;)), this leads to the following definition,
cf. [22].

Definition 2.3 We say that the origin 0 € R" is uniformly robustly globally asymptotically
stable (URGAS) for (2.2) if it is

(i) robustly Lagrange stable, i.e., for each € > 0 it holds that sup{|z(t, zo,u)||t > 0, |zo| < &, u :
RT — R" locally bounded} < oc.

(ii) robustly Lyapunov stable, i.e., for each € > 0 there exists § > 0 such that |z(t, zo,u)| < € for
all t > 0, all zg € R™ with |z9| < § and all locally bounded w : Rt — R* and

(iii) robustly uniformly attractive, i.e., for each R > 0 and € > 0 there exists T > 0 such that
|z (t, 20, u)| <eforallt>T,all zp € R" with |z9| < R and all locally bounded v : Rt — R*. «

Contrary to the ordinary differential equation (2.1), for the hybrid system (2.2) Lyapunov sta-
bility and attraction do not necessarily imply Lagrange stability. This is why — in contrast to
Definition 2.2 — we explicitly included this property in Definition 2.3.

Ensuring asymptotic stability for all (positive) step sizes h; < ¢(x(7;)) is important because
it allows us to couple our method with other step size selection schemes. For instance, we
could use the step size min{o(x(7;)), h;} where h; is chosen such that a local error bound is
guaranteed. Such methods are classical, cf. [18] or any other textbook on numerical methods for
ODEs and also Example 2.4, below. Proceeding this way results in a numerical solution which
is asymptotically stable and at the same time maintains a pre-defined accuracy. Note that our
approach will not incorporate error bounds, hence the approximation may deviate from the true
solution, at least in the transient phase, i.e., away from 0. On the other hand, as Example
2.4, below, shows, local error based step size control does in general not guarantee asymptotic
stability of the numerical approximation. Thus, a coupling of both approaches may be needed
in order to ensure both accuracy and asymptotic stability.

The precise formulation of the problems we consider in this paper is as follows.

(P1) Existence Problem Is there a continuous function ¢ : R™ — (0,7], such that 0 € R™ is
URGAS for system (2.2)%

(P2) Design Problem Construct a continuous function ¢ : R™ — (0,7], such that 0 € R™ is
URGAS for system (2.2).

Since ¢ in these problems can be interpreted as a stabilizing feedback for the hybrid system
(2.2), this leads to studying a feedback stabilization problem. Consequently, for answering (P1)
and (P2) we will use methods from nonlinear control theory.

It is well known that any consistent and stable numerical scheme for ODEs inherits the asymp-
totic stability of the original equation in a practical sense, even for more general attractors than
equilibria see for instance [11, 12] or [35, Chapter 7]. Practical asymptotic stability means that
the system exhibits an asymptotically stable set close to the original attractor, i.e., in our case
a small neighbourhood around the equilibrium point, which shrinks down to the attractor as
the time step h tends to O.
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Here, the property we are looking for, i.e., “true” asymptotic stability, is a stronger property
which cannot in general be deduced from practical stability. In [35, Chapter 5], several results
for our problem for specific classes of ODEs are derived using classical numerical stability con-
cepts like A-stability, B-stability and the like. In contrast to this reference, in the sequel we
use nonlinear control theoretic analysis and feedback design techniques; more precisely small-
gain and Lyapunov function techniques in Sections 3 and 4, respectively, for solving Problems
(P1) and (P2). This allows us to obtain asymptotic stability results under different structural
assumptions and for more general classes of systems as in [35, Chapter 5].

The following example illustrates that in general standard step size control algorithms based on
estimating the local error do not solve problem (P2).

Example 2.4 Consider the linear planar system

i’l = —0005(E1 + T2, .’bQ = -1 — 0005552 (211)

The standard local discretization error based step size control method relies on the comparison
of the solutions for two method with different consistency orders, cf. [18, pages 167-169]. Here
we use the explicit Euler and the Heun scheme. For these schemes, the new step size is given

by the formula
hew :hmin{P’ 0.8\/—1 }, (2.12)
err

2 2
orr — 1 (21, BULER — 1, HEUN + 1 (22,BULER — X2, HEUN
2 scq 2 SCo

where

and
s¢; = Atol + Rtol max{ |z;| , |ziggun]|},i=1,2.

Here Atol > 0 is the tolerance for absolute errors, Rtol > 0 is the tolerance for relative errors,
P > 1 is a constant factor which determines the magnitude of a (possible) increase of the
step size, T; pyrLer and T; pEuN, ¢ = 1,2, are the approximations of the components of the
solution by the respective schemes. We applied this method to (2.4) with initial condition
(x1,22) = (1,0), parameter P = 2 and different error tolerances

Figure 2.1(left) shows the phase portrait for Atol = Rtol = 1072: the numerical solution
exhibits an asymptotically stable limit cycle of radius r = 0.17195. Figure 2.1(right) shows the
corresponding step sizes over time which take values in the interval [0.347,0.351] for large times.

The limit cycle shrinks to the origin as Atol, Rtol — 0, but exists for all Atol, Rtol > 0. This
is also visible from Figure 2.2, which shows the logarithm of the squared Euclidean norm along
the numerical solution for Atol = Rtol = 10~2 on the left and for Atol = Rtol = 103 on the
right. Obviously, the numerical solutions are not asymptotically stable.

We will reconsider system (2.4) in Example 4.16, below, where we apply one of the methods
proposed in this paper. <

3 Small-Gain Methodology

One of the tools used in mathematical control theory for nonlinear feedback design is the method-
ology based on small-gain results. The method was first used in [20] where a nonlinear small-gain
result based on the notion of input-to-state stability (ISS, see [32]) was presented. Since then it
has been applied successfully to many feedback stabilization problems. Recently, the small-gain
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Figure 2.1: Phase portrait of the numerical solution (left) and time steps (right) for Atol =
Rtol = 1072

theorem was extended to general control systems including hybrid systems (see [23]) and is thus
applicable for the solution of problem (P2) for certain classes of nonlinear systems (2.1). Here
we apply the method to two types of systems. The first is a system in triangular form which
is called cascade in the control literature. In Section 5, below, we will see that this particular
structure is suitable for handling discretizations of certain PDEs.

We consider the system

2 = folz) (3.1)
i1 = —a(z)rr+ fi(2)
T; = *az’(xi)ﬂji+fi(Z,$1,...,Ii_1), i:27"'an (32)

with 2 € R™ and x = (21,...,7,) € R™ Here fo: R™ - R™, f; :R™ - R, f; : R"xR"! - R
and a; : R - R, ¢ = 2,...,n are locally Lipschitz mappings with fo(0) = 0, f1(0) = ... =
fn(0,0,...,0) = 0. We assume that there exist constants L; > 0, i = 1,...,n such that

a;(y) > L; forally e R (3.3)

We also assume that 0 € R™ is UGAS for (3.1). Under these assumptions, using the fact that
system (3.1), (3.2) has a cascade structure, we may prove by induction over n that the system
is UGAS.

The proof for n = 1 is based on the fact that for every x19 € R and for every measurable

u: RT — R the solution of iy = —ay(z1)2z1 + v with initial condition z1(0) = x1o satisfies
Ly 1
|z1(t)] <exp | ——t ) |x10] + — sup |u(s)|] forallt>0 (3.4)
2 Ly g<s<t
Consequently, the solution of &; = —ay(21)z1 + fi(2) satisfies |z1(t)] < exp (—&t) |z1o] +

L% Supg<s<¢ | f1(2(8))]; i-e., it is uniformly ISS with respect to the input z € R™. Since 0 € R™
is UGAS for (3.1), a well-known corollary of the small-gain theorem for systems in cascade
guarantees UGAS for the composite system. For n > 2 this argument is used inductively.

Now suppose that a stable numerical scheme is available for (3.1), i.e., there exist functions
¢ € CO(R™;(0,7]), r > 0 and Fy : U,cpm ([0,0(2)] x {z}) — R™ with Fy(h,0) = 0 for all
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Figure 2.2: Logarithm of the squared Euclidean norm V(t) = |(t)|* of the numerical solution
for Atol = Rtol = 1072 (left) and Atol = Rtol = 1073 (right)

h € 10,¢(0)] and limy, g+ Fo(h,z) = fo(2), for all z € R™ such that 0 € R™ is URGAS for the
hybrid system (2.2) with F' = Fy. Then we propose the following first order numerical scheme
for the subsystem (3.2).

$1(t + h) = .’L'l(t) — hal(xl(t))xl(t + h) + hfl(z(t))
mi(t + h) = xz(t) — hai(a:i(t))a:i(t + h) + hfi(Z(t),l‘l(t), . ,l‘i_l(t)), 1=2,...,n
(3.5)

The above scheme is a partitioned scheme which treats the states z,x1,...,2;_1 in different
ways. The continuous dynamics of the resulting hybrid system are

Z(t) = Fo(hi, Z(Tz))

. . —a1 (z1(m)) ! 1 )

1O = T @) T T e @y ) (3.6)

. —a; (z;(7 1

b = —wlm@) o), Fi(E)s 1 (7)o (7))

1+ hia; (23()) 1+ hia; (5(7))

for j = 2,...,n. For this scheme the following theorem holds.
Theorem 3.1 The origin 0 € R™ x R™ is URGAS for system (3.6).

The proof of this theorem, which can be found at the end of this section, relies on the following
technical lemma which is based on the variations of constants formula.

Lemma 3.2 Let a : R — R be a continuous function with L = infyecr a(y) > 0 and ~ > 0 be a
constant. Then for every sequence {h;}5° with h; € (0,r] for all ¢ > 0, for every locally bounded
function v : Rt — R and for every xo € R the solution of

—a(x()) 1

b(t) = 52 (7))t (), teln,n
) = T ha @) " T T ha @y ) € T (3.7)
Tit1 = T; -‘r-hi, h; € (O,T] y fE(t) eR
with initial condition z(0) = o € R, 79 = 0 satisfies
1
|z(t)| < exp (o7)|zo|exp (—ot) + — sup |v(s)| for all t € [0,sup;) (3.8)

0 L o<s<t i>0
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where o > 0 is any constant such that - < exp(—os) for all s € [0,7L], i.e., 0 < W

Proof: For every i > 0 the variations of constants formula implies

2(Tiq1) = To H (1+ hja( +Z hio(r) | T+ hwa (z(ri)) ! (3.9)

j=0 k=j
Using the definition of L, we obtain the following bound from (3.9)

@ (rip )| < lwol [ 1+ hL) ™ + max () > [ | [T+ k)™ (3.10)

.....

=0 =0 k=j

Now the definition of o implies

~.

i i

S | T+ D)™ < h; f[exp(—aLhk)

=0 k=j j=0 k=j

B (hj exp(=0 L{riys = 7)) = exp(-0 Lrisn) 3 [exp(a Lty) /Tj+1 ds

=0 =0 ™
¢ Tj+1 Tit1 1
< exp(—o L7i41) Z / exp(o Ls)ds| = exp(—o LTi_H)/ exp(o Ls)ds < I
i=0 L7 0 7
which in conjunction with (3.10) implies
1
[2(7i1)] < Jwol exp (=0 Tigs) + —— max (7)) (3.11)
for all i« > 0. Now for every ¢ > 0 and ¢ € [7;, 7y11) it holds that
|2(8)] < max{[z(7i)|, |2(7iy1)]} (3.12)
Combining (3.11) and (3.12) finishes the proof. U

Proof of Theorem 3.1: We proceed by induction over n. For n = 0, the assertion follows
immediately from the assumption on Fj. For n — n + 1, Lemma 3.2 guarantees

sup |fn+1(z(s>7 ce 7xn(8))| ’

[Znt1(t)] < exp (07) [2741(0)] exp (—o't) +
0 L1 o<s<t

where o > 0 is a constant with Tlrs < exp(—os)forall s € [0,r max;=1,.. nt1(L;)]. Now Remark
3.2(b) in [23] (for systems in cascade) guarantees URGAS. U

In Theorem 3.1 we use the special triangular cascade structure of (3.6). Indeed, due to this cas-
cade structure we could also have derived the result from the discrete time Gronwall lemma. The
following application shows that with small-gain arguments we can also handle more complex
coupling structures. Consider the equation

T; = —ai(xi)xi—i—fi(a:,i), 1=1,....n (313)
with 2 = (z1,...,2,)T €R" and x_; = (z1,..., i 1,Tis1,---,2Tn) € R*7L. Here f; : R""1 —
R and a; : R — R are supposed to be locally Lipschitz for : = 1,...,n. We assume the existence

of constants L; > 0 and G;; >0, 4,5 =1,...,n, with

a;(z;) > L; and |fi(z_;)| < max Gijlz;| for all z € R™. (3.14)
VE
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Systems of the form (3.13) under the assumption (3.14) are frequently found in the neural
networks literature, in particular for Hopfield neural networks, see [31] and the references therein.

Again we consider a partitioned first order numerical scheme which is here of the form
l‘l(t—f—h) :J)i(t) —hai(xi(t))xi(t—kh) —l—hfi(ac_i(t)), 1=1,...,n. (315)

The resulting hybrid system can be written in explicit form as

o —a(i(n) 1 (o (o . .
$j(t) - mx](n) + 1 +hiaj($j(7'i))fj( *j( 2))7 J = L... (316)

with 7; and h; as in (2.2) where we use the constant step size selection ¢ = r > 0. by virtue of
Lemma 3.2 and recent small-gain results in [24] the following result follows. Observe that the

resulting scheme is explicit and does not require an iterative solution of nonlinear equations for
its implementation.

Theorem 3.3 The origin 0 € R™ is URGAS for system (3.15) provided that for each p =
2,...,n the inequality

(3.17)

In(1 Liseo L)\
Gi1i2Gi2i3"'Gipi1 < <n( +Tmax{ L : })) Llle Lz

rmax{Li,...,L,} v

holds for all i; € {1,...,n} with i; # 4, for j # k.

Condition (3.17) is termed a cyclic or cycle small-gain condition in mathematical systems theory,
cf. [3], [24] or [36]. For r — 0 we obtain

In(1 4+ rmax{Ly,...,Ly})
rmax{Liy,...,L,}

and we recover the cyclic small-gain condition G, i, Giyiy =+ Giyiy < Ly Ly, - -+ L, which guaran-
tees that 0 € R™ is UGAS for the continuous time system (3.13). Provided that this inequality
holds, (3.17) gives a condition on the upper bound on the time step ¢ = r such that the
asymptotic stability carries over to the numerical approximation.

Finally, note that Theorem 3.3 can easily be adapted to other classes of large scale systems
which can be decomposed into smaller subsystems.

4 Lyapunov function based Step Selection

While the small-gain methodology is suitable for systems of differential equations with partic-
ular structures, it cannot be applied to general systems in a systematic way. On the other
hand, Lyapunov-based feedback design methods can be applied to general nonlinear systems of
differential equations and yield explicit formulas for the feedback law (see [33]). In this section
we apply the Lyapunov-based feedback design methodology for the solution of Problems (P1)
and (P2). It is well known that Lyapunov functions exist for every asymptotically stable ODE
and in many applications one can even give explicit formulas for these functions (some examples
can be found in Section 6). However, even if a Lyapunov function is not exactly known, under
suitable assumptions on the ODE, certain structural properties of the Lyapunov function can
be obtained (cf., e.g., Proposition 4.4, below) and used in our context. Hence, the main task of
this section is to derive conditions under which the Lyapunov function for the ODE system can
be used in order to conclude stability for the hybrid system (2.2) and thus for the numerical
approximation of system (2.1).
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The results will be developed in the following way. First we provide some background material
needed for the derivation of the main results in Section 4.1. In Section 4.2 we consider general
consistent Runge-Kutta schemes and provide sufficient conditions for the solvability of Problem
(P1) and (P2). The results are specialized for the explicit Euler method. Finally, in Section 4.3,
we present special results for the implicit Euler scheme.

4.1 Background Material

The crucial technical result that allows the use of Lyapunov functions for hybrid systems of the
form (2.2) is the following lemma.

Lemma 4.1 Consider system (2.2) and suppose that there exist a continuous, positive definite
and radially unbounded function V : R® — R¥ and a continuous, positive definite function
W :R"™ — R" such that for every z € R" the following inequality holds for all k € [0, ¢(z)].

V(z+ hF(h,x)) <V(z)—hW(z) (4.1)

Then the origin 0 € R™ is URGAS for system (2.2).

Proof: Notice first that by virtue of (2.3) there exist a function @ € K, such that for each
xo € R™ and h € [0, ¢(x0)] the solution y(t) of §(t) = F(h,xo), y(0) = xg exists for all ¢ € [0, h]
and satisfies

ly(®)| < a(|xo|) for all t € [0,A]. (4.2)
This @ can be chosen, e.g., as a(s) = s(1 +rM(s)) for M from (2.3).
Now consider R > 0 and the solution z(t, zg, w) of (2.2) with initial condition 2(0) = x¢ satisfying
|zo| < R. Since V : R — R is continuous, positive definite and radially unbounded, it follows
from Lemma 3.5 in [25] that there exist functions a1, as € Ko with

ay (|z]) <V (z) <az(Jz]) forall z € R™. (4.3)
Using induction over i and (4.1) we obtain
V(x(1i,20,u)) < V(xg) foralli>0. (4.4)
Inequality (4.4) in conjunction with (4.3) and (4.2) shows that

|z(t, zo,u)| < a (al_l (a2 (|zo]))) for all t € [0,sup ;). (4.5)

Moreover, inequality (4.4) implies that the sequence x(7;, zg, ©) is bounded, which combined with
the fact that u : Rt — R™ is locally bounded, implies that .« = sup 7; = +o0o. Consequently,
estimate (4.5) guarantees both robust Lagrange and robust Lyapunov stability, i.e., Definition
2.3(i) and (ii). In order to prove URGAS it remains to show uniform robust global attractivity,
i.e., Definition 2.3(iii). To this end, we next establish that for every € > 0 the inequality

V(z(ri,z0,u)) < ai(@a'(e)) forallie ZT with r; > 5?;12), (4.6)

holds with
w(e, R) :==min { W(z) : a3 (a1(@ ' (¢))) < |z| <@ (a7 ' (a2 (R))) } > 0. (4.7)
Using (4.3), (4.6) and (4.2) this property implies |x(¢,xo,u)| < e forallt > T =r + S?E(IB)

Since T is independent of u, this shows Uniform Robust Global Attractivity.
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It remains to prove (4.6) which we do by contradiction. Let € > 0 be arbitrary. Suppose
that (4.6) does not hold, i.e., that there exists ¢ > 0 with 7, > 5?;,1}%)) such that V(z(r;)) >
ai(a=1(g)). By virtue of (4.1) it follows that V(z(7, zo,u)) > a1(@a~'(e)), for all k = 0,... 1.
The previous inequality in conjunction with inequalities (4.1), (4.5) and definition (4.7) im-
plies V(z(mg+1,x0,uw)) < V(x(1g,20,u)) — hgw(e, R) for all k = 0,...,5 — 1. Thus, we ob-
tain V(x(1;,20,u)) < V(zg) — w(e, R) 2;10 hi. Notice that inequality (4.3) implies that
V(zg) < az(R). Since 7; = Z;C_:lo hi, we obtain aj(a='(e)) < az(R) — riw(e,R) < 0, a
contradiction. This finishes the proof.

The essential problem with the use of Lemma 4.1 is the knowledge of the Lyapunov function V.
In the sequel, we will use a Lyapunov function for the continuous-time system (2.1) in order to
construct a Lyapunov function for its hybrid numerical approximation. To this end we use the
following definition.

Definition 4.2 A positive definite, radially unbounded function V' € C*(R";R") is called a
Lyapunov function for system (2.1) if the inequality

VV(z)f(x) <0 (4.8)
holds for all z € R™\{0}. «

In the following subsections, we show that under certain assumptions a Lyapunov function V'
for the original system (2.1) can be used as a control Lyapunov function (see [1, 4, 33, 34]) for
its numerical approximation (2.2) in order to design the step size function ¢ : R™ — (0,7] in
problems (P1) and (P2). For this purpose we need the following technical results whose proofs
are provided in the appendix.

Lemma 4.3 Let V € C'(R";R") be a Lyapunov function for system (2.1). Then the following
statements hold.

(i) There exists a locally Lipschitz, positive definite function W : R® — RT such that the
inequality
W(z) < =VV(x)f(z) (4.9)

holds for all x € R".

(ii) Let Iy : R™ — (0,400) be a continuous function satisfying

[f(y) = £(2)]

Cyz ERY, y £ 2, max{V(), V() < V() }

for all z € (R™\{0}). Then for every positive constant b > 0 there exists a continuous,
positive definite function W : R® — R™ such that the inequality

V(z(h,z)) < V(z) — hW (x) (4.10)

holds for all x € R™ and h € [0, p(x)] with

p(x) == : (4.11)

(iii) Let b >0, W : R® — R* be the function from statement (i), above, and let %, : R* — R
be a continuous positive definite function satisfying

W (y) = W(2)|
ly — 2|

(@) zsup{  yz € R,y 2, max{lyl , |2} < exp(d) |z|}
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for all z € R™\ {0}. If there exist constants €, ¢ > 0 such that
lz| 1% (z) < cW(x) (4.12)

holds for all € B.(0), then for each A € (0,1) inequality (4.10) holds for all z € R™ and
h € [0, p(x)] with W(x) := AW (x) where ¢ € C°(R"; (0,+00)) is any function satisfying

. b (I =X exp(=b)W(z)
et <mind s e

} for all z € R"\{0}. (4.13)

Proposition 4.4 Suppose that f : R” — R" is a continuously differentiable vector field, 0 € R™
is UGAS and locally exponentially stable for (2.1). Then there exist a Lyapunov function
V € CYR™R*) for (2.1), a symmetric, positive definite matrix P € R™ ™ and constants
€, it > 0 such that the following inequalities hold.

V(z) =2'Px for all x € B.(0) (4.14)

VV(z)f(z) < —p 2> for all z € R” (4.15)

4.2 General Runge-Kutta Schemes

In this section we will provide two theorems giving different sufficient conditions for the solv-
ability of the problems (P1) and (P2) for general Runge-Kutta schemes based on a Lyapunov
function V' for the continuous dynamical system (2.1). Since the expressions involved in these
theorems can be quite involved, in addition we present a simple computational method based
on our approach in Algorithm 4.14. Our first result uses information on the derivatives of V as
formulated in the following theorem.

Theorem 4.5 Suppose that there exists an integer p > 1 and a Lyapunov function V €
CP+D(R™; R*) for system (2.1). Consider system (2.2) corresponding to a Runge-Kutta scheme
for (2.1) and suppose that

(i) for each fixed x € R™ the mapping [0, (x)] 2 h — V(x + hF(h,x)) is (p + 1) times
continuously differentiable

(ii) the Runge-Kutta scheme is consistent with order p > 1, i.e., for every x € R™ and h €
[0, (z)] there exists constant K > 0 such that |2(h,x) — 2 — hF(h,z)| < KhP*!

(ili) there exists a constant A € (0,1) such that the inequality ¢(z)min;—; ., K;(z) < (A —
1)L;V (z) holds for every x € R", where

J §i2 -1 gitl
K;(z) := max ZQ T LV @)+ Gy gV @ HAE () - hs € [0, ()]

for j > 2 and Ky(z) := %max{aa—;‘/(x—k hF(h,z)) : h €0, ¢(x)] }

Then 0 € R™ is URGAS for system (2.2).
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Proof: Since for each fixed x € R™ the mapping [0, o(x)] 2 h — g(h) = V(z + hF(h,x)) is
(p+1) times continuously differentiable, by Taylor’s theorem for all j = 1,...,p and h € [0, p(z)]
we have

L hidig hit! ditlg

V(z + hF(h,z)) = g(h) < g(0) + (0) + 737 o2, gt

N £ il dh? (©)- (4.16)

Since the Runge-Kutta scheme is of order p > 1, we have

dig
dht

(0)=L4V(x) foralli=1,...,p. (4.17)

Consequently, for all j =1,...,p and h € [0, p(x)] we obtain
V(z +hE(h,z)) < V(z)+hL;V(z) + h*K;(x) (4.18)
or, equivalently, for all h € [0, ¢(z)]

V(z + hE(h,z)) < V(z) + hL;V(z) + h* min K;(x) (4.19)

Jj=1,...,p

The inequality p(x) minj—y,__, K;(z) < (A—1)L;V(z) in conjunction with (4.19) implies V (z+
hF(h,z)) < V(z) + AhL;V(z). Thus, Lemma 4.1 implies that 0 € R” is URGAS for system
(2.2). 0

Remark 4.6 (a) Theorem 4.5 implies the following property for a Runge-Kutta scheme with
order p > 1 satisfying (2.7) and a system of ODEs (2.1) with f € C®*1(R";R"™) for which
0 € R™ is UGAS:

If a Lyapunov function V € C®»+1)(R”; R*) for (2.1) is available for which there exist constants
K,A > 0, an integer ¢ > 1 and a neighborhood N' C R™ with 0 € A such that VV (z)f(x) <
—K |2|"™ and | f(z)| < A |z|? for all z € A, then for every A € (0,1) and every compact S C R™
we can find h > 0 sufficiently small such that V(z + hF(h,z)) < V(z) + AhVV (x)f(z) for all
rxes.

This fact follows from (2.7) and the observation that Kj(z) = O(|z|9T!) for = close to zero.
Consequently, the numerical solution of (2.1) with sufficiently small step size will give the
correct dynamic behavior.

(b) The functions K;, j > 1 involved in hypothesis (iii) of Theorem 4.5 are in general diffi-
cult to be computed for higher order Runge-Kutta schemes. However, for the explicit Euler
scheme F'(h,z) = f(x) the function Kj(x) can be computed without difficulty using the for-
mula K (z) := § max { f'(z)V?V (z + hf(z))f(z) : h €[0,¢(x)] }. Consequently, we obtain the
following corollary. <

Corollary 4.7 (Explicit Euler method) Suppose that there exists a Lyapunov function
V € C?(R™;RT) for system (2.1) where f € C°(R";R") is locally Lipschitz and that there exist
constants r > § > 0, A € (0,1) and a neighborhood N/ C R"™ with 0 € N and

dq(x) < =2(1-=XN)VV(x)f(x) forallzeN, (4.20)

where g(z) := max { f'(z)V?V(z + hf(z))f(z) : h €[0,7]}. Then Problem (P1) is solvable
for system (2.2) with F(h,x) := f(x) and Problem (P2) is solved for any ¢ € C°(R";(0,7])
satisfying

p(x)g(z) < =2(1 = NVV(z)f(z) forall z € R". (4.21)
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Proof: Inequality (4.20) guarantees the existence of ¢ € C°(R";(0,7]) satisfying (4.21), e.g.,
we may define o(xz) := § if z € N, p(z) := §if ¢ ¢ N and ¢(z) < 0, and ¢(z) =

min { NIV () (e)

2K, (z) < q(x) for all x € R™. U

, 0 } else. The rest is a consequence of Theorem 4.5 and the fact that

Remark 4.8 Corollary 4.7 implies the following property for a system of ODEs (2.1) with
f € C°(R"™;R™) being locally Lipschitz for which 0 € R™ is UGAS:

If a Lyapunov function V € C?(R";R*) for (2.1) is available for which there exist constants
K,A > 0, an integer ¢ > 1 and a neighborhood N/ C R™ with 0 € A such that VV (z)f(z) <
—K |z*? and | f(z)| < A |z|? for all z € N, then for every A € (0,1) and every compact S C R"
we can find A > 0 sufficiently small such that V(z + hf(x)) < V(z) + AWVV (z)f(x) for all
zesl.

This fact follows from (2.7) and the observation that q(x) = O(|z|*?) for x close to zero. Note
the difference to Remark 4.6(a): due to the particular structure of the Euler method here we

only need to require VV () f(z) < —K |2/** instead of VV (z)f(z) < —K |z|7™".

The following second theorem for general Runge-Kutta schemes provides alternative sufficient
conditions for the solvability of problem (P2) based on a Lyapunov function for the ODE (2.1).
The conditions are different from those in Theorem 4.5, in particular they do not require the
Lyapunov function to be smoother than C'. «

Theorem 4.9 Consider system (2.2) corresponding to a Runge-Kutta scheme for (2.1) of order
p > 1 satisfying (2.7), (2.8), (2.9) for certain ¢ € C*(R"™; (0, +00)). Suppose that

(i) there exist a Lyapunov function V' € C'(R";R™T) for system (2.1) and a continuous,
positive definite function W : R™ — R* such that (4.10) holds for all x € R™ and h €
[0, ()]

(ii) there exists b > 0 such that |z(h,z)| < exp(b) |z| and |z + hF (h,z)| < exp(b)|z| for all
z € R™ and h € [0, ¢(z)]

(iii) there exists a constant A € (0,1) such that

p(z) < (m) ' for all z € R™\ {0}, (4.22)

where 1%, (x) := max {|VV(2)| : z € R", |z| < exp(b) |z|} for all z € R® and C : R® — R
is a continuous positive definite function with |z(h,z) — 2 — hF(h,z)| < C(z)hPT? for all
z € R™ and h € [0, o(z)].

Then 0 € R™ is URGAS for system (2.2).

Proof: Utilizing hypotheses (i) and (ii) and

V(z) = V)l

|z =yl

1 (z) > sup{ c z,y € R™  max {|y|, |z|} < exp(d) |z| , z # y} ,

for all x € R™\ {0} and h € [0, p(x)] we obtain

V(x + hF(h,x)) [V(z + hF(h,z)) =V (z(h,z))| + V(2(h,z))

<
< 1B(x)|z+ hF(h,x) — z(h,z)| + V(z) — hW (z)
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For all z € R™ and h € [0, p(x)] this inequality in conjunction with (2.9) gives
V(z+ hF(h,x)) < V(z) - h (W(x) - hpz@(x)C(x)) ,

where C' : R™ — R is the continuous positive definite function with |z(h,z) — z — hF(h,z)| <
C(z)hP*! for all z € R™ and h € [0, ¢(x)]. Together with (4.22) this implies

V(x4 hF(h,z)) < V(z) = AAW (z) for all z € R™\ {0} and all & € [0, p(z)]. (4.23)

Observing that (2.3) guarantees that (4.23) holds for x = 0 as well, Lemma 4.1 implies that
0 € R™ is URGAS for system (2.2). U

Remark 4.10 The proof of Lemma 4.3 (see formula (A.3) in the appendix), inequality (2.10)
and Theorem 4.8 imply the following fact for a Runge-Kutta scheme with order p > 1 and a
system of ODEs (2.1) with f € CP(R™;R™) for which 0 € R" is UGAS:

If a Lyapunov function V' € C%(R™;RT) for (2.1) is available for which there exist constants
K,A,c > 0, an integer ¢ > 1 and a neighborhood N C R™ with 0 € N such that VV(x)f(z) <
—K |z|"™ |f(z)] < Alz|? and (4.12) with W (z) := —VV(z)f(x) holds for all # € N, then
for every A € (0,1) and every compact S C R™ we can find h > 0 sufficiently small such that
V(z+hF(h,x)) <V(z)+ AhVV(z)f(x) for all z € S.

This property follows from (2.10) and the observation that
Iy (2) == max {|VV(z)| : z € R", |z] < exp(b) |z } = O (|z[)

for x close to zero. The reader should notice that in contrast to Remark 4.6(a) we need less
smoothness of V' here. <

The following example illustrates Remarks 4.6 and 4.10.

Example 4.11 Consider the three planar systems with © = fi(z), k = 1,2,3, © = (z1,22)" €
R? with

=] 0T ] e | “lel e | a = | TR

—T1 — X -z — |m\2$2

For each of the systems we can use the Lyapunov function V(z) = |z|>. We obtain
V(@) fi(w) = =2|af*, VV(@)fo(a) = =2|af*, VV(2)fs(x) = =2,

Clearly, for k = 1,2, 3 there exist constants A, > 0, integers ¢ > 1 and a neighborhood A C R?
with 0 € A such that |fi(x)| < Ay |z|?™ for all z € N with ¢; = ¢ = 1 and g3 = 3. Remark
4.6(a) shows that for £ = 1 and k£ = 3 we can apply any consistent Runge-Kutta numerical
scheme with sufficiently small step size and produce a qualitatively correct numerical solution.
The same conclusion is derived from Remark 4.10 (notice that (4.12) holds for each of the
systems with Wy(z) := =VV (z) fi(x), Iy, (z) = 4exp(b) |z], I}y, (x) = I}y, (z) = 8exp(3b) |z|®
for a neighborhood A" C R? with 0 € N). This is confirmed by the numerical simulations for
the Euler and Heun scheme shown in Figure 4.1 for constant step size h = 0.2.

On the other hand, the requirements presented in Remark 4.6(a) or Remark 4.10 are not fulfilled
for k = 2. Similarly, the requirements presented in Remark 4.8 are not fulfilled for k£ = 2.
Consequently, we cannot conclude that the application of any consistent Runge-Kutta numerical
scheme with sufficiently small step size will produce a qualitatively correct numerical solution.
Numerical solutions with the explicit Euler and the Heun scheme confirm these results, cf.



FEEDBACK STABILIZATION METHOD FOR ODE NUMERICS 19

X2 x2

0,51 —EULER 057
HEUN —EULER
HEUN

-0,5 -0,5 1

x1

Figure 4.1: Numerical solution for z = f1(z) (left) and & = f3(z) (right) with initial condition
2 = (1,0) using the explicit Euler and the Heun method

Figure 4.2. For the system & = fo(x) both schemes applied with constant A > 0 exhibit an
asymptotically stable limit cycle, which shrinks to the origin as h — 0, but exists for all A > 0.

Observe that a local error based step size control does not resolve the lack of asymptotic stability
of the origin for our second example. Figure 4.3 shows the solutions for this method using
the Euler and Heun schemes outlined in Example 2.4 for parameters P = 1, Rtol = 0 and
Atol = 10~*. Again, the numerical solution exhibits an asymptotically stable limit cycle which
shrinks to the origin as Atol — 0, but exists for all Atol > 0.

This behavior is expected from our theoretical results, since the fact that the requirements of
Remarks 4.6(a), 4.8 and 4.10 are not satisfied indicates that for this system and the chosen
explicit methods any step size control method will fail to provide an asymptotically stable
solution. Note that this is a different situation as in Example 2.4 as we will see in Example 4.16,
below.

We would like to emphasize that Theorem 4.5 and Theorem 4.9 and the respective Remarks
4.6(a), 4.8 and 4.10 derived from these theorems do not state that there does not exist a
Runge-Kutta scheme which produces an asymptotically stable approximation for system & =
f2(x), since the conditions in these results are merely sufficient but not necessary. In fact, for
instance the implicit Euler scheme produces an asymptotically stable approximation, which we
will rigorously show in Example 4.21, below. <

Based on the general Theorem 4.9, the following theorem shows that for the special case of a
locally exponentially stable ODE system, problem (P1) is always solvable.

Theorem 4.12 Consider system (2.1), a consistent Runge-Kutta scheme with order p > 1 and
f € CP(R™;R™). Assume that 0 € R™ is UGAS and locally exponentially stable for (2.1). Then
Problem (P1) is solvable.

Proof: We are going to show that there exists ¢ € C°(R™; (0, +00)) satisfying all requirements
of Theorem 4.9.

Since 0 € R™ is UGAS and locally exponentially stable for (2.1), by virtue of Proposition 4.4,
there exist a Lyapunov function V' € C'(R"; RT) for (2.1), a symmetric, positive definite matrix
P € R™™ and constants e, u > 0 such that (4.14), (4.15) hold. Tt follows from (4.15) that
statement (i) of Lemma 4.3 holds with W (z) := p|z/|.
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Figure 4.2: Numerical solution for & = fa(x) with initial condition = = (1, 0) using the explicit
Euler (left) and the Heun method (right)
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Figure 4.3: Numerical solution for © = f3(z) with local error based step size control

Let b > 0. Then for all z # 0 the inequality

(W(y) - W(2)|

15, (z) = 2exp(b) |x Zsup{
b () = 20(0) 2] D

gz €R", y# 2, max{ly| |z|}§exp(b>|a:|}

holds. Notice that (4.12) holds for all x € R™ with ¢ := 2u~!exp(b). By virtue of statement
(iii) of Lemma 4.3, for each A € (0,1) inequality (4.10) holds for all x € R™ and h € [0, p(z)]

with W (z) := Ap |2|*, where ¢ € CO(R™; (0, +00)) is any function satisfying

o(x) min {2b, (1 — A) exp(—2b)p } (4.24)

c_ 1
— 1 +21f($)

and lf(z) := {|Df(2)| : z€R", V(z) <V(x)}. Moreover, formula (A.3) from the proof of
Lemma 4.3 in the appendix shows that for all € R™ and h € [0, ¢(x)] it holds that |z(h,z)| <
exp (b) |z|. Let ¢ € CO(R™; (0, +00)) the function for which (2.7), (2.8), (2.9) hold for all z € R"
and h € [0, g(z)]. We notice that the inequality |x + hF (h,z)| < exp(b) || holds for all z € R™
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and h € [0, ¢(x)], where ¢ € CO(R™; (0, +00)) is any function satisfying

exp(b)

, HQZ(IEWM} for all z € R" (4.25)

o) < min { (@)

and M : Rt — R* is the continuous, non-decreasing function involved in (2.3).

Next we show the existence of ¢ € CY(R"; (0, +00)) satisfying (4.22). It suffices to show that
there exist constants § > 0, A € (0,1) and a neighborhood A" C R™ with 0 € N such that

P18 (2)C(z) < (1= NpA |z]* forallz e N, (4.26)

where C' : R™ — R™T is a continuous positive definite function with |z(h,z) — 2 — hF(h,z)| <
C(z)h?T! for all z € R™ and h € [0, p(z)]. Let N' = B,(0), where p := cexp(—b) and € > 0 is
the constant involved in (4.14). Clearly, (4.14) implies

15 (x) < 2|P|exp(b) x| forall z €N, (4.27)

where P € R™ ™ is the symmetric, positive definite matrix involved in (4.14). Notice that
without loss of generality we may assume that there exists constant K > 0 such that (2.10)
holds with ¢ = 1 for all x € A and h € [0, ¢(z)] (the existence of @ > 0 with |z(h,z)| < Q |z| for
all z € N and h > 0 is a consequence of local exponential stability). Consequently, by virtue of

1
(2.10), (4.27), we can guarantee that (4.26) holds for every A € (0,1) with § := (%) "

Therefore, from all the above we conclude that we may define

. _ xp(b K
i { 8, 8(@), TratartED - T } ’ TeN
(p(il?) = . — exp(b) K (1=X) dulz|® %
min§ ¢, ¢(z), (@) M([z]) > T+2l;(z) ° ( 13 (x)C(x) ) » TEN,

where x := min {2b, (1 — \) exp(—2b)u }, so that all requirements of Theorem 4.9 are fulfilled.
The proof is complete. g

Remark 4.13 Theorem 4.12 is an existence result which does not give an explicit estimate for
(), i.e., it answers (P1) but does not solve (P2). However, similar to Remark 4.8 and 4.10
we can conclude that the numerical approximation is asymptotically stable on each compact
set S for sufficiently small step size h. Note that local exponential stability is not a necessary
condition for asymptotic stability of explicit Runge-Kutta schemes, as Example 4.11 shows:
there 0 € R? is UGAS but not locally exponentially stable for @ = f3(x). <

The calculations needed in order to verify whether a map ¢ meets the assumptions of Theorem
4.5 or Theorem 4.9 are rather complex. However, given that the assumptions of one of these
theorems are satisfied, an appropriate time step can be obtained by the following straightforward
algorithm. Here we assume that we are given a Runge-Kutta schemes and a parameter A € (0, 1).

Algorithm 4.14 In each step of the computation:

(1) Set h := 2h (where h > 0 on the right hand side is the time step from the previous step)

(2) fV(x+ hF(h,z)) < V(z)+ AhLsV(x) then the time step h > 0 is accepted;
otherwise set h := h/2 and go to (2)

Here V € C?(R™;R™) is a Lyapunov function for (2.1) for which there exist a constant K > 0
and a neighborhood N C R™ with 0 € A such that VV (z)f(z) < —K |z|* for all z € . Using
this algorithm, we do not have to compute the step size function p(z) that guarantees robust
global asymptotic stability of the numerical approximation. The following example illustrates
this point.
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Example 4.15 We consider four different explicit numerical schemes: the explicit Euler scheme,
Heun’s scheme, the 2nd order improved polygonal scheme and Kutta’s 3rd order scheme. The
numerical schemes are applied to the planar system

.’bl = -2 + .’E%, .’tz = —X2 —X1X2 (428)

using the Lyapunov function V (z) = (2% 4+ 3)/2. For all numerical schemes (except the explicit
Euler method) the calculation of the maximum allowed time step by using Theorem 4.5 or
Theorem 4.9 is very complicated. However, using Algorithm 4.14, for each x we can determine
the maximum & > 0 for which the inequality V(z 4+ hF(h,z)) < V(x) + AhL;V (z) with A =
holds. Figure 4.4 shows the graph of the maximum allowable time step for the four numerical
methods with z = (21,1)" € R? and varying x; € R.

----- EULER

POLYGONAL]

— - = -KUTTA

Figure 4.4: Maximum allowable time step determined by Algorithm 4.14 with A = 1/2 for
various numerical schemes and (4.28) with = = (z1,1)’ € R?

It should be noticed that for x; close to zero all higher order schemes allow greater time steps
than the the explicit Euler method (notice that for = (z1,1)’ € R? and A = § the maximum
allowable time step for which the inequality V (z + hF(h,z)) < V(z) + XhL;V (z) holds for the
explicit Euler method is h = 1). However, for large values of |z1| the maximum allowable time
step for higher order schemes are considerably smaller than the time step allowed by the explicit
Euler method. This shows that a higher order method does not necessarily allow higher values for
the maximum allowable time step for which the inequality V(z+hF'(h,z)) < V(z)+AhL;V(x)
holds. «

Example 4.16 We apply Algorithm 4.14 to the planar system (2.11). Figure 4.5 shows the log-
arithm of the value of the Lyapunov function V(z) = 22 423 for the numerical solution obtained
by Heun’s 2nd order scheme with A = 0.5 or A = 0.9 and initial condition (x1,z2) = (1,0): the
numerical solution exhibits convergence to the globally exponentially stable equilibrium point
0 € R2. In both cases the step is selected once and remains constant thereafter (h = 0.277 for
A =0.5and h = 0.165 for A = 0.9). Observe that in contrast to Example 2.4 here asymptotic
stability of the numerical approximation is achieved.

Since V (t) = —0.01V (t) for system (2.11), it is clear that the logarithm of the Lyapunov function
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Figure 4.5: Logarithm of the Lyapunov function V(z) = 2% + 22 along the numerical solution
of (2.11) using Algorithm 4.14 with A = 0.5 or A = 0.9.

V(z) = 2% + 22 along the exact solution will be a straight line with slope —0.01. As A — 1 our
numerical result approaches this line at the cost of using smaller step sizes. <

4.3 Implicit Runge-Kutta schemes

In this section we show how Lyapunov function based arguments can be used for implicit
schemes. In order to keep the presentation technically simple, we restrict ourselves to the
implicit Euler scheme for which we can prove the following result.

Theorem 4.17 (Implicit Euler method) Suppose that there exists a convex Lyapunov func-
tion for (2.1), where f € C°(R";R") is locally Lipschitz. Let ¢ € C°(R"; (0, +o0)) be such that
the equation Y = = + hf(Y) has a unique solution ¥ € R” for all h € [0, 5(z)] and = € R™.
Then for each r > 0 the origin 0 € R™ is URGAS for the corresponding system (2.2) with
F(h,z):= f(Y), p(z) :==min{@(z) , r}, where Y =z + hf(Y).

Proof: Define the functions
me:nm{—vwwﬂw:yeRﬂvwnadwzéwm}nw@wziyu»<4m>

By virtue of (4.8) both functions are continuous and positive definite. Since V € C*(R™;RT) is
convex the following inequality holds for all z1, x5 € R™:

V(l’l) + VV(.’El)ZL'Q S V(l’l + xg) (430)
Applying (4.30) with z; =Y and 29 = —hf(Y), where Y = 2+ hf(Y) and h € [0, §(z)], we get
Vie) = V(Y — hf(Y)) > V(Y) ~ hYV(Y)F(Y) (431)

By virtue of (4.8), (4.31) implies that V(Y) < V(z). Now we distinguish the following cases.
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Case 1: V(Y) > $V(z). In this case from (4.31) in conjunction with definition (4.29) of W;
we obtain
V(Y) 4+ hWi(z) < V(x). (4.32)

Case 2: V(Y) < V(). In this case definition (4.29) of W5 implies

V(Y) + hWa(z) < V() (4.33)

for all h € [0,7].

Consequently, in both cases we obtain
V(YY) <V(z)— hW(x) (4.34)

for all h € [0, ()] and all z € R”, where Y = z + hf(Y) and W (x) := min {Wi(z), Wa(x)} is
a positive definite function. Thus, Lemma 4.1 yields the assertion. U

The following corollary shows that Theorem 4.17 can be seen as a nonlinear generalization of
the well-known A-stability property of the implicit Euler method.

Corollary 4.18 Consider the system of ODEs & = Axz, x € R"™ where A € R"*" is a matrix
whose eigenvalues have negativereal parts. Then the implicit Euler method is URGAS for
arbitrary step size h > 0.

Proof: As pointed out before (2.6), the implicit Euler method is well defined for each step
size h > 0. Furthermore, the system & = Az, x € R™ admits the quadratic Lyapunov function
V(z) = 2/ Px, where P € R™*" is a symmetric, positive definite matrix, see [34, Theorem 5.7.18].
This Lyapunov function is obviously convex and thus Theorem 4.17 yields the assertion. U

Remark 4.19 The main result in [13] guarantees that if n # 4,5 then there exists a homeomor-
phism ® : R" — R" with ®(0) = 0, being a diffeomorphism on R™\ {0} and C* on R" such that
the transformed system (2.1) §y = D®(®~'(y))f (®~*(y)) admits the convex Lyapunov function
V(y) = % |y|2 Consequently, the implicit Euler can be applied to the transformed system, see
[22]. However, for numerical purposes the method is not practical, since the homeomorphism
® : R™ — R" is usually not available. On the other hand, for certain classes of systems Theorem
4.17 is directly applicable. One such class are the so called gradient systems, as shown in the
following example. <

Example 4.20 Consider the following class of systems
&= f(z) = —(P(z) + G(x))(VV(x)), =R, (4.35)

where V € C?(R";R") is a positive definite, radially unbounded function with positive definite
Hessian and VV(0) = 0, P(z) € R™ ™ is a symmetric positive definite matrix with locally
Lipschitz elements and G(x) € R"*™ is a matrix with locally Lipschitz elements with G'(z) =
—G(z) for all z € R™. The class of systems of the form (4.35) is a generalization of the class of
the so-called gradient systems, see [35].

Under our assumptions, V' is a convex Lyapunov function for (4.35). Hence, it follows from
Theorem 4.17 that the implicit Euler scheme produces asymptotically stable numerical solutions
of of (4.35) for every r > 0, A € (0,1) with ¢(z) := min {m , T
a continuous function with |f(z)| < |z|v (z) for all x € R™, Ly : R® — (0, 400) is a continuous
function with Ly (x) > sup {M i z,y € Nx(z), z # y} for all x € R™\ {0} and Njy(z) :=

[z—y]
{yeR" ¢ |y —a[ < Alz]}. <

}, where 7 : R* — R is
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We end this section by noting that Theorem 4.17 also applies to all systems considered in
Example 4.11.

Example 4.21 Counsider again systems & = fx(x), k = 1,2,3 from Example 4.11. Since these
systems admit the convex Lyapunov function V(z) = |x\2, it follows from Theorem 4.17 that

the implicit Euler scheme produces asymptotically stable solutions for all systems & = fi(z),
k=1,2,3 of Example 4.11. «

5 Application of the small-gain step selection

In this section we show an application of the small-gain based step selection method developed
in Section 3 to a discretization of a PDE. Consider the infinite-dimensional dynamical system

%(t )+ @
ot T,

with z(t,2) € R, b: R — R being locally Lipschitz, ¢ > 0 and initial condition z(0, z) = z¢(2),

where 2o € C*([0,1); R) with z¢(0) = %2 (0) = 0, under the following hypothesis

(H) There exists constant K > 0 such that b(z) < K for all z € R.

Using the method of characteristics and hypothesis (H), it can be shown that the PDE (5.1)
admits a unique classical solution x(t, - ) € C1([0, 1]; R) with z(¢,0) = g—;”(t, 0) =0 for all ¢t > 0.
Moreover, the zero solution is globally asymptotically stable, since for every xo € C1([0,1];R)
with 20(0) = 42 (0) = 0, the unique classical solution z(t, -) € C*([0, 1];R) of (5.1) with initial
condition z(0, 2) = xo(z) satisfies z(t,2) = 0 for all t > ¢~ !z.

(t,2) = b(x(t, 2))x(t,z), z€(0,1], x(¢,0)=0 (5.1)

Using a uniform space grid of n + 1 points with space discretization step Az = %, setting
x;(t) = x(t,iAz), i = 0,1,...,n and approximating the spatial derivative by the backward
difference scheme

ox , . x(t,iAz) —x(t, (i — 1)Az)  x;(t) — xi—1(t)
_ t A ~ ) ) —
az( ,i42) Az Az
for i = 1,...,n, we obtain the following set of ordinary differential equations.
c
i‘l = — (7 — b(l‘l)) X1
Az (5.2)
. c & .
T, = — <A7z —b(mi)> T + A—in,l, 1=2,...,m
It is clear that system (5.2) has the structure of system (3.1), (3.2) with a;(z;) = x5 — b(z;) for
i=1,...,n. Moreover, if the space discretization step is selected so that
KAz <c¢ (5.3)
holds for K > 0 from Hypothesis (H), then inequalities (3.3) hold as well with L; = & — K for
i=1,...,n. Theorem 3.1 allows us to conclude that for every h > 0 the numerical scheme
z1(t
zi(t+h) = 1®)

1+ h (£ —b(z(2)))
xl(t) =+ Z—in,l(t) P9
L+h (& —b@:(t) o

will give the correct qualitative behavior.

(5.4)

xi(t+ h) n

The reader should notice that for the case b(z) = 0 inequality (5.3) is automatically satisfied
(with K = 0) and the numerical scheme (5.4) reduces to the so-called implicit upwind scheme
for the advection equation, which is unconditionally stable.
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6 Applications of the Lyapunov-based step selection

In this section we present some applications for the Lyapunov-based step selection method pro-
vided in Section 4. It should be emphasized that this method can in principle be applied to
all dynamical systems for which a Lyapunov function is known with a globally asymptotically
stable and locally exponentially stable equilibrium, cf. Theorem 4.12. However, as the follow-
ing applications show, there are certain classes of systems for which we can guarantee more
properties or which deserve special attention.

6.1 Solution of Nonlinear Programming Problems

There are many nonlinear programming problems which can be solved by constructing a dy-
namical system with a globally asymptotically stable equilibrium point which coincides with the
minimizer of the nonlinear programming problem, see [9, 37, 38, 39]. A special feature for such
methods is that a Lyapunov function is available, however, the position of the equilibrium point
is not known (this is what we seek). Consider the following nonlinear programming problem.

min f(z), z € R"
st Ar=b, (P)

where f € C3(R™;R) is strictly convex and radially unbounded with positive definite Hessian
and A € R™*" b € R™ with m < n satisfies det(AA’) # 0. Under these hypotheses there is a
global minimum z* € R™ of problem (P). Moreover, there exists a vector z* € R” such that
(z*, z*) € R™™™ is the unique solution of the equations

Vix)+zA = 0
Az = b (6.1)

Problem (P) may be solved by means of differential equations if we further assume that the
function G(z) = |V f(z) (I — A'/(AA")71A) !2 + |Az — b]? is radially unbounded. Indeed, the
system
R (v2 F@) (V) + 2 A) + A'(Az — b)) 6:2)
2 = —A(Vf() +z’A)/
has the unique equilibrium point (z*,2*) € R*™™  which is UGAS for (6.2). This fact can
be proved by using the Lyapunov function V(z,2) = 1 |V f(z) + Z A + 3 |Az — b|?, which is
radially unbounded. Notice that V = — ||> — |2|? for all (z,z) € R"™™. Thus, the dynamical
system (6.2) can be solved by means of Runge-Kutta methods with a Lyapunov-based step
selection methodology: each Runge-Kutta method applied to the dynamical system (6.2) will
yield a method for the solution of the nonlinear programming problem (P).

Here we will discuss the explicit Euler method. Indeed, the requirements of Corollary 4.7 are
fulfilled. In order to see this, let 7 > 0, A € (0,1) and notice that the function ¢ : R**™ —
(0, +00) involved in (4.20), (4.21) satisfies

q(z,2) < |(&,2)* p(x, 2), (6.3)

where p(z, 2) := max { |V2V(y,&)| : |(y — x,€ — 2)| < r |(d, 2)|} is a continuous function which
can be evaluated without knowledge of the equilibrium point (z*,2*) € R**™, Let N/ C R*™™
be defined by N := {(z,2) € R : |(x — 2%,z — 2*)| < ¢}, where ¢ > 0 is any positive
constant. Then condition (4.20) is implied by the inequality

dp(z,2) <2(1—=N) forall (z,2) e N (6.4)
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and it is clear that (6.4) holds with J > 0 sufficiently small. Notice that inequality (4.21) is

satisfied with p(z, z) < min { 2,,((1;;\)) )

(20, 20) € R™™™ the sequence {(zy,z;) € R"*™}° generated by the recursive formulae

r } Consequently, Corollary 4.7 guarantees that for every

wipr = an = b (V) (V) + 24 A) + A'(Avg b))

Zk4l = Zk — hiA (Vf(.’);‘k) + ZIICA)

will achieve convergence to the (unknown) equilibrium point (z*, z*) € R"*™ of (6.2), provided
that the discretization step size hy > 0 satisfies hy < min{ 20-0) ), }

p(zk,2k)’

6.2 Control Systems under Feedback Control

A class of dynamical systems for which a Lyapunov function is known is the class of control
systems for which a continuous feedback stabilizer is designed by using a Lyapunov function
based methodology, see [1, 4, 25, 33]. This is evident for the class of so-called triangular control
systems, cf. [4]. Consider the triangular control system

(ti = fi(xl,...,xi)—|—gi(x1,...7mi)xi+1, z:l,,n—l
. (6.6)
Ty = ful®) + gn(@)uy,
where 7 = (z1,...,7,) € R", u € Rand f; : R = R, g; : R* = R, i =1,...,n are locally
Lipschitz functions with f;(0) = 0 and g;(y) > 0 for all y € R?.

Using backstepping [4], we can construct a smooth function k : R®™ — R with k(0) = 0 and a
positive definite and radially unbounded smooth function V : R® — R* such that

Ji(z1) + g1(z1) 2o
VV(z) < —oV(z), forallzeR" (6.7)
fo(@) + gn(2)k(2)
for an appropriate constant ¢ > 0. Moreover, 0 € R" is locally exponentially stable for the
closed-loop system (6.6) with u = k(x) and for every A > 0 there exist constants Ky, Ko > 0
with
Ki|z|” <V(z) < Ky|z[* for all z € R” with |z] < A. (6.8)
Consequently, Corollary 4.7 guarantees that the explicit Euler method can be used for the
numerical approximation of the closed-loop system (6.6) with « = k(). Furthermore, Corollary
4.7 can be used in order to obtain an explicit estimate of the allowable discretization time step
for the explicit Euler method. Indeed, notice that all requirements of Corollary 4.7 hold: (6.7) in
Ji(z1) + g1(x1)w2
conjunction with (6.8) show that VV (z) < —c |z|? for appropriate ¢ > 0
() + g (2)h(a)
for every bounded neighborhood of the origin. Formula (4.21) combined with (6.7) provides an
explicit upper bound for the function ¢ € C°(R"; (0,7]) given by

x min —w r for all z € R™\ {0 6.9
p(z) < { o@D @ } € R™\ {0}, (6.9)

fi(@1) + g1(21)2
where F(z) := and p : R” — (0,+00) is defined by
fn (@) + gn(x)k(z)

p(z) := max { |V2V(y)| Dy —a| <r |F(z)|} (6.10)
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Other Runge-Kutta numerical schemes can be used as well. Notice that the backstepping
procedure achieves the construction of the Lyapunov function V : R® — RT by constructing a
diffeomorphism @ : R™ — R™ with ®(0) = 0 such that V(z) = ®'(z)P®(x), where P € R"*"
is a symmetric, positive definite matrix. Then Theorem 4.17 guarantees that the implicit Euler
can be used as well for the transformed closed-loop system (6.6) with u = k(x), i.e.,

fi(z1) + g1(21)2
b= F(z):= DO(z)F(x)|,—p-1(,) Wwith F(z):= : (6.11)

f(2) + gn(2)k(2)

It follows that for every » > 0, A € (0, 1), the implicit Euler scheme can be applied to (6.11)
<

|z| v (2) for all z € R™, Ly : R™ — (0, +00) is a continuous function with

T }, where v : R” — R is a continuous function with ‘ﬁ'(z)

|F(@) - F(y)

Ly(2) > sup P

: HJ,yGN,\(Z)aﬂU?éy
for all z € R™\ {0} and Nx(z) :={y € R™ : |y — z| < A|z| }. This fact was observed in [22].

6.3 Explicit Methods for Stiff Linear Systems

Even for linear stiff systems the results provided by Theorems 4.5, 4.9 and 4.12 have important
consequences. Consider the linear system

& =Az, z=(z1,...,2,) €R", (6.12)

where A € R™ " is a diagonalizable matrix whose eigenvalues A1,..., A, € C have negative
real part. The standard criterion used in numerical analysis for the stability of a Runge-Kutta
scheme requires that for all ¢ = 1,...,n, the complex number h); lies inside the region S =
{z€C : |R(2)| <1}, where R(z) is the stability function of the scheme and h is the (constant)
discretization step size. The possibility of using larger discretization step size for explicit Runge-
Kutta methods than the one allowed by the classical analysis was recently considered in [7, 6].
There it was shown that after a sequence of “small” time steps a “big” time step can be allowed.

Here for simplicity, we consider the explicit Euler scheme. The fact that the eigenvalues of A have
negative real part guarantees the existence of a symmetric positive definite matrix P € R™*"
so that PA+ A’P < 0. Then Corollary 4.7 implies that for every A € (0,1), r > 0 the step-size
function ¢ € C°(R™; (0,r]) satisfying the inequality

1-— "(A’P + PA
o(z) < min{ _{ A)j’xgl’PA; i ;T } , forall x € R"\ {0} (6.13)

guarantees that the numerical solution produced by the explicit Euler scheme has the correct
qualitative behavior. Notice that the quantity —% depends heavily on the direction
of the vector x € R™ and can allow greater discretization step sizes than the one produced by

classical stability analysis.

Example 6.1 Consider the stiff linear system obtained by space discretization of the heat
equation on the unit interval

1
T; = w(xi,l—%ci—i—mi“),i: 1,...,n (6.14)
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with Dirichlet boundary conditions zg = 2,41 = 0 (in this case Az = n%rl) Classical results

demand h < hg = % (Az)2 when the explicit Euler method with constant step size is applied
to system (6.14). Systems of ordinary differential equations obtained by semi-discretization of
parabolic partial differential equations were recently studied in [7]. Here we will apply Corollary
4.7. For this problem we consider the Lyapunov function

1 n
V(z) = 3 ZPle with P, = cos(iw) +cos (N +1—i)w), i=1,...,n, (6.15)
i=1

where w € (0, 7). Notice that for this problem we have V< —%V for all z € R™.

Figure 6.1(left) shows the step sizes for the explicit Euler method with

) (1=MXNa'(A’P+ PA)x ) 0
= = — M P = P . P - — 1
h = ¢(z) mln{ S 2 APAz N diag(Py,...,Pp),w 10 (6.16)

r=1,e=1075 X = 0.8, n = 10 and initial condition z;(0) = 1,7 = 2,...,9, 1(0) = 210(0) = 4.
Figure 6.1(right) shows the exponential decrease of the value of the Lyapunov function for this
simulation.

14 4 10
12 4 51
. 0 . . . )
04 , . A .« e 5 4 0,5 1 15 t 2
~ -10
g ® g
= > -151
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. = 20
41 . . .. . 25 4
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of ‘ ‘ ‘ : ‘ 40 )
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Figure 6.1: Sequence of step sizes for the explicit Euler scheme for (6.14) with (6.16), n = 10,
A =0.8, 7 =1 (left) and corresponding value of the Lyapunov function (right)

The reader should notice that in many cases the applied time step was many times higher than
the maximum allowable time step kg = 3 (Az)® = 0.004132 for constant step size. In order to
counteract the effect of large step sizes there are also many cases where the applied time step
was less than hg. However, after 200 steps the value of time was ¢ = 2.109 while that constant
step size would give ¢ < 1. Figure 6.1(left) shows that the resulting step size policy resulting
from the feedback law (6.16) can be described as “many small steps—one large step”.

When the value of X increases, we get more accurate results. Figure 6.2 shows the step sizes for
the explicit Euler method with (6.16) for n = 10, A = 0.95 and r = 1.

Figure 6.2 shows that after a transient phase the feedback law (6.16) results in the policy “one
small step—one large step”. Therefore, the feedback law (6.16) can give different step size
policies for different values of X\. As expected, a trade-off between the allowable time steps and
the accuracy of the numerical solution exists. For A = 0.95, after 200 steps the value of time
was t = 1.1956. <



30 IASSON KARAFYLLIS, LARS GRUNE

35
3{ -
251
o
o 21
£
<154
14 -
. Biies S
054 &
0 ‘
0 50 100 150 200 250

Figure 6.2: Sequence of step sizes for the Explicit Euler scheme for (6.14) with (6.16), n = 10,
A=095r=1

7 Conclusions

In this work, we considered the problem of step size selection for numerical schemes such that
the numerical solution presents the same qualitative behavior as the original system of ODEs.
Specifically, we developed tools for nonlinear systems with a globally asymptotically stable
equilibrium point which are similar to methods used in nonlinear control theory. It is shown
how the problem of appropriate step size selection can be converted to a rigorous abstract
feedback stabilization problem for a particular hybrid system. Feedback stabilization methods
based on Lyapunov functions and Small-Gain results were employed. The obtained results have
been applied to several examples of applications including ODEs and semi-discretized PDEs.

The methodology presented in the present work can be used for more complicated numerical
problems such as the step size selection problem for

(i) the numerical approximation of the solution of infinite-dimensional systems, i.e., systems
governed by partial differential equations or systems described by retarded functional
differential equations

(ii) systems with more complicated attractors,
(iii) time-varying systems

(iv) systems with inputs.

Future work will address these problems.

A Appendix

In this appendix we provide the proofs of Lemma 4.3 and Proposition 4.4.

Proof of Lemma 4.3: (i) Define Q(z) := —VV(x)f(z). The function @ : R" — RT is
continuous and by virtue of (4.8) it is positive definite, too. Standard results on inf-convolutions
(see, e.g., [2, Section 3.5]) guarantee that the function W(z) := inf { Q(y) + |y — | : y € R"}
is globally Lipschitz on R™ with Lipschitz constant L = 1, positive definite and satisfies (4.9).
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(ii) Since f(0) =0, for all € R™ it follows

lf(2)| <lp(z)|z] forall z€ R™ with V(z) < V(x). (A1)

Inequality (A.1) in conjunction with the fact that V(z(t,z)) < V(z) for all t > 0 and Gronwall’s
inequality implies

exp (—lf(z)t) |z] < |z(t,z)| < exp(lf(z)t)|z| forall (t,z) € RT x R" (A.2)

Therefore (4.11) and inequality (A.2) imply

exp (=b) |z| < |z(h,z)| <exp(b)|z| for all h € [0, p(x)]. (A.3)

Let W : R® — R™ be the locally Lipschitz, positive definite function which satisfies inequality
(4.9) and define

W (@) :=min {W(y) : y € R", exp(=b) 2] < |y| < exp(b) |2} . (A4)

Clearly, definition (A.4) guarantees that W:R" > R+tisa continuous, positive definite function.
Moreover, by virtue of inequalities (4.9), (A.3) and definition (A.4) we obtain for all h € [0, ¢(z)]
and z € R"

Velh, ) - V(z) :/0 YV (2(5, ) f (2(s, 2))ds < —/0 W(s(s,2))ds < —hWW (z),  (A.5)

ie., (4.10).

(iii) Notice first that inequality (4.12) guarantees that there exists ¢ € C°(R"™; (0, 400)) satis-
fying (4.13). Define

M{(z) = max {|f(y)| : y €R", |y| < exp(b) |z|}. (A.6)

Inequality (A.1) and definition (A.6) imply
MY(z) < 1y (w) exp(d) Jo]. (A7)

Taking into account inequalities (A.3), (A.7) and (4.13) in conjunction with definition (A.6) we
obtain for all h € [0, p(z)] and z € R”

W () = W(a(h,2))| < Uy (2) |z = 2(h, 2)] < Uy (2)ly(x) exp(b) 2] ¢(2). (A.8)
Inequalities (A.8) and (4.13) imply
—W(z(h,z)) < =AW(z) for all h € [0,¢(z)] and all z € R™. (A.9)

Moreover, by virtue of inequalities (4.9), (A.3) and definition (A.4) we obtain
h h
Ve(h,a)) - V(z) :/ YV (2(s,2)) f(2(s, 2))ds < —/ W(s(s,2))ds < ~AhW(z) (A.10)
0 0

for all h € [0, ()] and all z € R™, i.e., the assertion. This finishes the proof. U

Proof of Proposition 4.4: Since the origin 0 € R™ is locally exponentially stable for (2.1), it
follows that the matrix A := D f(0) has only eigenvalues with negative real part. Consequently
there exists a symmetric, positive definite matrix P € R™*™ and a constant p > 0 such that

/(AP + PA)z < —2u|z|* for all z € R™, (A.11)
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see [34]. Consequently, for sufficiently small § > 0 we obtain

20/ Pf(x) < —p x> for all 2 € R" with |z| < 24. (A.12)

Let W : R® — R a continuously differentiable function with

—2x'Pf(z), |z| < ) N
W(z) := iz <1 n |f(x)|2> a2 and W(z) > plz|” forallz e R (A.13)

and define the function
+o0

V)= [ W) (A.14)

By virtue of Theorem 2.46 in [8], V as defined by (A.14) is a Lyapunov function for (2.1)
satisfying
VV(z)f(x) = -W(z) forall x € R". (A.15)

From Proposition 2.48 in [8] it follows that V is the unique function satisfying (A.15) with
V(0) = 0. An inspection of the proof of this proposition yields that if equation (A.15) holds
on a forward invariant set for (2.1) then uniqueness holds on this set, because uniqueness is
established by looking at trajectories in forward time. Furthermore, by virtue of (A.15) and
definition (A.13) it follows that (4.15) holds.

Now we pick a forward invariant neighborhood A" C Bj(0) of zero which exists because 0 € R"
is asymptotically stable. Then we observe by (A.13) that the function V(z) = a/ Pz satisfies
(A.15) as well on N C Bs(0) and V(0) = 0. Consequently, V(z) = V() = 2/ Pz on N' C B;(0).
Thus, for € > 0 sufficiently small such that B.(0) C N, it follows that (4.14) holds.
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