Global optimal control of quantized systems

Lars Grune and Florian Muller

Abstract— We propose a set oriented approach to the global
infinite horizon optimal control of nonlinear systems with
quantized state measurement and quantized control values.
The algorithm relies on a dynamic programming principle
in which the quantization error is modelled as an opponent
in a min-max dynamic game formulation. For the solution of
the problem we propose a set oriented approach followed by
a graph theoretic optimization algorithm. We also discuss a
dynamic feedback extension and illustrate the performanceof
the proposed approach by experimental results.

In this paper, we extend and improve the approach from
[4] by constructing the hypergraph in a different way. Es-
sentially, this amounts to a re-interpretation of the ressidr
event-based control from [1] and [5] in a quantized setting.
In [4], each edge in the hypergraph corresponds to one
evaluation of the discrete time dynamics for a pair of state
and control values, i.e., to the state transition in one diagnp
period. In contrast to this, here each edge correspond®to th
state transition until the next quantization region is heat

Adding this idea, which is developed in Section I, to the
algorithm from [4] already significantly improves the rdsul

The controller design for quantized systems can be carrigtbwever, the feedback law resulting from this algorithm
out in different ways. One way is to first design a controllepnly takes into account the quantization region containing
ignoring the quantization in state measurements and inpilite current state. Using a dynamic feedback approach, in
variables and then look for a quantizer which ensures goodhich the control value is allowed to depend not only
performance (i.e., preservation of stability) under gizat on the current quantization region but also on previous
tion. An example for this approach is the quantizer desigregions, one can narrow down the uncertainty induced by
proposed in [7], a paper which also gives a good survey dhe quantization and thus reduce the conservativity of the
other approaches in the field. Another approach is to considapproach. In Section Il we present this extension, which wa
the quantization of state and input as given and try to designotivated by conceptually similar methods in the discrete
a controller taking the quantization into account. event system literature, see, e.g., [8] and the references

In this paper, we consider the latter approach for atherein, and in Section IV we theoretically compare it with
optimal feedback control problem for nonlinear discreteeti the basic algorithm from Section II. Finally, in order to
systems, i.e., we assume that quantizations of both the stgiemonstrate the efficiency of the method, in Section V we
space and the input space are given a priori. Here the discrétustrate our approach with experimental results obtine
time system typically forms a discrete time model of &t the test plant “VERA’ at the Ruhr-Universitat Bochum,
continuous time sampled-data system. The control task théfich extend the results documented in [1]. Here we again
consists in steering the system to some desired target wgRmpare the approaches from Section Il and Section IV.
minimal costs using a feedback control which is only allowed Il. PROBLEM EORMULATION
o use the quantized state measurements and the quantize\%e consider the discrete-time nonlinear control system
control values. For this problem, a solution was presented Y
by the authors in [4], based on earlier results from [2], xz(k+1) = f(xk),uk)), t=0,1,... | ()

eref : X xU — X is continuous,z(k) € X is

[3], [6]. The procedure relies on modelling the uncertaintyov
induced by the state quantization as a perturbation aqd; state of the systemy(k) € U is the control input,
.chosen from compact set¥ ¢ R™ andi/ C R™. The

extending the original optimal control problem to a zerg
suhmr?lffgr_en_nalt_game. T?'S Iea:jds to zt:\hmln-rr:axl pr(l)blem "Wet of all control sequences = u(k)gen iS denoted by
which minimization IS pertormed over th€ Control Values angn gy for each initial valuer, and control sequence

maximization over the perturbation induced by the quanuzah we denote the corresponding trajectory by, z, w).

tion. Instead of solving the resulting dynamic programminthoughout the paper we interpret (1) as a discrete time
equation directly, the resulting non-determinstic se¢mtéd model for a continuous time sampled-data system

control system is then represented by a hypergraph on WhIChThe control problem we consider is as follows: Given

the optimal control problem can be efficiently solved by g, target sett* C X, steer the system intat* while
min-max version of Dijkstra’'s shortest path algorithm [3],minimizing the functior'1a|

I. INTRODUCTION
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N(xzo,u)
J(xo,u) = Z c(z(k, zo,u), u(k))
=0
denotes the minimat > 0 such
XxU — Ris a

)

k
over u, where N (zg, u)
that z(k, zo,u) € X* holds. Herec :



continuous running cost satisfyingin,cy c(z,w) > 0 for Definition 2.2: A choice function~ : (2¥)N x ¢ —
all x ¢ x*. XN is a function of the form
Our goal now is to find a feedback law which ap- R N
proximately solves this problem, assuming, however, that (&%) = (30(X(0),w(0)), 71 (X (1), u(1), .. .),
the system'’s state is not exactly determinable. In order With component functionsy; : 2% x U — X satisfying

formalize this.upcertair_lty, we use a partitiéhof the st.a.te_ 3,(X (), u(j)) € X(j) for all X(j) C X, u(j) € U. The
spaceX’ consisting of finitely many connected and disjointget of all choice function

X ) 5 is denoted byC and the set of
subsetsP; C X with the properties A

all component function§ by C.

Up,cpPi=4& and - Vr\1/ith the co_mponfen;t]s? of the 'CTjOicedfuantiﬁm we mod_el
o the uncertainty of the state induce the quantization

PinP; =0 for all P, P; € P with i # j. by choosing t)rlle perturbed stafﬁ(X,u)ye X ?jepending

In contrast to, e.g., [2], [3] we do notinterpret the sBts P On the controk in the regionX’ containingz. The choice

as a discretization which we are able to change according fénctions~ then extend this concept to a sequence of regions

our demands. Rather, the subsgtsof this partition model and controls.

the quantization regions of the state measurements. Here wéJsing the concept of partitions and choice functions we

assume the partitio® as given and do not address thenow define a set valued control system by

guestion about how to choose good partitions. We assume B N
that our target sett* is a union of such regions, i.e., Xk +1) = F(X k), u(k), ¥ (X (k), u(k))), )

X" = Upep- P for some se®” C P. k=0,1,..., with F: 2% xi{ x C — P given by
For the purpose of feedback control, we assume that at
each time instant the regionP; containing the current F(X(k),uk), (X (k),u(k))) =

valuex (k) is known to the controller. This allows to consider G (X () (k) (k) (2
feedback maps of the form: P — i/ such that the feedback p(F Vi (X (k), w(k)), u(k))).

value for a stater asp(p()), using thecorrelation func- | what follows we will omit the arguments &, in order
tion p : & — P which to each state assigns the quantizatiog, simplify the notation. The ma@ describes all possible
region containing this state, i.e., transitions of a subset; C X of the state space to regions
pla) =P ifxeP. PeP, parametriz_ed byyi. In other words, for eacly € U
we have the identity

In order to extract the essential dynamical informatio
with respect to the quantization, we do not consider the-/
individual sampling times: but only the times at which the Y€€
state passes from one quantization region to another. $hisq trajectory X'(k, P°, u,~), k € N of (4) is now a sequence
accomplished by defining the iterat¢s(x, u) for r € No,  of regions defined b;

x € X andu € U as

foleu) =2, fHzu) = f(f(2,u)u)
. ) and depends on the initial sB® € P, the control sequence
and define the following value. u € 4" and the choice function  C.
Definition 2.1: For eachz € X with = € P; and each  The next object defines the set of regions from which the
u € U we define the value(x, u) to be the smallest value system (4) can be steered to the targetetregardless of

F(X,u,5) ={P € P| f(z,u) € P for somezx € X}.

xX0)=P° X(k+1)=FX(k),ulk),v)

r € N for which there existg # i with the choice ofy.
r—1 _ r _ Definition 2.3: The domain of controllability of X* is

— H N
In other words,r(x,u) is the time when the state passes §={P € P| for eachy € C there existau € U and

from the quantization regiof?; to the quantization region k € Nwith X(k,P,u,v) C X*}.
P; # P;.

Formally, we could set(xz,u) = oo if f(x,u) € P;
for all » € Ny. For the practical implementation, we impos

an upper boundt € Ny for r(z, u) and setr(z, u) := R to AN, In the language of dynamic game theory this map

wheneverr > R holds in Definition 2.1. , 2T
. .., _defines a nonanticipating strategy, cf. [2], [3].
In order to specify the set valued system for our algorithm; | . ) . .
Using the running cost we now define a cost function

we define the seR® of all subsets ofY and the set of for the set valued control system (4)
sequences2¥)Y = {X = (X(0),X(1),...)|X(i) C y
X for all i € N} and use the following concept of choice ¢, . p x1y/ — Ryo, ci(P,u):=sup c"(m=“)(:c,u),
functions. zEP

and thefirst hitting time is defined asN(P,u,vy) =
inf{k € N|JX(k,P,u,7vy) € X*}.
Note that for fixedP we can interprety as a map froni/"



with passes from one quantization region to another. This implie
() - r(@w) =1 . that x(k, zo, 1) eventually reacheg™ providedp(zxg) € S
(@)= Yy e(f (@) u) (or equivalentlyV; (p(z(0)) < oc) holds.
r=0 Remark 2.5:The advantage of defining the set oriented
and r(x,u) from Definition 2.1. By this definition we dynamics via the times when the system passes from one
assume the worst case, i.e., the highest cost, over all thaantization region to another compared to the sampled
uncertain statest € P. Using ¢; we now define the data approach in [2]-[4] can be explained as follows: In

functional these references the set valued nfajs constructed directly
N(P,u,v) from (1). Hence, if there exist®; € P andx € P; with
T (P, ) = Z e (X (k, P, v), ug) Ff(x,u) € P; for all w € U, then F(P;,u,5(P;,u)) = P;

k=0 holds fory(P;,u) = «. In this case, the optimality principle

with values iR o U {+oc} and the optimal value function (°) immediately impliesl’(P) = oc. Using fr(q_}’u)(ma u)
’ instead off (x, u) for constructingF’ resolves this problem,

Vi(P) = sup inf J1(P,u, ). because — unlesg”(z,u) € P; for all » > 0 or, in
vecw _ o our practical implementation, for € {0,..., R} — the set
By standard arguments one sees tafulfills the optimality  valued mapF will always satisfy F'(P;, u, ¥(P;, u)) # P;.

principle
IIl. | NCLUDING PAST INFORMATION

Vi(P) = inf { c1(P,u) + sup Vi (F(P,u,7)) (5) The approach described in the previous section is conser-
uel ’ see T vative because by maximizing overwe implicitly assume

the worst case in each step along the trajectory, i.e., that
for eachk among all the possible states i(k) the actual
ystatecc(k:) is the one which produces the largest cost. Of
course, this is not necessarily the case. The approach we
S={PeP|Vi(P) < o0} propose in order to reduce the conservatism relies on the
idea that at time: we consider the last» measurements in
order to compute the feedbagk This way we can collect
more information, thus reduce the uncertainty of the system

We will now investigate the behavior of; along an 54 consequently obtain a less conservative result. Irr othe
optimal trajectory for the original system (1). To this endwords, we are now looking at an approximately optimal

observe that the optimal feedback law: P — U is the ¢o0qpack map of the formumi(X(k — m),...,X(k)).

control value realizing the minimum in (5), i.e., Note that this construction resembles the dynamic feedback
} concept well known in observer design.

forall P ¢ X* andV(P) =0 for all P C X*.
Since P consists of finitely many sets, from this it is eas
to see by induction that

In particular, the domain of controllability is easily obtad
onceV; is computed.

In order to keep the exposition simple, we restrict our-
selves tom = 1. All arguments can, however, be extended
Using thisu we get the following theorem. to the more general setting > 1. Our goal in this case is

Theorem 2.4:For allz € X with p(x) € S the inequality to find a feedback lavus (X (k — 1), X (k)).

, - To this end, we defing, := (PU{d}) x P and introduce
¢ (@, u(p(@)) + Vilp(F" (z, n(p(x)))) < Vilp(x)) (6) 4 new set valued statB(k) = (21 (k), Z5(k))T € P, which

u(P) = argmin{cl (P, u) + sup Vi (F(P,w, 7))
ueld FeC

holds forr = r(x, u(p(x))) . representgX (k — 1), X(k)T.

Proof: Using the optimality principle (5) and the For Z we define the set valued control system as
definition of u, 4 andc; we get Z(k+1) = B(Z(k), u(k), 5x)

= c1(p(@), u(p(@))) + sup Vi(F(p(x), ulp()), 7)) ] it 2y =0

yec€ X(2)= fr@w(z u) N 2, else

2 (x, u(p(@))) + Vilp(F" (, np(x))))) wEZ1ueU ®)

which shows the assertion. B with r(x,u) from Definition (2.1). Here the symbélrepre-
The result has an immediate consequence for the trajectasgnts the “undefined” region, which appears when the system
z(k, zo, 1) of (1) with feedback control defined by is started at timek = 0 with initial region P° € P but
. undefined previous regioR~!. Therefore, at timék = 0 a
ok +1) = F(@(k), plp@(k)))). trajectory starts with the vectd (0) = (6, P%)7.

The valueV; (p(z(k, o, 1)) is decreasing irk until X* is By including the extra information in the definition &b

reached and strictly decreasing for ed&ch which the state the uncertainty of the system is reduced. Instead of using



F(X(k),u(k),v%) as in the previous section we use now  Proof: We prove the theorem by induction over the
F(X(Z(k)),u(k),¥), where X (Z(k)) is a subset of the elementsP;, P, ..., P, € P which we number according to
current regionX' (k). The setX (Z(k)) contains only those their values in the optimal value functidni, i.e., V1(P;) <

states which can be reached from the past redio(k) = Vi(P;) forall 1 < i < j <. We will frequently use the
X(k — 1), i.e., we exclude those states fraffa which the obvious inclusionX (2) C 2, for X(Z) from (8) and all
system cannot reach. Z = (2, ZQ)T e bs.

Clearly, not all the pairsZ = (P;,P;)T € P, are Induction start 7 = 1

actually attain_ed by the systems dynamics. In fact, 0”'$inceV1(P) — 0 holds if and only if? C X* we obtain
those pairs withX (Z) # () can appear on the left hand P, C X*. SinceZ C Z* for all Z € P, with Z, = P, C

side of (7) which is why we define the active state regiong« we obtainV;(Z) — 0 — V;(P;) and thus the assertion
Py = {Z € P,|X(Z2) # 0}. We denote the trajectories ¢o p,

of (7) by Z(k, Zy,u,3) and adapt the definitions from the
previous section to our new setting. : .

The target set now become®™ = {Z € P,| 2, C X*} We_ uose the Ind(;JCtllcl); hyp}gihe;iﬁ(g) f ,gl (P5) fgr at”
and the definition of the domain of controllability and 7 = Y----7 @nd all.z € 5 With .22 = 77 In order to

) - . . show V5 (Z) < V1(P,41) for all Z € P§ with Z5 = Py y;.
the first hitting time N changes accordingly. For the cost The optimality principle for; yields

Induction step n — n + 1:

function
Vi(Pry1) =
co:PoxU—Rig, c(Z,u)= sup @ (x u) 1(Pov)
. . e inf {Cl(PnJrl?u) + Sule(F(PnH,Ua’AY))}
we define the functional ueld Fel
Jo(Zu,y) = = ¢1(Pnt1, #(Prt1))
N(Z,u,Y) + iufclvl (F(,PnJrlvﬂ(,PnJrl)v%))'
Z(k, Z,u,7),ux) €Ry U e
kz:% c2(2( ), ur) +o0 U {400} By positivity of ¢; this implies
and the optimal value function Vi(E (Prt1, (Pn+1), 7)) < Vi(Pnt1)
Va(Z) = sup ian Jo(Z,u,7). for all 4 and thus the numbering of ti; yields
vecueU F(Ppy1, (Pnt1),7) € {P1,-- -, Pu}- (10)
V2 again fulfills the optimality principle Now the optimality principle fois yields
Va(2) = irelgl{Cz(Z,u)+susz(F2(Z,uﬁ))} © Va(Z)= igg{CQ(Z,u)+susz(F2(Z,u,'7))}
“ FeC “ FeC
The optimal feedback:,(Z) is given by the argmin of < (2, 1(Pr+1)) +§uIC1V2(F2(Z’“(P"+1)ﬁ))
this expression. The following theorem is the counterpért o e
Theorem 2.4. = c2(Z, 1(Pnt1)) + Va(Zmax), (11)
Theorem 3.1:Forallz €¢ X and all Z C S with x € where Z,.,x = (Pnﬂ,a-)T denotes the element from
X(Z) the inequality {F2(Z, u(Pn+1),7) |7 € C} realizing the supremum, which
, . 7 exists becausé; can only assume finitely many values.
c"(x, p2(2)) + Val(p(@), p(f" (2, p2(2)))") < V2(2) Now X (Z) C Puy1 implies P; = F(Pos1, t(Pat1), )
holds forr = r(x, u2(Z)). In particular, the inequality holds for some suitabley and thus from (10) we can conclude
for 2 = (5, p(z))~. i < n. Furthermore, from the optimality principle féf we

Proof: Completely analogous to Theorem 2.4, m  ©obtain
Vi(Prt1) = c1(Pot1, #(Prt1))

In the preceding sections we have introduced the optimal * ii?vl F(Prsr, 1(Prra), 7))
value functionslV; and V; and the corresponding feedback > ¢1(Pagt, i(Pas1)) + Vi (P2).
laws 1 and ps. In this section we now show thaf; is an ] . ) ) .
upper bound fois. In [4] a similar theorem for the sampled USing the induction assumptior (P;) > V2(Zmax) (which

IV. COMPARISON OF THE TWO APPROACHES

data approach is proven. is applicable sinceé < n) and
Theorem 4.1:The optimal value functiond’;, and V5 c2(Z, 1(Pry1)) = sup " @HPoi)) (g 1(Pryq))
satisfy z€X(Z)
) < (2,1 (Pnt1))
Vo(Z2) <Vi(P) forall Ze€ Py, Pe P with Zy =7P. - mﬁﬁfﬂ ¢ (@, 1(Po+1)

= c1(Pn+1, M(Pn-i-l))



we can continue to estimate where

0.07-10~4(11.1u2 + 13.1u1 +0.2), w1 > 0.2
VPast) > e1(Posr 1(Pass)) + Vi(P) a(ur) :{ (1T 4131w +0.2), w

0, else
Z CQ(Z, /L(Pn+1)) + ‘/Q(Zmax)

and () is the outflow of the tank. The constants of the
which together with (11) yields the assertion. m systems dynamics are
In practice, we expecl, to be considerably smaller
thanV; and the corresponding controller to be much more
efficient, as the experimental example in the following sec-

P.l  3000W  Electric power of the heating rods
kn 0.7 Heating coefficient

tion confirms. Theorem 4.1, however, only yieltls < 1 0 998 %J Densllt.y of water .
because system (7) may not contain any useful additional » 4180kg_l< Spec_mc. heat capacity of water
information compared to (4), which is theoretically possib 9 9.81 g Gravitational constant
but appears to be an exceptional case. Peze  293.15K  Temperature of inflowing water.
The discrete time system (1) has been obtained by sam-
V. EXAMPLE pling the continuous time system with sampling period-

We illustrate our approach with experimental results fo?"O and as cost function we use

a temperature and fill level control of a tank model which (z u) = —— (2, — 0.349)? + L(IQ —310.56)? (12)
extend the results documented in [1]. The experiment is part 0.192 302
of the experimental plant "VERA" at the Ruhr-Universitatwhich penalizes the distance of the state to the target.
Bochum. Figure 1 shows a schematic image_ Simulation results for this example can be found in [4]
Here we show experimental results obtained by applying the
feedback lawsu; and py obtained from our algorithms at
inflow u, the plant-

In numerical simulations we were able to stabilize the
system with 82 rectangular quantization regions of equal
size regular boxes fop, and with 162 such regions for
1. However, due to unmodeled system reaction times, for
the control of the real process we neg6? quantization

il level x, regions foru, and32? regions foru;. With fewer regions the
constraint seft’ turned out not to be positively invariant for
the experimental trajectories. In the subsequent expetsne

4% we have used these partitions.
Figures 2 and 3 show the trajectories for the initial state

2(0) = (0.29,298) for uy anduy, respectively. With the dy-
namic feedback., which makes use of the past information,
the target region (indicated by the blue lines) is reached in
about half the time. The main difference betwegnand 1.2
Fig. 1. Model of the tank lies in the control values for the inflow. Without using past
information the fill level is kept constant until the spedifie
We have a two-dimensional state; is the fill level temperature is reached and then the inflow valve is opened,
and z, is the temperature of the water in the tank. Thé(yhile the feedback:s using pa§t information increases the
fill level is constrained to the intervdd.26 m;0.45m] and fill 1ével and the temperature simultaneously.
the temperature t4293.15 K; 323.15K] which defines our N the bottom diagram in each figure the changes of the
state spacet = [0.26,0.45] x [293.15,323.15]. The first guantized conFroI inputs are shown. Here farwe observe
component of the two-dimensional control input regulateS changes while for; 16 changes occurred.
the inflow with a continuous adjustable valve with values FOr the feedback law, without past information not only
betweerD and1, quantized with7 equidistant control values e time to reach the target is significantly longer, but also
in our algorithm. The second component decides how mari€¢ cOSt — measured by summing up the cost function (12)

(0 to 6) heating rods are turned on. The system dynamics ong the experimental trajectories — is considerably &igh
the model are as Figure 4 shows.

In Figures 5-7 we repeat the experiment with intial state
2(0) = (0.4, 320).

heating rods|u,

outflow

i1 = ;,3 q(u1) —1.5876 - 107°/2g1 | , Comparing the trajectories in Figure 5 for and Figure
70-10 6 for 2, the main difference is again the inflow in the tank.
() While for 1 we have constant inflow on the whole time
By = 1 - (q(ul)(ﬁezt — 3 + Pelkh“2> interval, for s the control input changes between three lev-
0.072; — 1.9-1073 ocp els: the maximal inflow, no inflow and an intermediate value.
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Fig. 2.  Experimental trajectory and controls for initialatet z(0) = & 40—
(0.29, 298) using 1 with 32 x 32 quantization regions 30
320————ooouv_.
> 310F
401 300
< 30 f——"" 1r
20 : : : : =~ 0.5¢
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—l-, é T T T T Fig. 5. Experimental trajectory and controls for initialatst z(0) =
%f_—cﬁ T TTT W T T TT T T WT T T T (0.4, 320) using 1 with 32 x 32 quantization regions
°0 50 100 150 200

time
requires more computation time in the offline contruction

Fig. 3. = Experimental trajectory and controls for initiabtst»(0) = of the hypergraph and results in trajectories with a higher
(0.29, 298) using 2 with 16 x 16 quantization regions .
number of control switches.

VI. CONCLUSION

This way the controller uses the inflowing water in order to In this paper we have introduced an algorithm for the
reduce the temperature of the water and consequently reachgtimal feedback control of nonlinear systems with coarse
the target faster. This refined control is also the main reas@uantization. Compared to similar approaches for sampled
that there are 13 changes of the quantized control value féata systems, the algorithm is able to obtain stabilizirglfe
s compared to only 3 fof,. back laws on much coarser quantizations. Using a dynamic
Again, the use of past information jm, leads to reduced feedback concept which takes into account information bou
cost along the experimental trajectory as Figure 7 shows, @last quantized states further significantly improves the re
though the advantage here for initial stat@®) = (0.4,320)  sults.
is not as pronounced as in Figure 4 for initial sta{®) =
(0.29,298).
Summarizing, we can say with the use of past information
we can stabilize systems on a coarser partition and at the
same time obtain trajectories which are cheaper in terms of
our optimization criterion and reach the target in consider
ably smaller time. On the other hand, the use of past data
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