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Abstract— We present an algorithm for an event based
approach to the global optimal control of nonlinear systems
with coarsely quantized state measurement. The quantized
measurements induce regions of the state space and the events
represent the change of the system’s state from one quantization
region to another. We investigate the theoretical properties of
the approach and illustrate the performance by a numerical
example.

I. INTRODUCTION

In this paper the problem of optimally controlling a
nonlinear control system to a desired target set by means of
a state feedback law is considered. We assume that for the
evaluation of the feedback law only coarsely quantized mea-
surements are available via suitable events. More precisely,
we define certain thresholds for our system, like, for instance,
fill levels (0%, 25%, 50%, . . . ) for a tank in a multi-tank
system. These thresholds induce a partition of the state space
into different regions (in the tank example 0%–25%, 25%–
50%, . . . ) and we assume that only the region containing the
initial state and the subsequent crossings of thresholds — the
events — are known to the feedback controller.

For sampled data systems, it was observed in [3]–[5] that
the set oriented approach to global optimal control problems
for perturbed systems developed in [4] is suitable for solving
the problem. In this approach, the uncertainties are modelled
as perturbations [5] and the perturbed system is interpreted
as a set-valued control system. In this paper, we extend the
approach from [5] to an event based setting. For an analysis
of the difference between sampled data and event based
control we refer, e.g., to [1], [2], in which the performance
of the two approaches is compared for a first order system.
More information on event based control can be found, e.g.,
in [6], [7] and the references therein.

The basic event based algorithm, which is developed in
Section II, already significantly improves upon the results
using the sampled data approach. However, this basic al-
gorithm only takes into account the region containing the
current state, i.e., the last event. This is a quite conservative
approach, because it only uses rather coarse information
about the system’s state when an event takes place, i.e.,
a threshold is crossed. Motivated by conceptually similar
methods in the discrete event system literature, see, e.g., [8]
and the references therein, and by the promising numerical
results for sampled data systems from [5], in Section III
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we extend the method by including information about past
events: We determine the feedback value after the kth event
not only depending on the current state region but also on the
regions determined from previous events k −m, . . . , k − 1,
leading to a kind of dynamic feedback concept. With consid-
ering past events the uncertainty about the place where the
system crosses a threshold is narrowed down and therefore
the conservartism is reduced.

In Section IV we give a theorem about the relation
between the optimization with and without considering past
information and in Section V we illustrate the efficiency of
our approach with a numerical example.

II. PROBLEM FORMULATION

We consider the discrete-time nonlinear control system

x(k + 1) = f(x(k), u(k)), k = 0, 1, . . . , (1)

where f : X × U −→ X is continuous, x(k) ∈ X is
the state of the system, u(k) ∈ U is the control input,
chosen from compact sets X ⊂ Rn and U ⊂ Rm. The
set of all control sequences u = u(k)k∈N is denoted by
UN and for each initial value x0 and control sequence
u we denote the corresponding trajectory by x(k,x0, u).
Throughout the paper we interpret (1) as a discrete time
model for a continuous time sampled-data system.

The control problem we consider is as follows: Given
a target set X ∗ ⊂ X , steer the system into X ∗ while
minimizing the functional

J(x0, u) =
N(x0,u)∑

k=0

c(x(k, x0, u), u(k)) (2)

over u, where N(x0, u) denotes the minimal k ≥ 0 such
that x(k,x0, u) ∈ X ∗ holds. Here c : X × U → R is a
continuous running cost satisfying minu∈U c(x, u) > 0 for
all x 6∈ X ∗.

Our goal now is to find a feedback law which ap-
proximately solves this problem, assuming, however, that
the system’s state is not exactly determinable. In order to
formalize this uncertainty, we use a partition P of the state
space X consisting of finitely many connected and disjoint
subsets Pi ⊂ X with the properties⋃

Pi∈P Pi = X and

Pi ∩ Pj = ∅ for all Pi,Pj ∈ P with i 6= j.
(3)

In contrast to, e.g., [3], [4] we do not interpret the sets P ∈ P
as a discretization which we are able to change according to
our demands. Rather, the subsets Pi of this partition model
the quantization regions of the state measurements. Here we



assume the partition P as given and do not address the
question about how to choose good partitions. We assume
that our target set X ∗ is a union of such regions, i.e.,
X ∗ =

⋃
P∈P∗ P for some set P∗ ⊂ P .

For the purpose of feedback control, we assume that the
region Pi containing the initial value x0 is known and that
each time the state crosses a region boundary an event e is
triggered. By ei,j we denote the event which corresponds to
the state moving from Pi to Pj . Note that knowing the initial
region and the subsequent events is equivalent to knowing
the region containing the current state of the system. Hence,
we formally define the feedback value as a map µ : P → U
and obtain the feedback value for a state x as µ(ρ(x)), using
the correlation function ρ : X → P defined by

ρ(x) := P if x ∈ P.

In order to construct an event based system from (1), for
r ∈ N0 we use the iterates fr(x, u) for x ∈ X , u ∈ U
given by

f0(x, u) := x, fr+1(x, u) := f(fr(x, u), u)

and define the following value.
Definition 2.1: For each x ∈ X with x ∈ Pi and each

u ∈ U we define the value r(x, u) to be the smallest value
r ∈ N satisfying

fr−1(x, u) ∈ Pi, fr(x, u) ∈ Pj .

In other words, r(x, u) is the time the event ei,j is generated.
Formally, we could set r(x, u) = ∞ if fr(x, u) ∈ Pi for

all r ∈ N0. For the practical implementation, we impose an
upper bound R ∈ N0 for r(x, u) and generate the event ei,i

if fR ∈ Pi.
In order to specify the set valued system for our algorithm,

we define the set 2X of all subsets of X and the set of
sequences (2X )N := {X = (X (0),X (1), . . .) | X (i) ⊂
X for all i ∈ N} and use the following concept of choice
functions.

Definition 2.2: A choice function γ : (2X )N × UN −→
XN is a function of the form

γ(X, u) = (γ̂0(X (0), u(0)), γ̂1(X (1), u(1), . . .),

with component functions γ̂i : 2X × U −→ X satisfying
γ̂i(X (j), u(j)) ∈ X (j) for all X (j) ⊆ X , u(j) ∈ U . The
set of all choice functions γ is denoted by C and the set of
all component functions γ̂ by Ĉ.
With the components γ̂ of the choice function γ we model
the uncertainty of the state x by choosing the perturbed state
γ̂(X , u) ∈ X depending on the control u in the region
X containing x. The choice functions γ then extend this
concept to a sequence of regions and controls.

Using the concept of partitions and choice functions we
can define an event-based set valued control system by

X (k + 1) = F (X (k), u(k), γ̂k(X (k), u(k))), (4)

k = 0, 1, . . ., with F : 2X × U × Ĉ → P given by

F (X (k), u(k), γ̂k(X (k), u(k))) :=

ρ(fr(bγk(X (k),u(k)),u(k))(γ̂k(X (k), u(k)), u(k))).

In what follows we will omit the arguments of γ̂k in order
to simplify the notation. The map F describes all possible
transitions of a subset Xi ⊂ X of the state space to regions
P ∈ P , parametrized by γ̂k. In other words, for each u ∈ U
we have the identity⋃
bγ∈bC

F (X , u, γ̂) = {P ∈ P |f(x, u) ∈ P for some x ∈ X}.

A trajectory X (k,P0, u, γ), k ∈ N of (4) is now a sequence
of regions defined by

X (0) = P0, X (k + 1) = F (X (k), u(k), γ̂k)

and depends on the initial set P0 ∈ P , the control sequence
u ∈ UN and the choice function γ ∈ C. Note that we can
express each set valued trajectory X (0) = Pi0 , . . . ,X (k) =
Pik

as a sequence of events

e(1) = ei0,i1 , e(2) = ei1,i2 , . . . , e(k) = eik−1,ik
. (5)

The next object defines the set of regions from which the
system (4) can be steered to the target set X ∗ regardless of
the choice of γ.

Definition 2.3: The domain of controllability of X ∗ is
defined as

S = {P ∈ P | for each γ ∈ C there exists u ∈ UN and
k ∈ N with X (k,P, u, γ) ⊂ X ∗}.

and the first hitting time is defined as N(P, u, γ) =
inf{k ∈ N|X (k,P, u, γ) ∈ X ∗}.
Note that for fixed P we can interpret γ as a map from UN

to XN. In the language of dynamic game theory this map
defines a nonanticipating strategy, cf. [3], [4].

Using the running cost c we now define a cost function
for the event based set valued control system (4)

c1 : P × U −→ R+,0, c1(P, u) := sup
x∈P

cr(x,u)(x, u),

with

cr(x,u)(x, u) :=
r(x,u)−1∑

r=0

c(fr(x, u), u)

and r(x, u) from Definition 2.1. By this definition we
assume the worst case, i.e., the highest cost, over all the
uncertain states x ∈ P . Using c1 we now define the
functional

J1(P, u, γ) :=
N(P,u,γ)∑

k=0

c1(X (k,P, u, γ), uk)

with values in R+,0 ∪{+∞} and the optimal value function

V1(P) = sup
γ∈C

inf
u∈UN

J1(P, u, γ).



By standard arguments one sees that V1 fulfills the optimality
principle

V1(P) = inf
u∈U

{
c1(P, u) + supbγ∈bC V1(F (P, u, γ̂))

}
(6)

for all P 6⊂ X ∗ and V (P) = 0 for all P ⊂ X ∗.
Since P consists of finitely many sets, from this it is easy

to see by induction that

S = {P ∈ P |V1(P) < ∞}.

In particular, the domain of controllability is easily obtained
once V1 is computed.

We will now investigate the behavior of V1 along an
optimal trajectory for the original system (1). To this end,
observe that the optimal feedback law µ : P → U is the
control value realizing the minimum in (6), i.e.,

µ(P) = argmin
u∈U

{
c1(P, u) + supbγ∈bC V1(F (P, u, γ̂))

}
Using this µ we get the following theorem.

Theorem 2.4: For all x ∈ X with ρ(x) ∈ S the inequality

cr(x, µ(ρ(x))) + V1(ρ(fr(x, µ(ρ(x))))) ≤ V1(ρ(x)) (7)

holds for r = r(x, µ(ρ(x))) .
Proof: Using the optimality principle (6) and the

definition of µ, γ̂ and c1 we get

V1(ρ(x)) =

inf
u∈U

{
c1(ρ(x), u) + supbγ∈bC V1(F (ρ(x), u, γ̂))

}
= c1(ρ(x), µ(ρ(x))) + supbγ∈bC V1(F (ρ(x), µ(ρ(x)), γ̂))

≥ cr(x, µ(ρ(x))) + V1(ρ(fr(x, µ(ρ(x)))))

which shows the assertion.
The result has an immediate consequence for the trajectory

x(k,x0, µ) of (1) with feedback control µ defined by

x(k + 1) = f(x(k), µ(ρ(x(k)))).

The value V1(ρ(x(k, x0, µ))) is decreasing in k until X ∗ is
reached and strictly decreasing for each k in which an event
is triggered. This implies that x(k, x0, µ) eventually reaches
X ∗ provided ρ(x0) ∈ S (or equivalently V1(ρ(x(0)) < ∞)
holds.

Remark 2.5: The advantage of the event based approach
compared to the sampled data approach in [3]–[5] can be
explained as follows: In these references the set valued map
F is constructed directly from (1). Hence, if there exists
Pi ∈ P and x ∈ Pi with f(x, u) ∈ Pi for all u ∈ U , then
F (Pi, u, γ̂(Pi, u)) = Pi holds for γ̂(Pi, u) = x. Hence,
the optimality principle (6) immediately implies V (P) =
∞. Using fr(x,u)(x, u) instead of f(x, u) for constructing
F resolves this problem, because — unless fr(x, u) ∈ Pi

for all r ≥ 0 — the set valued map F will always satisfy
F (Pi, u, γ̂(Pi, u)) 6= Pi.

III. INCLUDING PAST INFORMATION

The approach described in the previous section is conser-
vative because by maximizing over γ we implicitly assume
the worst case in each step along the trajectory, i.e., that
for each k among all the possible states in X (k) the actual
state x(k) is the one which produces the largest cost. Of
course, this is not necessarily the case. The approach we
propose in order to reduce the conservatism relies on the
idea that at time k we consider the last m measurements in
order to compute the feedback µ. This way we can collect
more information, thus reduce the uncertainty of the system
and consequently obtain a less conservative result. In other
words, we are now looking at an approximately optimal
feedback map of the form µm+1(X (k − m), . . . ,X (k))
where again the regions X (k) can be reconstructed from
the knowledge of the initial region containing x0 and the
subsequent events. Note that this construction resembles the
dynamic feedback concept well known in observer design.

In order to keep the exposition simple, we restrict our-
selves to m = 1. All arguments can, however, be extended
to the more general setting m ≥ 1. Our goal in this case
is to find a feedback law µ2(X (k − 1),X (k)), or, using the
equivalent event characterization (5), µ2(e(k)).

To this end, we define P2 := (P ∪{δ})×P and introduce
a new set valued state Z(k) = (Z1(k),Z2(k))T ∈ P2 which
represents (X (k− 1),X (k))T or, equivalently, (e(k)), again
using the representation (5).

For Z we define the event-based set valued control system
as

Z(k + 1) = F2(Z(k), u(k), γ̂k)

: =
(

Z2(k)
F (X(Z(k)), u(k), γ̂k)

)
(8)

with F from (4) and

X(Z) :=


Z2, if Z1 = δ⋃
x∈Z1u∈U

fr(x,u)(x, u) ∩ Z2, else

(9)
with r(x, u) from Definition (2.1). Here the symbol δ repre-
sents the “undefined” region, which appears when the system
is started at time k = 0 with initial region P0 ∈ P but
undefined previous region P−1. Therefore, at time k = 0 a
trajectory starts with the vector Z(0) = (δ,P0)T .

By including the extra information in the definition of F2

the uncertainty of the system is reduced. Instead of using
F (X (k), u(k), γ̂k) as in the previous section we use now
F (X (Z(k)), u(k), γ̂k), where X(Z(k)) is a subset of the
current region X (k). The set X(Z(k)) contains only those
states which can be reached from the past region Z1(k) =
X (k − 1), i.e., we exclude those states from Z2 which the
system cannot reach.

Clearly, not all the pairs Z = (Pi,Pj)T ∈ P2 are
actually attained by the systems dynamics. In fact, only
those pairs with X(Z) 6= ∅ can appear on the left hand
side of (8) which is why we define the active state regions
P a

2 := {Z ∈ P2 |X(Z) 6= ∅}. We denote the trajectories



of (8) by Z(k, Z0, u, β) and adapt the definitions from the
previous section to our new setting.

The target set now becomes Z∗ = {Z ∈ P2 | Z2 ⊆ X ∗}
and the definition of the domain of controllability S and
the first hitting time N changes accordingly. For the cost
function

c2 : P2 × U → R+,0, c2(Z, u) = sup
x∈X(Z)

cr(x,u)(x, u)

we define the functional

J2(Z,u, γ) =
N(Z,u,γ)∑

k=0

c2(Z(k,Z, u, γ), uk) ∈ R+,0 ∪ {+∞}

and the optimal value function

V2(Z) = sup
γ∈C

inf
u∈UN

J2(Z, u, γ).

V2 again fulfills the optimality principle

V2(Z) = inf
u∈U

{
c2(Z, u) + supbγ∈bC V2(F2(Z, u, γ̂))

}
(10)

The optimal feedback µ2(Z) is given by the argmin of
this expression. The following theorem is the counterpart of
Theorem 2.4.

Theorem 3.1: For all x ∈ X and all Z ⊂ S with x ∈
X (Z) the inequality

cr(x, µ2(Z)) + V2((ρ(x), ρ(fr(x, µ2(Z)))T ) ≤ V2(Z)

holds for r = r(x, µ2(Z)). In particular, the inequality holds
for Z = (δ, ρ(x))T .

Proof: Completely analogous to Theorem 2.4.

IV. COMPARISON OF THE TWO APPROACHES

In the preceding sections we have introduced the optimal
value functions V1 and V2 and the corresponding feedback
laws µ and µ2. In this section we now show that V1 is an
upper bound for V2. In [5] a similar theorem for the sampled
data approach is proven.

Theorem 4.1: The optimal value functions V1 and V2

satisfy

V2(Z) ≤ V1(P) for all Z ∈ P a
2 , P ∈ P with Z2 = P.

Proof: We prove the theorem by induction over the
elements P1,P2, . . . ,Pl ∈ P which we number according to
their values in the optimal value function V1, i.e., V1(Pi) ≤
V1(Pj) for all 1 ≤ i < j ≤ l. We will frequently use the
obvious inclusion X(Z) ⊆ Z2 for X(Z) from (9) and all
Z = (Z1,Z2)T ∈ P2.

Induction start n = 1:
Since V1(P) = 0 holds if and only if P ⊆ X ∗ we obtain
P1 ⊆ X ∗. Since Z ⊆ Z∗ for all Z ∈ P2 with Z2 = P1 ⊆
X ∗ we obtain V2(Z) = 0 = V1(P1) and thus the assertion
for P1.

Induction step n → n + 1:
We use the induction hypothesis V2(Z) ≤ V1(Pj) for all
j = 0, . . . , n and all Z ∈ P a

2 with Z2 = Pj in order to
show V2(Z) ≤ V1(Pn+1) for all Z ∈ P a

2 with Z2 = Pn+1.
The optimality principle for V1 yields

V1(Pn+1) =

inf
u∈U

{
c1(Pn+1, u) + supbγ∈bC V1(F (Pn+1, u, γ̂))

}
= c1(Pn+1, µ(Pn+1))
+ supbγ∈bC V1(F (Pn+1, µ(Pn+1), γ̂)).

By positivity of c1 this implies

V1(F (Pn+1, µ(Pn+1), γ̂)) < V1(Pn+1)

for all γ̂ and thus the numbering of the Pj yields

F (Pn+1, µ(Pn+1), γ̂) ∈ {P1, . . . ,Pn}. (11)

Now the optimality principle for V2 yields

V2(Z) = inf
u∈U

{
c2(Z, u) + supbγ∈bC V2(F2(Z, u, γ̂))

}
≤ c2(Z, µ(Pn+1)) + supbγ∈bC V2(F2(Z, µ(Pn+1), γ̂))

= c2(Z, µ(Pn+1)) + V2(Zmax), (12)

where Zmax = (Pn+1,Pi)T denotes the element from
{F2(Z, µ(Pn+1), γ̂) | γ̂ ∈ Ĉ} realizing the supremum, which
exists because F2 can only assume finitely many values.

Now X(Z) ⊆ Pn+1 implies Pi = F (Pn+1, µ(Pn+1), γ̂)
for some suitable γ̂ and thus from (11) we can conclude
i ≤ n. Furthermore, from the optimality principle for V1 we
obtain

V1(Pn+1) = c1(Pn+1, µ(Pn+1))
+ supbγ∈bC V1(F (Pn+1, µ(Pn+1), γ̂))

≥ c1(Pn+1, µ(Pn+1)) + V1(Pi).

Using the induction assumption V1(Pi) ≥ V2(Zmax) (which
is applicable since i ≤ n) and

c2(Z, µ(Pn+1)) = sup
x∈X(Z)

cr(x,µ(Pn+1))(x, µ(Pn+1))

≤ sup
x∈Pn+1

cr(x,µ(Pn+1))(x, µ(Pn+1))

= c1(Pn+1, µ(Pn+1))

we can continue to estimate

V1(Pn+1) ≥ c1(Pn+1, µ(Pn+1)) + V1(Pi)
≥ c2(Z, µ(Pn+1)) + V2(Zmax)

which together with (12) yields the assertion.
In practice, we expect V2 to be considerably smaller

than V1, as the numerical example in the following section
confirms. Theorem 4.1, however, only yields V2 ≤ V1

because system (8) may not contain any useful additional
information compared to (4), which is theoretically possible
but appears to be an exceptional case.



V. EXAMPLE

We illustrate our approach with the example of a tempera-
ture and fill level control of a tank model. This model is part
of the experimental plant ”VERA” at the Ruhr-Universität
Bochum. Figure 1 shows a schematic image of the model.

Fig. 1. Model of the tank

We have a two-dimensional state, x1 is the fill level
and x2 is the temperature of the water in the tank. The
fill level is constrained to the interval [0.26 m; 0.45 m] and
the temperature to [293.15 K; 323.15 K]. The first component
of the two-dimensional control regulates the inflow with a
continuous adjustable valve with values between 0 and 1,
discretized with 7 equidistant control values in our algorithm.
The second component decides how many (0 to 6) heating
rods are turned on. The system dynamics of the model are

ẋ1 =
1

70 · 10−3

q(u1)−1.5876 · 10−5
√

2gx1︸ ︷︷ ︸
(∗)

 ,

ẋ2 =
1

0.07x1 − 1.9 · 10−3

(
q(u1)(ϑext − x2) +

Pelkhu2

%cp

)
where

q(u1) =
{

0.07 · 10−4(11.1u2
1 + 13.1u1 + 0.2), u1 > 0.2

0, else

and (∗) is the outflow of the tank. The constants of the
systems dynamics are

Pel 3000 W Electric power of the heating rods
kh 0.7 Heating coefficient
% 998 kg

m3 Density of water
cp 4180 J

kgK Specific heat capacity of water
g 9.81 m

s2 Gravitational constant
ϑext 293.15 K Temperature of inflowing water.

The discrete time system (1) is obtained by sampling the
continuous time system with sampling period T = 1.0.
The goal of the optimization is to reach the target set as fast
as possible which corresponds to the running cost c ≡ 1.

The optimal value functions are computed with a graph
theoretic algorithm. To this end, we numerically construct a
weighted directed hypergraph, in which for the computation
of V1 each state region Pi and for the computation of V2 each
event ei,j is represented as a vertex. The transitions of the
set valued system generate the hyperedge in the hypergraph.
Once the graph is constructed, we can compute the optimal
value functions with a min-max version of Dijkstra’s shortest
path algorithm, see [4], [9] for details. Since this algorithm
relies on the optimality principles (6) and (10), for the
implementation we do not need an explicit representation
of the choice function γ̂, because by definition of F we get

supbγ∈bC V1(F (P, u, γ̂)) = sup
x∈P

V1(ρ(fr(x,u)(x, u)))

in (6) and an analogous expression in (10).
In our first computation we use 162 quantization regions

in order to cover the state space and a target set around the
operating point (x1 = 0.349 m, x2 = 310.56 K) consisting
of the 4 regions indicated in black in Figure 2, which shows
the optimal value function V1.
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Fig. 2. Value function V1 for 162 regions

The clearly visible jump in the values at x1 = 0.36 m is
explainable with the help of the worst case trajectories used
in the optimization over the set valued dynamics. A worst
case trajectory starting in P , is defined as

X (0) = P, X (k + 1) = F (X (k), µ(X (k)), γ̂k),

where γ̂k is the function realizing the supremum
supbγk∈bC V1(F (X(k), µ(X (k)), γ̂k)) on the right hand side
of the optimality principle (6).

Figure 3 shows a typical worst case trajectory with starting
region to the right of x1 = 0.36 m. Due to the uncertainties
included in the model, instead of approaching the target
directly, each optimal worst case trajectory starting right
of x1 = 0.36 m first moves to the top of the state space,
then turns left and eventually moves down to the target
which explains the jump in the optimal value function at
x1 = 0.36 m.

In Figure 4 we see the optimal value functions V2 for the
same partition. The values are smaller and the jump in the
values of V2 has vanished.
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Fig. 3. Worst case trajectory
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Fig. 4. Value function V2 for 162 regions

On a partition with 82 regions, the approach via V1 is no
longer feasible because a large part of the state space does
not belong to the domain of controllability S. In contrast to
this, for V2 we still get a useful solution as shown in Figure 5.
However, this clearly visible advantage comes at the expense
of larger (offline) computational effort: on a PC with an Intel
Core2 Duo E6850 CPU running at 3.00GHz the computation
of Fig. 2 needed 2.42s, while Figures 4 and 5 took 201.51s
and 75.08s, respectively. In all cases, the construction of the
graph is the by far most expensive part of the algorithm.

Finally, in order to compare our event based approach
to the sampled data approach, Figure 6 shows the optimal
value function on a partition with 1282 regions, where F
was constructed directly from a sampled data model with
sampling period T = 6.0. For this approach, such a fine
partition is necessary, because on a coarser partition a large
part of the state space is no longer controllable to the target.
This illustrates the advantages of our proposed event based
approach due to the effect described in Remark 2.5.

VI. CONCLUSION

In this paper we have introduced an event based algo-
rithm for the optimal feedback control of nonlinear systems
with coarse quantization. Compared to similar approaches
for sampled data systems, the algorithm is able to obtain
stabilizing feedback laws on much coarser quantizations.
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Fig. 6. Value function for a sampled data approach
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