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Abstract— We propose a set oriented approach to the global
infinite horizon optimal control of nonlinear systems with
quantized state measurement and quantized control values.
The algorithm relies on a dynamic programming principle
in which the quantization error is modelled as an opponent
in a min-max dynamic game formulation. For the solution of
the problem we propose a set oriented approach followed by
a graph theoretic optimization algorithm. We also discuss a
dynamic feedback extension and illustrate the performanceof
the proposed approach by experimental results.

I. I NTRODUCTION

The controller design for quantized systems can be carried
out in different ways. One way is to first design a controller
ignoring the quantization in state measurements and input
variables and then look for a quantizer which ensures good
performance (i.e., preservation of stability) under quantiza-
tion. An example for this approach is the quantizer design
proposed in [7], a paper which also gives a good survey on
other approaches in the field. Another approach is to consider
the quantization of state and input as given and try to design
a controller taking the quantization into account.

In this paper, we consider the latter approach for an
optimal feedback control problem for nonlinear discrete time
systems, i.e., we assume that quantizations of both the state
space and the input space are given a priori. Here the discrete
time system typically forms a discrete time model of a
continuous time sampled-data system. The control task then
consists in steering the system to some desired target with
minimal costs using a feedback control which is only allowed
to use the quantized state measurements and the quantized
control values. For this problem, a solution was presented
by the authors in [4], based on earlier results from [2],
[3], [6]. The procedure relies on modelling the uncertainty
induced by the state quantization as a perturbation and
extending the original optimal control problem to a zero
sum differential game. This leads to a min-max problem in
which minimization is performed over the control values and
maximization over the perturbation induced by the quantiza-
tion. Instead of solving the resulting dynamic programming
equation directly, the resulting non-determinstic set oriented
control system is then represented by a hypergraph on which
the optimal control problem can be efficiently solved by a
min-max version of Dijkstra’s shortest path algorithm [3],
[9].
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In this paper, we extend and improve the approach from
[4] by constructing the hypergraph in a different way. Es-
sentially, this amounts to a re-interpretation of the results for
event-based control from [1] and [5] in a quantized setting.
In [4], each edge in the hypergraph corresponds to one
evaluation of the discrete time dynamics for a pair of state
and control values, i.e., to the state transition in one sampling
period. In contrast to this, here each edge corresponds to the
state transition until the next quantization region is reached.

Adding this idea, which is developed in Section II, to the
algorithm from [4] already significantly improves the results.
However, the feedback law resulting from this algorithm
only takes into account the quantization region containing
the current state. Using a dynamic feedback approach, in
which the control value is allowed to depend not only
on the current quantization region but also on previous
regions, one can narrow down the uncertainty induced by
the quantization and thus reduce the conservativity of the
approach. In Section III we present this extension, which was
motivated by conceptually similar methods in the discrete
event system literature, see, e.g., [8] and the references
therein, and in Section IV we theoretically compare it with
the basic algorithm from Section II. Finally, in order to
demonstrate the efficiency of the method, in Section V we
illustrate our approach with experimental results obtained
at the test plant “VERA” at the Ruhr-Universität Bochum,
which extend the results documented in [1]. Here we again
compare the approaches from Section II and Section IV.

II. PROBLEM FORMULATION

We consider the discrete-time nonlinear control system

x(k + 1) = f(x(k), u(k)), k = 0, 1, . . . , (1)

where f : X × U −→ X is continuous,x(k) ∈ X is
the state of the system,u(k) ∈ U is the control input,
chosen from compact setsX ⊂ R

n and U ⊂ R
m. The

set of all control sequencesu = u(k)k∈N is denoted by
UN and for each initial valuex0 and control sequence
u we denote the corresponding trajectory byx(k, x0, u).
Throughout the paper we interpret (1) as a discrete time
model for a continuous time sampled-data system.

The control problem we consider is as follows: Given
a target setX ∗ ⊂ X , steer the system intoX ∗ while
minimizing the functional

J(x0, u) =

N(x0,u)∑

k=0

c(x(k, x0, u), u(k)) (2)

over u, whereN(x0, u) denotes the minimalk ≥ 0 such
that x(k, x0, u) ∈ X ∗ holds. Herec : X × U → R is a



continuous running cost satisfyingminu∈U c(x, u) > 0 for
all x 6∈ X ∗.

Our goal now is to find a feedback law which ap-
proximately solves this problem, assuming, however, that
the system’s state is not exactly determinable. In order to
formalize this uncertainty, we use a partitionP of the state
spaceX consisting of finitely many connected and disjoint
subsetsPi ⊂ X with the properties

⋃
Pi∈P Pi = X and

Pi ∩ Pj = ∅ for all Pi,Pj ∈ P with i 6= j.
(3)

In contrast to, e.g., [2], [3] we do not interpret the setsP ∈ P

as a discretization which we are able to change according to
our demands. Rather, the subsetsPi of this partition model
the quantization regions of the state measurements. Here we
assume the partitionP as given and do not address the
question about how to choose good partitions. We assume
that our target setX ∗ is a union of such regions, i.e.,
X ∗ =

⋃
P∈P∗ P for some setP∗ ⊂ P .

For the purpose of feedback control, we assume that at
each time instantk the regionPi containing the current
valuex(k) is known to the controller. This allows to consider
feedback maps of the formµ : P → U such that the feedback
value for a statex asµ(ρ(x)), using thecorrelation func-
tion ρ : X → P which to each state assigns the quantization
region containing this state, i.e.,

ρ(x) := P if x ∈ P .

In order to extract the essential dynamical information
with respect to the quantization, we do not consider the
individual sampling timesk but only the times at which the
state passes from one quantization region to another. This is
accomplished by defining the iteratesfr(x, u) for r ∈ N0,
x ∈ X andu ∈ U as

f0(x, u) := x, fr+1(x, u) := f(fr(x, u), u)

and define the following value.
Definition 2.1: For eachx ∈ X with x ∈ Pi and each

u ∈ U we define the valuer(x, u) to be the smallest value
r ∈ N for which there existsj 6= i with

fr−1(x, u) ∈ Pi, fr(x, u) ∈ Pj.

In other words,r(x, u) is the time when the state passes
from the quantization regionPi to the quantization region
Pj 6= Pi.

Formally, we could setr(x, u) = ∞ if fr(x, u) ∈ Pi

for all r ∈ N0. For the practical implementation, we impose
an upper boundR ∈ N0 for r(x, u) and setr(x, u) := R

wheneverr ≥ R holds in Definition 2.1.
In order to specify the set valued system for our algorithm,

we define the set2X of all subsets ofX and the set of
sequences(2X )N := {X = (X (0),X (1), . . .) | X (i) ⊂
X for all i ∈ N} and use the following concept of choice
functions.

Definition 2.2: A choice function γ : (2X )N × UN −→
XN is a function of the form

γ(X, u) = (γ̂0(X (0), u(0)), γ̂1(X (1), u(1), . . .),

with component functionŝγi : 2X × U −→ X satisfying
γ̂i(X (j), u(j)) ∈ X (j) for all X (j) ⊆ X , u(j) ∈ U . The
set of all choice functionsγ is denoted byC and the set of
all component functionŝγ by Ĉ.
With the componentŝγ of the choice functionγ we model
the uncertainty of the statex induced by the quantization
by choosing the perturbed statêγ(X , u) ∈ X depending
on the controlu in the regionX containingx. The choice
functionsγ then extend this concept to a sequence of regions
and controls.

Using the concept of partitions and choice functions we
now define a set valued control system by

X (k + 1) = F (X (k), u(k), γ̂k(X (k), u(k))), (4)

k = 0, 1, . . ., with F : 2X × U × Ĉ → P given by

F (X (k), u(k), γ̂k(X (k), u(k))) :=

ρ(fr(bγk(X (k),u(k)),u(k))(γ̂k(X (k), u(k)), u(k))).

In what follows we will omit the arguments of̂γk in order
to simplify the notation. The mapF describes all possible
transitions of a subsetXi ⊂ X of the state space to regions
P ∈ P , parametrized bŷγk. In other words, for eachu ∈ U
we have the identity
⋃

bγ∈bC

F (X , u, γ̂) = {P ∈ P |f(x, u) ∈ P for somex ∈ X}.

A trajectoryX (k,P0, u, γ), k ∈ N of (4) is now a sequence
of regions defined by

X (0) = P0, X (k + 1) = F (X (k), u(k), γ̂k)

and depends on the initial setP0 ∈ P , the control sequence
u ∈ UN and the choice functionγ ∈ C.

The next object defines the set of regions from which the
system (4) can be steered to the target setX ∗ regardless of
the choice ofγ.

Definition 2.3: The domain of controllability of X ∗ is
defined as

S = {P ∈ P | for eachγ ∈ C there existsu ∈ UN and

k ∈ N with X (k,P , u, γ) ⊂ X ∗}.

and the first hitting time is defined asN(P , u, γ) =
inf{k ∈ N|X (k,P , u, γ) ∈ X ∗}.
Note that for fixedP we can interpretγ as a map fromUN

to XN. In the language of dynamic game theory this map
defines a nonanticipating strategy, cf. [2], [3].

Using the running costc we now define a cost function
for the set valued control system (4)

c1 : P × U −→ R+,0, c1(P , u) := sup
x∈P

cr(x,u)(x, u),



with

cr(x,u)(x, u) :=

r(x,u)−1∑

r=0

c(fr(x, u), u)

and r(x, u) from Definition 2.1. By this definition we
assume the worst case, i.e., the highest cost, over all the
uncertain statesx ∈ P . Using c1 we now define the
functional

J1(P , u, γ) :=

N(P,u,γ)∑

k=0

c1(X (k,P , u, γ), uk)

with values inR+,0 ∪{+∞} and the optimal value function

V1(P) = sup
γ∈C

inf
u∈UN

J1(P , u, γ).

By standard arguments one sees thatV1 fulfills the optimality
principle

V1(P) = inf
u∈U

{
c1(P , u) + sup

bγ∈bC

V1(F (P , u, γ̂))

}
(5)

for all P 6⊂ X ∗ andV (P) = 0 for all P ⊂ X ∗.
SinceP consists of finitely many sets, from this it is easy

to see by induction that

S = {P ∈ P |V1(P) < ∞}.

In particular, the domain of controllability is easily obtained
onceV1 is computed.

We will now investigate the behavior ofV1 along an
optimal trajectory for the original system (1). To this end,
observe that the optimal feedback lawµ : P → U is the
control value realizing the minimum in (5), i.e.,

µ(P) = argmin
u∈U

{
c1(P , u) + sup

bγ∈bC

V1(F (P , u, γ̂))

}

Using thisµ we get the following theorem.
Theorem 2.4:For all x ∈ X with ρ(x) ∈ S the inequality

cr(x, µ(ρ(x))) + V1(ρ(fr(x, µ(ρ(x))))) ≤ V1(ρ(x)) (6)

holds forr = r(x, µ(ρ(x))) .
Proof: Using the optimality principle (5) and the

definition of µ, γ̂ andc1 we get

V1(ρ(x)) =

inf
u∈U

{
c1(ρ(x), u) + sup

bγ∈bC

V1(F (ρ(x), u, γ̂))

}

= c1(ρ(x), µ(ρ(x))) + sup
bγ∈bC

V1(F (ρ(x), µ(ρ(x)), γ̂))

≥ cr(x, µ(ρ(x))) + V1(ρ(fr(x, µ(ρ(x)))))

which shows the assertion.
The result has an immediate consequence for the trajectory

x(k, x0, µ) of (1) with feedback controlµ defined by

x(k + 1) = f(x(k), µ(ρ(x(k)))).

The valueV1(ρ(x(k, x0, µ))) is decreasing ink until X ∗ is
reached and strictly decreasing for eachk in which the state

passes from one quantization region to another. This implies
that x(k, x0, µ) eventually reachesX ∗ providedρ(x0) ∈ S

(or equivalentlyV1(ρ(x(0)) < ∞) holds.
Remark 2.5:The advantage of defining the set oriented

dynamics via the times when the system passes from one
quantization region to another compared to the sampled
data approach in [2]–[4] can be explained as follows: In
these references the set valued mapF is constructed directly
from (1). Hence, if there existsPi ∈ P and x ∈ Pi with
f(x, u) ∈ Pi for all u ∈ U , thenF (Pi, u, γ̂(Pi, u)) = Pi

holds for γ̂(Pi, u) = x. In this case, the optimality principle
(5) immediately impliesV (P) = ∞. Using fr(x,u)(x, u)
instead off(x, u) for constructingF resolves this problem,
because — unlessfr(x, u) ∈ Pi for all r ≥ 0 or, in
our practical implementation, forr ∈ {0, . . . , R} — the set
valued mapF will always satisfyF (Pi, u, γ̂(Pi, u)) 6= Pi.

III. I NCLUDING PAST INFORMATION

The approach described in the previous section is conser-
vative because by maximizing overγ we implicitly assume
the worst case in each step along the trajectory, i.e., that
for eachk among all the possible states inX (k) the actual
statex(k) is the one which produces the largest cost. Of
course, this is not necessarily the case. The approach we
propose in order to reduce the conservatism relies on the
idea that at timek we consider the lastm measurements in
order to compute the feedbackµ. This way we can collect
more information, thus reduce the uncertainty of the system
and consequently obtain a less conservative result. In other
words, we are now looking at an approximately optimal
feedback map of the formµm+1(X (k − m), . . . ,X (k)).
Note that this construction resembles the dynamic feedback
concept well known in observer design.

In order to keep the exposition simple, we restrict our-
selves tom = 1. All arguments can, however, be extended
to the more general settingm ≥ 1. Our goal in this case is
to find a feedback lawµ2(X (k − 1),X (k)).

To this end, we defineP2 := (P ∪{δ})×P and introduce
a new set valued stateZ(k) = (Z1(k),Z2(k))T ∈ P2 which
represents(X (k − 1),X (k))T .

For Z we define the set valued control system as

Z(k + 1) = F2(Z(k), u(k), γ̂k)

: =

(
Z2(k)

F (X(Z(k)), u(k), γ̂k)

)
(7)

with F from (4) and

X(Z) :=






Z2, if Z1 = δ
⋃

x∈Z1u∈U

f r(x,u)(x, u) ∩ Z2, else

(8)
with r(x, u) from Definition (2.1). Here the symbolδ repre-
sents the “undefined” region, which appears when the system
is started at timek = 0 with initial region P0 ∈ P but
undefined previous regionP−1. Therefore, at timek = 0 a
trajectory starts with the vectorZ(0) = (δ,P0)T .

By including the extra information in the definition ofF2

the uncertainty of the system is reduced. Instead of using



F (X (k), u(k), γ̂k) as in the previous section we use now
F (X (Z(k)), u(k), γ̂k), whereX(Z(k)) is a subset of the
current regionX (k). The setX(Z(k)) contains only those
states which can be reached from the past regionZ1(k) =
X (k − 1), i.e., we exclude those states fromZ2 which the
system cannot reach.

Clearly, not all the pairsZ = (Pi,Pj)
T ∈ P2 are

actually attained by the systems dynamics. In fact, only
those pairs withX(Z) 6= ∅ can appear on the left hand
side of (7) which is why we define the active state regions
P a

2 := {Z ∈ P2 |X(Z) 6= ∅}. We denote the trajectories
of (7) by Z(k, Z0, u, β) and adapt the definitions from the
previous section to our new setting.

The target set now becomesZ∗ = {Z ∈ P2 | Z2 ⊆ X ∗}
and the definition of the domain of controllabilityS and
the first hitting timeN changes accordingly. For the cost
function

c2 : P2 × U → R+,0, c2(Z, u) = sup
x∈X(Z)

cr(x,u)(x, u)

we define the functional

J2(Z,u, γ) =

N(Z,u,γ)∑

k=0

c2(Z(k,Z, u, γ), uk) ∈ R+,0 ∪ {+∞}

and the optimal value function

V2(Z) = sup
γ∈C

inf
u∈UN

J2(Z, u, γ).

V2 again fulfills the optimality principle

V2(Z) = inf
u∈U

{
c2(Z, u) + sup

bγ∈bC

V2(F2(Z, u, γ̂))

}
(9)

The optimal feedbackµ2(Z) is given by the argmin of
this expression. The following theorem is the counterpart of
Theorem 2.4.

Theorem 3.1:For all x ∈ X and all Z ⊂ S with x ∈
X (Z) the inequality

cr(x, µ2(Z)) + V2((ρ(x), ρ(fr(x, µ2(Z)))T ) ≤ V2(Z)

holds forr = r(x, µ2(Z)). In particular, the inequality holds
for Z = (δ, ρ(x))T .

Proof: Completely analogous to Theorem 2.4.

IV. COMPARISON OF THE TWO APPROACHES

In the preceding sections we have introduced the optimal
value functionsV1 and V2 and the corresponding feedback
laws µ and µ2. In this section we now show thatV1 is an
upper bound forV2. In [4] a similar theorem for the sampled
data approach is proven.

Theorem 4.1:The optimal value functionsV1 and V2

satisfy

V2(Z) ≤ V1(P) for all Z ∈ P a
2 , P ∈ P with Z2 = P .

Proof: We prove the theorem by induction over the
elementsP1,P2, . . . ,Pl ∈ P which we number according to
their values in the optimal value functionV1, i.e., V1(Pi) ≤
V1(Pj) for all 1 ≤ i < j ≤ l. We will frequently use the
obvious inclusionX(Z) ⊆ Z2 for X(Z) from (8) and all
Z = (Z1,Z2)

T ∈ P2.

Induction start n = 1:
SinceV1(P) = 0 holds if and only ifP ⊆ X ∗ we obtain
P1 ⊆ X ∗. SinceZ ⊆ Z∗ for all Z ∈ P2 with Z2 = P1 ⊆
X ∗ we obtainV2(Z) = 0 = V1(P1) and thus the assertion
for P1.

Induction step n → n + 1:
We use the induction hypothesisV2(Z) ≤ V1(Pj) for all
j = 0, . . . , n and all Z ∈ P a

2 with Z2 = Pj in order to
showV2(Z) ≤ V1(Pn+1) for all Z ∈ P a

2 with Z2 = Pn+1.
The optimality principle forV1 yields

V1(Pn+1) =

inf
u∈U

{
c1(Pn+1, u) + sup

bγ∈bC

V1(F (Pn+1, u, γ̂))

}

= c1(Pn+1, µ(Pn+1))

+ sup
bγ∈bC

V1(F (Pn+1, µ(Pn+1), γ̂)).

By positivity of c1 this implies

V1(F (Pn+1, µ(Pn+1), γ̂)) < V1(Pn+1)

for all γ̂ and thus the numbering of thePj yields

F (Pn+1, µ(Pn+1), γ̂) ∈ {P1, . . . ,Pn}. (10)

Now the optimality principle forV2 yields

V2(Z) = inf
u∈U

{
c2(Z, u) + sup

bγ∈bC

V2(F2(Z, u, γ̂))

}

≤ c2(Z, µ(Pn+1)) + sup
bγ∈bC

V2(F2(Z, µ(Pn+1), γ̂))

= c2(Z, µ(Pn+1)) + V2(Zmax), (11)

where Zmax = (Pn+1,Pi)
T denotes the element from

{F2(Z, µ(Pn+1), γ̂) | γ̂ ∈ Ĉ} realizing the supremum, which
exists becauseF2 can only assume finitely many values.

Now X(Z) ⊆ Pn+1 implies Pi = F (Pn+1, µ(Pn+1), γ̂)
for some suitablêγ and thus from (10) we can conclude
i ≤ n. Furthermore, from the optimality principle forV1 we
obtain

V1(Pn+1) = c1(Pn+1, µ(Pn+1))

+ sup
bγ∈bC

V1(F (Pn+1, µ(Pn+1), γ̂))

≥ c1(Pn+1, µ(Pn+1)) + V1(Pi).

Using the induction assumptionV1(Pi) ≥ V2(Zmax) (which
is applicable sincei ≤ n) and

c2(Z, µ(Pn+1)) = sup
x∈X(Z)

cr(x,µ(Pn+1))(x, µ(Pn+1))

≤ sup
x∈Pn+1

cr(x,µ(Pn+1))(x, µ(Pn+1))

= c1(Pn+1, µ(Pn+1))



we can continue to estimate

V1(Pn+1) ≥ c1(Pn+1, µ(Pn+1)) + V1(Pi)

≥ c2(Z, µ(Pn+1)) + V2(Zmax)

which together with (11) yields the assertion.
In practice, we expectV2 to be considerably smaller

than V1 and the corresponding controller to be much more
efficient, as the experimental example in the following sec-
tion confirms. Theorem 4.1, however, only yieldsV2 ≤ V1

because system (7) may not contain any useful additional
information compared to (4), which is theoretically possible
but appears to be an exceptional case.

V. EXAMPLE

We illustrate our approach with experimental results for
a temperature and fill level control of a tank model which
extend the results documented in [1]. The experiment is part
of the experimental plant ”VERA” at the Ruhr-Universität
Bochum. Figure 1 shows a schematic image.

Fig. 1. Model of the tank

We have a two-dimensional state,x1 is the fill level
and x2 is the temperature of the water in the tank. The
fill level is constrained to the interval[0.26 m; 0.45 m] and
the temperature to[293.15 K; 323.15 K] which defines our
state spaceX = [0.26, 0.45] × [293.15, 323.15]. The first
component of the two-dimensional control input regulates
the inflow with a continuous adjustable valve with values
between0 and1, quantized with7 equidistant control values
in our algorithm. The second component decides how many
(0 to 6) heating rods are turned on. The system dynamics of
the model are

ẋ1 =
1

70 · 10−3



q(u1)−1.5876 · 10−5
√

2gx1︸ ︷︷ ︸
(∗)



 ,

ẋ2 =
1

0.07x1 − 1.9 · 10−3

(
q(u1)(ϑext − x2) +

Pelkhu2

̺cp

)

where

q(u1) =

{
0.07 · 10−4(11.1u2

1 + 13.1u1 + 0.2), u1 > 0.2
0, else

and (∗) is the outflow of the tank. The constants of the
systems dynamics are

Pel 3000 W Electric power of the heating rods
kh 0.7 Heating coefficient
̺ 998 kg

m3 Density of water
cp 4180 J

kgK Specific heat capacity of water
g 9.81 m

s2 Gravitational constant
ϑext 293.15 K Temperature of inflowing water.

The discrete time system (1) has been obtained by sam-
pling the continuous time system with sampling periodT =
1.0 and as cost function we use

c(x, u) =
1

0.192
(x1 − 0.349)2 +

1

302
(x2 − 310.56)2 (12)

which penalizes the distance of the state to the target.
Simulation results for this example can be found in [4].
Here we show experimental results obtained by applying the
feedback lawsµ1 and µ2 obtained from our algorithms at
the plant.

In numerical simulations we were able to stabilize the
system with82 rectangular quantization regions of equal
size regular boxes forµ2 and with 162 such regions for
µ1. However, due to unmodeled system reaction times, for
the control of the real process we need162 quantization
regions forµ2 and322 regions forµ1. With fewer regions the
constraint setX turned out not to be positively invariant for
the experimental trajectories. In the subsequent experiments
we have used these partitions.

Figures 2 and 3 show the trajectories for the initial state
x(0) = (0.29, 298) for µ2 andµ1, respectively. With the dy-
namic feedbackµ2, which makes use of the past information,
the target region (indicated by the blue lines) is reached in
about half the time. The main difference betweenµ1 andµ2

lies in the control values for the inflow. Without using past
information the fill level is kept constant until the specified
temperature is reached and then the inflow valve is opened,
while the feedbackµ2 using past information increases the
fill level and the temperature simultaneously.

In the bottom diagram in each figure the changes of the
quantized control inputs are shown. Here forµ1 we observe
9 changes while forµ2 16 changes occurred.

For the feedback lawµ1 without past information not only
the time to reach the target is significantly longer, but also
the cost — measured by summing up the cost function (12)
along the experimental trajectories — is considerably higher,
as Figure 4 shows.

In Figures 5–7 we repeat the experiment with intial state
x(0) = (0.4, 320).

Comparing the trajectories in Figure 5 forµ1 and Figure
6 for µ2, the main difference is again the inflow in the tank.
While for µ1 we have constant inflow on the whole time
interval, forµ2 the control input changes between three lev-
els: the maximal inflow, no inflow and an intermediate value.
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Fig. 2. Experimental trajectory and controls for initial state x(0) =
(0.29, 298) usingµ1 with 32× 32 quantization regions
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Fig. 3. Experimental trajectory and controls for initial state x(0) =
(0.29, 298) usingµ2 with 16× 16 quantization regions

This way the controller uses the inflowing water in order to
reduce the temperature of the water and consequently reaches
the target faster. This refined control is also the main reason
that there are 13 changes of the quantized control value for
µ2 compared to only 3 forµ1.

Again, the use of past information inµ2 leads to reduced
cost along the experimental trajectory as Figure 7 shows, al-
though the advantage here for initial statex(0) = (0.4, 320)
is not as pronounced as in Figure 4 for initial statex(0) =
(0.29, 298).

Summarizing, we can say with the use of past information
we can stabilize systems on a coarser partition and at the
same time obtain trajectories which are cheaper in terms of
our optimization criterion and reach the target in consider-
ably smaller time. On the other hand, the use of past data
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Fig. 4. Comparison of the costs forµ1 with 32× 32 quantization regions
(blue) andµ2 with 16× 16 regions (black),x(0) = (0.29, 298)
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Fig. 5. Experimental trajectory and controls for initial state x(0) =
(0.4, 320) usingµ1 with 32 × 32 quantization regions

requires more computation time in the offline contruction
of the hypergraph and results in trajectories with a higher
number of control switches.

VI. CONCLUSION

In this paper we have introduced an algorithm for the
optimal feedback control of nonlinear systems with coarse
quantization. Compared to similar approaches for sampled
data systems, the algorithm is able to obtain stabilizing feed-
back laws on much coarser quantizations. Using a dynamic
feedback concept which takes into account information about
past quantized states further significantly improves the re-
sults.
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Fig. 6. Experimental trajectory and controls for initial state x(0) =
(0.4, 320) usingµ2 with 16 × 16 quantization regions
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Fig. 7. Comparison of the costs forµ1 with 32× 32 quantization regions
(blue) andµ2 with 16× 16 regions (black),x(0) = (0.4, 320)
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[3] L. Grüne and O. Junge. Global optimal control of perturbed systems.
Journal of Optimization Theory and Applications, 136:411–429, 2008.
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