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Abstract The Mordukhovich subdifferential, being highly importantvariational and non-smooth analysis al
optimization, often happens to be hard to calculate. Wegse@m method for computing the Mordukhovich st
differential of differences of sublinear (DS) functionathe directed subdifferential of differences of convex D
functions. We restrict ourselves to the two-dimensionakaaainly for simplicity of the proofs and for the visua
izations.

The equivalence of the Mordukhovich symmetric subdifféiediithe union of the corresponding subdifferent
and superdifferential) to the Rubinov subdifferentiag(tisualization of the directed subdifferential) is esistizd
for DS functions in two dimensions. The Mordukhovich sufmtiéntial and superdifferential are identified as pa
of the Rubinov subdifferential. In addition, it is possilbéeconstruct the directed subdifferential in a way simi
to the Mordukhovich one by considering outer limits of Frétsubdifferentials. The results are extended to
case of DC functions. Examples illustrating the obtaineulits are presented.
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1 Introduction

The Mordukhovich subdifferential is a highly important iootin variational analysis, closely related to optimali
conditions, metric regularity, Lipschitzness and otherdamental concepts of modern optimization theory (
[23, 24]). This subdifferential is a closed subset of therkdasubdifferential (see e.g. [25, Theorem 9.2]), and n
be non-convex for non-convex functions, thus achievingraoptimality conditions. In contrast to the Fréct
subdifferential (cf. [18, Example 1.1]), the Mordukhovitbdifferential of a locally Lipschitz function is alway
nonempty (see e.g. [22, (2.17)]).

Along with these essential advantages, there comes a stibstirawback: the Mordukhovich subdifferenti
is difficult to calculate even for relatively simple examglas such computation normally involves finding t
Painlevée-Kuratowski outer limit (see Section 2). For mosiwn subdifferentials, the sum rule only has the fo
of an inclusion — the subdifferential of a sum is a subsetefiim of the subdifferentials [23, Theorem 3.36]. Tl
rule applied in calculations only provides a superset oftitedifferential of the sum.

We propose a method for computing the Mordukhovich subdifféal of differences of sublinear (DS) fun
tions, which are positively homogeneous DC (differenceafvex) functions, applying directed sets [2] and t
directed subdifferential of DC functions [4]. The DC furmts represent a large family of functions. They &
dense in the space of continuous functions [16] and cotestdn important subclass of the quasidifferentia
functions [10]. Various aspects of calculus and optimadionditions for this class of functions are discuss
e.g.in[1, 8,10, 11, 12, 14, 20].

The class of positively homogeneous DC functions is impii@ough since it contains differences of supp
functions and directional derivatives of DC functions. Mamteresting examples of non-convex DC functions
the literature are in this class (see e.qg. [4]). All resuitSéction 3 obtained first for DS functions can be formula
as a corollary for the directional derivative of DC function

The main advantage of directed subdifferentials basedrectéid sets is the sum rule: the directed subdiffer
tial of a sum is equal to the sum of the directed subdiffeednféd, Proposition 4.2]. This rule applied for directe
subdifferentials provides the exact result.

We restrict ourselves to the two-dimensional case maimngifaplicity of the proofs and for the visualization
Furthermore, the visualization of the directed subdiffitied is essentially more complicated in dimensions higl
than two, since lower dimensional mixed-type parts misgirtte two-dimensional case would emerge in higl
dimensions.

In this paper, the equivalence of the Mordukhovich symroetuibdifferential, the union of the correspondil
subdifferential and superdifferential, to the Rubinovditfierential (the visualization of the directed subditer
tial), is established in Theorem 3.14 for the special cld&3®functions in two dimensions.

While the Mordukhovich subdifferential is based on the esponding normal cone and can be calculatec
outer limits of the Fréchet subdifferential, the direcsedbdifferential for DC functions is essentially based am
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subtraction of convex subdifferentials embedded in theaBhrspace of directed sets. Although these two concepts
differ substantially, there are many interesting linksAzsn them.

In Theorem 3.13 we prove that certain parts of the Rubinodiigibential comprise the Mordukhovich subdif-
ferential. The remaining parts coincide with the Mordukicbwsuperdifferential (see Theorem 3.14). Furthermore,
Theorem 3.11 links outer limits of the Fréchet subdiffeiarto the directed subdifferential. The assumption on
positive homogeneity of the DC functions is dropped in Tleeas 3.16 and 3.17 yielding the connection of the Ru-
binov subdifferential to the Mordukhovich symmetric subetiential of the directional derivative for the broader
class of DC functions.

The paper is organized as follows. In the next section wellreegessary definitions, notation and results
on Fréchet subdifferential. In Sect. 3 the relation betwi#e Mordukhovich and the directed subdifferential is
discussed. We illustrate our results with several exampl&ect. 4. In the last section we sketch directions for
future research.

2 Preliminaries

Recall thatf : IR" — IR is calledpositively homogeneous f(Ax) = A f(x) for all x € IR" andA > 0. Clearly,
f(0) = 0 for positively homogeneous functions. A functiosislinearif it is convex and positively homogeneous.
Recall that support functions of compact sets are subliwardenote by¥,_1 the unit sphere in IR and by
cl(A),co(A) the closure and the convex hull of the setespectively. The following operations on sét8 C IR"

are well-known:
A+B:={a+blacA beB} (Minkowskiaddition)

oA :={-alac A} (the pointwise negative of the s}

The last operation is used in the definition of the Mordukbbwsuperdifferential and in the negative part of the
visualization of the directed subdifferential.
For the set#\, B C IR" the operation

A*B={xcR"|x+BCA}=()(A-b)
beB

is called thegeometric differencef the setsA andB. This difference is introduced by Hadwiger in [13] as well as
in [28] and is also called Minkowski-Pontryagin difference

Let C C IR" be nonempty, convex, compact and IR". Then, thesupport functiorand respectively theup-
porting faceof C in directionl are defined by

0*(1,C) = max{l,c),
ceC

Y(I,C) = {yeC|{l,y) =95"(1,C)} :argg;g)(l,@ )

Note that forl =0, Y(I,C) =C. By y(I,C) we denote any point of the s¥tl,C), and if the latter is a singleton
(i.e., there is a unique supporting point), th&m,C) = {y(l,C)}.

The supporting fac¥(l,C) equals the subdifferential of the support functiorCadt| [29, Corollary 23.5.3].

We denote by Limsup th@ainlewe-Kuratowski outer limitand by Liminf theinner limit of sets (see [30,
Chap. 4]). Intuitively, the outer limit of a sequence of seassists of the limiting points of all converging subse-
guences of points from these sets. In contrast, the innérdonsists of limiting points of all sequences constructed
from points taken from almost every set in a way that only ddinumber of sets can be missed out. For a more
rigorous definition (see [30, Sect. 4.A]), first consider see #,¢ of all infinite subsequences in the set of natural
numbers 4} := {N C N|N infinite}, and the set#, of all the sequences of natural numbers which include all
numbers beyond a certain value, i€, := {N C N|N\N finite}. Given a sequencfCy} of sets in IR, we set

LimsupCy = {x€ IR"|3N € .4 , Ix € Ck(k € N) with X — X} ,

k—co

Li{ninfck: {x€IR"|3N € A , Ix € Cc(k € N) with X — X} .

For a set-valued mappirg: IR" — IR™ andx € IR", the outer and inner limit of asx — xis naturally defined as
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LimsupF (x) := {y € IR™|3x — X, Yk — y with yx € F (x) Yk € N}, 1)
X—X
Liminf F(x) := {y € R™|Vxx — X, IN € A% , Iyk — y With yx € F(x) Yk € N} . (2)

X—X

Clearly, the inner limit is a subset of the outer limit. If thare equal, this set is called tfainleve-Kuratowski
limit and is denoted by Lim.. Cx, respectively Lim_xF (x).

Remark 2.1Let F(-) be a uniformly bounded mapping defined in a neighborhoodepthintx € IR" with non-
empty images in a finite-dimensional space. It is easy to dhaivif the Painlevé-Kuratowski outer limit is -
singleton Limsup_zF (x) = {y}, it is equal to the Painlevé-Kuratowski limit. Indeed, b tassumption, for an)
sequence;, — X, there is a converging subsequengec F(x,,) and any such subsequence may have only
pointy as the limit.

The classical Moreau-Rockafellsubdifferentiabf a convex functiorf : IR" — IR atx € IR" is
af(x) :={seR"|Wye R": (sy—x)+f(x) < f(y)}. (3)
It is well-known (see e.g. [15, Chap. V, Definition 1.1.4]Jath
" (1,0f(x)) = f'(x1), 4)

wheref’(x;1) is thedirectional derivativeof f atx in directionl.

In the sequel, the Moreau-Rockafelfarbdifferential of a sublinear functionat zero is denoted bgg instead
of 0g(0).

Also, for theunique supporting point of a supporting fase denote

dn(I;1") =y(I",Y(1,0h))  (I,I"' e A with| LI"). (5)
TheDini subdifferentiasee [5, 17, 26, 27]) of a directionally differentiable ftioa f : IR" — IR atx € IR" is
of(x)={ve R"|f'(xd) > (v,d) VvdelR"}.

The Fréchet subdifferentiadnd thesuperdifferentidupper subdifferentia(see [5, 6, 18, 23]) of a functior
f :IR" — IR at a pointx € IR" are defined as follows:

_ nlpoee FO0— () — (vx—%)
Orf(X) = {ve R Ilr)'(nJQf X=X 20} ,
(X)) = {ve IR" [limsup - Tl(f)__iﬁv’x_)_(} go} .

The Fréchet subdifferential coincides with the Fréchratlgent for a Fréchet differentiable function, and witle t
subdifferential for a convex function. One can thinkaff (x) andd7 f(x) as of the set of gradients of linez
functions “supportingf from below resp. above at While the Fréchet subdifferential is defined for a vasssl
of functions, and can be used to check optimality conditiomsany cases it happens to be an empty set, wt
is a serious drawback for applications.

The Fréchet subdifferential possesses several usefpépies summarized in the following two lemmas.

Lemma 2.2.Let f: IR" — IR be positively homogeneous and IR". Then
O f(0)={ve R"|f(d) > (vd) Vvde.# 1} (6)
and f(-) is the support function of the Echet subdifferential, i.e.
f/(0;1) = f(I) . (7)

Furthermore,
O f(l) =0 f(Al), A>0. (8)

Proof. The relation (6) is obtained easily from the positive hommagsy of f andf(0) = 0 (see e.g. [18, Propositio
1.9 a)]), and (8) follows from [18, Proposition 1.9 b)]. O
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The following result, which is an immediate consequenc®pTheorem 2], is used for evaluating Fréchet and
Mordukhovich subdifferentials in the examples.

Lemma 2.3.Let f: IR" — IR be directionally differentiable.
(i) If the directional derivative of f at x can be representei

! (e o
F(xg) =inf ¢(g),
whereg¢; are sublinear functions for everyg T and T is an arbitrary index set, then

O f(x) = 0i(%). ©)
teT
(ii) Analogously, if
1 (e o
F(xg)=—infé(g),
whereg¢; are sublinear functions for everyd T, then
) =0()0(x). (10)
teT

The next lemma states that the Fréchet subdifferentiabodés with the Dini one for DC functions.
Lemma 2.4.1f f = g— his DC with convex functions g and h, then
Ff(X)=dof(x)={ve R"|f'(x1)>(v]) Ve % 1}. (11)

Proof. Since each convex functiamh : IR" — IR is locally Lipschitz (see [15, Chap. IV, Theorem 3.1.&ach

DC functionf = g— his also locally Lipschitz. Hence, we can apply Propositiat6from [18], which yields

f(x+tl) - f(x)
t

df(x)(I) :Iirm)nf

)

where we use the notation in [18]. In our settohfx)(l) corresponds to the lower Hadamard directional derivative
of f atxin the direction.

Since each convex function (and hence, each DC functionyésttbnally differentiable, the limit inferior is
indeed a limit withd f(x)(1) = f/(x;1). As we are dealing with finite-dimensional spaakgf, (x; 1) = d f(x; 1) holds,
and [18, Proposition 1.17] yields

Orf(x) ={ve R"|dwf(x1) > (v]) VI €IR"}
={ve R"[f'(x1) > (vl) ¥l €R"} =dpf(x).

Clearly, for convex functions it follows that

Org(X) = dpg(x) = 9g(X) . (12)

3 The Mordukhovich and the Directed Subdifferential in IR?

For a continuous functior : IR" — IR, the Mordukhovich(lower) subdifferentialand superdifferentiallupper
subdifferentid) can be defined as a corresponding outer limit of Fréchetiffebentials ([23, Theorem 1.89]):

om f(X) = Limsupdr f(x) , (13)

X—X

Oy f(X) = Limsupdg f(x) . (14)

X—X

TheMordukhovich symmetric subdifferentialdefined as
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AT () =amf(x)Udy f(x).

Here, the limits are in thBainleve-Kuratowsksense. Furthermore, the connection between the Fréatwet{Nho-
vich superdifferential to the corresponding subdiffeians$ given by the following formulas

OF 1(X) = 00 (—1)(X) . oy T = S (1) (R, (15)

which involve the negative function and the pointwise irpeeof sets, see [18, remarks following Proposition 1
and [23, remarks below Definition 1.78].

Directed sets, offering a visualization of differenceswed ttompact convex sets, are introduced and studie
[2, 3]. Here, we only sketch the main ideas and notations ectd sets in IR

The directed sets, as well as tmbedding Jof convex compact sets in lRnto the Banach space of directe
sets, are defined recursively in the space of dimensidn one dimension, thdirected embedded intervadse
defined by the values of the support function in the two ungctions+1,

[a,b] = (a,b]) = (5" (1, [a,b]))p—s1 = (—ab) (a<b).

—
A generaldirected intervale = [c,d] = (—c,d) allows thatc,d are arbitrary real numbers, even> d is

possible (see references in [2, 3])t#o-dimensional directed seﬁﬁz is a pair of a uniformly bounded maﬁl(-)
having one-dimensional directed intervals [2] as its val(thedirected “supporting face), and a continuous
functionay(-) : IR? — IR (thedirected “support function). This pair is parametrized by the unit vectbrs IR?:

Az = (A1), a()ics - (16)

A convex compact sék C IR? is embedded into the the space of two-dimensional direettsivia the embedding
mapJ, composed from the natural projectiam, from IR x {0} C IR? onto IR, and the rotatioRy which for any
unit vectorl € IR? maps the paifl’,|) (with I orthonormal td) to the standard basig!, €?) in IR?:

B(A) =(Y(LA), 0" (I,A)icsn, with Y(I,A)=Jdi(m R (Y(I,A) =5 (I,A))) . a7)

For a directed seR, its visualization \é(K) C IR? has three partspositive B(K), negative I\j(x) andmixed-
type part M(A):

Vo(R) = P(A) UNo(A) UM(A) | (18)
Mo(B) = U Quva(Ar( ))\(M JUON(A )). (19)
|65/71

The last part is formed by reprojectio@s of one-dimensional visualizations from IR onto the supipgrtines
(x,1) = ay(1) for any unit vectot € IR?.

Equipped with a norm and operations acting separately orcdhgonents of the directed sets, the space
directed sets is a Banach space. The subtraction in thie $paverse to the Minkowski addition for embedd
convex compact sets.

Thedirected subdifferentidlor DC functions and its visualization, tHeubinov subdifferentiabre introduced
in [4] for a DC functionf =g—has

310 = H(9g(x) — B(0h(x),  FRF(X) =Va(d F(x)),

i.e. it is the difference of the two embedded subdifferdatia
An explicit formula for the Mordukhovich subdifferentiaf a positively homogeneous function as a union
Fréchet subdifferentials is obtained in the next statémen

Proposition 3.1.Let f : IR? — IR be a positively homogeneous function. Then

ouf(0)=d:fOU |J | df()u |J Limsupdef(l+t) | . (20)

les res, t0
1Ll
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Proof. Denote byD the right-hand side of (20). We first show tHatC dy f(0). Observe thabg f(0) C du f(0)
holds by (13). Further, for anlye .1 andA > 0 we havede f (Al) = g f(I) by Lemma 2.2 and

or f(I) =Limsupde f(Al) C Limsupde f(x) = aw f(0) .
AlO x—0

It remains to show that for adyl’ € .71, | LI’ we have

Limsupde f(1+t1") C au f(0) .
t/0

Again, by Lemma 2.2 for any> 0
O ft(1+t1") = f(1 +tI") .

Therefore,
Limsupde f (1 +t1") = Limsupde f (t(I +tI")) C Limsupde f(x) = du (0) .
tl0 t10 x—0
Now we will show thaidy f (0) C D. Let us consider an arbitrary element dy f (0). By (13) there exis{vn}
and{x,} such thaw, — v, x, — 0 andv, € J¢ f (xn). Without loss of generality, eithes, = 0 for alln, orx, #0
for all n. In the former case, we hawg € Jr f(0), and by the closedness & f (0)

ve Limsupde f(0) =0 f(0) CD

n—oo

In the latter case, without loss of generality supposelthat 22 — | € .#;. Observe that by Lemma 2.2

[I%all

Or (%) = &f“n|>_¢mm. (21)

There are two possibilities again. Without loss of gengraditherl, =1 forall n, orl, — (In,1) -1 0 and(l,l,) #0
for all n. In the first case, by (21)
ve Limsupdef(ln) =0 f(l) CD

n—oo

In the second case, Igt= % andt, = w Observe thatt, 1 I, and||l},|| = 1. Since in IR there are

only two unit vectors perpendicular tpwe can assumié = I’ € .#; for all n, wherel’ is one of such two vectors.
We have by (21) and Lemma 2.2

ve Limsupdr f (

n—oo

In ) = Limsupdr f(I +t,l") C Limsupde f(I +tI') c D
(In,1) n— t|0

O

The following result about the Fréchet subdifferentialboDC function follows from (11) and [14, Sect. 4]
resp. [10, Chap. lll, Proposition 4.1]. The following lemmaéil be used to explicitly calculate the first term
appearing in the right-hand side of (20) in Proposition 3.1.

Lemma 3.2.Let f = g— h, where gh: IR" — IR are convex. Then
Or f(x) = ab f(x) = dg(x) =dh(x) , (22)
wheredg(x) anddh(x) are the subdifferentials of g and h respectively.

To obtain a formula for the second term in the right-hand sid@0) for sublinear functions, we show now that
the subdifferential of a sublinear function in a pdist O is a lower dimensional supporting face.

Lemma 3.3.Let h: IR" — IR be convex. Then for anyd IR",
[N (x)](1) = Y(I,0h(x)) . (23)

If, in addition, h is sublinear, then
oh(l)=Y(l,0h). (24)
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Proof. The equality (24) is trivial fot = 0. It follows from [15, Chap. VI, Proposition 2.1.5] that fbe£ 0 and
every convex function
[N (x;)](1) =Y(I,0h(x)) .

Settingx = 0 the equality follows immediately, since (7) holds for tresjtively homogeneous functidi{-). O
In the next two lemmas we study the last term in the right-tede of (20) for DS functions.

Lemma 3.4.Let f = g— h, where gh: IR? — IR are sublinear. Then for everyll € .7 with | LI’,

Limsupdef(l +tl") £ 0.
t10

Proof. The functionf is locally Lipschitz as a difference of sublinear functioHgnce,f is Fréchet differentiable
almost everywhere, and there exists a sequérge, C IR? such thatix,,!’) > 0 for all n, x, — 0 andf is Fréchet
differentiable atl + x,. The Fréchet subdifferential df at | + X, is nonempty and coincides with the Fréch
derivative (see [18, Proposition 1.1]). Therefore, we have

Or f(1+%) = {0f(1 +%)} (neN).

Observe that for sufficiently largewe have 4 (x,,1) > 0 and

430= 14 faul) 1+ Gyt = (1 G (1 L2 )

The positive homogeneity df together with (8) yields

<Xnall> |

of (1
) (+1+<Xn7|>

) — G 11+ %) = {OF (1 430)} -

Let t, = 1<+X?;<'n,‘>|>. Observe that, > 0 and alsat, — 0, i.e.t, | 0. Sincef is locally Lipschitz, the sequenc

{Of(l +xn)} is bounded, hence, has a converging subsequence. Thigjsebse satisfies

Limsupdr f (I + %q) = Limsupdr f(I +tl’) C Limsupde (I +tI")

N—oo Nn—oo tlo
which yields the nonemptiness of Limsypdr f (I +tl’). O

The following result establishes that the set limit (i.ee timit of the sequence) of the subdifferentials(l +
tl") evaluated at small orthogonal disturbances of the diredtis a singleton. This fact is needed later in t
representation theorem for directed subdifferentials.

Lemma 3.5.Let h: IR? — IR be sublinear. Then for anyll € .73 with | L I/, the set YI",Y(l,dh)) is a singleton,
and
Ltif”g ah(l+tl"y =Y(I",Y(1,8n)) = {y(I",Y(1,0h))} . (25)

Proof. First, we will prove the claimed equality for the outer lirhimsup, o dh(l +tl’), and then apply Remarl
2.1.

Letve Y(l,dh). Assume that, | 0 and{vn}n is a sequence of points, each on@h(l +t,l’), and converging to
a pointin Limsug o dh(l +tl’). Lemma 3.3 shows that

Vo € dh(l +tal") =Y (I +tnl’,0h) (neN).
By the definition of supporting face and by (7) we have
(Vn, | +tnl") > (VT 1"y = (V1) +ta (V1) = h(l) +ta(V,17) (26)

and
(lvp) <" (1LY (I +tpl”,0h)) < 8*(1,dh) =W (0;1) = h(l) . (27)

Taking limits asn — o (t, | 0) on both sides of (26) and (27), we obtain
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lim (vn,1) = h(l) . (28)

n—oo
LetVe Y(I',Y(I,0h)). Observe tha¢ £ Y(l,dh) C dh, vh € Y(I +til’,dh) and

(Vn, | +tnl") = (Un, 1)+t Vi, 1) < (0,1 +ta(vn,I) (29)
(Vn, | +tl") = (T, +tal") = (G,1) +tn(V,1") . (30)

Subtracting (30) from (29), we haven,!’) > (V,1"). Thus for any cluster point € Limsup, odh(l +tl’) of the
sequencévn}n, we have

(0,1) > (@I'). (31)

SinceY (-, dh) is upper semicontinuous and has closed values, it folloas f24) andv, € Y (I +t,l’, dh) that
veY(l,dh). Henceye Y(I',Y(l,dh)) by (31) and the inclusionc” in (25) is proved with the outer limit in the
left-hand side.

Assume now thaY (I’,Y(I,dh)) contains two different pointg ;. Clearly,

(I",9) = (I",%2) = &"(
(1,Vy) = (I,%2) = "(1,

For anyn € IR? the representation = (n,1) -1+ (n,I’) -1" is valid, therefore

I",Y(1,0h))
oh) .

(N,¥ =) = (n,1)- (1,9 — )+ (n,1"y- (I',¥y — %) =0,

which contradicts the assumption that the points are differ
Hence, the right-hand side in (25) is just a singleton anethelity follows by the non-emptiness of the left-hand
side guaranteed by Lemma 3.4, Equ. (12) and Remark 2.1. a

Thus, (25) in the above lemma can be reformulated with thatioot (5) as

Lim oh(1 +11') = {dh(;1)} . (32)

The previous lemma will be generalized to DC functions. Tdllfving lemma states an explicit formula for
the third term appearing in the right-hand side of (20) ingéisition 3.1.

Lemma 3.6.Let f =g—h, where gh: IR> — IR are sublinear. Then for everyll € ., I’ L | the outer limit
Limsup o 0r (I +tI’) is a singleton, and

Limsupdk (1 +t1') = {y(1",Y(1,8g)) — y(I",Y(1,9h))} (33)
t10
Proof. Let
ue Limsupdef(l+tl’) .
t10

Then there exist sequencfs}, {tn}, Un — U, ty | 0 such thati, € d¢ (I +t,l’). By Lemma 3.2 we have
O f(l+tal") = ag(l +tal") 20h(I +tal")  (N€N).
Therefore, for alh € N there are
Vo € dg(I +t,l") and wy € h(l +tyl")

such thau, = vy — Wh.

Since{v,} and{wy} are bounded (as they belong to the corresponding upper getiniaous subdifferentials
of g andh), the sets Limsup ... {vn} and Limsup_,..{Wn} of cluster points of the corresponding sequences are
nonempty. Moreover, by Lemma 3.5 we have

Limsup{vn} C Limsupdg(l +tnl’) = Lim ag(l +tal’) = {dg(I;1")},

n—oo n—oo

Limsup{wn} C Limsupdh(l +tnl’) = Lim oh(l +tal") = {dn(1;1")},

n—oo n—oo
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where we have used the notation (5).
Hence the sequencég, } and{w,} converge and have unique cluster points. Therefore

u= lim un = lim vy — lim Wy = dg(1;1") — dn(I;1") .

Nn—oo n—oo

Sinceu is arbitrary, we have
Limsupde f(1 +t1")  {dg(I;1") — dn(I;1")} . (34)
t0

Applying Lemma 3.4,

Limsupdef(1 +tl') #0
t]0

holds and we obtain (33) from (34). O

For the convenience of the reader, we include a full prooftii@r explicit formula of the subdifferential o
a sublinear function with the help of two collinear directsoorthogonal to the supporting face in Lemma 3
although this geometric fact is rather obvious.

Lemma 3.7.Let h: IR — IR be a sublinear function. Then for every'le .73 with I” L1,

ah(l) = co{dn(l;=1"),dn(1;1")},
where we used again the notation (5).

Proof. From Lemma 3.3 we know that
dh(l)=Y(l,0h) .

Obviously, cddn(l; —1"),dn(I;1")} C Y(I,8h), and we only need to show the opposite inclusion. Assumetibead
existsv € Y(I,0h) such that

v ¢ co{dn(l;—I"),dn(I;1")} .
Then by the separation theorem there eslistsR? such that
(v Ty > max{ (dn(1;—1"), 1), (dn(1;1), 1)} (35)

Since the representation= (v,1) -1 + (v,I’) - 1" holds, we can usec Y(I,dh) as well as (4) and (7) to observe th

vy = 1Dy 4+ (1Y - Yy = (1 -h(D) 4 (1) - (w1
Usingdn(I;1") € Y(I,0h) twice, the equalityr(l) = (dx(1,1"),1) follows, if (I,I") > 0, as well as

(Fv) < B0 -h() + (1) - (dna(151),17) = (dn(151),T) < max{(dn(1; =1'), 1), (dn(1;1),1)} - (36)

Analogously, if(I,1’) < 0, the following estimate is valid due tl) = (dn(l,—1"),1):

vy < (1) -h(t)y = 17 - (dn(1; =1), =17y = (dn(1; =1"), 1Y < max{ (dn(1; =1"), 1), (dn(1;1"),1Y}  (37)
Clearly, (36) resp. (37) contradict (35), hence our assiongig wrong. O

The next two lemmas will be used in the further theorems. Titsé dine connects the first component of t
embedding (17) of convex sets into the space of directedaéb® interval which coincides with the projectic
of the line segment from Lemma 3.7. In the embedding the abpupjectionrs » and the rotatiorRy in [2] are
used.

Lemma 3.8.Let h: IR> — IR be sublinear, k& .73 and I = R£|e1. Then, the embedding in (17) satisfies

78.2Rp (Y (I,0h) — h(1) = [{dn(1;=1"),1'), (dn(1;1),1")] ,
where we used again the notation (5).

Proof. Observe thalt L I’, so that Lemmas 3.3 and 3.7 apply with

Y(I,0h) = co{dn(l; —I"),dn(l;1")} . (38)
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Sinceh(l) = (dy(l;+I"),1), the following representation holds:

An(l; 1) = (dn(1;£1),17) 1 4 (dn (1 £, 1) - E = (dy(1 17,17 -1+ h(1)] (39)
Therefore,

1.2Ro (Y(I,0h) —h(1)I) = 182R> 1 (co{dn(l; —1"),dn(I;1")} —h(I)I)  (by (38))

1 2Ry (co{dn(l; —I") = h()l,dn(I;1") = h(D)I})

1. 2Rz 1 (co{ (dn(l; —1"), 101", (dn(1;1),1)1'})  (by (39))

= co{1m 2Ry (dn(I; 1), 1), 11 2Ra (dn(1;17), 1)1}

co{(dn(1; —=1"),1"y - 2R 1", (dn (I;1),1") - 0 2R 1}
cof(dn(l; —1),1"), (dn(I;1),1) }

= [(dn(1;=1"),1"), (dn(117),1)]  (@s{dn(l;=1"),1") < (dn(L;1"),1")).

O

The following lemma generalizes Lemma 3.8 to DS functiomssflidy the result of the embedded difference
of subdifferentials, the convex sets in the first componétii®@embedding (17) can be calculated with the help of
the two endpoints of the interval.

Lemma 3.9.Let f = g—h, where gh: IR> — IR are sublinear. Consider & .4 and the orthogonal vectof =
Rj,€*. Then

m,2Rp (D (1) — (1)) = (dg(l; =1") — dn(l;=1"),1") ,
T8 2Ry (DT (1) = F(D)I) = (dg(1;1") — dn(1;1"),1") ,
where the notation (5) and

D (1) :=Limsupde f(I —tI") and D"(I):=Limsupd f(I +tl")
t]0 t]0

are used.
Proof. Clearly,| L I". By Lemma 3.6 the two sets

D (1) =dg(l;=1") = dn(I;=1"), D*(1) =dg(I;1") —dn(I;I")
are singletons andy(l; £1") € Y(I,89), dn(l;£l") € Y(I,h). Therefore,

7T12R2|( (|)—f(|)|) = 7T1,2R2|(D ( (|)|
= MRy (dg(l;—1") — dn(l;=1") = (D))
(dg(1;=1") — dn

= 10.2Rp ((dg(1; =1") = dn(l; =1"), 1)l
+ {dg(l; =1") = dn(l; =), )1 = £()1)
= 2Ry ((dg(1; =1") — dn(l; —1"),1)1" + (g(1) = h(H)I = F(1)I)
= T,2Rp 1 ({dg (15 —1") — dn(l; =1"),1")I")
= (dg(l; =1") = dn(l;=1"),1") - T, 2R
= (dg(l;—1") —dn(l;—1"),1") - 2Ry Ry €"
= (dg(l; =1") = dn(l;=1"),1)

and analogously
T5,2Rp (D7 (1) = f (1)) = (dg(1;1") = dn(L;1"),1") .
O
We apply the two lemmas above to represent the directed féeteditial of a positively homogeneous DC

function in IR? with the help of outer limits of Fréchet subdifferentiah& unique supporting points calculated in
Lemma 3.9 are used to determine the (one-dimensional) éirsponent of the directed subdifferential.
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Lemma 3.10.f =g—h, g h: IR? — IR, sublinear. Then, using the notation (5),

91(0) = ([{dg(;—1") — cn(1;—1"), 1), (dg(1") — (1), V)], F()hes
with I'=1"(l) = R;)lel.
Proof. Observe thad*(l,dg) = d'(0;1) = g(I) by (4) and Lemma 2.2 and therefore,

3 f = 3(dg) — J(h) (by definition)

= (J(mm 2R (Y(1,09) —g())),9())icn
— (I (m8,2Re (Y(I,0h) —h(D)1)),h())ics,  (by definition)

= (Ju([{dg (1 =1"),1"), (dg(151),1)]) = Ja([(cn(1; =1), 1), (An(1317), 1)]), 9(1) = h(1))1c.o4
(by Lemma 3.8)

= ([(dg(1;=1"), 1), (dg(151),1')] = [(en (15 =1), 1) (A (151), 1)), £ () iy
= ([(dg(1;=1"),1") = (dn(1;=1"),1"), (dg (1:1), 1) = (An(1:1), 1) £ () ey -

O

As a first main result, we connect the representation of thectiid subdifferential to outer limits of Fréch
subdifferentials.

Theorem 3.11.Let g h: IR? — IR be sublinear functions, and let= g— h. Then the directed subdifferential of
— —
atzero A = (Aq(l),ax(l))1c. can be constructed via limits of &het normals as follows: for everyl.7; let

fa() := (1), Ei(l) = [m 2Ry (D™ (1) = (1)), m 2Ry (D (1) — F(NI)], (40)

where D (1) :=Limsup, o0 f(I —tl"), D*(I):=Limsupod f(I1 +tI'), and I := R;,e".
Then,F = (F1(1), fa(1))1c.s4 coincides withA = d £(0).

Proof. By Lemma 3.9

T8 2R (D™ (1) = f(DI) = (dg(l; —1") —dn(l;=1"),1") ,
16 2R (DF (1) — F (1) = (dg(I;1") — dn(1;1"),1")

where we used again the notation (5). Therefore,

F = ([{dg(1—1") — dn(; 1), 1), (g (1;1') — c(1;1), 1], £ (1)1 »
which coincides with the directed subdifferentilof f by Lemma 3.10. O

The equality for the Fréchet subdifferential in the nexhtea will be used to explicitly calculate the seco
term appearing in the right-hand side of (20) in Proposi8dh Geometrically, this fact is easy to believe so 1
reader may skip the technical proof.

Lemma 3.12.Let f = g— h, where gh: IR? — IR are sublinear. Then for everyd .73

O f(1) = ag(l) =ah(l) = co{dg(l; —1"),dg(I;1")} =co{dn(l; —I"),dn(I;1") }
B {co{dg(l;—l’) —dn(l;=1"),dg(I;1") —dn(l;1")} , if case 1 holds
o 0, if case 2 holds

where we used again the notation (5) ahe-IR; e'. Case 1 holds, if

(dg(l; =1y = dn(1; =1"), 1"y < (dg(1;1") — dn(1;1"),1")

and case 2 is given, if the inequality™ holds.
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Proof. Lemmas 3.3 and 3.7 show that

99(1) = Y(1,09) = co{dg(l; —1").dg(1;1")} .
on(l) = Y(I,8h) = co{dn(l; "), dn(l;1")} ,

sincel L I’. Clearly, for allv € dg(l) andw € dh(l), (4) and (7) apply, i.e.

(I,v) = 8"(1,09) =g (0;1) =g(l),
(I,w) = &*(I,dh) = h'(0;1) = h(l)
and especially,
(I, dg(l; 1)) =g(1) . {1, dn(l;1")) = h(l) . (41)

It holds that
ag(l) = co{dy(l; —I") —g(Ol,dg(I;1") —g(OI'} +g(D)!

= co{(dg(l; =1"),1") - V', {dg (1;1"),I") - 1"} +g(D)I ,
oh(l) = co{dn(l;—1") — (D1, dn(1;1") — h()I} + h(D)]

= cof (dh(l;—1").1") -1/, (A(1:1").1') - 1"} +- (D)1,
ag(l) —g()l = co{{(dg(l;—1"),I") - 1", (dg(1;1"),1") -1},
oh(l) —h(Hl = co{{dn(l; =1"),I") -1, {dn(I;1"),1") - 1"} .
Let us denote for abbreviation
pa = (dg(l;=1"),1") . 2 i= (dg(1;1),1")
vy = (dp(l; =),y ve = {dn(;17),17) .

Sincedy(l;1") e y(I’,Y(1,09)) anddn(l;1") € y(I’,Y(l,dh)), we have the ordering
pr <Mz and vy <vp.
Let us study the scalar producto (dg(l) — g(I)l) =(dh(l) — h()l) andn € IR™
(n,u) < 8% (n,co{l’, wol'}) — &*(n,co{wil’,vol'})

= maX{<nvl~ll|/>a <’77“2|/>}_maX{<rIvV1|/>7<nav2|/>}
= maX{IJl' <’7a|/>7112' <I'],|/>} —max{vl- <’77|/>aV2'<’7a|/>}

Both shifted line segments are spanned by the véGthence the geometric difference lies also in this span which
is demonstrated by setting= +I in the above inequality:

(lLuy<0-0=0, (-l,uy<0-0=0
Hence,(l,u) = 0. Let us study the scalar product in the orthogonal direstioand—I’.

(I',u) < max{p, tp} —max{vy,Vo} = o — V2, (42)
(=1",u) < max{—p1, —p2} —max{—vi, —Vo} = —pg + V1 (43)
Assume thav, — v; > [ — g and thatu € IR" exists withu € (dg(l) —g(1)1) =(ah(l) — h(1)I). Then, equations
(42) and (43) yield the contradiction
pr—vi < ('u) <pla—va, Qe va—vi<po— .
Now assume that
V2 — V1 < pp — Uy . (44)

We will show that
M1 =M,

holds for
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My := (Co{p, o} 1) =(cof{vi, v} -I') , Mz = co{p —va, o — o} 1.
"C" Let n € IR". Using(l,u) = 0 and the orthonormal basfs,|’}, we getn = (n,1) -1 +(n,I’)-I" and

&"(n,My) = max(n, u) = maX(<U,|> S(Lu)+(n. 1) - (1, w)

= (n,1")-8"(I",M1) < (n,l") - (h2—v2) (by (42))
(n,I"y- max  {(I';a-l)
a€[p1—V1,H2— V2]
= max  ((n,1y-(La-I")y+(n,I")-(",a-1")
a€[p1—V1,H2—V2)

= max (n,a-l/>:Lrjrga;(m,u)zé*(n,Mz)

a€[uy—Vva,Hp—Vva|

which shows thaM; C M.
" D" Let us first show thatyy — vi)l’ € My. Since (44) angy — v1 + v, < 1 hold,

(M1 —vi)l +cofvy,vo} 1" = (p1 — i)l +cofwal’, val '}
= cof (1 — V)l +vil’, (p1 — va)l" + val '}
= cofpul’, (M1 — vi+v2)l'} = co{p, (M1 — vi+v2)} -1/
C cof{py, p2}-1",

Hence, the first endpoint of the line segmbhtlies in My

(1 —vi)l" € (cofp, pa} -1') = (co{vy,va} 1) =

Now, we proceed similarly with the second endpdimt — v,)I’. Since (44) angiy — vo + vy > g is valid,

(H2 = V2)l' +cofvy, Vo } 1" = (2 — vo)l" +co{vil’, vol '}
= cof (2 — V)l +vil’, (t2 — v2)I" +val '}
= co{ (k2 — v2+ vi)l', w2l "} = co{ (H2 — Vo + v1), 2} - I/
C cofpy, p2}-1".

An immediate consequence is that the second endpo @fso lies inMy:

(M2 —v2)l" € (cofpuy, 2} -1') = (co{vy,va} -1') =

SinceM; is convey, it follows that

Mz = cof (1 — vi)l’, (K2 — v2)l'} C My

This equality for both sets is used to reformulate the gedomdifference:

ag(l)=an(l) = (ag(l) —g(HI) =(ah(l) —h(1)I) + £(1)l
= (co{p, o} ') =(co{v, v} - I') + T ()] = co{py — v, plo — v} - 1" + (1)
= co{(H —v)l' + F (DI, (2 — v2)l + £ (1)1}

Let us now calculate both endpoints of the line segment ygihy

(b —va)l' + £ = ((dg(ls 1)) = (dn(1: 1), 1)) -1+ (1)1 — (D)
((dg(l: =1"),1 >|'+<dg<l-—|’>l> )
(d (15 =), 1 4 (dn(1; 1), 1) 1)
1)~ dha —I)
<g< )17 = (c(1),11)) -1 +
(dg(1;1"),1') -1+ (dg(1;1),1) 1)
((dn(; 1)) -1+ (G0 17),1) 1)
dg(1;1") — ch(t;1")

H
—~ Q_

(k2 = v2)l"+ f (1) g(OHr = h(Dl
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This finally shows that

ag(1) =ah(1) = co{dg(l;—1") — dn(l; —1"),dg(1;1") — dn(1;1")} .
O

The next main theorem shows that the Mordukhovich subdifféal of f at 0 can be represented via visualiza-
tion parts from (18)—(19) of the directed subdifferential.

—

Theorem 3.13.Let f = g— h, where gh: IR> — IR are sublinear functions, and oA = 0 f(0) be the directed
subdifferential of f aD. Then,

amf(0) =Po(A)U [J Qar (Pu(AL(1) UbdNs (AL(1) ) (45)

|€/1

wherebd denotes the boundary of a setl®y and Q, (y) = R{, TEIZ(y) + ay(l) is the reprojection as in [3].

Proof. First of all, observe that by Proposition 3.1
omf(0)=0:f(0)u [ J (e f(I)ULimsupdr f(I —tI")ULimsupde f(1+tl) | | (46)
les t|0 t|0

wherel’ = R; €*. The proof consists of three parts:
Step 1: We will show that the positive part coincides with Enéchet subdifferential at= 0:

O T(0) = Po(A) (47)

Step 2: We will conclude that the reprojected positive pathe second term in (46):

QuiPu(AL(), if Pu(Ag(1)) # 0
oe (I 48
P = { 0, if Pu(AL(1)) = )
Step 3: We will prove the following equality for the reprodjed boundary points:
Limsupde f (I —tl') ULimsupdr f (I +t1') = Qz (bdPy (A (1)) UbdNy (Ay(1))) (49)
t|0 t0

Itis not difficult to see that Steps 1-3 together with (46)¢i@!5).
Step 1: For the Fréchet subdifferential, Lemma 2.2 yields

O t(0) = {v|(vl) < f(l) WIesA}. (50)
This equation can be compared with the definition of the pesjtart of the directed set:
P(A)={ve RZ|(vl) <ay(l) Y€} (51)

Sinceay(l) = g(l) —h(l) = f(l), from (50) and (51) we conclude (47).
Step 2: By Lemma 3.12 for all € .#7 we have

(1) = co{dg(l; —1") —dn(l;—1"),dg(I;1") —dn(I;1")} , if case 1 of Lemma 3.12 holds (52)
Fi() = 0, if the opposite inequality holds
where the notation (5) is again used.
At the same time, Lemma 3.10 yields for evéry .71
PL(AL() = Pr([{dg(1; 1) — dn(l;—1"), 1"}, (dg(1;1") — (151, 1)])
[ dg (1 =17y = dn(1; =1"),17), (dg(1;1") = dn(1;1"),1")] ,  if case 1 of Lemma 3.12 holds £3
o , if case 2 of Lemma 3.12 holds (53)

Observe that
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Qa1 ((dg(1;£1") —dn(1; £1"),1)) (54)
= R 1 5({dg(1; 1) — dn(1;£1"),1")) +@z(1)]
= RE, ((dg(1;£1") — dn(1; £1'), 1))+ £(1)]

= (dg(I;£1") = dn(1; 1), 1) -1+ (g(1) — h())!
= (dg(1; 1), 1) -1 4+ (D) — (A (1; 1), 1) -1 — h(D)I
= (dg(I; 1), 1) -1 4 (dlg(15 1), 1) -1

= {dn (15 1), 1) -V = (dn(l; 1), 1) -
= dg(I; 1) — dn(l; £1")

and hence

Qa2 {[{dg(l; =1") = dn(l; =1"),1"), (g (1;1) — dn(151"), I")]}
= co{dg(l;—1") — dn(l;—1"),dg(1;1") — dn(I;1")} - (55)

From (52), (53) and (55) the equation (48) follows.
Step 3: By Lemma 3.6

Limsupde f(1 £t1) = {dg(I; £I") —dn(l; £1")}, (56)
t10
sincel L I". Animmediate consequence of (53) and (54) is
2y § {dg(li=1") = da(l; —1"), dg(151) = da(1)}, i Pu(Ag(1) £0,
Q2 (bdPy(Ax(l))) = { J s J it PUAL()) 0. (57)

SinceN; (A (1)) = ©Py(—Ay (1)), the expression fa@y (bdNy(A¢(1))) can be obtained analogously:

o {dg(li=1) = dn(l; 1), dg (1) = dn(151)} . if Na(Aq(1)) £ 0,
QZ,I(ble(Al(l)))—{ 9 0 9 it Ny(Ay(1)) = 0 (58)

There are three possible cases (see [3, Proposition 3ithgr @ne of the setE’l(K{(l))) or Nl(Ki(l))) is empty
or both are singletons a®j(A1(1))) = N1(A1(1))). Together with (57) and (58) this yields

Qa1 (bdPy (A (1)) UbdNa (Aq(1))) = {dg(t;~1") = (1 1), dg(1:1") — ch(1; 1)} (59)
Now, (56) and (59) yield (49). O

The Mordukhovich superdifferential and symmetric sutstiitial off at O is represented via the directed st
differential in the following theorem. Besides isolatedrs from the reprojected lower dimensional positive p
of the directed subdifferential, the Mordukhovich supfedential forms the negative two- and one-dimensio
part in the visualization of the directed subdifferentidie positive parts are reflected by the Mordukhovich si
differential (see Theorem 3.13) so that the Mordukhoviahmetric subdifferential form the complete visualiz
tion of the directed subdifferential for DS functions.

—

Theorem 3.14.Let f = g— h, where gh: IR?> — IR are sublinear functions, and A = 9 f(0) be the directed
subdifferential of f a0. Then,

3 1(0) = N2(R)U | Qar (Nu(Ad(1)) UbdPy(As(1)) ) | (60)
le
90 £(0) = \u(d £(0)) . (61)

Proof. Apply Theorem 3.13 te-f = h—gand use [3, Proposition 3.8]:

(=10 =-01(0),  EPR(=A)=No(A)

—

SP(-A) = Na(B1)) . SNy(—AL(1) = Pu(AL(1)
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Together with (15), equation (60) follows immediately.
Since

Va(Ac(1) = Pu(Ac(1) UNy(Aa(1)) ,  Ma(A) C QoVa(Aa(1))
and (18) hold, the second equation (61) follows easily. a

Applying the previous Theorems 3.11, 3.13 and 3.14 to thectiznal derivative generalizes these results to the
class of general DC functions (which are not necessarilitigely homogeneous).

As a starting point, we will demonstrate that the directeudéffierential of the function ax coincides with the
one of its directional derivative evaluated at directiea 0.

Proposition 3.15.Let f = g— hwith g h: IR" — IR be convex functions. Then,

I[H(x))(0) = 9 (%) (62)

Proof. By Lemma 3.3, the convex subdifferentialgfx; ) in 0 coincides with the one @f(x):

a[d'(x;-)](0) =Y (0,99(x)) = dg(x)

The same is true for the convex functibisuch that
9 (x)](0) = In(01g (% )] (0)) = In(O[N (x-)](0)) = In(9g(X)) — In(N(x)) = 9 F(x) .
O

Since the Mordukhovich subdifferential of the directiodalivative may differ from the one for the function
itself (see Example 4.3) in contrary to the directed sulkdéihtial, the following results for the Mordukhovich
subdifferentials have to be formulated with the directiotherivative. The next theorem yields the connection
between outer limits of Fréchet subdifferentials and tineatied subdifferential.

Theorem 3.16.Let g h: IR? — IR be convex functions, and let=f g— h. Then the directed subdifferential =
—
(Ar(l),ax(l))1e.# Of f at x can be constructed via limits of&ahet normals as follows: for everyl.7; let

f2(1) = f'(x1) E{(I) = [m 2Ry (D™ (1) = /() m 2Ry (DT (1) — f'(x;)I)], (63)
where
D (I):=Limsupde f'(x;-)(I —tI"), D*(l) := Limsupde f'(x;-)(I +tl'),
t|0 t0
andl :=Rje".

Then,F = (Fy(1), fa(1))ic.5, coincides withA = 8 f(x).
Proof. Applying [10, Sect. I.3, Proposition 3.1], the directiodarivative
') =g (x1) - (xl)
is a DS representation. Hence, Proposition 3.15 and The8rehcan be applied. O

The next theorem for DC functions, in which we can drop theiaggion of positive homogeneity, could be
seen as the non-convex counterpart of the following resultdcally Lipschitz and directionally differentiable
functionin [19, Sect. 3] and [8, (35)]:

dci[f'(x-)](0) = Ampf(x) ,
wheredupf(x) is the Michel-Penot subdifferential df in x (see [8, 21]). In what follows the Mordukhovich

symmetric subdifferential for the directional derivatatexin direction 0 coincides with the Rubinov subdifferential
atx, i.e. its visualized directed subdifferential.

Theorem 3.17.Let f = g— h, where gh: IR? — IR are convex functions, and & — 3f(x) be the directed
subdifferential of f at x. Then,
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AT ())(0) = Po(A)U | Qs (Pe(AL(1) UbdNs(Au(1))) (64)
le

G [/06))(0) = Na(R) U | Qe (Nu(AL(1) UbdPL(AL(1))) (65)
|65/71

o011 06-)](0) = Va3 (). (66)

Proof. As in the proof of Theorem 3.16 the equality (62) of the diegcsubdifferential of’(x;-) in 0 and the one
of f(-) in x holds. The claimed equalities are proved by applying Thesrg.13 and 3.14. O

Remark 3.18All the lemmas starting from Lemma 3.3 could be adapted tocthrasex (instead of sublineat
situation. For this purpose, the function must be replacedshdirectional derivative, which is sublinear wit
respect to its second argument. E.g., Lemma 3.5 readstfeing only convex:

Limsupd[ (x;)](1 +t1") = Y(I',Y(1,0h(x))) .
t]0

4 Examples

For each of the presented examples we will first calculatertiiezally the Mordukhovich subdifferential an
superdifferential. Their union, the symmetric subdifferal is compared visually with the Rubinov subdifferenht
in [4].

We will frequently use Lemma 2.3 for evaluating the Fréechatdifferential which is a basic tool for calculatir
the Mordukhovich subdifferential with (13). Analogoushe proceed with the Fréchet superdifferential and (
in the same way to evaluate the Mordukhovich superdifféaent

The first example is governed by a parametdry which three different cases could be studied: the M
dukhovich subdifferential has nonempty interior={ 0.5), the Mordukhovich superdifferential has nonempty
terior (r = 2.0) and both have empty interior £ 1.25). This corresponds to nonemptiness of the positive |
resp. of the negative part as well as the mere presence ofixeglftype part in the directed subdifferential.

Example 4.1 ([4, Example 5.7])et f =g—h, where

g(x) = x|+ |x2|, h(X)=r\/x¢+x3=r|X|, r>0.

To evaluate the Mordukhovich lower/upper/symmetric stibcéntial of f at zero directly, we first need to calcula
the Fréchet subdifferentials éfat zero and in its neighborhood.
A. The Fréchet subdifferential at0. Observe that can be represented as follows:

f(X) =g(X) —r/x¢+x2 = g(x) + min (W,x) = min (g(x) + (W, X)) .

[[wl|=r [[wl|=r

Let
bw(X) = (W, x) +9(X) ,
then

f(x) = Hm‘igr Pw(X) .

Sincef’(0;1) = f(l), the formula (9) for the Fréchet subdifferential holds:

FF(0)= [ (99(0) +w) (67)

[[w|=r
It is not difficult to see that
(?g(O) = CO{(l, 1)v (_17 1)7 (17 _1)5 (_17 _1)} = [_1a 1]2 .

We are going to show that
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—1+4r1-r]?, r<1,
aFf(O)_{([D | r>1. (68)

Letu € dr (0). For everyw, |w|| =r, there existy € [-1,1]2 by (67) such that the coordinates satisfy
u=vi+w, i=12.
Thisyields—1+r <y < 1-r, and hence
Oef(0)C[-14r1-r2, ifr<i, (69)
and
orf(0)=0, ifr>1. (70)

To show the inclusion opposite to (69), consider an arhjitnesuch that-1+r < u; < 1—r. For everyw, |w|| =T,
we setv:=u—w. Thenv € [-1,1]2 is valid as well as

O f(0)D[-14r1—r]2. (71)

Now, (68) follows from (69)—(71).
B. The Fréchet superdifferential at0. Observe that

f(x) = max (V',x) — max(w,x
> i:l‘...,4< ) \|w\|:r< )

= max {(vi,x) - max(w,x>} =— min {max(w,x) —(vi,x)} :

i=1,..4 (|w||=r i=1,...4 |lw=r

where
vi=(1,1), vV=(1,-1), vV*=(-11), V'=(-1-1).

Let _

¢i (X) = maX<Wa X> - <VI3X> :

[Iwl|=r
It is not difficult to observe that _ _
9¢i(x) =B (0) -V =B, (—V'),

whereB; (m) = {x|||x—m|| = r}. Using (10), the Fréchet superdifferential can be catedlas

4 4

O ()= Br(~v) = Br(v). (72)

C. The Fréchet sub- and superdifferentials around). For everyx # 0 the functionh is smooth, hence

O f(x) = df(x) = dg(x) — h'(x) = dg(x) Vx#0.

r X
]

For the Fréchet superdifferential in all points: 0 we have

gx) — rH_iH , If gis differentiable ak,
Ffx)=10, otherwise, sincg is not Fréchet superdifferentiable
due to [18, Proposition 1.3]

Observe that for # 0, the subdifferential of is given by

{(sgn(x1),sgnx2))},  x1#0,%2 # 0,
co{(1,1),(L,~1)},  x.>0,% =0,
dg(x) = q cof{(1,1),(-1,1)}, x1=0,% >0,
CO{(—:I.,—].),(—171)}7 X1 < 0,% =0,
CO{(—:I.,—].),(].,—l)}7 X1 =0,% < 0.
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Therefore,
{(sgr(xa),sgn(xz)) = r5r } - X1 # 0,%2 # 0,
CO{(l,l),(l,—l)}—{rﬁ}, X1>0,X2:O,
aFf(X): Co{(lal)a(_lvl)}_{rﬁ}v X]_:O,X2>O, (73)
CO{(_17_1)1(_171)}_{”|_§H} ) X1<0,X2:O,
CO{(_17_1)1(11_1)}_{rH_§H} ’ X1:0,X2<O,
e {(s9rx),S9M0) — T} X107
+ _ Sgn Xy ),Sgnxz _rm y X1 07X2 07
9 1) = {(Z), X1 = 0,x # 0. (74)
It is not difficult to observe that for evetye S; with |11, # 0, we have
Limsupde f(1 +t1") = f(1), Limsupdd f(I+tl")y=a2 (1) . (75)
t]0 tl0
by applying (73) and (74). Fdr= (1,0) andl’ = (0,1)
. , . n , . I +tl’
Limsupdr f(l +t1") = Limsupdg f(I +tlI') = Limsup< (1,1) —r
t|0 t10 t10 [T+t
. r rt
= Limsu 1-— ,1—
tlo p{< [T+t |||+tv|>}
= {(1_r71)} .
The corresponding outer limits for the remaining direcsican be evaluated analogously. We have
{1-r1)}, 1=(1,0),1"=(0,1),
{(1_ra_1)}7 |:(170)7 |/—(0,1),
{(1?1_r)}7 IZ(Ovl)v |/—(1,0),
. . -1,1-r)}, 1=(0,1), I"=(-1,0),
Limsupde f (I +tl") = Limsupdg f (1 +tl") = {( 76
t|0 p - ( ) t|0 p F ( ) {(_1+r71)}7 |:(—1,0), |/:(1,0), ( )
{(-14r-1)}, I=(-1,0),I"=(-1,0),
{(17_1+r)}7 IZ(Ov_l)a |/:(1,0),
{(_13_1+r)}7 I :(07_1)a ll:(_lvo)

D. The Mordukhovich subdifferentials at 0. To finish the evaluation of the Mordukhovich subdifferehtvee
use Proposition 3.1.
From (68), (73), (75) and (76) the Mordukhovich subdiffdialis given by

om f(0) = d f(0) ULimsupdre f(x)
x—0,
X#0

={ul-14r<y<1-ri=12}
UH(L,1)} +{w][[w] =, wy <0, w, < 0}]
OU{(=1,0)} + {w| W] =7, w1 > 0, w, < O}]
O[{(L, =)} + {w| W] =7, w1 <0, wp > O}]
U (=1, ~D)} + {wl[lw| =, wy >0, wp > 0}]
uco{(1-r,1),(1—r,-1)}
uco{(-1,1-r),(1,1—r)}

uco{(—1+r,-1),(-1+r,1)}

uco{(—1,—-1+r),(1,—1+r)}.

Analogously, from (72) and (74)—(76)
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9y £(0) = 7 f(0) ULimsupds f(x)
x—0,
X#0

= () Br(W¥)
u=1
UL D} +{wllwl] =, wp <0, wp < 0}]
(=11} + {wl[lwl| =1, wy > 0, w, < 0}]
UL =)} + {wl[lwl[ =1, wy <O, w, > 0}]
UH(=L, =D} + {w[[w] =1, wi > 0, w, > 0}] .

The Mordukhovich subdifferentials dfat O for the values of = 0.5, 1.25 and 20 are plotted in Figs. 1-3.

The corresponding series for the visualization of the d@@subdifferentials with the same valuesradre
plotted in Fig. 4, see also [4, Example 5.7] for further exldons. The plots coincide with the pictures of the
Mordukhovich symmetric subdifferentials. Since the stfiedéntials of the convex functiorgsandh are known,
the Rubinov subdifferential could be easily calculatedhastisualization of the difference of these embedded
convex sets.

The arrows in Fig. 4 indicate outer normals to the directeghferting faces”. They also form the parametrizing
directions in (16) for the directed subdifferential. Thespiwe part in the left picture of Fig. 4 is a convex set. It
is coloured in gray and only outer normals are attached tootsdary. The other non-convex part belongs to the
mixed-type part. Similarly for the right picture in Fig. 4h& gray convex subset is the negative part and has only
inner normals attached to its boundary. The positive ancthagpart in the middle picture are empty and the
Rubinov subdifferential consists only of the mixed-typetpldote that the unique “supporting points” belong both
to the Mordukhovich subdifferential and superdifferehtiae to Theorems 3.13 and 3.14, since for such a point
the lower dimensional positive and negative parts coingitle the point itself.

Example 4.2 ([23, Example 2.49])et
f(x1,%2) 1= [|xa| +Xe| -

Straightforward computation of the Mordukhovich subdiffietials off (see [23], Example 2.49) gives

om f(0,0) = co{(0,0),(1,1),(—1,1)} Uco{(0,0),(—1,—1)} Uco{(0,0),(1,-1)} ,
aI\J/Tf(Ovo) = CO{(lv_l)a(_lv_l)}U{(lv 1)7(_15 1)} )

and
39 (0,0) = dwf(0,0)Uco{(1,-1),(-1,-1)} .

Figs. 5-6 show the comparison between the Mordukhovichdtmpper/symmetric subdifferential with the Rubi-
nov subdifferential. The calculuation of the latter is lthea one DC representation 6f e.g.

f(X) = max{2x1 + 2%z, —2x1 + 2%p,0} — max{Xy + Xo, —X1 + X2} .

As in Example 4.1, one can see that the four unique directgatrting points{+1, +1) (see Fig. 5) are present
both in the Mordukhovich subdifferential and superdiffeial.

The only segment d¢d—1,—-1),(1,—1)} in the Mordukhovich superdifferential may be recognizeshfrthe
Rubinov subdifferential in Fig. 6 as coming from a negatiaét pf a directed interval, since there are outer normals
attached to its ends (see Fig. 6) where the projections anéippinside the interval, contrary to all the segments
in the Mordukhovich subdifferential.

Also the Rubinov subdifferential (the visualization of tb&ected one in Fig. 6) coincides with the Mor-
dukhovich symmetric subdifferential, according to Theon/& 14.
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Fig. 1 Mordukhovich subdifferentials of if r = 0.5: a) dy f (0); b) dy; f (0); c) 3%1(0)

X, X X2
1 1 1
-1 1 X -1 1 X -1 1 x
1 -1 1
a) b) )

Fig. 2 Mordukhovich subdifferentials of if r = 1.25:a) dy f(0); b) 9y T (0); ¢) 85 f (0)

- X - I x

T
=

1 -1 -1
a) b) )

Fig. 3 Mordukhovich subdifferentials of if r = 2: a) dy f(0); b) dy; T (0); ¢) 85 f (0)

2 2 2
15 15 15
1 . o 1 e 1
05 Ty 1 %T 05 05
T 1
° 9 r 0 1 <r> 7 0
-05 r T 1 -05 -05
-1 a 5 -1 L -1
-15 -15 -15
= -1 0 1 2 E) -1 0 1 2 E -1 0 1 2
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Fig. 4 Visualization of directed subdifferential for Example 4ot a)r = 0.5,b) r =1.25,c)r =2.0
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A X, A X, A X,
[ ) 1 [ ]
1 1 1
-1 1 X -1 1 x -1 Xy
1 -1 -1
a) b) c)

Fig. 5 Mordukhovich subdifferentials for Example 42 dy f (0), b) a5 f(0), ¢) 43 f (0)

Ty T 4

-15 -1 -05 0 0.5 1 15

Fig. 6 Visualization of directed subdifferential for Example 4.2

The last example shows the difference between Theorem#331#3and 3.17. In this example the function
f is DC, but not positive homogeneous. So we cannot expectibdtave equality between the Mordukhovich
symmetric subdifferential and the Rubinov one (the visaaion of the directed subdifferential) as in Theorem

3.14.
Example 4.3 ([10, Sect. lll.4, Example 4.2] and [4, Exampl§}¥ Let f = g— h, where
9(x) = max{2x, X + %},  h(x) = max{0,x{ + X} .

Together with
$1(X) = max{ 2%, ¢ + X2} ,  $2(x) = max{0,x; — X3}

it follows that

f(X) = max{2x2, X5 4 X2} +min{0, —x& — o} = min{max{2xz, 4 + x2},max{0,x, — X3} }

= min{¢1(x), $2(x)} .
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We have
{(0,2)}, if Xp > %2,
091(x) = < {(2x,1)}, if Xo < X% ,
c0{(0,2),(2x1,1)} , if Xo=x2,
{(=2x1,1)}, if Xp > %2,
d92(x) = < {(0,0)}, if Xp < %2,

co{(0,0),(—2x1,1)}, ifxp=x2.
It is not difficult to observe that the set of active indicesah x, i.e.

{1}, if Xp < —x2,
1(x) = {i e {L2}|f(x) = i(x)} = { {2}, if x> —x§
{12}, ifxp=—x2.

From Lemma 2.3 follows that

0¢1(X) s if Xp < —X% ,
O f(x) =< dpa(x), if xp > —x2,

0P1(X)NIPa(x),  ifxp=—x2.
{(0,0)}, if —xF <X < X2,
{(=2x1,1)}, if Xp > %2,

~J{(2x, 1)}, if Xop < —x2,

© ) co{(0,0),(—2x,1)},  ifx2=x,x1,% #0,
0, if Xo=—Xx2,%1,% #0,
{(0,1)}, if q=% =0.

The evaluation of the outer limit in (13) is straight forward
ow f(0) = Limsup, ok f(x) = co{(0,0),(0,1)} .
Sincef is Fréchet differentiable, the Rubinov subdifferentiglgs just the gradient (see [4]):
Va( 0 £(0)) ={(0,1)}

which is a strict subset of the Mordukhovich subdiffereingae Fig. 7.

15p

0.5¢

-05 . ,
-0.5 0 0.5

Fig. 7 Mordukhovich and Clarke subdifferential for Example 4.3
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Let us try to apply Theorem 3.17. The formula for the diretéibderivatives of a DC function is proved in [10,
Sect. 1.3, Proposition 3.1]:

') =g (x1) - (xl)
Since the directional derivatives gfandh involve a maximum, we set

=20, GX)=x+X,
=0, ha(X) = g2(X)

ga(X
hl (X

NOZNa

and apply [10, Sect. I.3, Proposition 3.1]:

g(x1) = maxgi(xl), lg(x)={i€{1,2}|g(x)=ai(x)},

iclg(x)
H(xl) = rr|1&(1>§ hioxl),  Ih(x)={ie{L2}|h(x)=hi(X)}.
lelp(X
Now,
d;(x1) = Oga ()l = (0,2)- (1) = 22, if x> %2,
gl = gh(x1) =0l = (2,1)- (1) =2ali+1l2,  if xp <,
max{g;(x1),9,(x 1)} = max{2l,, 2x1l1 + 12} , if Xo=x2,
hy (1) = Oha (1 = (0,0)- (1) =0, if xp < =&,
Wl = $ ol = Oha()l = (2,1)- () =2l +12,  ifxe> 3,
max{h, (x;1),h,(x 1)} = max{0,2xql1 + 12} , if xp = —x2.

Since we fixx = 0, we havex; = —x2 andx, = X2 and hence,

/(051) = max{2l2,2:0-l1 + 12} — max{0,2-0-l1 +1o} = max{2lz, |2} — max(0, I}
= ly+max{l,0} —max0,l,} =1,

The functionf’(0;-) is continuously differentiable with respectliohence strict differentiable by [7, Corollary to
Proposition 2.2.1]. One can apply [7, Proposition 2.2.43ttow

oupf(0) = dci[f'(0;)](0) = {01 f'(0;)(0)} = {(0, 1)}

which coincides with the Rubinov subdifferential.

A similar reasoning shows that the Fréchet subdifferéati@ superdifferential of the directional derivative co-
incides with the gradient of’(0;-) with respect td in any directionn by [18, Proposition 1.3]. Hence, the
Mordukhovich subdifferential and the Mordukhovich suptedential also equal to the poiri®, 1) due to (14).

5 Conclusions

As we have shown in this paper, the connection between thddkbiovich subdifferential/superdifferential and the
Rubinov subdifferential may provide substantial inforinatrelated to their computing and in their applications.
This relation will be investigated and explored in more deta our further research. Especially, we are currently
working on the extension of our results from the class of Difions to quasidifferentiable functions and on their
application to quasidifferential calculus. Another foofifuture research will be the case of dimension higher than
two.
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