
Kapitel 1

Predictive planning and
systematic action – on the
control of technical processes

1.1 Executive Summary

Since the beginning of the industrial revolution control engineering has been
a key technology in many technical fields. James Watt’s centrifugal governor
for steam engines is one of the early examples of an extremely successful
controller concept, of which at the end of the 1860s approximately 75 000
devices were in use only in England [2, p. 24]. Around this time, motivated by
the increasing complexity of the plants that had to be controlled, engineers
started to investigate systematically the theoretical foundations of control
theory. The dynamic behavior of controlled systems, however, can only be
understood and advanced with the help of mathematics, or as Werner von
Siemens formulated: ”Without mathematics you are always in the dark.“

Therefore, in control engineering the question is not – today like more
than one hundred years ago – if, but rather which kind of mathematics has
to be used. In fact, from algebra over geometry and the theory of dynamic
systems to optimization and numerics there is hardly any mathematical
field that has not contributed significantly to control engineering and its
neighboring mathematical disciplines systems and control theory.

In this article we want to point out two aspects. On the one hand, by
means of two examples, we show the impact mathematics had in the long
history of control engineering and which factors have been fundamental for
the success of control methods. On the other hand – after a brief overview of
the state-of-the-art in control engineering – we introduce a modern control
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methodology in more detail, namely model predictive control (MPC). We
will briefly explain underlying mathematical concepts from systems theory,
numerics, and optimization, and sketch some future challenges for mathe-
matics.

In its linear form MPC has already become a standard tool in industri-
al applications, in particular in process engineering. In its nonlinear form
(NMPC), on which we focus here, it is generally considered as one of the
most promising modern methods for the control of complex technical proces-
ses. NMPC keeps finding its way into new application areas, due to the rapid
progress on the theoretical as well as on the algorithmic side. Moreover, it
is a prime example for a method that has reached its present state of deve-
lopment only by the interdisciplinary collaboration in the fields of control
engineering, mathematical systems theory, numerics, and optimization, and
whose future success will depend on an interdisciplinary approach, as well.
Fortunately, such approaches are more and more supported by a variety of
universities in clusters of excellence, research centers, or graduate schools.
These joint interdisciplinary efforts in research and teaching will be an es-
sential factor to tackle the future challenges and exploit the full potential of
the production factor mathematics in control engineering.

1.2 A long success story

Mathematical methods play an essential role in control theory since the ve-
ry beginning of this research field. We revise two prominent examples that
illustrate this strong impact: the stability criterion of Hurwitz and Pon-
tryagin’s maximum principle. We will also discuss which factors made the
mathematical developments this successful and are in a sense prototypical
for mathematical impact in control engineering.

1.2.1 The stability criterion of Hurwitz

The stability criterion of Hurwitz was developed in 1893–1894 by the ma-
thematician Adolf Hurwitz, an employed professor at the Polytechnikum in
Zurich (today ETH Zurich) [30]. The cause for the development was not
so much Hurwitz’ mathematical curiosity, but rather a concrete request of
his Zurichian colleague Aurel Stodola, a mechanical engineer, who had been
engaged in the development of regulators for hydraulic turbines. Stodola’s
problem is best illustrated by means of an everyday problem. Consider the
control of a heater in which the temperature of the room needs to be ad-
justed to a desired value. An obvious strategy is to regulate the valve for
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the hot water flow in the heater depending on the current measured tempe-
rature. If the current temperature is lower than the desired one, the valve
is opened, otherwise the valve is closed. Obviously, one does not need any
mathematics to see that this approach will eventually lead to the desired
temperature.

However, this only holds in the ideal case. The case gets more compli-
cated if the influence of the control input (in the example the flow valve)
on the value (i.e., the temperature) is less direct, e.g., due to delays in the
system. Any user of a shower whose hot water supply reacts only delayed on
the opening or closing of the valves knows this effect: instead of the desired
temperature one constantly gets values alternating between ”too hot“ and

”too cold“. Only with much effort and fine tuning one eventually succeeds in
adjusting the right temperature. This is a classical example for an unstable
behavior of a control circuit. The effects in the mechanical turbine systems
that Stodola considered are quite similar, caused by a multitude of mecha-
nical couplings. Also in this case it is not an easy task to design a control
that keeps the system stable on a given reference value.

Stodola knew and applied mathematical results that had been discovered
approximately two decades before [62]. They allow to deduce a condition for
the stability from a model of the control circuit. This condition says basically
that a polynomial, i.e., a mathematical function of the form

P (x) = a0 + a1x+ a2x
2 + . . .+ anx

n

has only roots (i.e., complex numbers x with P (x) = 0) with negative real
parts. If such a polynomial has only few summands, then this condition is
easy to check. However, polynomials with few summands correspond to very
simple control systems for which this theory is not necessary to ensure stabi-
lity – an experienced engineer would have this knowledge anyway. Relevant
for practice are polynomials with many terms. The main problem is that the
roots cannot simply be computed due to algebraic reasons that are known
since the work of Évariste Galois in the early 19th century.

Thus, at the suggestion of Stodola, Hurwitz looked for a while into this
problem and finally found a criterion that allows to determine if the roots
have negative real parts, without actually having to compute them. Mathe-
matically, his solution consisted of combining the coefficients a0, a1, . . . , an

of the polynomial in n different matrices of different sizes. Then it is suffi-
cient to compute the determinants of these matrices in order to respond to
the original question of the sign of the real parts of the eigenvalues.

Stodola was enthusiastic about this solution. In a letter to Hurwitz he
wrote: ”I am exceedingly indebted to you for the ingenious solution of the
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root problem that has bothered me so much.“ [5]. But also Hurwitz mentio-
ned in a footnote to his corresponding publication in the ”Mathematische
Annalen“, not entirely without pride, the successful practical application of
his criterion: ”Mr. Stodola uses my result in his paper [. . . ] whose results
have been used in the turbines system in the bath Davos with splendorous
success.“ Remarkably in this context is the fact that the English mathe-
matician Edward John Routh developed a similar solution already 20 years
before Hurwitz, therefore today Hurwitz’ criterion is mostly referred to as
the method of Routh-Hurwitz. However, Hurwitz’ result has found the way
into applications earlier. For decades Routh’s result was known only to a
small academic circle, but hardly to any engineer working in practice [2,
pp. 81f.].

1.2.2 Pontryagin’s maximum principle

In spite of its name, referring to the Russian mathematician Lew S. Pon-
tryagin, Pontryagin’s maximum principle has several authors. On the one
hand, Pontryagin published and proved the principle released in 1956 not
alone, but with essential contributions of the rarely mentioned mathema-
ticians V. G. Boltyansky and R. L. Gamkrelidze [8] (see also [51]). On the
other hand, cf. [49, pp. 55f.], the principle can be found already in publica-
tions of the American mathematician M.R. Hestenes from 1950 and – even
in more general but not completely proven form – of the American mathe-
matician R. P. Isaacs from 1954/55. Important fundamental ideas for the
maximum principle can be found even earlier in Carathéodory’s book from
1935, as stated in [50].

The maximum principle addresses the issue of how the motion of a sy-
stem – such as the trajectory of a rocket or the movement of the arm of an
industrial robot – can be optimally planned. Thereby, ”optimal“ is always
related to a pre-defined criterion with corresponding constraints. For exam-
ple: how does a rocket get with minimum energy consumption (criterion) in
a given time (constraint) from Earth to a particular orbit, or how can the
arm of an industrial robot be steered as fast as possible (criterion) and with
constant energy expense (constraint) from a given position to another one?
Here, the example of the rocket is not chosen at random, since space travel
as well as military rocket technology was one of the main driving forces for
the development of this kind of mathematics in the beginning of the cold war
between the USSR and the USA. The improvement in efficiency and stability
of industrial robots, surely more significant for the industrial development,
can therefore – like the famous Teflon-pan – be seen as a by-product of space
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research.
Optimization problems of similar form had already been solved about

250 years before Pontryagin and the other developers of the maximum prin-
ciple with the help of the so-called calculus of variations. A comprehensive
description of this method surely exceeds the scope of this article, but at
least a brief outline of the principle’s functionality shall be given here. For
a detailed description see, e.g., [49]. Starting point for the approach is a
model describing a motion via mathematical equations. Usually, this is do-
ne by means of a system of differential equations. For the solution of the
problem the position on the optimal path has to be computed at every time
instant. The problem is that the choices of values at different time points
depend on one another. For example, higher acceleration in the beginning
requires stronger braking at the end and vice versa. The calculus of varia-
tions solves these complex dependencies by setting up an extended system
of differential equations (the Euler-Lagrange equations), whose first part is
solved ”normally“ forwards, while the second part is solved backwards in
time – a so-called boundary value problem. Then, for each time point the
optimal path can be determined from the solution of this system.

The main problem in the application of the calculus of variations to prac-
tical problems is that here the optimal trajectories are computed, rather than
the actually relevant optimal control input which has to be transmitted to
the rocket engines or to the motors of the robot arms. Since these input va-
lues do not occur in the computation, it is not possible to provide physically
meaningful ranges in which these control values have to lie. In other words,
the calculus of variations can indeed determine optimal trajectories, but it
is impossible to exclude that these trajectories require, e.g., a thrust of the
engines that is way beyond the physical possibilities. This is quite obviously
a deficiency which causes serious practical problems not only in space travel
but in virtually every imaginable industrial application.

Here, the maximum principle provides a remedy. Although conceptually
quite similar, as also boundary value problems need to be solved, the fo-
cus is not on the computation of the optimal trajectory, but on the direct
computation of the corresponding controls. This allows to directly include
physical or economic restrictions on the control values in the computation.
At the same time, the maximum principle yields a rather intuitive criterion,
since the optimal control values in every time point are nothing else as the
solutions of a new ”small“ optimization problem, with parameters resulting
from the boundary value problem. Since such problems can be solved nume-
rically, the principle is not only useful for theoretical analysis, but also as a
basis for powerful algorithms.
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1.2.3 Conclusion

The aforementioned mathematical concepts for the analysis and solution of
control problems are only two of many possible examples. Yet they have a
number of properties that are more or less typical for successful mathema-
tical concepts:

• They are applicable without knowledge of the underlying mathemati-
cal theories that were necessary for their derivation.

• They yielded considerable progress for real applications and thus ena-
bled new industrial developments.

• They are constructive in the sense that they are easy to formulate as
algorithms and therefore also easy to implement with the availability
of digital computers.

Despite the evident advantages that these mathematical concepts had
for industrial applications, their development was fostered by yet another
factor. The control engineers were aware of the necessity of mathematical
methods in the first place, and accordingly had a solid mathematical basic
education. Without Stodola’s knowledge of the interpretation of polynomial
roots, Hurwitz would probably never have thought of developing his criteri-
on. And without the availability of convenient models of differential equati-
ons the development of the maximum principle would have been impossible
from the very beginning.

1.3 State-of-the-art and current developments: The
example

”
model predictive control“

1.3.1 A short introduction to control engineering

The objective of control engineering is the manipulation of dynamical sy-
stems such that their behavior has one or several desired characteristics.
Here the dynamic systems are influenced by the so-called control input or
control variables u. In the dynamical system ”car“ these are, e.g., the tur-
ning angle of the steering wheel or the position of the gas pedal. Then, by
suitable changing of the control variable over the time, the system dynamics
can be influenced in the desired manner. The behavior of interest of the
controlled system is usually summarized in the so-called output variables y.
3.1 shows schematically such a controlled system.
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Two important control concepts are open-loop and closed-loop control.
As shown in 3.2, in open-loop control the dynamic behavior is given in form
of an open functional chain. The desired behavior of the output variable y
is given by the reference variable w that provides the reference signal for
the open-loop control. From this signal the control input is generated which
influences the dynamical system such that the output follows the reference
signal as accurately as possible.

In industrial practice open-loop controls are very important and in many
cases they perform their task very well. Examples are robots, machine tools
and production facilities. The basic assumption for the proper function of an
open-loop control is that the real-world behavior of the dynamical system
can be predicted sufficiently precise by means of the given model; if this is not
the case, the actual behavior can significantly deviate from the theoretical
forecast used for the computation of the control variable u.

This can happen if the dynamic system is affected by large external
perturbations, as, e.g., strong side wind in automobiles. Often the behavior
of the dynamic system is not precisely known, because the mathematical
model represents not all aspects of the real system, hence uncertainty is
an issue. The effects of these uncertainties are particularly dramatic when
the system behavior is unstable. In the shower example in Section 1.2.1
instability would mean small changes in the control variable (valve) lead to
large changes in the controlled variable (water temperature). In these cases
closed-loop control has to be used in order to ensure stability of the system,
i.e. in our example to ensure a temperature that stays close to the reference
value.

In contrast to open-loop control, a closed-loop control makes use of a
feedback structure as shown in 3.3. The controlled variable is measured,
fed back and compared to the desired value, i.e., the reference signal. The
difference between reference and current value, also called the control error,
is provided to the controller. Due to this closed-loop structure, the influence
of external perturbations and uncertainties can be explicitly detected and
adjusted before they lead to larger deviations from the reference value. The-

Abbildung 3.1: Schematic diagram of a control system with control input u
and output y

dynamical
system

control
input u

output y
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refore, closed-loop controls are also applicable in the case of perturbations,
uncertainties and unstable control systems.

Abbildung 3.2: The principle of open-loop control

open-loop control
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reference
signal w

output ycontrol
input u
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Certainly, the feedback structure alone does not automatically lead to
stability of the closed-loop system: It is of crucial importance, by which rule
the control input u is computed from the control error e. As already ex-
emplified in Section 1.2, the dynamic behavior of a controlled system can
be analyzed with the mathematical methods of control theory. The most
important analysis methods examine stability and the so-called robustness
of stability of the controlled system. The analysis of the robustness of sta-
bility addresses the issue if stability is preserved when the current dynamic
system differs from the assumptions made in the model. This property plays
a central role for the use of control methods in practical applications.

Mathematics plays a vital role in the design of open-loop and closed-loop
controls, i.e., in the derivation of the rule that tells how the control input is
computed from the reference variable or the control error. Today, modern
controllers are designed model-based, i.e., it is assumed that a mathematical
model of the system to be controlled is given, in most cases in the form of
differential equations. In addition, the control objectives are formulated in
mathematical terms, too. Besides the aforementioned stability these objec-
tives often include the so-called control performance, typically formulated
in form of an optimality criterion. Different classes of controller design me-
thods differ in both the assumptions for the models of the control circuit
and the control objectives. Regarding the model assumptions the most im-
portant distinction is between linear and nonlinear systems. Linear systems
are characterized by – slightly simplified – a proportional relation between
the control input u and the output y. This means that if, for instance, the
control input u is doubled then the output y will be twice as large, too (ma-
thematically one says that the system fulfills the superposition principle).
Linear systems are described by linear differential equations, usually in the
so-called state space form

ẋ = Ax+Bu (3.1a)
y = Cx+Du. (3.1b)

Abbildung 3.3: Principle of a closed-loop control with feedback and refe-
rence/output value comparison

−
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The design of controllers for linear systems is well-understood and there
is a large number of extremely powerful linear controller design methods
available. At this point we want to mention exemplary the LQ methods
(LQR, LQG, LQG/LTR, etc.) [36, 42, 23, 47], in which for linear systems of
the form (3.1) a controller is designed, such that the closed-loop system has
optimal behavior with regard to the minimization of a quadratic integral
criterion

J =
∫ ∞

0
xT (τ)Qx(τ) + uT (τ)Ru(τ) dτ.

However, no external perturbations such as fluctuating side wind are
considered in LQ methods. In the more recent H∞-controller design [24, 64]
controllers are designed such that external disturbances are optimally re-
jected, i.e., their negative effects on the control system is minimized. This
minimization can be carried out by different mathematical optimization cri-
teria, which apart from the H∞-methods also lead to, e.g., L1-methods [14].

Even if hardly any system occurring in industrial practice is actually
linear, linear models can nevertheless often be used. The reason for this is
that most systems ”almost“ behave like linear systems when only a small
domain for the values of the controlled variable is considered: If the tempe-
rature in a room is to be increased from 20◦ to 22◦ Celsius, then the valve of
the heater has to be opened approximately twice as far as if the temperature
is only to be increased to 21◦ – the relationship between valve opening and
temperature increase is linear. For larger temperatures this does not hold
anymore, simply because further heating is not possible once the maximal
temperature is reached, regardless of how the valve is set.

If the controlled system in the relevant domain does not exhibit linear
behavior, which is frequently the case in practice, then nonlinear controller
design methods have to be used. Here, the dynamic system forming the basis
of the design is described by a nonlinear differential equation of the form

ẋ = f(x, u)
y = h(x, u).

In the last 20 years huge progress has been made in the field of nonlinear
control and many current research projects deal with this subject. As an ex-
ample, we mention differential geometric methods of exact linearization [33],
flatness-based control [22, 58], passivity-based control [9, 55], and backstep-
ping methods [37, 41]. In the simplest case1 these methods yield a static

1Often the controller is not given by a static equation, but is itself given by a differential
equation.
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function
u = k(x), (3.3)

i.e., a mathematical formula k(x) that depends on the current system state
x and determines how the control variable u has to be chosen.

In the nonlinear case, the primary focus often lies on the stabilization
problem. However, certainly the control performance is of interest, too. The
nonlinear equivalent to the previously mentioned LQ methods is optimal
control, in which again an optimization criterion and constraints are pro-
vided – as already described in Section 1.2.2. However, in the case of the
nonlinear optimal control the computation of an explicit formula (3.3) in
feedback form for u is often impossible even with high-performance compu-
ters. On the other hand, the computation of nonlinear optimal open-loop
controls (i.e., a control input u depending on time) with computer based,
e.g., on Pontryagin’s maximum principle, cf. Section 1.2.2, or the more mo-
dern direct methods, cf. Section 1.3.5, is relatively easy.

Therefore, a new class of methods for the optimal control of nonlinear
systems has been developed in the last years, in which no explicit formula
of the form (3.3) is computed, but the feedback law k(x) is computed on-
line in real time from open loop optimal control signals. Although such an
online-computation looks more complicated at first sight, this approach has
considerable advantages and is appropriate for the solution of large scale
nonlinear control problems in practice. The most prominent representative
of this new class of control methods is model predictive control that will be
considered and discussed in more detail in the following sections.

1.3.2 The principle of model predictive control

If a controller is designed, e.g., in order to keep the temperature in a house
on a constant value, then the easiest idea is to measure the current tem-
perature and subsequently to increase or decrease the hot water flow rate
appropriately – as described in Section 1.2.1 –, such that by well-chosen
control parameters a stable controlled system can be reached that more or
less compensates for the external variations in temperature caused by the
weather. As the heater cannot supply heat arbitrary fast and also the cooling
needs some time, the room temperature controlled this way will typically
always slightly oscillate.

But what would happen if we used the weather forecast? Then we could
slightly pre-heat the apartment if a cold front approaches, or, if warm wea-
ther is expected, the heater could be shut off already some hours in advance
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to have the house cool down. It is intuitively clear that the use of this ”pre-
dictive“ principle allows to better maintain the control objective ”as small
deviation from the reference value as possible“, taking into account our li-
mited heating or cooling capabilities.

When we are driving a car, it is utterly indispensable that we drive

”anticipatory“, i.e., ”predictive“. If we drove into a bend without braking in
time, we would skid off the road. That this does not happen is due to the
advanced control technique in our brain that has already anticipated the
drive through the bend a long time before we learn about the centrifugal
force in the bend the hard way, see 3.4.

Model predictive control (MPC) realizes exactly this principle for the
automatic control of technical systems, cf., e.g., [11, 46]. We explain this in
more detail using the example of a typical stabilization problem: the system
state is to be controlled to a reference value and kept there by repeated-
ly measuring the state and, if necessary, adjusting detected deviations by
suitable adaptation of the control input.

Based on the current state x0 of the system to be controlled and on the
current predictions of the external influences, a model predictive controller
computes an (here for simplicity piecewise constant) optimal control for the
near future, the ”prediction horizon“ of length T . Typically, the employed
optimality criterion minimizes the distance to the reference value, such that
the computed optimal solution has a distance from the reference value as
small as possible. Then, only the first part u0 of the control is applied to
the plant and used in order to steer the system for a short time – the
sampling time δ. After this short time the new current state is determined,
the prediction horizon is shifted forward by δ, and a new optimal control on
this horizon is computed from which again only the first short part is used
at the plant. In this way, the online computed optimal open-loop controls
are ”composed“ to a closed-loop control. Figure 3.5 illustrates one step in
this procedure.

The two essential advantages of model predictive control methods are
the ability to make use of look-ahead information and to include optima-
lity criteria and restrictions. These advantages become apparent, e.g., in
energy-intensive or time-critical applications, since goals as ”with minimal
energy expense“ or ”within a given time“ can be directly included in the
optimization criterion or in the constraint.
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The two most important questions are:

• How can stability of the MPC controlled system be guaranteed?

• How can the optimal control problems be solved fast and reliably on
the prediction horizon?

Both questions are of fundamentally mathematical nature. The first one
belongs to mathematical systems theory, the second one to numerical ma-
thematics. We want to discuss these questions – along with a presentation
of applications of MPC – in the following sections.

1.3.3 Stability of MPC

As we want to avoid mathematical technicalities, here ”stability“ will sim-
ply denote the fact that the control algorithm fulfills its goal, i.e., that the
system state is steered to the reference value. Intuitively, it seems plausible
that by minimizing the distance to the reference value a stable control stra-
tegy is obtained. However, this may not be the case, a we illustrate with a
small example, cf. 3.6. In this figure the position of a car (system state, in
the beginning at location B) shall be steered to location A (reference value),
while maintaining the velocity restrictions on the road. As there are moun-
tains in the way, the road does not lead directly from A to B, but takes a
detour via location C.

If you consider the air-line distance of the car from location A as optimi-
zation criterion, then this distance has to be increased along the road from B
to A before it can eventually be decreased. An MPC strategy with a predic-
tion horizon that covers, e.g., only the part of the road up to point C in the
bend will not notice this, since every motion of the car within this horizon
would only increase the distance. Therefore it is optimal to simply stay in
point B and consequently the MPC controlled solution will stay forever in
point B and never reach point A: the control algorithm is not stable.

Of course, this problem is known for a long time and different possibilities
to find a remedy have been proposed. One approach often considered in
the literature is to allow only for such solutions in the optimization on the
horizon T that end up in the desired reference value. This method works
theoretically (what has rigorously been proven mathematically, cf. [38]) and
is also occasionally employed in practice, but it has the disadvantage that
a further restriction is added to the optimization problem that has to be
solved and in addition in general it requires a very large horizon T to ensure
that under the given restriction (i.e., for instance the speed limit in our
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road example) it is possible at all to reach the reference value at the time
T . Either can make the solution of the optimization problem considerably
more expensive. A further approach is the use of corrector terms in the
optimization that compensate the effect of too short horizons T , see, e.g.,
[13]. The computation of these terms, however, is in general quite tedious,
which is why this method is rarely applied in practice.

The approach most frequently used in practice is the most apparent:
the length of the horizon T is simply increased until the algorithm becomes
stable. Interestingly enough, this solution is not considered in the major
part of theoretical MPC literature. Actually, for nonlinear MPC methods
only recently it has been mathematically rigorously proven under relatively
general assumptions that it indeed works [34, 26]. The disadvantage of this
method is that in general it is not clear in advance how large T has to be
chosen – and as T grows larger, more time is needed for the solution of the
optimization problem that has to be carried out online during the runtime
of the system. Current research approaches [27, 28] therefore try to estimate
the required horizon T from the system properties and to use such estimates
in order to determine how the optimality criterion has to be chosen in order
to obtain stability with T as small as possible. At present, one can only
speculate about the practicality of this approach for industrially relevant
processes. For our road example, however, this approach yields a natural as
well as efficient solution which perhaps already came to the mind of some of
readers: if you measure the distance from location A to B not by air-line, but
via the length of the road, then for arbitrary short horizons T it is always
better to move towards A, since this will decrease the distance in any case.
If you optimize over this distance, then the method is stable for arbitrary
horizons T .

1.3.4 Application fields

Model predictive control has originally been developed in chemical enginee-
ring, where it is used, e.g., to control large and slow distillation columns –
these systems are extremely energy-intensive and the slow time scale leaves
much time for the computation of optimal controls. Chemical engineering
is even today the main application area of MPC: Dittmar and Pfeiffer [20]
have counted 9456 MPC applications in an investigation in 2005 (but esti-
mate a considerably higher number in reality), of which more than 80 % lie
in the field of chemical process control. Primarily, MPC is used in the con-
trol of continuous reactors in which the state of the process (temperature,
concentration of chemicals . . . ) has to be kept close to a reference value for
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an arbitrary long time. Less often, MPC is used in so-called batch reactors
in which the reaction does not occur continuously, but in a given time frame
and in which the control problem consists of following a predetermined path
of the process states.

Although there are examples for successful applications of nonlinear
MPC (NMPC) in chemical engineering [52], here mostly linear MPC me-
thods are applied, i.e., methods in which the underlying differential equation
model is linear. This has the great advantage that the resulting optimization
problems are linear, such that faster and more reliable solution algorithms
are available. Although a comparative study on an industrial batch reactor
[48] revealed that NMPC methods may well lead to a better control per-
formance, so far the improvements are not as significant as to economically
justify the time-consuming implementation of the method – it remains to be
seen if this will change in the future with short running resources and more
expensive energy. A further obstacle for the application of NMPC is often
the lack of suitable nonlinear models in chemical engineering [52]. However,
in this field recently considerable progress has been made with the aid of
sophisticated mathematical methods, see Section 1.4.1.

Due to more efficient algorithms and theoretical advances, recently more
and more application fields beyond chemical engineering have become acces-
sible for MPC and in particular NMPC methods. Examples are the control
of water gates in canal systems, the control of heating and climate systems
in large buildings, or the optimal control of seasonal heat storage devices.
The latter use the heat in the summer to heat up the ground under a buil-
ding and at the same time to cool down the building, and reuse this heat in
winter with the aid of a heat pump to save heating costs. Only predictive
control allows to decide when the heat pump and additional heating can be
used efficiently based on the seasonal weather forecast. Increasingly faster
optimization algorithms allow even faster applications of model predictive
control. Today, to-the-point control of train runs is possible and experimen-
tally tested [25], as well as the control of the amount of fuel injection and
air in automotive engine at sampling intervals of 50 milli-seconds [21]. Also,
NMPC control of robot arms that need to carry out complex maneuvers as
fast as possible and in constantly changing environments is within reach, see
Figure 3.7. One of the most visionary possible future application of NMPC
is the automatic control of flying kites that supply wind energy from high
altitudes by flying on periodic paths under changing wind conditions [12, 32]
in a stable way, see Figure 3.8. Another application of NMPC that is recently
studied is the automatic control of insulin supply for diabetics.
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1.3.5 Direct optimal control methods

In this section we want to give some insight into the current state-of-the-art
of solution methods for the computationally most expensive step in model
predictive control, the repeated solution of optimal control problems on finite
time horizons. In what follows we concentrate on the more challenging case
of nonlinear systems.

In Section 1.2.2, the maximum principle was addressed. So-called in-
direct methods based on this mathematical theorem are one possibility to
compute optimal solutions for control problems. Even today, these methods
are indeed applied. In particular, this holds for aerospace technology, see for
example [10], but also for the analysis of problems in chemical engineering,
see [59]. The maximum principle still plays an important role in the analysis
of properties of optimal control problems. But, for the construction of algo-
rithms that can be transferred to a computer these indirect methods have
some disadvantages:

• the significant analytical effort even for small changes in the model or
in the parameters,

• the complicated treatment of path and control restrictions which lead
to state-dependent jumps in the differential variables,

• the boundary value problems with extremely small domains of con-
vergence which are often very difficult to solve numerically, frequently
only by the use of homotopies.

Because of these disadvantages the direct methods that are also known under
the key word ”first discretize, then optimize“ have established themselves
for the computation of control strategies in practice, see also the discussion
in [4].
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A further important question is the evolution of the computed optimal
control functions over time. In the maximum principle the optimal control is
a continuous function, structural restrictions on its shape cannot be made.
From a practical point of view this does not necessarily make sense. For
instance, you may think of a temperature controller that due to technical
reasons cannot be adjusted continuously but only in fixed intervals from
one constant value to another. Such a controller cannot exactly follow any
arbitrary control function, but only approximate it. Such an approximation
is the main principle of direct methods in the first place.

In these methods the control functions are approximated by functions
that are determined by a finite number of control variables. In the simplest
case these are piecewise constant functions, i.e., they take a constant value
qi on a given time interval [ti, ti+1]. In 3.9 this is illustrated.

This transformation to a mathematical optimization problem that now
only depends on a finite number of degrees of freedom (namely exactly the
values qi) allows the use of sophisticated methods of nonlinear optimization
(nonlinear programming). Here, mainly two types of algorithms compete:
interior point and active set-based methods. While in the latter, the set of
active inequalities (denoted as the active set) is carried along and modified
from iteration to iteration, the interior point methods move within the ad-
missible domain towards the solution on the so-called central path with the
aid of logarithmic barrier functions.

Both types of algorithms have certain assets and drawbacks which lead
to the fact that they determine the optimal solution faster for certain clas-
ses of optimization problems. As a rule of thumb, interior point methods
often perform better for problems with many inequality constraints (sin-
ce they come from the inside and do not ”notice“ the many intersections
of the inequality constraints that for active set-based methods have to be

”visited“ sequentially), while active set-based methods allow more efficient
warm starts in the solution of related optimization problems. This is due
to the fact that the sets of active inequalities often differ only marginally,
e.g., when a slightly altered optimization problem results from newly mea-
sured data. Then, starting in the already computed solution of the original
problem often leads to the result in a few iterations.

In the discretization of optimal control problems with direct methods
commonly three types of algorithms are distinguished, see [4]: direct single
shooting, direct multiple shooting and direct collocation. Single shooting was
developed in the 1970’s, see for example [29] and [54]. The basic idea is to
consider the differential variables as dependent quantities of the independent
control variables and to solve an initial value problem in each iteration of the
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optimization algorithm in order to compute the objective function and the
constraints as well as the derivatives with respect to the control variables. In
other words: we have an outer optimization algorithm in which our degrees
of freedom are optimized, and an inner one, in which we ”shoot“ for fixed
solutions, i.e., we solve the differential equation by integration in order to
compute the value of the states at all time points. 3.10 visualizes this basic
idea.

In optimization problems often the state at the end of the time horizon is
of particular interest. If you think of determining the controls to fly a plane,
then it becomes clear how important the fine tuning of all control variables
is, if a reference in a long distance is to be reached exactly. To distribute these
difficulties along the time horizon, the concept of single shooting has been
extended to the direct multiple shooting. This method has been published
in 1981 for the first time [6]. Since then, the method has constantly been
improved or newly implemented, see for example [43].

As in the case of single shooting, the controls are discretized on a time
grid. But, in order to better coordinate the flight of the plane over a long
distance, checkpoints in form of additional variables are incorporated. Now,
the plane only has to be ”flown“ to the next checkpoint, similar as in a human
chain for extinguishing a fire. Since nonlinearities and possibly instabilities
of the problem have smaller effects on a short time horizon than on a long
one, it is now considerably easier to reach the focused target. This approach
is a good example for the strategy to separate a hard problem into several
small ones. This principle divide et impera, divide and conquer, can be found
in many mathematical algorithms.

As new ”checkpoints“, multiple shooting variables sx
i ∈ Rnx with 0 ≤

i < nms are introduced for the states on a given time grid t0 ≤ t1 ≤ · · · ≤
tnms = tf that serve as initial values in the decoupled integration on the
time intervals [ti, ti+1]. As shown in Figure 3.11, such a composed trajectory
is only continuous on the whole time horizon if the conditions

sx
i+1 = x(ti+1; sx

i , qi, p) (3.4)

hold. The left-hand side of equation (3.4) corresponds to the initial value
on the time interval [ti+1, ti+2], the right-hand side to the integrated value
of the final state on the previous time interval [ti, ti+1], depending on the
initial value sx

i and the control variables qi and p. These equations are added
to the optimization problem and have to be fulfilled by an optimal solution.
For this reason, the direct multiple shooting method is often denoted as all-
at-once approach, since simulation and optimization are carried out at the
same time in contrast to the sequential approach of single shooting.
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Graphically spoken, each checkpoint has to make sure that his flight
reaches the respective successor so that the plane is eventually controlled
from the start to the end point. The decisions that need to be made between
every two checkpoints, our controls qi, of course also have to be made in the
single shooting. But now, at first everyone takes care prior about his own
time period and about how the plane can be brought to the neighbor, and
in the same time nevertheless behaves optimally. This ”minding one’s own
business“ is one of the biggest strengths of this approach. Besides the gain
in stability, it leads to unfolding of structures in the optimization problem
that can algorithmically be used. The matrix that results from the analysis
of the necessary optimality conditions has block form, whereby the blocks
include all variables that belong to a time interval.

Because of the parameterizations of the state space, direct collocation
and direct multiple shooting are quite similar. Collocation goes back to
[61] and has been expanded amongst others in [7], [3] and [56]. Here, the
basic idea is not to use any independent integrators for the solution of the
differential equation, but to discretize all equations and incorporate them in
the optimization problem. Collocation and multiple shooting share a number
of advantages in comparison to single shooting. For instance

• it is possible to use previous knowledge about the process (that is
given, e.g., in form of measured data) for the initialization of the state
variables,

• it is guaranteed that the arising systems of differential equations are
actually solvable also for nonlinear systems, while single shooting can
run into a singularity for badly chosen controls,

• also unstable systems can be solved, if they are well-posed, since per-
turbations do not propagate over the complete time horizon, but are
damped by the tolerances in the parameterization variables,

• a considerably better convergence behavior in higher dimensional space
is observed in practice.

The resulting optimization problems are larger than in the case of single
shooting. But, this is compensated by specific structure exploiting algo-
rithms. In the case of collocation these are solution algorithms that use the
particular band structure of the sparse matrices. For direct multiple shoo-
ting condensation algorithms are used to reduce the size of the quadratic
programs that need to be solved, while for the approximation of the Hes-
sian so-called high-rank updates are used. These accommodate the special
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block structure given by the shooting-intervals and thus accumulate more
curvature information in each iteration than general quasi-Newton methods.

In summary, from our point of view direct multiple shooting and collo-
cation are the methods of choice to solve nonlinear optimal control problems
efficiently. Furthermore, these methods can be adapted efficiently to the spe-
cial structure of NMPC applications: in particular, the fact that here itera-
tively a series of similar optimal control problems is solved has been utilized
in recent years to develop variants of these methods that are particularly
adapted to NMPC [44, 18, 57] and for which, also with inaccurate numerical
solutions, the stability of the controlled system can be verified [17, 19, 63].

1.4 Challenges

We hope that so far we have convinced the reader of the significant role of
mathematics as a key factor for technical control processes and that we have
given some – of course subjective – insight into the current state-of-the-art
and the variety of applications. In this chapter, we want to address some
of the tasks and challenges that lie ahead. For this purpose in Section 1.4.1
we consider aspects that arise in the modeling of the considered processes
and see to what extent mathematics can contribute significantly also at this
level. In Section 1.4.2, we discuss the robustness of MPC controls and in the
concluding Section 1.4.3 we highlight some further current topics.

1.4.1 Modeling

The methods for the model-based control of processes described in the pre-
ceding sections have an essential assumption: for the considered process an
adequate mathematical description in form of a system of differential equa-
tions can be found.

The keywords in this sentence suggest where the difficulties lie.

• ”for the considered process“ indicates that it is a matter of problem-
specific modeling. From one plant to another several components may
slightly differ – but for this reason the new process may require a
completely different mathematical model.

• ”adequate“ implicates at least three facts. First, that the model is cor-
rect, i.e., the essential properties that are of interest in the particular
context are captured. Second, that the model only includes what is
absolutely necessary in order to avoid excessive computing times. And
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third, that the resulting model is suited for numerical simulation and
optimization.

• ”mathematical description“ refers to the underlying principles as well
as to the estimation of the specific problem parameters, both based on
the comparison of simulated with measured data.

• the phrase ”can be found“ suggests a certain randomness. The question
arises, how such ”finding processes“ can be organized systematically.

Mathematical modeling addresses the problem of finding a mathematical
model for a real process. This is based on knowledge from the respective
field of application. It is known at least since Newton that the acceleration
is the second derivative of the (time dependent) position, which can therefore
in turn be computed from the fixed initial position and velocity and given
acceleration. Another example are conservation laws which often form the
basis of physical or chemical models. All such models are of course only
approximations of reality and simplify matters here and there. From the
consideration of friction forces to the interaction on atomic level such a
model can be refined arbitrarily. An important task of the modeler is to find
the right compromise between simplicity of the mathematical model and a
sufficiently close description of reality.

Unfortunately, for many problems in practice the considered processes
are often still too complex, or not sufficiently understood. This is particular-
ly true for systems biology, which has started to systematically make use of
scientific computing methods only very recently. A different situation pre-
vails in robotics, mechanics, or chemical engineering, where already for some
decades methods of modeling, simulation and also optimization are applied.
Here, the basic principles are often so-called first principles, i.e., basic and
well-understood conservation laws of natural sciences. Nevertheless, a suc-
cessful modeling – in particular in the field of nonlinear models – can only
be achieved by very labor-intensive efforts based on all available expertise.

Therefore, for many relevant technical processes the assumptions men-
tioned in the beginning of this section are in fact a challenge for the future.
Yet, there are encouraging results towards an algorithmic modeling that
we want to highlight in the following – not without emphasizing that also
this shifting away from the tedious trial-and-error based expert modeling
towards standardized and verifiable methods would not be possible without
underlying mathematical methods.
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Parameter estimation Even though the basic principles are known, of-
ten certain model parameters are unknown. One may think for example of
the masses of components in multi-body systems, of activation energies, or
of reaction velocities. For the determination of these parameters measure-
ments are required, in which frequently the parameters cannot be directly
measured; instead only states of the system, or functions of these states
are available. If you want to know certain physical properties of your hea-
ting, you will most probably need to measure the temperature in the room
under different conditions and determine the intrinsic heating parameters
from this experimental data and your mathematical model. The parameter
estimation aims to minimize the distance between a model response and
collected measured data by fitting of the unknown parameters. The method
of least squares has been developed by Carl-Friedrich Gauss and Adrien-
Marie Legendre already in the beginning of the 19th century. However, it
experienced a significant advancement in the last decades, in particular con-
cerning efficient numerics, restrictions on the parameter estimation problem,
and robust parameter estimation by use of objective functionals that allow
for outliers, see e.g., [40].

Optimum experimental design The parameter estimation yields para-
meter values for which a simulation of the system of differential equations
has a minimal distance to measured values. In addition, a statistical analysis
allows for the computation of the covariance matrix, which is a measure for
the accuracy with which the parameters have been determined. In simpli-
fied terms, this is analogous to the error bars which are frequently plotted
in diagrams for measured data.

As a matter of fact, different experimental setups lead to different accura-
cies. The goal of optimum experimental design is to determine experimental
setups that lead to confidence regions (error bars) as small as possible. Ex-
perimental setup means everything that can be influenced in carrying out
an experiment. This includes control inputs as well as the decision at which
time instances (or at which positions in spatially distributed processes, re-
spectively) measurements are to be made.

While optimum experimental design has been examined in statistics for
many years, there was hardly any transfer to technical applications. This
is due to the fact that optimum experimental design has been examined
for a long time as a theoretical construct, and concrete computations ha-
ve been restricted to academic example problems – a comparable situation
to the one of Hurwitz mentioned earlier. Only in recent years researchers
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started working on efficient numerical implementations and on a generaliza-
tion to the nonlinear, dynamic case; pushed, of course, by a concrete demand
from engineers in academia and industry. The achieved breakthroughs in the
advancement of statistical analysis now allow the application even within
industrial practice, where nonlinear dynamic systems with up to hundred
differential states, and more and more also spatially distributed processes
are considered.

In particular, for nonlinear processes the computed optimal experimen-
tal designs are often anything but intuitive. Yet they can yield significant
improvements and insight. For example, methods developed at the Inter-
disciplinary Center for Scientific Computing in Heidelberg are by now re-
gularly applied at the industrial partner BASF in Ludwigshafen: empirical
data from more than two dozen industrial projects has shown that compa-
red to traditional experimental setups designed by experts the number of
experiments could be reduced by more that 80 % while maintaining or even
improving statistical quality [1]. In [39] an optimal experimental design is
described with only 2 experiments that determines the parameters that ha-
ve to be estimated accurately to 1 %, while a test plan with 15 experiments
designed by an expert for comparison determines a parameter merely up to
plus/minus 30 %. In the highly competitive field of chemical engineering this
paves the way for potential savings in terms of costs, environment pollution,
and time-to-market.

Further important research fields are model discrimination which focuses
on the automatic design of experiment designs in order to set a boundary as
significant as possible between competing models, as well as model reduction
that deals with the simplification of an existing model without losing the
relevant properties. One approach for this is the spectral analysis of the
modes that separates the slow components from the fast ones, which often
play only a subordinate role for the control.

1.4.2 Robustness of solutions, uncertainties

While (N)MPC is a concept for the control of processes that implicitly al-
lows for uncertainties, in particular in the methods for offline-optimization
introduced in Section 1.3.5, it is assumed that the process to be optimized
behaves deterministically according to the mathematical model. In practice,
this will not be the case as different kinds of uncertainties occur:

• Model uncertainties. Despite the efforts to obtain an adequate model
for a considered process presented in Section 1.4.1, there will always
be model errors that lead to (hopefully only marginal) deviations of
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the simulation results from the real process.

• External perturbations. Random perturbations (noise) cause influences
on the system that are unknown at the time of optimization. Examp-
les are the side wind for automobiles, rainfall fluctuations in sewerage
plants, consumer behavior in economy, or external temperature varia-
tions.

• Different scenarios. This kind of uncertainty arises due to the fact that
certain parameters of the examined process are open a priori. Turbi-
nes blades or aircrafts, for example, should have good aerodynamic
properties for a whole bandwidth of upstream flow angles. Frequent-
ly, one further distinguishes between a discrete number of scenarios,
a probability distribution in a continuous domain, and a worst-case
scenario.

All three types of uncertainties pose challenges both to the the user as well
as to the mathematician.

Optimal solutions often have a property that limits their applicability
in practice: they are very sensitive against uncertainties. This is due to
the fact that the constraints and nonlinear effects are exploited as much
as possible. Typically, there are one or more restrictions that are active in
an optimal solution, i.e., they will be violated whenever a little something
changes. If you want to drive in optimal time from A to B, then at some
places you will drive exactly at the maximally allowed velocity. If now the
model is inaccurate, or external perturbations occur (think of head or tail
wind), then these restrictions will possibly be violated. In case of a speed
limit small violations may be acceptable, but this is not the case in so-
called runaway processes that cannot be reversed once a certain threshold
is crossed. Who wants to be reliable for achieving maximal energy efficiency
in a nuclear power plant at the expense of constantly being on the brink of
an irreversible chain reaction?

From a practical point of view a solution that is almost as good as the
optimal, but less sensitive against perturbations would be preferred. Ap-
proaches in this direction work with (a) feedback, in the same way as MPC
does by including measured data in a realtime-context, or (b) with safe-
ty margins that are added to the restrictions, or (c) with weighted sums,
multi-criteria optimization or game-theoretical approaches (here, there are
first approaches in the context of NMPC [45] that are however algorithmi-
cally considerably more complex as the ”normal“ NMPC), or as well (d) by
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the integration of higher derivatives in the optimization routine. The sensiti-
vity of the solution against uncertain parameters can be formally computed
as a derivative. Modern approaches in robust optimization therefore often
extend the mathematical model by terms with higher derivatives of the ob-
jective function or the restrictions to these parameters, respectively. Despite
encouraging advances in this field, uncertainties and the determination of
robust solutions will remain a big challenge further on.

1.4.3 Further challenges

While theory and algorithmics of optimal control have long since been deve-
loped for finite dimensional dynamic systems, the door for the treatment of
spatial effects has opened due to algorithmic advances and the availability
of faster hardware obeying Moore’s Law. For instance, this means that the
temperature in a room should not be controlled by only using a represen-
tative sample value at a specific position, but rather by taking into account
the temperature at each position in space.

While this will be hardly ever necessary for simple heaters in a room,
there are many processes where the spatial component is important. In the
production of steel beams, for example, you need to make sure the tempe-
rature variations within the beam do not become too large in the cooling
phase to avoid subsequent cracks, [60]. In aerodynamics the fluid behavior
plays a decisive role. The spatial positions of air turbulence and shock fronts
directly influences the flight properties, [35].

The optimization of processes described by partial differential equations
has gained more and more attention in recent years, for example due to
a Priority Research Program of the Deutsche Forschungsgemeinschaft [15].
Nevertheless, it appears that the gap between mathematical fundamental
research and practical application is still rather large at this point, not only
in the field of algorithms for the solution of optimal control problems, but
also in the system-theoretical fundamentals of MPC methodology.

A challenge of quite different nature is the combination of continuous and
discrete events. Here, continuous means a connected domain from which a
variable or a control can take a value. You can think for example of the
velocity of a vehicle or of the position of the gas pedal. Discrete means a
non-connected domain that is mathematically composed of a finite set of
possible values. Here, the gearshift is a good example for a discrete control,
while ”the walking robot has contact with the ground or not“ is a state
in which either one applies. In the same way, the digital couplings in linked
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systems that are composed of a variety of smaller physical subsystems lead to
discrete state components. Systems that combine both types of states and/or
controls are denoted as hybrid systems. Frequently, hybrid systems arise due
to a multi-scale modeling. Here, fast transient transitions are assumed to
be instantaneous. A good example are valves that are assumed to be either
open or closed in the model, while in reality they have to be transferred
from one state to the other.

Mathematically, the integral or discrete variables that arise in the mode-
ling pose a substantial challenge for the optimization. This may surprise on
first sight, as only a restricted number of possibilities are available that theo-
retically can all be enumerated. However, the number of possibilities grows
rapidly if the number of variables is increased. This is the case for hybrid
systems, in particular to decide when and how often should be switched.
A treatment of these variables by trial-and-error is impractical because of
the immense number of possibilities. An overview of possible methods for
discrete control functions and further literature on hybrid systems can be
found for example in [53].

Also this research field turns out to be extremely active, and is for exam-
ple supported by the European research network HYCON [31] and – for the
special case of digital linked systems – by a DFG Priority Research Program
[16]. In particular, the development of reliable and efficient algorithms and a
stability analysis in the sense of Section 1.3.3 will require much attention in
the next years to be able to exploit the full optimization potential in hybrid
systems.

1.5 Visions and recommendations

In our opinion, MPC and in particular NMPC belong to the most promising
methods for the solution of complex nonlinear control problems, which is
why they will gain further importance in the future. Their ability not ”on-
ly“ to solve control problems but also to include technical and economical
restrictions via optimality criteria and constraints yields – in particular in
times of short running resources – distinct advantages over other methods.
Moreover, the rapid advance in the field of optimization algorithms allows
continuously new applications with increasingly faster dynamics.

Just like the success factors of the classical methods of Hurwitz and
Pontryagin, MPC has the distinct advantage to be intuitively easy to un-
derstand and therefore to be applicable without deeper understanding of the
underlying mathematics – be it the systems theoretical analysis of the con-
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trol behavior or the basics of the used algorithms stemming from numerics
and optimization.

Therefore, we want to restrict the following comments to this control me-
thod, although surely analogous statements are also valid for other modern
methods in control engineering.

1.5.1 Theory and praxis

From a theoretical point of view, the biggest conceptual advantage of (N)MPC
– namely the explicit inclusion of a mathematical model for the prediction of
the system behavior – is at the same time one of the essential disadvantages
in practice. MPC inevitably requires a sufficiently exact mathematical mo-
del for the complex process to be controlled, which is not always available.
As described in Section 1.4.1, recently promising mathematical modeling
methods have become available also for the nonlinear case. Nevertheless,
the design of suitable models will most likely remain a major challenge.
The necessary investments may only be made by industry if the achievable
advantages for the optimization of production processes are supported by
concrete examples. Therefore, many of the emerging applications sketched
in Section 1.3.4 play a pioneering role and their success or failure (and na-
turally also the communication of corresponding achievements) will decide
over the acceptance of NMPC in industrial application in the long run.

But also on the theoretical side there are a number of open questions.
In particular, the assumptions in the major part of theoretical MPC litera-
ture differ distinctively from the methods used in practice, as presented in
Section 1.3.3. Here, it seems desirable to close this gap between theory and
praxis. Especially, theoretical work that aims at concrete improvements of
MPC methods – such as improved stability, faster algorithms, better control
quality, higher robustness – should try to achieve their results and improve-
ments under realistic assumptions.

Finally, on the algorithmic side further advance is expected, mainly by
intensified cooperations of system and control theorists on the one and op-
timizers and numerical analysists on the other hand. As an example, only
a systems theoretical stability analysis of the overall control algorithm can
give information in what sense the integration of higher derivatives in the op-
timization routine explained in Section 1.4.2 really increases the robustness
– and how the optimality criterion should look like. On the other hand, e.g.,
the systems theoretical analysis of MPC algorithms should always consi-
der realistic properties of the optimization routines (including the manifold

”tricks“ used in practice) in order to be able to make realistic and relia-
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ble statements about the efficiency of control. Thus, in both examples the
competence from both fields is necessary.

1.5.2 Interdisciplinary in education

From our point of view, all these goals are only to be achieved if – just as in
the cooperation of Hurwitz and Stodola – already in the education the co-
operation between mathematicians and engineers and between the different
fields of applied mathematics is emphasized. Only this way mathematicians
can discover the methodical challenges of practical problems, only in this
way engineers can profit from the newest mathematical methods, and only
in this way methods and techniques from different mathematical areas can
complement each other in a meaningful way.

Fortunately, there are a quite a number of very promising current inter-
disciplinary teaching initiatives, e.g.,

• the International Doctorate Program ”Identification, Optimization and
Control with Applications in Modern Technologies“ of the Universities
Bayreuth, Erlangen-Nürnberg and Würzburg within the Elite Network
Bayern

• the Graduate School ”Mathematical and Computational Methods for
the Sciences“ of the University Heidelberg

• the Center of Excellence ”Optimization in Engineering“ (OPTEC) at
the University Leuven

• the Cluster of Excellence ”Simulation Technology“ (SimTech) of the
University Stuttgart with postgraduate school as well as bachelor and
master degree programs

to mention only those activities in which the authors of this article are
involved. The formal framework for further advances is currently quite good,
especially in the field of control engineering. It remains to hope that these
efforts are continued such that many of the developed mathematical methods
find their way into industrial applications and that the opportunities of the
production factor mathematics are also taken in the future.
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Abbildung 3.4: Anticipatory driving – as it is supposed to be . . .

Abbildung 3.5: Schematic diagram of model predictive control
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Abbildung 3.6: Example of a control problem

Abbildung 3.7: Robots at the university of Leuven currently running expe-
riments with MPC in milli-second intervals.
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Abbildung 3.8: Automatically controlled kite for energy production [12]
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Abbildung 3.9: Top left: control computed with indirect method. The other
diagrams show approximations with the direct method on different discreti-
zation grids.
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Abbildung 3.10: Schematic illustration of the direct single shooting method.
The controls are given by piecewise constant functions qi, the corresponding
states are determined by integration. The lengths of the intervals do not
necessarily have to be equidistant, but might also be longer on the last
intervals, as indicated.
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Abbildung 3.11: Schematic illustration of direct multiple shooting. The con-
trols are given by piecewise constant functions qi, the corresponding states
are determined by piecewise integration. The connection conditions are not
yet fulfilled in this example, the resulting trajectory is still discontinuous.
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for nonlinear optimization in optimal feedback control. SIAM Journal
on Control and Optimization, 43(5):1714–1736, 2005.

[18] M. Diehl, H.G. Bock, J.P. Schlöder, R. Findeisen, Z. Nagy, and
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