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Abstract: This article presents a 125-day experiment to investigate model predictive heat pump
control. The experiment was performed in two parallel operated systems with identical components
during the heating season. One of the systems was operated by a standard controller and thus
represented a reference to evaluate the model predictive control. Both test rigs were heated by
an air-source heat pump which is influenced by real weather conditions. A single-family house
model depending on weather measurement data ensured a realistic heat consumption in the test
rigs. The adapted model predictive control algorithm aimed to minimize the operational costs of the
heat pump. The evaluation of the measurement results showed that the electrical energy demand of
the heat pump can be reduced and the coefficient of performance can be increased by applying the
model predictive controller. Furthermore, the self-consumption of photovoltaic electricity, which is
calculated by means of a photovoltaic model and global radiation measurement data, was more than
doubled. Consequently, the energy costs of heat pump operation were reduced by 9.0% in comparison
to the reference and assuming German energy prices. The results were further compared to the
scientific literature and short-term measurements were performed with the same experimental setup.
The dependence of the measurement results on the weather conditions and the weather forecasting
quality are shown. It was found that the duration of experiments should be as long as possible for a
comprehensive evaluation of the model predictive control potential.

Keywords: building energy systems; building energy management; model predictive control (MPC);
heat pump; HVAC systems; PV self-consumption

1. Introduction

In developed countries, residential and commercial buildings cause up to 40% of the total final
energy consumption. Heating, ventilation, and cooling (HVAC) energy consumption is showing
particular growth [1]. In order to counteract this development and to reduce the environmental impact
of HVAC systems, efficient control methods are necessary [2]. The impact of control systems on
energy consumption due to HVAC systems is explored in various scientific publications. For example,
Salvadori et al. [3] recently investigated the energy savings that can be achieved by different control
concepts of the heating system in the case of an office building. Within the context of promising control
methods, model predictive control (MPC) is of particular interest, as it is able to consider multiple
objectives [2,4]. The high energy saving potential of MPC in comparison to common control methods
has already been shown in various simulation studies. In particular, Oldewurtel et al. [5] presented a
comprehensive system variation.
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Next to the control of conventional heating systems, MPC is a suitable method for controlling
electric heat pumps [6]. Heat pumps currently show significantly increasing heating system market
shares, as the environmental impact of heat pumps in operation is low [7]. Simulation studies of
single-family house heat pump systems proved that energy costs can be reduced by the application
of MPC [8,9]. Kajgaard et al. [8] indicated the potential of energy cost reduction of up to 12% while
Halvgaard et al. [9] stated a 35% reduction potential for heat pump load shifting and varying electricity
prices. A publication by Bechtel et al. [10] revealed cost savings of up to 24.3% for single family
houses in Luxembourg depending on the heat storage size, when variable electricity prices based
on the electricity market are applied. Further studies verify the economic and energetic viability of
MPC application for cooling purposes [11] or if the heat pump is combined with a micro heat and
power system [12], a fuel cell [13], or solar heat generation [14]. However, heat pumps are assumed
to be primarily combined with photovoltaics (PV) in future residential energy systems [15], as the
generated electric energy can be directly converted into useful heat avoiding grid feed-in. In this
context, experiments were conducted by Franco and Fantozzi [16] in order to analyze the operating
performance of the integration of PV and ground source heat pump for a residential building.

As stated by Salpakari and Lund [17], the application of MPC is beneficial for combined heat pump
and PV systems, as the amount of PV electricity feed-in is reduced by up to 88%. The self-consumption
of PV electricity can be profitable in case of electricity prices which extend electricity grid feed-in
remuneration. The authors [17] achieved a 25% energy cost reduction in the case of flexible market
electricity prices of Finland and in comparison to a rule-based controller. Furthermore, CO2-emissions
and feed-in peaks could be reduced [18]. In a similar study, Fischer et al. [19] achieved cost savings of
6% to 11% for constant electricity prices and up to 16% for variable electricity prices in comparison
to a common rule-based controller. Rastegarpour et al. [20] investigated different MPC approaches
for modulating air-to-water heat pumps in radiant-floor buildings. For the considered application,
nonlinear MPC has the potential to save up to 6% energy and improve the comfort by 4% with
respect to standard MPC. For MPC online optimization, calculation speed and reliability are crucial
parameters. In this regard, Gelleschus et al. [21] performed a one-year simulation for a home energy
system consisting of a heat pump, a thermal storage, a photovoltaic system, and a battery and
compared different algorithms for solving the underlying optimization problem. In a further study [22],
a multi-objective home energy management concept using stochastic mixed-integer linear programming
and MPC was presented for a grid-coupled home energy system with a PV plant, a battery, and a
combined heat pump/heat storage device for domestic hot water supply. It is shown that this concept
reduces energy costs as well as the maximum grid loads both on feed-in and demand sides. Hence,
it offers a potential for infrastructure cost reduction, if adopted by a large number of prosumers and
can lead to a positive effect on the lifetime of the battery.

In contrast to theoretical studies, experimental studies are currently only available in limited
numbers. However, experiments should be carried out for a more detailed understanding and potential
assessment [6]. Furthermore, experimental studies mostly focus on public buildings [23,24], partly with
comparison of the measurement results to a reference case simulation [25]. For the reliability of
investigations on the application of MPC in residential buildings, test results should be evaluated by
reference experiments. For this purpose, however, two identical residential buildings or suitable test
facilities are necessary. Frison et al. [26] presented such a test facility, including a ground-source heat
pump. In a first test of a single day, 3.1% of the energy costs could be saved by applying the MPC.
Another suitable system for air-source heat pumps was presented by Péan et al. [27]. In a three-day test,
which could be repeated with a rule-based controller in the identical plant due to the application of a
climate chamber, the MPC could save 7% of the energy costs. However, both authors did not consider
PV energy production and the optimization of self-consumption by MPC. This was investigated in
short-term measurements by Kuboth et al. [28]. An MPC control algorithm was developed, applied to
an air-source heat pump test facility and evaluated. The reference for evaluation was given by a test
rig with identical components and common PI-control. Both heat pumps were affected by real weather
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conditions. In a series of 6 measurements of 120 h each, the MPC algorithm could increase the heat
pump coefficient of performance (COP) by a weighted average of 22.2% and the PV self-consumption
rate by 234.8%, while the energy costs were reduced by an average value of 34.0% assuming German
energy prices.

Overall, it appears that investigations of long-term behavior using an MPC in heat pump control
for domestic buildings have been solely performed in theoretical studies based on simulation models.
Published experimental studies cover an observation period of a maximum of three days.

Thus, within this article, the promising results deriving from simulations and short-term
experiments are to be further evaluated by a long-term measurement applying the identical two test
rigs of the short-term measurements. The long-term measurement was carried out in the heating
season of the following year over a period of 125 days. Both the short-term and long-term comparison
as well as the test duration represent novelties in the experimental investigation of heat pump MPC of
detached houses.

2. Experimental Setup

In order to compare a heat pump system with standard control to a model predictive controlled
one, a test rig consisting of two identical heat pump devices has been developed. The overall setup
as well as its components are described in Section 2.1. Information about the standard control that is
applied for the reference test rig are given in Section 2.2.

2.1. Test Rig Setup

The experimental setup for the investigation of model predictive heat pump control comprised
two test rigs with identical components. One of the test rigs was operated applying a standard control
method (presented in Section 2.2) and served as a reference for the MPC plant. The setup of each test
rig is shown in Figure 1.
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Figure 1. Setup of one test rig including the main components and the sensor equipment.

The air-source heat pumps of the test rigs were placed outside of the laboratory. Therefore,
they were influenced by real weather conditions occurring at their location at the University of
Bayreuth in Bayreuth Germany. The heat pumps of the type WPL AR 6, manufactured by Bosch
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Thermotechnik (Kulmbach, Germany) [29], had a nominal thermal power of 6 kW at a flow temperature
of 35 ◦C and an outside air temperature of 2 ◦C. Generated heat was stored in a water storage with a
volume of 500 L before being dissipated by means of a separate water cycle, a heat exchanger, and a
cooling water cycle with a flow temperature of 16 ◦C. Three-way mixing valves included into the
cooling water cycles enabled control of the thermal output power.

The thermal power to be dissipated was calculated by two identical building models, one for each
test rig. The single-family building models according to Dott et al. [30] had a floor area of 140 m2 and a
nominal annual heat demand of 45 kWh/m2 for the reference weather of Strasbourg. Within the test
rig, the heat demand was dynamically specified by the building model and heating system control.
Thermal losses and gains were calculated by means of a thermal resistance and capacity network
as well as the measured ambient air temperature and solar irradiation. Consequently, the thermal
capacity of the floor heating systems was taken into account. Therefore, cooling within the test rigs
corresponded to the heat demand of real floor heating systems. Conversely, the floor heating systems
were heated by the heat output, which could be calculated by means of the temperature and volume
flow measurements, thus ensuring energy conservation. The models were discretized by the explicit
Euler method with a time step size of 1 s.

In addition to the building model, a south-facing PV system with a peak power of 4.8 kW and an
installation angle of 45◦ was represented by real-time simulation. Radiation on the inclined surface was
determined by the measured horizontal radiation and the calculated date- and time-dependent relative
sun-angle. Subsequently, a single diode equivalent circuit model developed by de Soto et al. [31]
was linked to the measured values of the solar irradiation and the outside temperature for PV
system power calculation. Global horizontal radiation measurement was performed by a thermopile
pyranometer of secondary standard accuracy. The share of PV electricity self-consumption was
determined considering identical electric load profiles of the building electronics [25] and the measured
electric energy consumption of the heat pumps. Self-consumption priority was given to the electric
load of the buildings, which consume 3962 kWh of electric energy per year.

The COP was calculated using the following:

COP =

.
QHP

Pcomp + Ppump + Pfan
(1)

where the electric power of the fan Pfan, the electric power of the heat pump compressor Pcomp as
well as the power of the circulation pump Ppump belonging to the heat pump had to be monitored.
In case of the reference test rig, separate current and voltage measurements were performed with
accuracies of 0.25% of the measurement range (MR), respectively, in order to determine the electric
power. The required current transformer added a further inaccuracy of 0.2% of MR to the current
measurement. To ensure a reliable evaluation of the MPC concept, power metering of the MPC test
rig heat pump is more accurate. The measurement meters determined the power with an accuracy
of 0.2% of the measurement value and additional 0.1% of MR, while digital signals were transferred
without additional errors. The heat pump heat flow rate

.
QHP was calculated by an energy balance.

Domestic heat pumps were generally operated with high water mass flow rates and a low temperature
difference of the flow and return temperature in order to achieve a high COP. Due to the low temperature
difference, sensors with high accuracy were necessary to determine energy balances with sufficient
accuracy. Therefore, temperatures were measured by calibrated platinum resistance thermometers
with a measurement uncertainty of ± (0.1 ◦C + 0.167% · |ϑ|). Volume flow rates were determined by
magnetic-inductive flow meters with an uncertainty of ±0.5% of the measured value.

Total measurement uncertainties were obtained by means of the square-root rule published by
Taylor [32]. As the uncertainties in electric power measurements are significantly lower than the
uncertainties in determination of thermal power (due to the low temperature differences), the resulting
uncertainties in COP approximately corresponded to those of thermal power. For a typical operating
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point, uncertainties of around 7% occur. The comparability of the test rigs have been proofed in a
reference test of 120 h without application of MPC [28].

2.2. Reference Test Rig Control

The control valve regulates the building zone temperature analogous to a real heating system
valve. The set building zone temperature of the reference system was 21 ◦C. Within this system,
the control valve and the mixing valve were PI-controlled. Details on the controller settings are given
in a previous publication [28].

The outdoor air temperature ϑa represents a reference value for controlling the heat generation of
the reference test rig heat pump. The set flow temperature of the heat pump

ϑf = (ϑf,nom – ϑz,nom)

(
ϑz,nom – ϑamb

ϑa,nom – ϑamb,nom

) 1
n

+ ϑz,nom (2)

can be calculated by a heating curve function, where the exponent n is set to 1.1 relating to floor heating
systems. The nominal set flow temperature ϑf,nom at a nominal ambient temperature ϑa,nom of −20 ◦C
was set to 38 ◦C. As this value was determined to be the lowest possible set temperature to keep the
occupants’ thermal comfort, flow temperature was kept as low as possible and the resulting heat
pump COP was maximized for the applied control type in the reference test rig. The nominal zone
temperature ϑz,nom was 20 ◦C. The flow temperature of the heat pump was measured at the top of
the heat storage. Another controller regulated the heat pump heat generation in order to adapt the
measured flow temperature to the desired set point.

3. Model Predictive Control

MPC is a model-based concept to control a system by solving an optimization problem under
consideration of an objective function and possible constraints for each time instance of a defined
prediction horizon. The general control concept is displayed in Figure 2.
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The respective overall optimum control problem in case of the investigated building energy
system is defined in Section 3.1. A detailed description of the system dynamics, the objective function,
and the algorithm applied for weather forecasting is presented in the following subsections.

3.1. Definition of the Optimal Control Problem

The MPC aims to minimize an objective function J by prediction of the system behavior [34].
Within this article, this function represents the operational costs of the heat pump. The objective
function J sums up the cost function φ in each time interval k of the prediction horizon N. In order
to determine the mathematically optimal control sequence within an upcoming control horizon,
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an optimal control problem resulting from the system dynamics, the objective function, and the
constraints have to be solved at every time step n [35]. A discretized definition of the optimum control
problem is defined by the Equations (3)–(6) [36]:

JN(n, x0, u(·)) :=
N–1∑
k=0

∅ (n + k, x(k, x0), u(k)) objective function, (3)

x(0, x0) = x0, x(k + 1, x0) = f (x(k, x0)), u(k) system dynamics, (4)

Y :=
{
(x, u) ∈ X ×U

∣∣∣ x ∈ X, u ∈ U
}

constraints, (5)

(xu(k, x0), u(k)) ∈ Y for all k = 0, . . . , N − 1, xu(N, x0) ∈ X constraints. (6)

The quantities X and U represent the possible system states x and the allowed range of the control
vector u. Y represents the set of all allowed combinations.

The definition of the system dynamics, the objective function and the applied forecasting algorithm
are described in the following sections. Constraints are considered by including them into the objective
function. This constraint softening assures convergence of the optimization algorithm [33,37].

3.2. System Dynamics

System dynamics are represented by a state space model. The model simplifies the test rig and the
associated building model to four differential equations. A low complexity of the state space model is
necessary for reducing the computational effort of real-time optimization.

The differential equations enable a dynamic calculation of the heating water, the floor heating
system, and the building zone [28]. The simplified model considers the thermal capacities of the
building, heat transfer between the mentioned zones, heat transfer to the ambient and heat gains by
residents, electronics, and solar irradiation. The application of a state observer has been dispensed.
The state space model is discretized by the explicit Euler method with a time step size of 300 s,
which represents a compromise between computational effort and numerical convergence.

3.3. Objective Function and Optimization

The objective of the MPC optimization is to minimize the energy costs. Costs of the grid purchase
of electric energy cgp are considered to be 0.293 €/kWh, which was a typical value for a single-family
house in Germany in 2018 [38]. In order to match the assumptions of the short-term measurements,
PV energy grid feed-in cfi is refunded at 0.122 €/kWh [28]. Next to these cost factors, PV curtailment is
considered by additional costs ccu = cfi. In German PV-systems, the PV generation generally needs to
be limited if PV power generation is close to its maximum capacity and PV self-consumption is low.
The net grid feed-in maximum is limited to 70% of the maximum PV plant power PPV,max. If the feed-in
would exceed this level, the PV plant power is curtailed in order to prevent high public grid voltage.

In addition to the energy cost factors, constraints are included into the objective function.
These constraints aim to define the desired building zone temperature which is limited by a minimum
comfort temperature of 20 ◦C and a maximum comfort temperature of 24 ◦C.

Comfort limit violation is considered by a penalty cost factor ccon. Undercutting the lower comfort
limit ∆T is penalized by 0.5 €/Kh. As the exceedance of the upper comfort limit could be reduced by
active ventilation in real systems, a factor of 0.1 €/Kh is applied on upper boundary exceedance within
optimization. Thus, a constant violation of the thermal comfort boundaries is prevented, while a slight
deviation in case of otherwise inefficient operation conditions is possible.

The resulting objective function is summarized by:

J =
N–1∑
k=0

(
max(–Pres(k), 0)cgp∆t–max(Pres(k), 0)c f i∆t + max(Pres(k), 0.7PPV,max, 0)ccu∆t

+ ccon∆T(k)∆t)
(7)
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with the control interval duration ∆t of 900 s. The residual electric load

Pres(k) = PPV(k) – Pb(k) – u(k)Pel,nom(Tamb(k), Tf(k)) (8)

considers the predictions of the PV power generation PPV and the prediction of the electric building
load Pb. The nominal electricity consumption by the heat pump Pel,nom is calculated depending on the
ambient air temperature Tamb and the flow temperature Tf.

The resulting optimal control problem is solved by a steepest-descent line search algorithm
including Armijo’s condition of sufficient descent [39]. Optimization was carried out every hour with
a prediction horizon of 24 h and control time intervals of 15 min. Resulting control signals of 10% or
less were reduced to zero, as the heat pumps are not able to generate heat at very low part load.

3.4. Forecasting Algorithm

An algorithm according to Florita and Henze [40] was applied for weather forecasting in order to
ensure comparability to the previous publication [28]. The algorithm predicts the outdoor temperature
and the global horizontal radiation by past measurement data. Measurement values of a 24 h, 48 h,
and 72 h backshift in time were equally weighted in order to predict all respective time interval values
of the next 24 h. Moreover, a so-called absolute deviation modification of 25% was applied for air
temperature prediction in order to adapt to sudden changes of the weather [28,40].

Next to the weather prediction, the algorithm was applied to predict the electrical building
load and the internal building heat gains. Forecasting of the PV power generation and of the solar
building heat gains was carried out by feeding the solar irradiation forecast values into the respective
system models.

4. Results and Discussion

Section 4 shows the results derived from the described long-term experiments. In the first
subsection, the experimentally gained data are analyzed and the findings are discussed. Based on that,
the results are compared to existing short-term investigations in Section 4.2.

4.1. Experimental Results

In the first 24 h of the experiment, both test rigs apply the reference control, while a first prediction
for the MPC is generated. A balance of heat generation and electrical energy consumption of the
heat pumps during this period shows the comparability of the plants. Heat generation by the heat
pumps within the starting period differs by 0.8%, while the deviation in electrical energy consumption
amounts to 0.2%. The heat demand of the buildings and thus the heat transferred to the cooling
network deviates by 0.3% comparing both test rigs. After 24 h, one out of the two heat pumps is
controlled by the MPC.

Before the test phase can be examined more closely, a characterization of the weather is necessary.
Figure 3 depicts the outside air-temperature which is influenced by high solar irradiation in the second
half of March and in April. The same applies to the building zone temperatures which are displayed in
Figure 4. A complete summary of the measured weather data can be found in Appendix A.

Figure 4 shows that both control concepts are able to set a comfortable building zone temperature
for most of the experiment time. However, increased comfort limit exceedance occurs within the
MPC controlled test rig. In case of an exceedance of the lower comfort limit, this is caused by drops
in the ambient air temperature which were not predicted by the applied forecasting algorithm. Yet,
the control concept is able to adapt the heat generation so that the lower limit is not undercut by more
than 1 K in common operation. The only exception occurs on 19th and 20th of February, when the
cooling system of the MPC test rig has shown malfunction and heat could not be transferred out of
the test rig. Consequently, the simulated building was not heated any more. Although this also led
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to inefficient heat pump operation by high flow temperatures in the MPC test rig, the stability of the
controller was demonstrated when the cooling system restarted operation.Energies 2020, 13, x FOR PEER REVIEW 8 of 18 
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In the second half of March and in April, the building zone temperatures partly exceed the upper
comfort limit. Again, the MPC test rig shows a lower resident comfort, as the prediction algorithm
needed up to 3 days to adapt to the unforeseen high global irradiation and outdoor temperatures.
The comfort level could, however, be further improved by more accurate forecasting algorithms [41] or
external and regional weather forecasting. Next to the forecasting error, the system cannot be cooled
down by the controller actively and passive cooling during the night is overestimated. The state space
system model does not include the thermal capacity of surrounding walls, as heat losses to the ambient
are calculated by heat transmission coefficients for reasons of computational effort.

In total, the MPC test rig heat pump generated 1.1% more heat than the reference test rig heat pump
during the 125 test days. However, the MPC controlled heat pump consumed 4.1% less electrical energy,
as the heat pump COP was increased by 5.4%. In addition, the MPC algorithm more than doubled the
PV electricity self-consumption and PV curtailment was reduced by 73.5%. Consequently, energy costs
of the heat pump operation were reduced by 9.0%. Table 1 sums up the experimental results.

The energetic and monetary advantages are based on a time shift of heat generation within the
measurement days. The average load shifting is depicted in Figure 5.

As the reference control set point depends on the outdoor temperature, the average consumption
of electric energy within the reference test rig is similar to a sinusoidal curve. The heat pump mainly
generates heat in the night and morning hours. However, outdoor air temperatures and the coefficient
of performance of an air-source heat pump are generally low within that time range. In contrast,
the MPC algorithm shifts the main operation time of the heat pump towards the time from 10 am
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to 5 pm, with generally high outdoor temperatures and PV electricity generation on a daily basis.
Nevertheless, unnecessary heating and high heat pump flow temperatures were avoided within the
MPC test rig by means of a constant and low heat generation during the night.

Table 1. Summary of experimental results.

Parameter Reference MPC Rel. Deviation

Heat pump heat generation 4600 kWh 4648 kWh +1.1%
Heat pump el. consumption 1032 kWh 990 kWh −4.1%

Heat pump COP 4.46 4.70 +5.4%
PV electric energy generation 1473 kWh 1473 kWh -

PV self-consumption 575.3 kWh 655.6 kWh +14.0%
Heat pump: PV self-consumption 74.6 kWh 154.9 kWh +107.7%

Heat pump: Electricity costs 289.7 € 263.5 € −9.0%

Energies 2020, 13, x FOR PEER REVIEW 9 of 18 

 

than doubled the PV electricity self-consumption and PV curtailment was reduced by 73.5%. 
Consequently, energy costs of the heat pump operation were reduced by 9.0%. Table 1 sums up the 
experimental results. 

Table 1. Summary of experimental results. 

Parameter Reference MPC Rel. Deviation 
Heat pump heat generation 4600 kWh 4648 kWh +1.1% 
Heat pump el. consumption 1032 kWh 990 kWh −4.1% 

Heat pump COP 4.46 4.70 +5.4% 
PV electric energy generation 1473 kWh 1473 kWh - 

PV self-consumption 575.3 kWh 655.6 kWh +14.0% 
Heat pump: PV self-consumption 74.6 kWh 154.9 kWh +107.7% 

Heat pump: Electricity costs 289.7 € 263.5 € −9.0% 

The energetic and monetary advantages are based on a time shift of heat generation within the 
measurement days. The average load shifting is depicted in Figure 5. 

 
Figure 5. Hourly average values of the electrical energy consumption of the heat pumps. 

As the reference control set point depends on the outdoor temperature, the average consumption 
of electric energy within the reference test rig is similar to a sinusoidal curve. The heat pump mainly 
generates heat in the night and morning hours. However, outdoor air temperatures and the 
coefficient of performance of an air-source heat pump are generally low within that time range. In 
contrast, the MPC algorithm shifts the main operation time of the heat pump towards the time from 
10 am to 5 pm, with generally high outdoor temperatures and PV electricity generation on a daily 
basis. Nevertheless, unnecessary heating and high heat pump flow temperatures were avoided 
within the MPC test rig by means of a constant and low heat generation during the night. 

The experiment confirms the general simulation results in literature, which state that PV self-
consumption by heat pumps is increased by MPC [19]. Cost savings achieved by simulation studies 
[8,17,19] were missed by a few percentage points only, although perfect forecasting of real weather 
is almost impossible by algorithms based on local data. While savings reported of 12% by Kajgaard 
et al. [8] or of 13–15% by Salpakari and Lund [17] could not be reproduced, the range of 6% to 11% 
given by Fischer et al. [19] matches the experimental results presented within this study. It should be 
noted that the systems described in the literature partly consider different reference control concepts 
or take into account domestic hot water preparation. 

Moreover, the experimental results in this study agree with literature short-term experimental 
results mentioned in the introduction. Measurements conducted by Péan et al. [27] showed reduced 
electrical energy consumption of 8.5% by application of MPC while heat generation was increased by 
3.8%. Frison et al. [26] reported cost savings of 3.1% when the MPC focuses on grid-supportive 
operation. Thus, the presented long-term experiment also confirms short-term experimental results 

Figure 5. Hourly average values of the electrical energy consumption of the heat pumps.

The experiment confirms the general simulation results in literature, which state that PV
self-consumption by heat pumps is increased by MPC [19]. Cost savings achieved by simulation
studies [8,17,19] were missed by a few percentage points only, although perfect forecasting of real
weather is almost impossible by algorithms based on local data. While savings reported of 12% by
Kajgaard et al. [8] or of 13–15% by Salpakari and Lund [17] could not be reproduced, the range of 6% to
11% given by Fischer et al. [19] matches the experimental results presented within this study. It should
be noted that the systems described in the literature partly consider different reference control concepts
or take into account domestic hot water preparation.

Moreover, the experimental results in this study agree with literature short-term experimental
results mentioned in the introduction. Measurements conducted by Péan et al. [27] showed reduced
electrical energy consumption of 8.5% by application of MPC while heat generation was increased
by 3.8%. Frison et al. [26] reported cost savings of 3.1% when the MPC focuses on grid-supportive
operation. Thus, the presented long-term experiment also confirms short-term experimental results in
the scientific literature. However, the results differ from previously published short-term experiment
results of the same experimental setup [28], which needs to be discussed in the following section.

4.2. Comparison of Short- and Long-Term Experiments

Within the short-term measurements, which were performed in the heating season of 2019 from
February to April, high average energy cost savings of 34.0% were achieved [28]. The average increase
in PV self-consumption was 235%, while the electric energy consumption was reduced by 19.7% by the
application of an MPC. These results could be achieved, as average global irradiation was already high
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in the test periods selected in February 2019 and the heat demand was still high during the March and
April 2019 measurements.

Within the measurement presented in this study, the average solar irradiation and consequently
the average difference between the minimum and maximum outside air temperature was low from
December 2019 to February 2020. However, these weather conditions resulted in a low cost saving
potential of MPC, while these months show the lowest outside air temperatures and consequently
represent the main heat demand of the heating season. This is depicted in Figures 6 and 7.
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Figure 7. Monthly increase in the heat pump coefficient of performance (COP) and the heat pump
self-consumption of photovoltaics (PV) electricity by application of model predictive control (MPC) in
the long-term experiment.

The figures show that the potential of increasing the self-consumption of renewable solar energy
and of reducing the electric energy consumption in single-family homes strongly depends on the
weather conditions. As already stated by Fischer and Madani [18], the seasonal discrepancy between
the heat demand and solar irradiation limits both the PV self-consumption and the potential of applying
an MPC. However, the test results still show that the MPC of residential heat pumps is economically
viable and able to reduce electrical energy consumption. The MPC reduced the operating costs of the
heat pump in every month. From December to February, these savings amount to an average value
of 8.2%. In March, the lowest reduction of 4.9% was achieved due to excessive heat generation in
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the MPC test rig. The highest relative savings of 42.1% occurred in April. The discussion shows that
the results significantly differ by repeating the measurement in a different heating period with lower
ambient temperatures and higher solar irradiation within the colder months of the year.

5. Conclusions

Within this article, the model predictive control of an air-source heat pump in residential systems
is compared to a current reference control. For the first time, the evaluation of the controller was
performed over a period of several months with comparison to a reference test rig.

For this purpose, two identical test systems were set up, each with one heat pump. One of the heat
pumps was controlled by the reference control concept, the other one by an economic MPC algorithm
operating in real-time. The heat pumps operate under the influence of real weather conditions.
The weather further impacts the identical building models, each one belonging to one of the test
rigs. The building models specify the heat consumption in the test systems. The experimental test
rig comprising two devices that are identical in construction operating under real weather conditions
and considering photovoltaics represents a novelty compared to available experimental setups in the
present literature.

An experiment was conducted from December 2019 to April 2020 to show to which extent an
MPC is able to increase PV electricity self-consumption to reduce the heat pump electrical energy
consumption and energy costs.

The main results are listed in the following:

• The applicability and stability of model predictive heat pump control was shown for the major
part of one heating season.

• The residents’ thermal comfort was slightly reduced, while the heat generation was increased by
the application of an MPC.

• The heat pump COP was enhanced by 5.4% in comparison to the reference.
• The electrical energy consumption of the heat pump was reduced by 4.1%.
• The PV electricity self-consumption of the heat pump was improved by 107.7%.
• The energy costs of heat pump operation decreased by 9.0%.

The presented scientific data demonstrate that the promising results of short-term experiments
by other authors [26,27] also arise in long-term experiments. In this regard, the experimental long
term-study, that has been conducted in this work for the first time, confirms the findings of simulation
studies [8,17,19,42] too. A further comparison with short-term experiments conducted by application
of the same test facility [28] proves the importance of long-term experiments and shows the dependence
of the results on the weather. Hence, in future studies, the effect of using more accurate forecasting
algorithms or external and regional weather forecasting on the advantages of the MPC and on the
comfort level has to be investigated.

As the potential of MPC was found to be especially high in the transition period of the year,
future work will also focus on the combination of space heating and domestic hot water supply.
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Nomenclature

Abbreviations
COP coefficient of performance
HVAC heating, ventilation and cooling
MR measurement range
PV photovoltaic
Symbols
c energy cost factor (€/kWh)
ccon constraint factor for comfort limit violation (€/Kh)
d disturbances
J objective
k control time step
N number of time intervals of the prediction horizon
n heating curve exponent
n current time step of the experiment
P power (W)
.

Q heat flow rate (W)
t time (s)
T temperature (K)
u control (input) vector
U quantity of the allowed range of the control vector
x system state
X quantity of the possible system states
Y set of all allowed combinations of system states and control (input) variables
φ cost function
ϑ temperature (◦C)
Subscripts
amb ambient
comp heat pump compressor
cu PV curtailment
f supply/inlet (flow temperature)
fan heat pump fan
fi feed-in
gp grid purchase
HP heat pump
max maximum
nom nominal
pump circulation pump belonging to the heat pump
PV photovoltaic
res residual
0 initial condition
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Appendix A

Table A1. Measured boundary conditions in December 2019.

Date Min. Ambient Air
Temperature (◦C)

Max. Ambient Air
Temperature (◦C)

Mean Global
Irradiation (W/m2)

Mean Air
Humidity (%)

12 December 2019 1.8 4.0 31.8 87.7
13 December 2019 1.2 3.6 47.6 89.8
14 December 2019 1.5 6.8 67.2 88.0
15 December 2019 3.2 10.6 38.1 94.1
16 December 2019 5.3 10.9 145.7 85.7
17 December 2019 4.4 9.0 123.4 76.8
18 December 2019 3.7 9.9 48.6 87.2
19 December 2019 −0.1 8.7 120.6 89.7
20 December 2019 3.0 9.4 111.9 82.8
21 December 2019 1.7 7.5 45.7 94.5
22 December 2019 4.4 7.1 71.9 87.3
23 December 2019 4.8 7.3 61.5 88.2
24 December 2019 3.9 7.5 76.0 87.6
25 December 2019 3.3 7.9 58.4 83.5
26 December 2019 2.3 5.6 63.9 81.8
27 December 2019 −0.6 5.3 88.6 75.7
28 December 2019 −4.2 2.5 99.4 70.1
29 December 2019 −6.4 1.2 218.5 78.0
30 December 2019 −4.6 3.7 133.7 71.8
31 December 2019 −4.6 2.6 65.7 76.4

Table A2. Measured boundary conditions in January 2020.

Date Min. Ambient Air
Temperature (◦C)

Max. Ambient Air
Temperature (◦C)

Mean Global
Irradiation (W/m2)

Mean Air
Humidity (%)

1 January 2020 −5.9 3.7 185.8 85.2
2 January 2020 −7.1 3.0 174.5 83.8
3 January 2020 1.1 6.8 40.3 85.6
4 January 2020 2.0 6.4 48.6 90.9
5 January 2020 0.3 3.5 105.3 84.3
6 January 2020 −1.1 6.0 164.2 82.3
7 January 2020 −1.7 2.9 29.5 89.7
8 January 2020 0.9 4.3 29.9 93.2
9 January 2020 3.6 6.9 33.7 92.9

10 January 2020 5.9 9.5 55.4 81.2
11 January 2020 −1.8 6.1 60.8 76.3
12 January 2020 −2.3 2.6 109.7 83.4
13 January 2020 1.4 4.1 36.5 86.1
14 January 2020 0.5 6.2 140.5 78.9
15 January 2020 1.6 10.2 169.6 69.0
16 January 2020 2.2 10.2 156.6 75.8
17 January 2020 −1.4 3.0 94.4 87.9
18 January 2020 1.4 6.3 83.8 80.9
19 January 2020 1.1 3.2 72.5 82.1
20 January 2020 −3.7 4.4 73.0 84.4
21 January 2020 −6.0 5.6 229.5 82.2
22 January 2020 −5.2 −0.8 64.0 84.3
23 January 2020 −3.5 6.9 175.1 79.5
24 January 2020 −5.3 0.1 35.0 82.6
25 January 2020 −0.4 1.5 51.4 84.2
26 January 2020 0.2 4.6 106.4 86.2
27 January 2020 0.8 5.8 127.2 87.9
28 January 2020 1.1 6.0 75.7 97.3
29 January 2020 0.8 3.8 62.9 87.5
30 January 2020 1.9 7.9 108.3 76.6
31 January 2020 6.1 13.5 99.1 84.3
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Table A3. Measured boundary conditions in February 2020.

Date Min. Ambient Air
Temperature (◦C)

Max. Ambient Air
Temperature (◦C)

Mean Global
Irradiation (W/m2)

Mean Air
Humidity (%)

1 February 2020 6.5 14.2 81.1 84.0
2 February 2020 4.4 11.0 44.6 91.3
3 February 2020 6.5 10.4 77.7 87.2
4 February 2020 2.0 6.5 127.2 95.4
5 February 2020 −1.4 6.0 170.1 66.6
6 February 2020 −3.4 3.0 74.0 75.6
7 February 2020 −0.7 5.5 88.0 72.5
8 February 2020 −2.0 9.3 242.5 77.0
9 February 2020 −0.2 14.3 223.0 65.2

10 February 2020 3.3 12.9 143.3 80.6
11 February 2020 1.1 7.8 165.5 76.2
12 February 2020 1.0 6.7 153.4 72.8
13 February 2020 1.2 6.2 117.6 84.3
14 February 2020 3.3 6.7 78.3 92.3
15 February 2020 2.3 10.9 214.4 82.1
16 February 2020 4.2 12.4 121.7 67.8
17 February 2020 6.2 14.3 76.0 78.3
18 February 2020 4.9 8.9 137.2 65.9
19 February 2020 2.1 6.9 121.4 73.2
20 February 2020 0.9 7.1 106.2 76.1
21 February 2020 2.2 8.2 190.3 69.0
22 February 2020 2.7 13.9 231.2 52.6
23 February 2020 6.0 12.0 40.2 81.5
24 February 2020 2.3 9.6 97.0 80.0
25 February 2020 5.3 9.6 66.7 87.0
26 February 2020 1.8 5.4 141.7 76.7
27 February 2020 0.4 5.7 138.6 78.7
28 February 2020 0.4 5.9 196.2 86.1
29 February 2020 1.3 10.6 188.9 80.8

Table A4. Measured boundary conditions in March 2020.

Date Min. Ambient Air
Temperature (◦C)

Max. Ambient Air
Temperature (◦C)

Mean Global
Irradiation (W/m2)

Mean Air
Humidity (%)

1 March 2020 4.9 12.9 266.4 75.9
2 March 2020 2.8 15.0 303.5 55.7
3 March 2020 −0.3 7.9 131.7 80.5
4 March 2020 −2.0 5.0 103.3 84.9
5 March 2020 −0.2 9.9 181.7 79.3
6 March 2020 3.4 6.7 76.8 90.0
7 March 2020 3.1 7.9 142.0 72.6
8 March 2020 0.5 9.2 137.5 69.6
9 March 2020 4.2 11.9 178.0 69.8

10 March 2020 1.9 9.7 65.9 89.5
11 March 2020 9.7 12.9 81.5 88.1
12 March 2020 7.0 16.5 193.1 68.0
13 March 2020 2.1 11.6 195.3 57.0
14 March 2020 −0.4 11.5 256.8 62.7
15 March 2020 0.7 16.7 382.9 43.9
16 March 2020 2.0 21.7 371.0 44.7
17 March 2020 4.4 16.4 179.6 66.7
18 March 2020 2.9 19.0 275.3 69.4
19 March 2020 6.1 21.9 288.0 65.2
20 March 2020 4.5 13.4 124.7 77.5
21 March 2020 1.3 7.0 111.7 63.4
22 March 2020 −1.3 10.2 433.2 36.6
23 March 2020 −5.1 11.4 435.2 32.5
24 March 2020 −5.8 13.1 440.5 34.3
25 March 2020 −5.7 13.3 434.1 34.0
26 March 2020 −0.2 13.0 326.5 41.6
27 March 2020 4.3 22.3 401.8 36.1
28 March 2020 −0.1 19.2 405.0 46.2
29 March 2020 0.2 7.5 157.0 62.9
30 March 2020 −3.1 10.1 451.5 35.8
31 March 2020 −3.3 8.9 334.1 44.5
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Table A5. Measured boundary conditions in April 2020.

Date Min. Ambient Air
Temperature (◦C)

Max. Ambient Air
Temperature (◦C)

Mean Global
Irradiation (W/m2)

Mean Air
Humidity (%)

1 April 2020 −6.7 14.6 458.5 40.9
2 April 2020 −4.9 18.0 453.2 38.9
3 April 2020 −2.3 12.3 124.7 61.1
4 April 2020 −1.2 17.8 423.0 51.7
5 April 2020 −1.2 21.8 457.4 42.2
6 April 2020 1.9 25.6 460.5 36.6
7 April 2020 1.5 27.1 446.4 46.7
8 April 2020 2.3 26.7 459.2 43.7
9 April 2020 2.3 26.9 430.2 44.2
10 April 2020 4.3 24.2 450.8 46.2
11 April 2020 2.7 24.4 461.8 44.9
12 April 2020 2.0 28.0 420.3 44.6
13 April 2020 2.0 21.4 254.3 56.2
14 April 2020 −0.9 12.3 338.0 44.2
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