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Mathematical Institute, University of Bayreuth, 95440 Bayreuth, Germany
nils.altmueller, lars.gruene, karl.worthmann@uni-bayreuth.de

Summary. In this paper we investigate the performance of unconstrained nonlinear
model predictive control (NMPC) schemes, i.e., schemes in which no additional
terminal constraints or terminal costs are added to the finite horizon problem in
order to enforce stability properties. The contribution of this paper is twofold: on
the one hand in Section 3 we give a concise summary of recent results from [7, 3, 4]
in a simplified setting. On the other hand, in Section 4 we present a numerical case
study for a control system governed by a semilinear parabolic PDE which illustrates
how our theoretical results can be used in order to explain the differences in the
performance of NMPC schemes for distributed and boundary control.

1 Introduction

Model predictive control (MPC) is a well established method for approxi-
mating the optimal control of linear and nonlinear systems [1, 8, 9]. MPC
approximates the optimal solutions of in general computationally intractable
infinite horizon optimal control problems by the iterative solution of finite
horizon problems, the so called receding horizon strategy. This interpretation
of MPC immediately leads to the question of how good the performance of
the MPC scheme is compared to the original infinite horizon optimization cri-
terion. Since infinite horizon problems are often formulated in order to obtain
stabilizing feedback laws, another important question is whether the resulting
MPC feedback law will still stabilize the system.

In this paper we investigate these issues for so called unconstrained non-
linear MPC (NMPC) schemes. Here unconstrained refers to those terminal
constraints or terminal costs which are added to the finite horizon problem in
order to enforce stability properties; other constraints like, e.g., state and con-
trol constraints motivated by physical considerations can easily be included
in our analysis although for simplicity of exposition we do not elaborate on
this aspect in this paper and refer to, e.g., [9] for an extensive treatment of
feasibility issues. Such unconstrained schemes are appealing in many ways, cf.
the discussion at the end of the introductory Section 2.
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The contribution of this paper is twofold: on the one hand in Section 3 we
give a concise summary of recent results from [3, 4, 7] in a simplified setting,
restricting the reasoning to the special case of exponential controllability and
classical NMPC feedback laws. For an extended setting including networked
control systems, finite time controllability and additional weights in the cost
functional we refer to [3, 4] and [5]. On the other hand, in Section 4 we present
a numerical case study for a control system governed by a semilinear parabolic
PDE. This case study illustrates how our theoretical results can be used in
order to explain the differences in the performance of NMPC schemes for
distributed and boundary control.

2 Setup and Preliminaries

We consider a nonlinear discrete time control system given by

x(n + 1) = f(x(n), u(n)), x(0) = x0 (1)

with x(n) ∈ X and u(n) ∈ U for n ∈ N0. Here the state space X and the
control value space U are arbitrary metric spaces with metrics denoted by
d(·, ·). We denote the space of control sequences u : N0 → U by U and the
solution trajectory for given u ∈ U by xu(·). State and control constraints can
be incorporated by replacing X and U by appropriate subsets of the respective
spaces, however, for brevity of exposition we will not address feasibility issues
in this paper.

A typical class of such discrete time systems are sampled–data systems in-
duced by a controlled — finite or infinite dimensional — differential equation
with sampling period T > 0 where the discrete time control value u(n) cor-
responds to the constant control value uc(t) applied in the sampling interval
[nT, (n + 1)T ).

Our goal is to minimize the infinite horizon cost functional J∞(x0, u) =∑∞
n=0 `(xu(n), u(n)) with running cost ` : X × U → R+

0 by a static state
feedback control law µ : X → U which is applied according to the rule

xµ(0) = x0, xµ(n + 1) = f(xµ(n), µ(xµ(n))). (2)

We denote the optimal value function for this problem by V∞(x0) := infu∈U
J∞(x0, u). The motivation for this problem stems from stabilizing the system
(1) at a fixed point, i.e., at a point x? ∈ X for which there exists a control
value u? ∈ U with f(x?, u?) = x? and `(x?, u?) = 0. Under mild conditions on
` it is known that the optimal feedback for J∞ indeed asymptotically stabilizes
the system with V∞ as a Lyapunov function, see, e.g., [6].

Since infinite horizon optimal control problems are in general computation-
ally infeasible, we use a receding horizon NMPC method in order to compute
an approximately optimal feedback law. To this end, we consider the finite
horizon functional
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JN (x0, u) =
N−1∑
n=0

`(xu(n), u(n)) (3)

with optimization horizon N ∈ N≥2 and optimal value function VN (x0) :=
infu∈U JN (x0, u). By minimizing (3) over u ∈ U we obtain an optimal control
sequence1 u?(0), u?(1), . . . , u?(N − 1) depending on the initial value x0. Im-
plementing the first element of this sequence, i.e., u?(0), yields a new state
xu?(1, x0) for which we redo the procedure, i.e., at the next time instant we
minimize (3) for x0 := xu?(1, x0). Iterative application of this procedure pro-
vides a control sequence on the infinite time interval. A corresponding closed
loop representation of the type (2) is obtained as follows.

Definition 1. For N ≥ 2 we define the MPC feedback law µN (x0) := u?(0),
where u? is a minimizing control for (3) with initial value x0.

In many papers in the (N)MPC literature additional stabilizing terminal con-
straints or terminal costs are added to the optimization objective (3) in
order to ensure asymptotic stability of the NMPC closed loop despite the
truncation of the horizon (see, e.g., the monograph [9] for a recent account
of this theory). In contrast to this approach, here we investigate (3) with-
out any changes. This is motivated by the fact that this “plain” NMPC
scheme is the most easy one to implement and appears to be predominant
in practical applications, cf. [8]. Another reason appears when looking at
the infinite horizon performance of the NMPC feedback law µN given by
J∞(x0, µN ) :=

∑∞
n=0 l(xµN

(n), µN (xµN
(n))). As we will see, under a suit-

able controllability condition for NMPC without stabilizing constraints we
can establish an upper bound for this value in terms of the optimal value
function V∞(x0), which is in general not possible for schemes with stabilizing
constraints.

3 Performance and stability analysis

In this section we summarize the main steps of the stability and suboptimality
analysis of unconstrained NMPC schemes from [3, 4, 7] in a simplified setting.
The cornerstone of our analysis is the following proposition which uses ideas
from relaxed dynamic programming.

Proposition 1. Assume there exists α ∈ (0, 1] such that for all x ∈ X the
inequality

VN (x) ≥ VN (f(x, µN (x))) + α`(x, µN (x)) (4)

holds. Then for all x ∈ X the estimate

1 For simplicity of exposition we assume that a minimizing control sequence u?

exists for (3). However, given that in this abstract formulation U may be infinite
dimensional we do not assume uniqueness of u?.
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αV∞(x) ≤ αJ∞(x, µN ) ≤ VN (x) ≤ V∞(x) (5)

holds. If, in addition, there exist x? ∈ X and K∞-functions2 α1, α2 such that
the inequalities

`?(x) := min
u∈U

`(x, u) ≥ α1(d(x, x?)) and VN (x) ≤ α2(d(x, x?)) (6)

hold for all x ∈ X, then x? is a globally asymptotically stable equilibrium for
(2) with µ = µN with Lyapunov function VN .

Proof. See [7, Prop. 2.2] or [3, Prop. 2.4] and [3, Theorem 5.2]. ut

In order to compute α in (4) we use the following controllability property:
we call the system (1) exponentially controllable with respect to the running
cost ` if there exist constants C ≥ 1 (overshoot bound) and σ ∈ [0, 1) (decay
rate) such that

for each x ∈ X there exists ux ∈ U with

`(xux(n, x), ux(n)) ≤ Cσn`?(x) for all n ∈ N0.
(7)

This condition implies

VN (x) ≤ JN (x, ux) ≤
N−1∑
n=0

Cσn`?(x) = C
1− σN

1− σ
`?(x) =: BN (`?(x)). (8)

Hence, in particular (6) follows for α2 = BN ◦ α3 if the inequality

α1(d(x, x?)) ≤ `?(x) ≤ α3(d(x, x?)) (9)

holds for some α1, α3 ∈ K∞ and all x ∈ X. Now consider an arbitrary x ∈ X
and let u? ∈ U be an optimal control for JN (x, u), i.e., JN (x, u?) = VN (x).
Note that by definition of µN the identity xu?(1, x) = f(x, µN (x)) follows.

For the following lemma we abbreviate

λn = `(xu?(n, x), u?(n)), n = 0, . . . , N − 1 and ν = VN (xu?(1, x)). (10)

Lemma 1. Assume (7) holds. Then the inequalities

N−1∑
n=k

λn ≤ BN−k(λk) and ν ≤
j−1∑
n=0

λn+1 + BN−j(λj+1) (11)

hold for k = 0, . . . , N − 2 and j = 0, . . . , N − 2.

Proof. See [3, Section 3 and Proposition 4.1]. ut
2 A continuous function α : R+

0 → R+
0 is said to be of class K∞ if it is strictly

increasing and unbounded with α(0) = 0.
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The inequalities from Lemma 1 now lead to the following theorem.

Theorem 1. Assume that the system (1) and ` satisfy the controllability con-
dition (7). Then inequality (4) holds for all x ∈ X with

α = min
λ0,...,λN−1,ν

N−1∑
n=0

λn − ν (12)

subject to the constraints (11), λ0 = 1 and λ1, . . . , λN−1, ν ≥ 0.

Proof. See [3, Section 4]. ut

The consequence of this theorem for the performance of the NMPC closed
loop, i.e., (2) with µ = µN , is as follows: if (1) and ` satisfy (7) and (9), then
global asymptotic stability and the suboptimality estimate (5) are guaranteed
whenever α from (12) is positive. In fact, regarding stability we can show more:
the construction of an explicit example yields that whenever α from (12) is
negative, then there is a system (1) and an ` which satisfy (7) and (9) but for
which (2) with µ = µN is not asymptotically stable, cf. [3, Theorem 5.3].

The key observation for computing an explicit expression for α in (4) is
that the linear program in Theorem 1 can be solved explicitly.

Theorem 2. Under the assumptions of Theorem 1 the value α from (12) is
given by

α = 1−
(γN − 1)

N∏
i=2

(γi − 1)

N∏
i=2

γi −
N∏

i=2

(γi − 1)
with γi = C

1− σi

1− σ
. (13)

Proof. See [4, Theorem 5.3]. ut

The explicit formula thus derived for α allows us to visualize the impact
of the parameters C, σ in (7) on the value of α in (4). As an example, Figure
1 shows the regions in the C, σ-plane for which α > 0 and thus asymptotic
stability holds for optimization horizons N = 2, 4, 8, and 16. Note that since α
is increasing in N the stability region for N is always contained in the stability
region for all Ñ > N .

Figure 1 clearly shows the different roles of the parameters C and σ in (7):
While for fixed C the minimal stabilizing N for varying σ is usually larger
than 2, for fixed σ it is always possible to achieve stability with N = 2 by
reducing C. Thus, the overshoot bound C plays a decisive role for the stability
and performance of NMPC schemes.

An important observation in this context is that C and σ do not only
depend on the control system but also on the running cost `. Hence, ` can be
used as a design parameter in order to “tune” C and σ with the goal to obtain
good closed loop performance with small control horizons N by reducing C as
much as possible. For examples see, e.g., [3] and [2] and the following section in
which we will illustrate and explain this procedure for a semilinear parabolic
PDE control system.
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a! 0

N=2

N=4

N=8

N=16

s
0,0 0,2 0,4 0,6 0,8 1,0

C

1

2

3

4

5

6

7

Fig. 1. Stability regions for various optimization horizons N depending on C and
σ from (7)

4 A numerical case study

In practice, for many complex control systems and associated running cost
functions ` it is difficult if not impossible to exactly determine the constants
C and σ. However, by means of a controlled semilinear parabolic PDE, in
this section we demonstrate that an exact computation of these constants is
not necessarily needed in order to understand differences in the NMPC closed
loop behavior for different running costs `.

The first model we are considering is the semilinear parabolic PDE

yt(t, x) = νyxx(t, x)− yx(t, x) + µ
(
y(t, x)− y(t, x)3

)
+ u(t, x) (14)

with distributed control u ∈ L∞(R×Ω, R) and Ω = (0, 1) and real parameters
ν = 0.1, µ = 10. Here yt and yx denote the partial derivatives with respect
to t and x, respectively and yxx denotes the second partial derivative with
respect to x.

The solution y of (14) is supposed to be continuous in Ω and to satisfy
the boundary and initial conditions

y(t, 0) = 0, y(t, 1) = 0 for all t ≥ 0 and y(0, x) = y0(x) for all x ∈ Ω (15)

for some given continuous function y0 : Ω → R with y0(0) = y0(1) = 0.
Observe that we have changed notation here in order to be consistent with

the usual PDE notation: x ∈ Ω is the independent space variable while the
unknown function y(t, ·) : Ω → R in (14) is the state now. Hence, the state
is now denoted by y (instead of x) and the state space of this PDE control
system is a function space, more precisely the Sobolev space H1

0 (Ω), although
the specific form of this space is not crucial for the subsequent reasoning.

Figure 2 shows the solution of the uncontrolled system (14), (15), i.e.,
with u ≡ 0. For growing t the solution approaches an asymptotically stable
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steady state y∗∗ 6= 0. The figure (as well as all other figures in this section)
was computed numerically using a finite difference scheme with 50 equidistant
nodes on (0, 1) (finer resolutions did not yield significantly different results)
and initial value y0 with y0(0) = y0(1) = 0, y0|[0.02,0.3] ≡ −0.1, y0|[0.32,0.98] ≡
0.1 and linear interpolation in between.
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Fig. 2. Solution y(t, x) of (14), (15) with u ≡ 0.

By symmetry of (14) the function −y∗∗ must be an asymptotically stable
steady state, too. Furthermore, from (14) it is obvious that y∗ ≡ 0 is another
steady state, which is, however, unstable. Our goal is now to use NMPC in
order to stabilize the unstable equilibrium y∗ ≡ 0.

To this end we consider the sampled-data system corresponding to (14)
with sampling period T = 0.025 and denote the state of the sampled-data
system at the n-th sampling instant, i.e., at time nT by y(n, ·). For penalizing
the distance of the state y(n, ·) to y∗ ≡ 0 a popular choice in the literature is
the L2-functional

`(y(n, ·), u(n, ·)) = ‖y(n, ·)‖2L2(Ω) + λ‖u(n, ·)‖2L2(Ω) (16)

with λ = 0.1 which penalizes the mean squared distance from y(n, ·) to y∗ ≡ 0.
Another possible choice of measuring the distance to y∗ ≡ 0 is obtained

by using the H1 norm for y(n, ·) in `, i.e,

`(y(n, ·), u(n, ·)) = ‖y(n, ·)‖2L2(Ω) + ‖yx(n, ·)‖2L2(Ω) + λ‖u(n, ·)‖2L2(Ω), (17)

which in addition to the L2 distance (16) also penalizes the mean squared
distance from yx(n, ·) to y∗x ≡ 0. Figures 3 and 4 show the respective NMPC
closed loop solutions with optimization horizons N = 3 and N = 11.3

Figure 3 indicates that for N = 3 the NMPC scheme with ` from (16) does
not stabilize the system at y∗ ≡ 0 while for ` from (17) it does. For (16) we
need an optimization horizon of at least N = 11 in order to obtain a stable

3 The computations were performed with PCC, http://www.nonlinearmpc.com/
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Fig. 3. NMPC closed loop for (14) with N = 3 and ` from (16)(left) and (17)(right)
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Fig. 4. NMPC closed loop for (14) with N = 11 and ` from (16)(left) and (17)(right)

closed loop solution, cf. Figure 4. For ` from (17) the right images in Figure
3 and 4 show that enlarging the horizon does not improve the solution.

Using our theoretical results we can explain why ` from (17) performs much
better for small horizons N . For this example our controllability condition (7)
reads

`(y(n, ·), u(n, ·)) ≤ Cσn`?(y(0, ·)). (18)

For ` from (16) this becomes

‖y(n, ·)‖2L2(Ω) + λ‖u(n, ·)‖2L2(Ω) ≤ Cσn‖y(0, ·)‖2L2(Ω). (19)

Now in order to control the system to y∗ ≡ 0, in (14) the control needs to
compensate for yx and µ

(
y(t, x)− y(t, x)3

)
, i.e., any control steering y(n, ·)

to 0 must satisfy

‖u(n, ·)‖2L2(Ω) ≈ ‖yx(n, ·)‖2L2(Ω) + ‖µ
(
y(n, ·)− y(n, ·)3

)
‖2L2(Ω). (20)

This implies — regardless of the value of σ — that the overshoot bound C in
(19) is large if ‖yx(n, ·)‖2L2(Ω) >> ‖y(0, ·)‖2L2(Ω) holds, which is the case in our
example.

For ` from (17) inequality (18) becomes
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‖y(n, ·)‖2L2(Ω) + ‖yx(n, ·)‖2L2(Ω) + λ‖u(n, ·)‖2L2(Ω)

≤ Cσn
(
‖y(0, ·)‖2L2(Ω) + ‖yx(0, ·)‖2L2(Ω)

)
. (21)

Due to the fact that ‖yx(0, ·)‖2L2(Ω) >> ‖y(0, ·)‖2L2(Ω) holds in our example,
the approximate equation (20) does not imply large C in (21), which explains
the considerable better performance for ` from (17).

The fact that the H1-norm penalizes the distance to y∗ ≡ 0 in a “stronger”
way might lead to the conjecture that the better performance for this norm
is intuitive. Our second example shows that this is not necessarily the case.
This example is similar to the equation (14), (15), except that the distributed
control is changed to Dirichlet boundary control. Thus, (14) becomes

yt(t, x) = νyxx(t, x)− yx(t, x) + µ
(
y(t, x)− y(t, x)3

)
, (22)

again with ν = 0.1 and µ = 10, and (15) changes to

y(t, 0) = u0(t), y(t, 1) = u1(t) for all t ≥ 0, y(0, x) = y0(x) for all x ∈ Ω

with u0, u1 ∈ L∞(R, R). The cost functions (16) and (17) change to

`(y(n, ·), u(n, ·)) = ‖y(n, ·)‖2L2(Ω) + λ(u0(n)2 + u1(n)2) (23)

and

`(y(n, ·), u(n, ·)) = ‖y(n, ·)‖2L2(Ω) +‖yx(n, ·)‖2L2(Ω) +λ(u0(n)2 +u1(n)2), (24)

respectively, again with λ = 0.1.
Due to the more limited possibilities to control the equation the problem

obviously becomes more difficult, hence we expect to need larger optimization
horizons for stability of the NMPC closed loop. However, what is surprising
at the first glance is that ` from (23) stabilizes the system for smaller horizons
than ` from (24), as the numerical results in Figure 5 confirm.
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Fig. 5. NMPC closed loop for (22) with N = 15 and ` from (16)(left) and (17)(right)
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A closer look at the dynamics reveals that we can again explain this be-
haviour with our theoretical results. In fact, steering the chosen initial solution
to y∗ = 0 requires u1 to be such that a rather large gradient appears close
to 1. Thus, during the transient phase ‖yx(n, ·)‖2L2(Ω) becomes large which in
turn causes ` from (24) to become large and thus causes a large overshoot
bound C in (18). In ` from (23), on the other hand, these large gradients are
not “visible” which is why the overshoot in (18) is smaller and thus allows for
stabilization with smaller N .

5 Conclusions

In this paper we have shown how performance of NMPC schemes can be
analyzed on basis of a controllability condition involving both the system
dynamics and the cost function used in the optimization. The example of a
semilinear parabolic PDE with distributed and boundary control illustrates
how our theoretical results can be used for analyzing concrete systems.
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