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Abstract— In this paper we propose an MPC scheme with a variants, see, e.g., [1], [3], [4], [7], [8], [10]. Here we
compensation mechanism for packet dropouts in a network consider the simplest and industrially most commonly used
connection between controller and actuator. We provide a class of MPC schemes for nonlinear systems, namely those

stability and suboptimality analysis of the scheme based on ithout t inal traint d t o1
asymptotic controllability properties and show that for large  Without terminal constraints and costs, see [2] for a survey

classes of systems we obtain the same stability conditions a  FOr our analysis we generalize results from [4] by allowing
for classical MPC and in particular stability for sufficiently  for variable control horizons. This technique relies on a
large optimization horizon. As a byproduct, we observe that gyjtable asymptotic controllability assumption and le&als
longer control horizons may improve the performance of the 5 hecagsary and sufficient condition for suboptimality and
MPC closed loop. We illustrate our results by the standard e L .
inverted pendulum on a cart problem. stability in terms qf a small opt|m|_zat|on proble_zm which
was solved numerically in [4]. Besides generalizing these
I. INTRODUCTION results to variable control horizons, in this paper we also

Due to lower implementation costs, greater interoperabifEresent a closed analytic solution formula for this opti-

itv_and a wide ranae of choices in develonin ControPﬂzation problem for a large class of systems. This allows
Y. 9 ping Rra detailed qualitative study of the impact of different

systems, networked control systems (NCS) are INCreasiN@¥ ntrol horizons which in particular reveals that for certa

used, particularly in the automotive and aeronautical $adu . .
. . . : : .classes of systems longer control horizons can yield better
tries that are seeing high adoption-rates of drive—by—wiré L . )
. - : .. Suboptimality estimates than those obtained for the usual
and fly—by—wire designs. The main drawback of NCS is the .
. o . ; control horizon of length one.
additional complexity in analysis and feedback design. . . ) .
. . : . The paper is organized as follows: In Section Il we de-
In this paper we consider the implementation of a non- . .
. - scribe the setup and formalize the MPC scheme we propose.
linear model predictive control (MPC) scheme over a net- ) . R
i . . .. In Section Ill we summarize and extend the optimization
work. More precisely, we consider an uncertain transmissi

ased MPC analysis technique from [4] and in Section
channel between the controller and the actuator and focw we show how this technique can be used in order to

on the idealized situation in which delays are negligible . .
rove asymptotic stability for our proposed MPC scheme.
but packet dropouts may occur. In order to compensate f ; . . )
hereafter, in Section V we present the analytic solution of

it::ersee di(;;(;pigu;&bl\j\?erp(rjoe?/(i)csee ir?rlhhe/lz(ét:z;g?nr\lxzotsheatr?/vaﬂﬂe optimization problem and state a couple of consequences
9 ’ for the stability of our proposed scheme. Finally, we illagt

do not assume any particular protocol like round-robin (RRgur results by means of a numerical example and draw some
or try—once—discard (TOD), as, e.g., in [12], [15], [16].ath c%nclusions

is, we assume that either a packet arrives unperturbed ah
with negligible delay over the channel, or it is treated as a Il. SETUP AND PRELIMINARIES
dropout. While this is an admittedly simplified setting, we
consider our proposed MPC scheme as a building block for
more sophisticated schemes which, in addition, are able
handle delays between sensor, controller and actuator and x(n+1) = f(x(n),u(n)), x(0)=xo 1)

whose details are currently under investigation, see 4.9 [6With x(n) € X andu(n) € U for ne No. Here the state space

Our proposed MPC scheme results in a nonstandard MREjg o aritrary metric space. We denote the space of control

closed loop in which the control horizon — i.e., the numbeﬁequenceﬂ :No— U by % and the solution trajectory for
of elements of the online computed optimal control sequenéqven ue % by xu(n)
U .

Wh(;Ch ire eventually .apphefd at. the p_Iant_Fh|s tlm.e varylln A typical class of such discrete time systems are sampled—
and unknown at the time of optimization. The main goa OIjata systems induced by a controlled — finite or infinite

this paper is to provide a mathematically rigorous St@bi"tdimensional — differential equation with sampling period

and suboptimality analysis of this SCh?me' Duri_ng the IasIt > 0. In this situation, the discrete tinme corresponds to
decades, such results have been obtained for different MRC, . -vin0us time — nT.

We consider a nonlinear discrete time control system given
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Fig. 1. Scheme of the considered networked control system Definition 2.2: For m* > 1 andM C {1,...,m*} a mul-
tistep feedback law is a map : X x {0,...,m*—1} - U
Actuator Plant Sensor which for an admissible control horizon sequerfog)icy,
|ﬂﬁe;| is applied according to the rubg, (0) = Xo,
Xu(n+1) = f(x,(n), u(xu($(N),n— B(M)).  (2)
Channel MPC Since infinite horizon optimal control problems are in gen-
controller . . . . .
eral computationally infeasible, we use a receding horizon
approach in order to compute an approximately optimal con-
troller. To this end we consider the finite horizon functibna
with optimization horizon Nc N

packet dropouts occur, i.e., that the control value senhby t
controller does not arrive at the actuator. -

In order to compensate for these dropouts, we add e
a buffer device in the actuator and design a con- JN(xo,u)_n;I(xu(n),u(n)) 3)
troller which at each time instank sends a sequence
p(x(k),0), u(x(k),1),...,u(x(k),m* — 1) instead of a single _
control valueu(k) = p(x(k)) € U. In the actuator, the ele- Wn(Xo) = UIQ{I/JN(XO,U). (4)

ments of this sequence are buffered and used until the next ) .
sequence arrives. Here, we consider the conceptually simplest MPC approach

In the ideal case when no packet dropouts occur, tH@posing neither terminal costs nor termin_al constraimiy.o
actuator applies the control sequence Yet, some resu!ts are exter_1dable to terminal costs, see [5].
Based on this finite horizon optimal value function we
©(x(n),0), u(x(n+1),0), u(x(n+2),0), u(x(n+ 3),0),... define an multistep feedback lamy m+ by picking the first
n* elements of the optimal control sequence.
Definition 2.3: For m* > 1 andN > m* 4+ 1 we define a
multistep MPC feedback law by - (X0, n) = u*(n), where
p(x(n),0), u(x(n), 1), u(x(n),2), u(x(n+3),0),... u* is a minimizing control for (4) with initial value.
Remark 2.4:For simplicity of exposition here we assume
In order to formalize this idea, we define a sequefMgicn,  that the infimum in (4) is a minimum.
of control horizonswhich counts the time instances between Note that “classical” MPC is included in this definition
the ith and the(i + 1)st successful transmission. For theseand corresponds to the choio® = 1.
sequences we make the following definitions. To measure the suboptimality degree of the multistep

Definition 2.1: Given a setM C {1,...,m‘}, we call a feedback for the infinite horizon problem we define
control horizon sequenden )icy, admissiblef my € M holds

for N € Np which gives us the optimal value function

If, however, transmission is successful at, e.g., timand
n+ 3 but fails at timen+ 1 andn+ 2, the actuator applies

for all i € Ng. Furthermore, fok, n € Ny we define VM) (xg) := Zol(xu(n),u(xu(qb(n)),n— o(n))).
n=|
k-1
ok = zom (using the convemiorzf_lo =0) Our approach relies on results on relaxed dynamic program-
= = ming [9], [13] already used in an MPC context in [7] which
¢(n) = maxo(k) ke Ngyok) <n}. we adapt to our variable control horizon setting.

Hereo (k) denotes théth successful transmission time while ~ Proposition 2.5: Consider a multistep feedback laju :

¢(n) denotes the largest successful transmission time X x {0,...,m* —1} — U, a setM C {1,...,m"} and a
Note that by convention the time= 0 coincides with the functionV : X — Rar and assume that for each admissible

first successful transmission. control horizon sequencém)icy, and eachxp € X the
Using this notation, the control sequence applied by theorresponding solutior (n) with Xz (0) =X satisfies
actuator can be expressed as mo—1
V(xo) >Vxg(mo))+a § 1(xz(K), fi(xo,k (5)
HO(0()).0)...... k(x(0(K)). My ~ 1), ({0 (K + 1)).0).... (o) 2Vimo)) +ar 3 1K), B k)
in which my is unknown at the timer (k). for somea € (0,1]. Then for allxy € X and all admissible

MPC is ideally suited to implement the proposed com{my)cy, the estimatexVe(Xg) < avoﬁ"(m(xo) <V(x) holds.
pensation strategy since in each MPC optimization step an Proof: The proof is similar to that of [4, Proposition
optimal control sequence is computed, anyway. In ordet.4]: Considerxy € X and the trajectory;(n) generated by
to formalize MPC, we start by looking at the following the closed loop system using the multistep feedbacnd
problem: Find a feedback control law minimizing the infinitethe control horizonsn. Then from (5) for allk € Ng we
horizon costls (Xp, U) = 5 ol (Xu(N), u(n)) with running cost  obtain

[: XxU — Rar. We denote the optimal value function for o(k+1)-1
this problem byV.(Xp) = infycs Jw(Xo,u). In order to be a Z [ (X (n), ft(xz (¢ (n)),n—¢(n)))
consistent with the scheme introduced above, we use the n=a(K)

term feedback control in the following general sense. V(xa(o(K)) =V (xa(o(k+1))).

IN



Summing over the transmission timegk) yields Under Assumption 3.1, for any > 0 and anyN > 1 we
define the value

o(k)-1
a | (), ft (X (¢ (M), n— @(n))) R
nZO Bn(r) == Zoﬁ(fa n). 9)
k—10(k+1)—1 n=
= a Z) > 1xa(n), f(xa(¢(n)),n—(n))) An immediate consequence of Assumption 3.1 are the fol-
B k= n:0’~(k) N lowing lemmata which have been shown in [4].
< V(x(0)) =V(x(a(k")) <V(x(0)). Lemma 3.2:For eachN > 1 the inequality
For k* — oo this shows thatV (x) is an upper bound for VN (%) < Bn(1%(X0)) (10)
aVE ™ (x) and hencarVe(x) < aVEM(x) <V(x). m hold
olds.
I1l. CONTROLLABILITY AND PERFORMANCE BOUNDS Lemma 3.3:Assume Assumption 3.1 and considey <

X and an optimal control* for the finite horizon optimal

In this section we introduce an asymptotic controllability, .. | problem (4) with optimization horizoN > 1. Then
assumption and deduce several consequences for our opti%a}leachj —0,....N—1 the inequality -

control problem. In order to facilitate this relation we il

formulate our ba_sic controIIa_biIity assumption, bel_owt 119) I O (), U (G +4)) < Brj (1% (x (7)) (11)
terms of the trajectory but in terms of the running cbst
along a trajectory. and for eacrm=1,... N—1 and eachh =0,.... N—-m—-1

To this end we say that a continuous funct@nR-o — R~  the inequality

is of class. % if it satisfiesp(0) =0, is strictly increasing . N .
and unbounded. We say that a continuous fungBoiR ¢ x N (xar (M)) < Jj (e (M), UH(M+--)) + B (I (e (M)
R>p — R>q is of class.? %y if for eachr > 0 we have (12)
lim;_ B(r,t) =0 and for each > 0 we either have(-,t) € holds forBy-j f“?m ©). . ,

e OF B(-t) = 0. Note that in order to allow for tighter Now we provide a constructive approach in order to

bounds for the actual controllability behavior of the syste COMPutea in (5) for systems satisfying Assumption 3.1.
we use a larger class than the usual cla&. It is, how- Note that (5) only depends amp and not on the remainder

ever, easy to see that eaBle %%, can be overbounded by of the control horizon sequence. Hence, we can perform the
a [3 e KL, eq. by settingﬁ(r t) = maxes B(r,t) + e 'r computation separately for each control horinoand obtain
Furthermor'e We' defing (x) = r’ninueu I(x a) ’ the desiredx for variablem by minimizing over thex-values

Assumption 3.1Given a functionf3 € .%o, for each for all possiblem. , i )
%o € X there exists a control function,, € % satisfying For our computational approach we consider arbitrary

| (X, (), Ui (M) < B(I*(x0), ) for all ne No. values Ag,...,An_1 > 0 and v > 0 and start by deriving
steci:al cases_fqﬁ c «/"i/.:?o are necessary conditions under which these values coincide wit

an optimal sequencExy+(n),u*(n)) and an optimal value
B(r,n) =Ca"r (6)  Wn(xu(m)), respectively.
Proposition 3.4: Assume Assumption 3.1 and consider
for real constantC > 1 and o € (0,1), i.e., exponential N >1 me {1,...,N—1}, a sequencé,>0,n=0,....N—

controllability, and 1, and a valuev > 0. Considerxy € X and assume that
B(.N) = or % there exists a minimizing contral* € % for (4) such that
’ n An = (xg(n),u*(n)) holds for alln€ {0,...,N—1}. Then
for some real sequengen)nen, With ¢, > 0 andc, = 0 for all N—1
n> ng, i.e.,finite time controllability(with linear overshoot). Zk/\n <Bn_k(Ak), k=0,...,N-2 (13)
For certain results it will be useful to have the property n=

B(r,n+m) < B(B(r,n),m forallr>0nmeNo. (8) holds true and if furthermore = Viy(x«(m)) we have

j-1
Property (8) ensures that any sequence of the fapm= V<SS Anim+ B (A i—=0....N—m-1 (14
B(r,n), r >0, also fulfillsAn1m < B(An, m). Itis, for instance, N n% nimt BN (Ajem). ] T ()

always satisfied in case (6) and satisfied in case @), < Proof: If the stated conditions hold, thets andv must
cnCm. If needed, this property can be assumed without loggeet the inequalities given in Lemma 3.3, which is exactly
of generality, because by Sontag&.Z-Lemma [14]8 in  (13) and (14). [
Assumption 3.1 can be replaced byaf the form(r,t) = Using this proposition a sufficient condition for subopti-

ai(ay(r)e™) for ap,a; € #e.. Then, (8) is easily verified if mality of the MPC feedback layun m is given in Theorem
azo0a4(r) >r which is equivalent tax; o a(r) > r which in 3.5 which is proved in [4].

turn is a necessary condition for Assumption 3.1 to hold for Theorem 3.5:Consider [ € %%, N > 1,
n=0 andB(r,t) = ai(az(r)e™). me {1,...,N—1}, and assume that all sequencdgs> 0,



n=0,...,N—1 and values > 0 fulfilling (13), (14) satisfy such that for all admissible control horizon sequences the

the inequality closed loop system satisfiéi,, (n)[|a < B(/[%o|[a,N).
N-1 m-1 Theorem 4.2:Consider 8 € ¢ %y, m* > 1 and N >
HZO)‘”_V =z an;)‘” (15) 41 and a setM C {1,....m'}. Assume thata* =

minmem{a[N,m/} > 0 where a[N,m| denotes the optimal
for somea € (0,1]. Then for each optimal control problem yvalue of optimization Problem 3.6. Then for each optimal
(1), (4) satisfying Assumption 3.1 the assumptions of Prop@ontrol problem (1), (4) satisfying the Assumptions 3.1 and
sition 2.5 are satisfied for the multistep MPC feedback law 1 the multistep MPC feedback lap e asymptotically
pinm and in particular the inequalityVeo (x) < aVe"™(X) < stabilizes the sef for all admissible control horizon se-
Vn(x) holds for allx € X. quences(m)ic,. Furthermore, the functioWy is a Lya-

In view of Theorem 3.5, the value can be interpreted as a punov function at the transmission timegk) in the sense
performance bound which indicates how good the recedingat

horizon MPC strategy approximates the infinite horizon
problem. In the remainder of this section we present an NXuy (O(K+1))) < Wn(Xuy i (0(K))) 17)
optimization approach for computing. To this end consider — 0" Vi (X e (0(K)))
the following optimization problem.

Problem 3.6:Given B € # %9, N > 1 and m €
{1,...,N—1}, compute

holds for allk € Ng andxg € X.
Proof: From (16) and Lemma 3.2 we immediately
obtain the inequality

a— inf Znohn—v ou((Xla) <Va(X) < Bu(aa(X|a).  (18)

)\o,...,)\N,l,V zﬂq;g')\n . . .
Note thatBy o a; is again a#,—function. The stated Lya-

subject to the constraints (13), (14) ahgl...,Any—-1,V > 0.  punov inequality (17) follows immediately from the defini-

The following is a straightforward corollary from Theoremtion of a* and (5) which holds according to Corollary 3.7 for
3.5. all me M. Again using (16) we obtai¥in(x) > a1(||x||a) and

Corollary 3.7: Consider 3 € #.%3, N > 1, m € thus a standard construction (see, e.g., [11]) yield§ & —
{1,...,N—1}, and assume that the optimization problem 3.6unction p for which the inequalityVWn(Xy, .. (0(k))) <
has an optimal value € (0, 1]. Then for each optimal control p(Wn(x),k) < p(Wn(X), | o(k)/m*|) holds. In addition, using
problem (1), (4) satisfying Assumption 3.1 the assumptiorthe definition of iy, for p=1,...,m¢—1, k € Ng, and
of Theorem 3.5 are satisfied and the assertions from Theorerbbreviatingk(n) = x,, .. (n) we obtain

3.5 hold.
W(x(a(k)+p))
IV. ASYMPTOTIC STABILITY o(k+1)-1
. . < —

In this section we show how the performance bound - njg%()+p|(x(n)’uNm (X(9(m),n—6(m))
can be used in order to conclude asymptotic stability of ny (x(a(k+1)))
the MPC closed loop. More precisely, we investigate the « '\i)’r“l"*p
asymptotic stability of the zero set &f. To this end we gtk D)-
make the following assumption. < n_%(k) L OX(), e (X(@ (), n = 6 (1))

Assumption 4.1There exists a closed sAtC X satisfy- N
P Y Vot p((0(k+ 1))

(i) For eachx € A there existau € U with f(x,u) € A and < Wix(a(k) +W(x(a(k+1))) < M(x(a(k)))
I(x,u) =0, i.e., we can stay insidé forever at zero where we have used (17) in the last inequality. Hence, we

cost. obtain the estimat&/y(xy, .. (n)) < 20(Wn(X), [¢(n)/m*])
(i) There exist#o—functionsai, a, such that the inequal- which eventually implies
ity -1
* * S V *
<@ sa o ag Pl 2w O8O
; < a; (2p(Wn(X), [¢(n)/m*

holds for eachx € X where||x||a := mi X—y|. _ O

Xl = miyca X VI < a; *(20(Bu(aa(la)). L(n— ) /m)))

This assumption assures global asymptotic stabilityAof
under the optimal feedback for the infinite horizon problemand thus asymptotic stability withiz”.Z-function given by,
providedf(r,n) is summable. We remark that condition (i) e.g., B(r,n) = a; }(2p(Bn(az(r)), [(n— m*)/m*])) +re "
can be relaxed in various ways, e.g., it could be replaced [ ]
by a detectability condition similar to the one used in [3]. Remark 4.3:For the “classical” MPC case* =1 andf3
However, in order to keep the presentation in this papeatisfying (8) it is shown in [4, Theorem 5.3] that the crider
technically simple we will work with Assumption 4.1(ii) from Theorem 4.2 is tight in the sense thatif < 0 holds
here. Our first stability result is formulated in the followi then there exists a control system which satisfies Assumptio
theorem. Here we say that a multistep feedback jaw 3.1 but which is not stabilized by the MPC scheme. We
asymptotically stabilizes a se¥ if there existsB € 2.2y conjecture that the same is true for the general catse 2.



V. CALCULATION OF a Corollary 5.4: Form=1,..., L%J the values from Theo-

Problem 3.6 is an optimization problem of a much lowefeém (5.2) satisfya[N, m| = a[N,N —m.
complexity than the original MPC optimization problem.
Still, it is in general nonlinear. However, it becomes a dine Fig. 2. lslequencnesb_qu Optihmal Valueﬁ[efl\g Jor ligatisl]y(;nlg (6), i-e(-j,
program ifB(r.n) (and thusB() from () i inear nr.  SPeTl csoumty  pramie 3. ol ne 0
Lemma 5.1:1f B(r,t) is linear inr, then Problem 3.6 andN = 12 (right).
yields the same optimal value as

0,2

N,
min
A0AL - AN-1,V

1
An—V
1

(19)

subject to the (now linear) constraints (13), (14) and

0,1

-0,1

-0,2

/
/

¥

4

" control horizon |
! \

-0,3 i
(20) il \ ' x
-0,5

3 5 7 9
control horizon

m-1

)\n:]..

Ao, .-, AN-1,V > 0,

n=
For a proof we refer to [4]. For lineg® we can defingy :=

By (r)/r. This allows for an explicit formula to calculate the ) )
optimal valuea of Problem 3.6. Fig. 2 illustrates the assertion of Corollary 5.4 fof".<-

Theorem 5.2:Let B(-,-) be linear in its first argument and functions satisfying (6), i.e., exponential controllétyil
satisfy (8). Then the optimal value = a[N,m] for given Apart from the symmetry proven in Corollary 5.4 one also
optimization horizorN and control horizom is observes certain monotonicity properties: we hayi, m+
1 > a[N,m] for m=1...,|N/2] —1 and the opposite
i1 N1 inequality afterwards. This is a very desirable featureabse

N N N N © it implies that if the stability condition in Theorem 4.2
(.7|_| vi— I (V.*l)> (.7 n v (Vn*1)> holds form* = 1 then is also holds for aln* < N —1, cf.

i=m41 i=m4-1 i=N-m+1 i=N—-m+1

(21) Theorem 5.7, below. However, the next example shows that
We only sketch the main ideas of the proofthis monotonicity property does not always hold.
an refer to [5] for details. For the optimum of the linear Example 5.5:We consider the? . #p-functionsB; and3;
problem stated in Lemma 5.1 inequality (14)=N—m—  of type (7) defined bycy = 1.24,¢; = 1.14, ¢, = 1.04 and
1, is an active constraint. As a consequence, the positivity=0 for alli > 3 for 3; andcp=1,c1 =12, c,=1.1,c3=
conditions concerning and Ao are implicitly guaranteed. 1.1,c4 =1.2,¢5 =1, ¢cs = 0.75,c; = 0.25 andc; = O for all
The obtained equality for (14),=N—m—1, in combination i > 8 for f». Both functions satisfy condition (8) anf
with equality (20) allows for rewriting the objective fuimmh is, in addition, monotonically decreasing. The correspond
as 1— (Ymr1 — 1)An_1 and eliminatingv and Ag from the valuesa[N,m] in Fig. 3 show that neither function satisfies
optimization problem entirely. A pairwise comparison lthsea[N,m+ 1] > a[N,m] for m=1,...,|N/2*].
on (8) of (13),k=m,....N—2, and (14),j =0,...,N—m—
2, provides that the restrictions (1®=m,....N—2, are
negligible because each point which violates (13)k@ not
feasible due to (14) fof =k—m, k=m,...,N —2. Hence, 0010
the optimization problem under consideration depends only
on Ai,...,An—1 > 0 and the remainingN — 1 inequalities. 0005
In addition, we prove that the optimum is strictly positive
and satisfies all other constraints with equality. Solvihg t
resulting linear system of equations yields the stated @deim
for a. [ |
Theorem 5.2 enables us to easily compute the performance
boundsa [N, m] which are needed in Theorem 4.2 provided
B is known. However, even i is not known exactly, we Example 5.5 shows that the desired monotonicity property
can deduce valuable information. The following corollasy i goes not hold for arbitrary? .%o-functions 8. However,
obtained by a careful analysis of the fraction in (21), cl. [S the following theorem (for the proof see [5]) shows that

Corollary 5.3: For each fixedn and 8 of type (6) or (7)  monotonicity holds it forB of type (6) and at least for a
we have limi—.. a[N,m] = 1. In particular, for sufficiently sypset ofg of type (7).

largeN the assumptions of Theorem 4.2 hold and hence the Theorem 5.6:Let B be of type (6) or of type (7) with
networked closed loop system is asymptotically stable. ¢, =0 for n> 1. Then for eactN > 4 the optimal values
Another application of Formula (21) is the investigation ofy — a[N,m are monotonically increasing im for m e
qualitative properties obr[N,m] depending on the control {1,..., [%J} and decreasing fam e {L%Ja"'vm*}'

horizonm. The following symmetry property follows imme-  This monotonicity has the following remarkable conse-
diately from Formula (21). quence for our stabilization problem.

N N
nvw-y n w-1

1—

Proof:

Fig. 3. a[4,m, m=1,...,3 for B; (left) anda[9,m], m=1,...,8 for 32
(right) from Example 5.5.
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Theorem 5.7:Let B be of type (6) or of type (7) with  The results indicate that the closed loop is asymptotically
cn =0 for n> 1. Then for eactN > 1 the stability criterion stable for eaclm and confirm that choosing control horizons
from Theorem 4.2 is satisfied fon* =N —1 if and only if m > 1 may indeed improve the suboptimality bound. More-

it is satisfied form* = 1. over, it is interesting to compare Fig. 4 with Fig. 2. While
Proof: Corollary 5.4 and Theorem 5.6 imply[N,m| >  Fig. 2 shows the minimad-values for a set of exponentially
a[N,1] for all me M which yields the assertion. m controllable systems over all initial values, the curveEim

In other words, for exponentially controllable systems and represent ther-values for one particular system and a finite
for systems which are finite time controllable in one stepset of initial values. Despite this very different naturetiod

for our proposed networked MPC scheme we obtain stabilitgomputations, the curves in Fig. 4 at least approximately
under exactly the same conditions as for “classical” MPOgsemble the shape of the curves in Fig. 2.

i.e., m* = 1. In this context we recall once again that for

m* = 1 the stability condition of Theorem 4.2 is tight, cf. o -
Remark 4.3. We have proposed a building block for the stability and

performance analysis of MPC schemes for networked control
V1. EXAMPLE systems with packet dropouts. Our technique is based on
asymptotic controllability properties and leads to an &xpl
ﬁly computable performance index which shows that for a
?arge class of systems stability can be guaranteed under the
same conditions as for a classical MPC scheme.

VIl. CONCLUSION

In this section we compare our analytical results to
numerical MPC simulation. To this end we consider th
linear inverted pendulum on a cart given by
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