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1. INTRODUCTION

Model predictive control (MPC, often also termed receding
horizon control) algorithms are used in order to solve
optimal control problems on an infinite horizon, e.g., for
stabilizing a nonlinear control system at the origin. To
this end, a performance criterion is optimized over the
predicted trajectories of the system, but – in contrast
to the original problem – on a finite horizon. Then the
first element of the computed sequence of control values
is applied and the optimization horizon is shifted. This
procedure is repeated iteratively. Hence, a sequence of
finite horizon optimal control problems is solved in order
to deal with the system on the infinite horizon.

MPC is especially attractive due to its ability to incorpo-
rate constraints. But – although the basic concept is easily
understandable – the stability and performance analysis
is far from being trivial and has attracted considerable
attention during the last years, cf. Allgöwer et al. [2000],
Mayne, Rawlings [2009]. Often stabilizing terminal con-
straints or costs are added in order to ensure stability, cf.
Gilbert, Keerthy [1988], Allgöwer, Chen [1998]. However,
estimating the obtained performance in comparison to an
optimal control for the infinite horizon problem is rather
difficult.

In this paper, which extends results from Grüne et al.
[2010] we focus on unconstrained MPC. This class of MPC
schemes is appealing for its numerical simplicity and its
widespread use in industrial applications, cf. Badgwell, Qin
[2003]. Our goal consists of providing checkable conditions
in order to guarantee stability and, in addition, to estimate
the performance of the resulting MPC closed loop.

For this purpose, we combine the controllability assump-
tion from Grüne [2009] with a growth condition in order to
to tighten the stability and performance bounds obtained
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in the mentioned literature. The main contribution of this
paper is a detailed analysis of this additional requisite. We
verify its validity for sampled–data systems governed by –
finite or infinite dimensional – differential equations.

Moreover, we investigate the scenario of sufficiently fast
sampling which is often required for practical applications,
cf. Nešić, Teel [2004]. To this end, we perform a conver-
gence analysis which yields that the direct application of
Grüne [2009] leads to very pessimistic bounds. However,
incorporating our growth condition counteracts problems
which are related to fast sampling.

The paper is organized as follows: in Section 2 we give
a precise formulation of the problem in consideration.
Section 3 covers known results from Grüne [2009], Grüne,
v. Lossow, and Worthmann [2009] including our growth
condition which is investigated in detail in the following
section which contains our main results. Section 5 con-
cludes the paper by illustrating the stability criteria on a
synchronous generator model from Bazanella et al. [2003].

2. PRELIMINARIES AND PROBLEM
FORMULATION

We consider a nonlinear discrete time control system given
by

x(n + 1) = f(x(n), u(n)), x(0) = x0 (1)
with x(n) ∈ X and u(n) ∈ U for n ∈ N0. Here the
state space X and the control value space U are arbitrary
metric spaces. We denote the space of control sequences
u : N0 → U by U and the solution trajectory for given
u ∈ U by xu(·). Note that constraints can be incorporated
by replacing X and U by appropriate subsets of the
respective spaces. For simplicity of exposition, however,
we will not address feasibility issues in this paper.

A typical class of such discrete time systems are sampled–
data systems induced by a controlled ordinary differential
equation

ϕ̇(t) = g(ϕ(t), ũ(t)) (2)



with sampling period T > 0 and piecewise constant control
function ũ(·) : R+

0 → U , i.e., ũ(t) = constant for all t ∈
[iT, (i + 1)T ), i ∈ N0. We define f(x, u) by ϕ(T ; x, ũ), i.e.,
the solution of (2) with ũ(t) = u ∈ Rm for t ∈ [0, T ) and
initial state x ∈ Rn. In order to guarantee existence and
uniqueness of the solution ϕ(·; x, ũ) we require Lipschitz–
Continuity (with Lipschitz constant Lg) of g(·, ·) with
respect to its first argument. Furthermore, we obtain the
estimate

‖Φ(t; x0, ũ)‖ ≤ eLgt‖x0‖ (3)
from Gronwall’s inequality for ũ(t) = 0 for t ∈ [0, t) and,
as a consequence, ‖xu(n)‖ ≤ eLgnT ‖x0‖ for the discrete
time system with u ≡ 0, cf. Chicone [2006].

Our goal consists of stabilizing the system (1) at the
origin in an optimal way. For this purpose, we define
a running cost l : X × U → R+

0 which specifies a
performance criterion. Since l(·, ·) has to characterize the
equilibrium we require the existence of a control value
u? ∈ U such that l(0, u?) = 0 and l(x, u) > 0 for
x 6= 0. Consequently, we aim at minimizing the infinite
horizon cost J∞(x0, u) =

∑∞
n=0 l(xu(n), u(n)). We denote

the optimal value function for this problem by
V∞(x0) := inf

u∈U
J∞(x0, u). (4)

Since infinite horizon optimal control problems are in
general computationally intractable, we use a receding
horizon approach in order to compute an approximately
optimal controller. To this end, we consider the finite
horizon functional

JN (x0, u) =
N−1∑
n=0

l(xu(n), u(n)) (5)

with optimization horizon N ∈ N≥2 inducing the optimal
value function

VN (x0) = inf
u∈U

JN (x0, u). (6)

By solving this finite horizon optimal control problem we
obtain N control values u?(0), u?(1), . . . , u?(N − 1) which
depend on the state x0. Implementing the first element of
this sequence, i.e., u?(0), yields a new state x(1). Iterative
application of this construction provides a control sequence
on the infinite time interval.

We obtain a closed loop representation by applying the
map µN : X → U which is given in Definition 1, below,
as a static state feedback law µ : X → U according to the
rule xµ(0) = x0,

xµ(n + 1) = f(xµ(n), µ(xµ(n))). (7)
Definition 1. For N ∈ N≥2 we define the MPC feedback
law µN (x0) := u?(0), where u? is a minimizing control for
(6) with initial value x0.
Remark 2. For simplicity of exposition we assume that
the infimum in (6) is a minimum, i.e., that a minimizing
control sequence u? exists.

In this paper we consider the conceptually simplest MPC
approach imposing neither terminal costs nor terminal
constraints. In order to measure the suboptimality degree
of the MPC feedback for the infinite horizon problem we
define

V µ
∞(x0) :=

∞∑
n=0

l(xµ(n), µ(xµ(n))).

3. CONTROLLABILITY AND PERFORMANCE
BOUNDS

Before we go into the details we state the following
proposition which is a cornerstone of our analysis. To this
end, we define l?(x) := minu∈U l(x, u).
Proposition 3. Assume there exists α ∈ (0, 1] such that for
all x ∈ X the inequality

VN (x) ≥ VN (f(x, µN (x)) + αl(x, µN (x)) (8)
holds. Then for all x ∈ X the estimate

αV∞(x) ≤ αV µN
∞ (x) ≤ VN (x) ≤ V∞(x)

holds. If, in addition, there exist K∞-functions α1, α2

(αi(0) = 0, αi is continuous, strictly monotonically in-
creasing, and unbounded for i = 1, 2) such that the in-
equalities

l?(x) ≥ α1(‖x‖), VN (x) ≤ α2(‖x‖)
hold for all x ∈ X, then the origin is a globally asymp-
totically stable equilibrium for (7) with µ = µN from
Definition 1 and Lyapunov function VN .

Proof. For a proof we refer to [Altmüller, Grüne, and
Worthmann, 2009, Proposition 1].

Proposition 3 is based on ideas from relaxed dynamic
programming, cf. Grüne, Rantzer [2008]. The relaxed Lya-
punov inequality (8) is the decisive condition in Proposi-
tion 3. Thus, the question arises how to verify the existence
of a positive value for the corresponding suboptimality
index α and – in case of existence – how to compute or
estimate it.

In this context, we introduce assumptions characterizing
the dynamics of the control system in consideration. Based
on these assumptions we deduce several consequences for
our optimal control problem in order to answer the stated
questions. In order to facilitate this we will formulate these
assumptions not in terms of the trajectory but in terms
of the running cost l along a trajectory. The following
assumption guarantees that the system is exponentially
stabilizable.
Assumption 4. (Exponential Controllability). For each x0

∈ X there exists a control function ux0 ∈ U satisfying the
estimate

l(xux0
(n), ux0(n)) ≤ Cσnl?(x0) (9)

for all n ∈ N0. Here C ≥ 1 denotes the overshoot and
σ ∈ (0, 1) the decay rate.

In order to describe the system’s behavior more accurately,
we introduce Assumption 5.
Assumption 5. (Growth Condition). For each x0 ∈ X
there exists a control function ux0 ∈ U satisfying the
inequality

l(xux0
(n), ux0(n)) ≤ Lnl?(x0) (10)

with L ≥ 1 for all n ∈ N0.

In Section 4 we will apply (3) in order to deduce concrete
estimates for the growth constant L. The following lemma
which is an immediate consequence of Assumptions 4 and
5 uses the definition

γN := min

{
N−1∑
n=0

Cσn,

N−1∑
n=0

Ln

}
(11)

which is illustrated in Figure 1.



Fig. 1. Visualization of the bounds induced by Assumption
4 (dashed-dotted line) and our growth condition, cf.
Assumption 5, (solid line) for C = 3, σ = 3/5, and
L = 5/4. Each time the minimum which is marked
with solid circles coincides with γN from (11).

Lemma 6. For each N ≥ 1 holds the inequality
VN (x0) ≤ l?(x0) γN .

Proof. The proof is similar to [Grüne, 2009, Lemma 3.2].
Let γN be equal to

∑N−1
n=0 Ln. Then – using ux0 from

Assumption 5 – the inequality follows immediately from

VN (x0)≤ JN (x0, ux0) =
N−1∑
n=0

l(xux0
(n), ux0(n))

≤
N−1∑
n=0

Lnl?(x0) = l?(x0) γN .

Otherwise γN =
∑N−1

n=0 Cσn holds. Then the assertion
follows analogously with ux0 from Assumption 4.

The same slight modifications in the corresponding proofs
allow us to transfer [Grüne, 2009, Lemma 3.3, 3.4] to
our setting which incorporates the growth condition from
Assumption 5. We obtain the estimates

JN−k(xu?(k), u?(k + )) ≤ γN−k l?(xu?(k)),
k = 0, . . . , N − 1, for an optimal control u? for the finite
horizon optimal control problem (5), N ≥ 1, and γN from
(11). Similarly, we derive for VN the inequality
VN (xu?(1)) ≤ Jj(xu?(1), u?(1 + ·)) + γN−j l?(xu?(1 + j)),
j = 0, . . . , N − 2. Based on these inequalities – whose
validity relies on Bellman’s optimality principle – an
optimization problem is deduced in Grüne [2009]. The
solution of this optimization problem, which depends on
the optimization horizon N , coincides with the parameter
α = αN in the relaxed Lyapunov inequality (8). The
following theorem allows for calculating this performance
index αN explicitly.

Theorem 7. Assume Assumptions 4, 5 and let the opti-
mization horizon N be given. Then we obtain for the
suboptimality degree αN from (8) the formula

αN = 1−
(γN − 1)

N∏
i=2

(γi − 1)

N∏
i=2

γi −
N∏

i=2

(γi − 1)
(12)

with γi from (11).

Proof. According to [Grüne et al., 2010, Theorem 5.3] the
theorem holds for

γN =
N−1∑
n=0

Cσn = C
1− σN

1− σ
.

Changing the definition of γN to (11) does not affect
[Grüne, 2009, Proposition 5.2]. Thus, the crucial step in
order to generalize Theorem 5.3 from Grüne et al. [2010] is
establishing [Grüne et al., 2010, Lemma 10.1] for γi defined
via (11) which is possible in consideration of the assumed
exponential controllability (9), cf. Grüne, v. Lossow, and
Worthmann [2010].

As a consequence of Theorem 7, the performance estimate
V µN
∞ (x) ≤ V∞(x)/α

from Proposition 3 holds for our MPC-Feedback.
Remark 8. Theorem 7 remains valid for more general
controllability assumptions, for instance, finite time con-
trollability with linear overshoot, cf. [Grüne et al., 2010,
section 3]. Indeed, the mentioned optimization problem
provides suboptimality bounds αN even for arbitrary KL0-
functions β (see Grüne [2009] for a definition) which ex-
hibit the property β(r, n+m) ≤ β(β(r, n), m) for all r ≥
0, n,m ∈ N0.
Remark 9. Theorem 7 is also applicable in the context of
networked control systems which require the implemen-
tation of more than only the first element of the obtained
sequence of control values, cf. Grüne, Pannek, Worthmann
[2009] for details.
Remark 10. Theorem 7 is also generalizable to functionals
including an additional weight on the final term, i.e., we
substitute (5) by

JN (x0, u) =
N−1∑
n=0

l(xu(n), u(n)) + ω̃l(xu(N − 1), u(N − 1)).

(13)
with ω̃ ≥ 0. This may enhance the stability behavior of
the underlying system significantly, cf. Grüne et al. [2010],
Grüne, v. Lossow, and Worthmann [2010].
Remark 11. The stability assertion following from Theo-
rem 7 is strict for the entire class of systems satisfying the
given assumptions, i.e., a negative αN implies the existence
of a control system satisfying inequalities (9), (10) which
is not stabilizable, cf. [Grüne, 2009, Theorem 5.3].

Summarizing this section, we presented a condition which
enables us to give estimates on the optimal value function
on the infinite horizon (4) and – in combination with minor
conditions – to conclude asymptotic stability of the closed
loop. Moreover, Theorem 7 provides an appropriate tool in
order to calculate the corresponding suboptimality degree
αN . However, verifying Assumptions 4, 5 is crucial for the
application of these results.



4. DISCUSSION OF THE GROWTH CONDITION

Theorem 7 relies on our controllability assumption as well
as the growth condition introduced in the previous section.
Hence, in order to apply the corresponding formula for
the suboptimality index αN one has to compute the
needed parameters, i.e., overshoot C and decay rate σ for
Assumption 4 and the growth bound L for Assumption 5.
In order to derive appropriate estimates for C, σ one has
to analyze the control system in consideration in detail, cf.
Altmüller, Grüne, and Worthmann [2010] and the example
in Section 5. Here, we present a guideline for obtaining
suitable estimates for our growth condition.

4.1 Sampled–data systems induced by ODEs

In this subsection we focus on the derivation of Assump-
tion 5 for sampled–data system induced by ordinary dif-
ferential equations, cf. Section 2. Since these are defined
in continuous time, we aim at establishing the following
criterion which implies Assumption 5.
Criterion 12. Assume the existence of a (piecewise con-
stant) control function ũ(·) : R+

0 → U , i.e. ũ(t) is constant
on [iT, (i + 1)T ) for i ∈ N0, such that the inequality

l(ϕ(t; x0, ũ), ũ(t)) ≤ eLctl?(x0) (14)
with l?(x0) := minu∈U l(x0, u) holds.
Corollary 13. Let Criterion 12 be satisfied and define the
sequence of control values u(·) : N0 → U via u(n) = ũ(nT ).
Then the inequality

l(x(n), u(n)) ≤ Lnl?(x0), (15)
holds with L = eLcT for x(0) = x0, i.e., Assumption 5 is
satisfied.

The decisive question arising in this context is whether
Criterion 12 is restrictive or not. In order to address this
issue we consider the cost function l : X × U ⊆ Rn ×
Rm → R+

0 defined by l(x, u) := 1
2‖x‖

2 + λ‖u‖2 with
λ ≥ 0 which is often used in practical applications. Since
l(x0, 0) = l?(x0), i.e., the minimum is attained in 0, we
define ũ ≡ 0. Using (3) we obtain

l(ϕ(t; x0, ũ), ũ(t)) =
1
2
‖ϕ(t; x0, ũ)‖2 + λ‖ũ(t)‖2

=
1
2
‖ϕ(t; x0, 0)‖2 + λ‖0‖2

≤ 1
2
e2Lgt‖x0‖2 = eLctl?(x0)

with Lc := 2Lg, i.e. Inequality (14) holds true.

Before we proceed with the analysis of the growth con-
dition from Assumption 5, we take a closer look at the
interconnection of the proposed controllability condition
4 and the growth condition from Assumption 5. To this
end, we assume the existence of a control function û(·)
satisfying the inequality

l(ϕ(t; x0, û), û(t)) ≤ Ce−µtl?(x0), µ > 0 (16)
for each x ∈ X. This implies our controllability assumption
at each sampling instant nT0 with σ0 = e−µT0 , n ∈ N0

(see the connection between Criterion 12 and Corollary 13)
and fix the continuous time optimization horizon [0, N0T0).
Sampled–data systems typically require sufficiently fast

sampling, cf. Nešić, Teel [2004]. In order to investigate this
issue systematically we consider the sequence of sampling
periods T0, T0/2, T0/4, . . ., i.e., Tk = 2−kT0. This deter-
mines the discrete optimization horizons N0, 2N0, 4N0, . . .,
i.e. Nk = 2kN0. The corresponding decay rate from (16)
is σk = e−µTk . Hence, we consider the sequence

(Tk, Nk, σk)k∈N0 = (2−kT0, 2kN0, e−µTk)k∈N0 (17)
of parameter combinations consisting of sampling period,
optimization horizon, and decay rate. Note that the in-
terval [0, Tk) on which the first element of the calculated
control value sequence is applied scales down as well.

Neglecting our growth condition, i.e., applying Theorem 7
with L := C + Cσ − 1, the corresponding suboptimality
estimates become arbitrary bad, cf. Grüne, v. Lossow, and
Worthmann [2009] for a proof. Thus, we can not conclude
asymptotic stability. However, our growth condition coun-
teracts this drawback, cf. Figure 2. Note that the constant
L in Assumption 5 converges to one as the sampling
period tends to zero. Hence, γi coincides with the sum
corresponding to Assumption 5 for small i, cf. Figure 1,
i.e., our growth condition provides more precise estimates
for the system’s behavior and compensates conservatism
caused by the overshoot constant C. This explains why
our growth condition resolves problem occurring for fast
sampling – independently from the exact constant L in
(10).

Fig. 2. We depict the suboptimality estimates obtained
from Theorem 7 for the sequence (17). The solid
circles mark the suboptimality estimates obtained
without our growth condition (10), whereas the other
curve illustrates the results which take (10) into
account.

The key observation in order to deduce inequality (14) is
that the cost function does – in many cases – not depend
explicitly on the state, but rather on its norm. Thus, there
exists a function l̄ : R+

0 × U → R+
0 with

l̄(‖x‖, u) = l(x, u). (18)
For the previously considered example this yields l̄(r, u) =
1
2r2 + λ‖u‖2. Here, assuming that the cost function is



monotonically increasing in its first argument does not
seem to be a restriction at all. As a consequence, using
Gronwall’s inequality yields

l̄(‖ϕ(t; x0, ũ)‖, ũ(t)) ≤ l̄(eLgt‖x0‖, ũ(t))
with ũ(t) ≡ 0. Then the growth condition from Assump-
tion 5 follows for cost functions l̄(x, u) :=

∑d
n=0 cix

ei +
f(u) with coefficients ci and exponents ei ∈ R+, i =
0, . . . , d as well as arbitrary functions f : U → R+

0 with
f(u) = 0 if and only if u = 0. Moreover, we emphasize that
this includes cost functions which are not differentiable at
0, e.g. choose e0 = 1/2.
Remark 14. Since we have not specified the norm ‖ · ‖ the
deduced results include cost functions of type

l(x, u) = xT Qx + uT Ru

with positive definite matrices Q, R.

4.2 Cost functions defined via integrals

In many practical applications cost functions l : Rn × U ,

l(x, u) :=
∫ T

0

‖ϕ(t; x, ũ)‖2dt + λ

∫ T

0

‖ũ(t)‖2dt,

with regularization parameter λ > 0 and control function
ũ(t) = u for t ∈ [0, t) are used. In contrast to the last
subsection this cost function l(x, u) evaluates x and u not
only at the sampling instances, but on the entire sampling
interval [0, T ). This allows – as a consequence – for the
existence of ū such that l?(x) = l(x, ū) < l(x, 0) holds
which makes the validation of Assumption 5 more difficult.

We deduce our growth condition from Assumption 5 for
this setting, i.e., we show the existence of a sequence of
control values u(·) such that the inequality∫ (n+1)T

nT

‖ϕ(t; x, ũ)‖2 + λ‖ũ(t)‖2 dt ≤ Lnl?(x0) (19)

holds with ũ(nT + t) = u(n) for t ∈ [0, T ). For the
(technical) proof which relies on a more elaborated version
of Gronwall’s inequality, cf. Hille [1969], in order to take
the control value ū 6= 0 into account, we refer to the
appendix. Indeed, we preserve the property L → 1 for
T → 0 which guarantees that the growth bound L is close
to one for sufficiently fast sampling.

4.3 From ordinary to partial differential equations

In this subsection our goal consists of transferring the
derived results to infinite dimensional systems. This is
motivated by sampled–data systems induced by partial dif-
ferential equations with linear operators which allows for a
wide range of applications. Typically, these operators are
– in contrast to the finite dimensional case – unbounded,
cf. Guo, Luo, and Morgul [2009].

In order to establish the growth condition from Assump-
tion 5 for this setting we choose ũ ≡ 0. Then [Pazy, 1983,
Theorem 1.2.2] provides the estimate

T (t) ≤ Meωt, 0 ≤ t < ∞ (20)
with ω ≥ 0, M ≥ 1 for the C0-semigroup T (·) whose
infinitesimal generator is the above mentioned linear op-
erator. For the corresponding sampled–data system with
sampling period T > 0 and cost function 1

2‖x‖
2 + λ‖u‖2

this yields Assumption 5 with M2e2ωT . Note that this con-
stant does not necessarily converge to one for a sampling
period tending to zero. Nevertheless, the proposed growth
condition may tighten the estimate from Theorem 7.

5. NUMERICAL EXAMPLE

In order to verify our analytical results we analyze the
example of a synchronous generator model

ẋ1(t) = x2(t)
ẋ2(t) = −b1x3(t) sinx1(t)− b2x2(t) + P

ẋ3(t) = b3 cos x1(t)− b4x3(t) + E + u(t)
with parameters b1 = 34.29, b2 = 0.0, b3 = 0.149, b4 =
0.3341, P = 28.22, and E = 0.2405, cf. Bazanella et al.
[2003]. Our goal consists of stabilizing the corresponding
sampled–data system at the unique equilibrium x? ≈
(1.12, 0.0, 0.914) by nonlinear model predictive control. In
particular, we choose sampling intervals of length T =
0.0025 and impose the cost functional JN (x, u) with stage
cost

l(x, u) =
∫ T

0

‖ϕ(t; x, ũ)− x?‖2 + λũ(t)2 dt,

ũ(·) = u on [0, T ) and regularization parameter λ = 1/200.

In order to apply our theoretically deduced results we
require the overshoot C and the decay rate σ from our
controllability Assumption 4. Here, we estimate these
parameters numerically. To this end, we rewrite (9) as

l(x(n), u(n)) / l?(x0) ≤ Cσn. (21)
Moreover, we restrict the set of initial values to X0 =
[0.42, 1.82]× [−0.7, 0.7]× [0.214, 1.614] which we discretize
using a discretization grid G ⊂ X0 with diameter d <
0.05 in each direction. Since even the computation of
the reachable set is challenging for a continuous time
controller, cf. Grüne [2001], this restriction seems to be
necessary for a numerical examination.

For the described setting we obtain evolutions for the
quotient on the left hand side of (21) as displayed in Figure
3. As a consequence, the minimal achievable overshoot C
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Fig. 3. Evolution of relative stage costs for a representative
choice initial values x0 ∈ G

is given by 6.9246 (with decay rate σ ≈ 0). If, however,



we allow for the larger overshoot Ca = 8 we obtain
the decay rate σa = 0.4221. Note that the running
costs corresponding to the quotients shown in Figure 3
are actually at the optimization tolerance 10−10 at time
instant t = 2, hence no further improvement can be
expected from this point onwards.

Furthermore, we compute the growth bound L = 1.64829
of the system according to Subsection 4.2 in consideration
of the Lipschitz constants Lg = 68.32333 and Lu = 1.
Note that our growth bound L is – despite its complicated
derivation, cf. Appendix A – only slightly larger than
e2LgT ≈ 1.4072, i.e. the growth constant corresponding
to the cost functional l(x, u) = ‖x‖2 + λ‖u‖2.
Thus, we have determined the needed constants from As-
sumptions 4 and 5 in order to apply Theorem 7. Neglecting
our growth condition, i.e., Assumption 5, we obtain stabil-
ity for a NMPC horizon length N = 36. However, taking
our growth condition into account Theorem 7 ensures
stability for a significantly smaller optimization horizon
of N = 29. This improvement is remarkable, in particular
if one considers that our numerical simulations show that
N = 20 is actually the minimal optimization horizon which
stabilizes all initial values x0 ∈ G. Moreover, leaving the
optimization horizon unchanged, i.e., N = 36, increases
the respective suboptimality index αN from 0.258 to 0.448.
Thus, we characterize the stability behavior of the MPC
closed loop much more accurate by incorporating our
growth condition.
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Appendix A. PROOF OF INEQUALITY (19)

The goal of this section consists of proving our growth con-
dition for cost functions defined via integrals for sampled–
data systems, cf. 4.1, i.e. estimating the growth bound such
that Inequality (19) holds. For that purpose, we define
u(·) = ū, i.e. ũ(·) ≡ ū and carry out the following calcu-
lation in order to apply a version of Gronwall’s inequality
which takes the impact of the constant control function
into account

‖ϕ(t; x, ũ)‖ ≤ ‖x‖+
∫ t

0

‖g(ϕ(s; x, ũ), ū)‖ ds

≤ ‖x‖+
∫ t

0

‖g(ϕ(s; x, ũ), ū)− g(0, ū)‖+ ‖g(0, ū)‖ ds

≤ ‖x‖+
∫ t

0

Lg‖ϕ(s; x, ũ)‖+ ‖g(0, ū)‖ ds

= ‖x‖+ t‖g(0, ū)‖+ Lg

∫ t

0

‖ϕ(s; x, ũ)‖ ds.

Applying [Hille, 1969, Theorem 1.5.7], i.e., Gronwall’s
inequality, and assuming Lipschitz-continuity of g(0, ·)
(this is, e.g., for control affine systems, typically satisfied)
yields

‖ϕ(t; x, ũ)‖ ≤ eLgt‖x‖+ ‖ū‖(eLgt − 1)
Lu

Lg
.



Hence, it follows with the Cauchy-Schwarz inequality∫ 2T

T

‖ϕ(t; x0, ũ)‖2 dt

=
∫ 2T

T

‖ϕ(T ; ϕ(t− T ; x0, ũ), ũ(T + ·))‖2 dt

≤
∫ T

0

(
eLgT ‖ϕ(t; x0, ũ)‖+ ‖ū‖(eLgT − 1)Lu/Lg

)2
dt

≤
∫ T

0

e2LgT ‖ϕ(t; x0, ũ)‖2 +
(
(eLgT − 1)Lg/Lu

)2 ‖ū‖2
+(eLgT (eLgT − 1)(‖ϕ(t; x0, ũ)‖2 + ‖ū‖2)Lu/Lg dt

≤ L̃

(∫ T

0

‖ϕ(t; x0, ũ)‖2 dt + λ

∫ T

0

‖ū‖2 dt

)
,

L̃ := max{cs, cu} with cs = e2LgT + eLgT (eLgT −1)Lu/Lg

and cu = [(e2LgT − eLgT )Lu/Lg + ((eLgT − 1)Lu/Lg)2]/λ.
Using this result we obtain the estimate
l(x(n), u(n)) ≤ Ll(x(n− 1), u(n− 1)) ≤ . . . ≤ Lnl?(x0)

with L := max{cs, cu + 1} which implies the desired
Inequality (19).


