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Abstract— A computational method for the approximation
of reachable sets for non-linear dynamic systems is suggested.
The method is based on a discretization of the interesting region
and a projection onto grid points. The projections require to
solve optimal control problems which are solved by a direct
discretization approach. These optimal control problems allow
a flexible formulation and it is possible to add non-linear
state and/or control constraints and boundary conditions to the
dynamic system. Numerical results for non-convex reachable
sets are presented. Possible applications include robust optimal
control problems.

[. INTRODUCTION

The subject of this paper is the description of an algorithm
for the approximation of reachable sets of non-linear control
problems. Reachable sets are interesting because they allow
to study the future development of dynamic systems under
the influence of control variations and variations in param-
eters. For instance, changes in climate can be studied for
appropriate models using different environmental influence
factors like carbondioxid concentrations or global mean
temperature, see [9]. Further examples on fish harvesting,
lake pollution, and spruce-budworm control can be found in
[8]. The idea of our approach is to project grid points from
an equidistant grid onto the reachable set. Each projection
requires to solve an optimal control problem. The occur-
ring optimal control problems are not solved theoretically
by use of the Pontryagin’s maximum principle as in [23]
but numerically by suitable discretization methods. This
approach turns out to be powerful in practice and allows
to include control and/or state constraints and even boundary
conditions. Results concerning the convergence of discretized
optimal control problems can be found in [20], [10], [16] and
the references stated therein.

Let to < T be given and let U # () be convex and compact.
Moreover, let an initial state (o € R™ be given. Consider the
following nonlinear control problem.

Problem 1: For a given u € L>([tp,T],R™) find z €
Whee([tg, T],R™) with

() = fla(t),u(t)), a.e. in [to, T),
z(ty) = xo,
u(t) € U, a.e. in [tg, T].
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The task is to compute the reachable set at time 7" which
is defined as follows:

R(T,to,z0) := {y€R™|3u(-) control function and
Jz(-) corresponding solution
of Problem 1 with z(T) =y}

Many properties of the reachable set are known for linear
control problems with f being linear in z and u. Most
importantly, it can be shown that the reachable set for
linear control problems is a convex set as a consequence of
Aumann’s integral. Various methods for the approximation
of reachable sets for linear control problems have been
suggested, among them are set-valued integration schemes
[1], optimal control techniques [23], [2], external and inner
ellipsoidal techniques [17], [18], [19], estimation methods
[12].

However, in the non-linear case, very few methods
are known. In general, the reachable set is non-convex.
Chahma [9] used set-valued discretization methods for non-
linear problems with state constraints. The analysis of error
estimates and the numerics are continued in [4].

A discrete counterpart of Problem 1 is constructed as
follows. Consider a suitable one-step discretization scheme,
e.g. an explicit Runge-Kutta method, with increment function
® on an equidistant time grid with time points ¢; = tg + ih,
i=0,1,..., N, and step size h = (T'—t¢)/N. Then, using
an appropriate parameterization u; of the control on the
grid, e.g. a piecewise constant control function, a discrete
counterpart of the continuous control problem is defined as
follows.

Problem 2: For a discretized control function uy () find a
solution z(-) with

rp(tive) = xn(ti) +h®(xn(ts), un, h),
i=0,1,...,N—1
zp(0) = xo
uh(~) e U

In the simplest case we have ®(z,u, h) = f(z,u), that is
Euler’s method. Of course, higher order integration schemes
can be used as well.

An approximation of the continuous reachable set
R(T, to,x0) is given by the discrete reachable set defined



by

Rultn.to,xo) = {y € R™|Juy(-) discretized control

and Jxp(-) corresponding

solution of Problem 2 with
xp(ty) = y}
II. THE ALGORITHM

We suggest a computational method which allows to
approximate the reachable set of a nonlinear dynamic system
at a fixed time point 7' by using optimal control techniques.

The algorithm works with a grid G, with step size h and
projects each element in Gy, onto the reachable set of the
dynamic system. Projecting a grid point w.r.t. the Euclidean
norm leads to an optimal control problem and the following
algorithm for the approximation of the reachable set.

Algorithm:

(i) Choose a region G C R™ and discretize G by a grid
G}, C G with step-size h such that each element of GG
can be approximated by a grid point with error h.

(ii) For every g, € G}, solve the following optimal control
problem OCP(gy):

Min  3[l2(T) — gall3
s.t () = f(z(t),u(t)), ae.in [to,T]
z(0) = a9
u(t) € U, a.e. in [to, T
Let 2*(:;g9n) and u*(-;gp) denote the solution of
OCP(gn).

(iii) Define the reachable set approximation (relative to G,)
by

Ru(T,to,0) = | J {&*(T;90)}-
gn€Gh

Remark: There are alternative ways to define a reachable
set approximation in (iii), for instance one could use the
union of all grid points which yield distance (approximately)
zero in the objective function of the respective optimal control
problems. Or one could approximate the reachable set by the
complement of the union of balls centered at the grid points
whose radii are defined by the objective function values
of the above optimal control problems. In the upcoming
paper [3] theoretical approximation properties of the above
algorithm are investigated showing that the reachable set
will be approximated of at least order O(h) for Euler’s
method under suitable assumptions. Herein, it is important
to synchronize the grid size to the time discretization. Higher
order approximations are possible as well.

The same discretization scheme as defined earlier in
Problem 2 leads to a discretized version of OCP(g;,) called
DOCP(gp):

Min 3z (T) — gall3
s.t. fh(tiJrl) = {Eh(tz)-i‘h@
=0,1

(xh(ti)a Up, h)v
1=0,1,

N -1,

zp(0) = xo
U}L(') S uh

Let 27 (-; gr) and u} (-; g) denote the solution of DOCP(gy,).
In DOCP(g1,) uy, is a suitable control discretization. For sim-
plicity, uy, will be a piecewise constant control approximation
on the grid, i.e.

’LLh(t):’LLZ forti§t<ti+1,i:0717...7N—1.

Obviously, DOCP(g;) is an approximation of OCP(g;) and
any global solution of OCP(g;,) is an element of

Hs(gn) == {s €S :|lgn—sl = égg lgn — §||}

with S = R(T, to,xo) and any global solution of DOCP(g},)
computes an element of Ilg, (g) with S, = Ry (T, to, x0).

It remains to solve DOCP(gy) (or ideally OCP(gp)).
OCP(gy,) and its discrete counterpart DOCP(gy,) are in gen-
eral non-convex problems and may exhibit all difficulties that
may occur for general (discretized) optimal control problems
like ill-conditioning, non-regularity, singular sub-arcs, etc.
Particularly, they may possess local minima, which may
cause problems as this may result in not detecting parts of
the actual reachable set.

In order to make DOCP(gy,) accessible to numerical meth-
ods, we assume that the control set U is defined by box
constraints, i.e.

U:= {u € R™ | Umin S u S umaz},

Umin < Umaz-

Let z := (ug,u1,.-.,un—1) . Then the constraints uy,(t;) €

U read as
Ui € [Umin, Umaz)s 1=0,1,...,N — 1.

In order to reduce the number of variables of DOCP(g;,) the
equations can be eliminated recursively according to

x1 = xmo+h®(z,h) = X1(2),
x2 = x4+ h®(x1,2,h)

= Xi1(2) + h®(X1(2),2,h) = Xa(2),
any = xn-1+hP(xNn_1,2,h)

= Xn-1(2) + h®(Xn_1(2),2,h) = Xn(2).

Herein, we identified u;, with the control parameterization z.
Using these expressions, an equivalent optimization problem
with variable z arises:

Problem 3:

Min  3||Xn(2) — gall3

s.t. z € [Umimumaw]N

This is a bound constraint nonlinear program and it can be
solved, for instance, by a sequential quadratic programming
(SQP) method or any other suitable nonlinear programming
method. As all these methods are well-known and well-
analyzed, see for instance the book of Wright and No-
cedal [22], we are not going into details here. All these
methods have in common that they require the gradient of the
objective function. Computing the gradient is the most costly



operation during the numerical solution and it is important
to exploit the structure of Problem 3.

There are basically four approaches for calculating deriva-
tives:

e The sensitivity ODE approach (also known as IND
approach) is a sensitivity analysis of the integration
scheme w.r.t. z. As the effort depends mainly on the
number of variables and less on the number of con-
straints, it is particularly efficient if the number of
nonlinear constraints exceeds the number of variables
in a discretized optimal control problem. Details can be
found in [5], [7], [21]. A discussion and comparison of
several strategies can be found in [11].

« The adjoint ODE approach, see [6], is advantageous
compared to the sensitivity ODE approach if the number
of nonlinear constraints is less than the number of
variables in the discretized optimal control problem. The
effort mainly depends on the number of constraints and
less on the number of variables.

o Algorithmic differentiation, see [15], combines the sen-
sitivity ODE approach (forward mode) and the adjoint
ODE approach (backward mode).

« Finite difference approximations are easy to implement
but tend to be costly and it is difficult to control the
accuracy of the computed gradients owing to round-off
erTors.

As Problem 3 only has box constraints, the adjoint approach

for calculating gradients is the most efficient one. As we shall

see, it only requires to integrate the differential equation from

to to 1" and the adjoint equation backwards from 7' to .
We intend to calculate the gradient w.r.t. z of

1
G(2) = 5 Xn(2) — gnll3
where
XO(Z) = X,
Xit1(2) = Xi(2) +h®(X;i(2),2,h), )]

i=0,1,...,N—1.

Consider the auxiliary functional

+ Z )‘7,+1 Z+1

—hd(

J(z) = — Xi(2)
Xi(2), z, h))

with multipliers A\;, ¢ = 1,..., N. Differentiating J w.r.t. z,

reordering terms, and neglecting arguments yields
J'(z) = ((XN( ) - Xy (2)

+Z (A = AL = AL 2 [n)) - X (2)
N

1

—gn)+AN)"

,_.

Herein, ®[¢;] is an abbreviation for ®/ (X;(z),z,h) and
likewise for @7,

The calculation of the terms X/(z) is costly and shall be
avoided. Hence, terms involving X/ (z) have to be eliminated.
This leads to the adjoint equation

N = A =L@t =0, i=0,...,N—1, (2)

and the transversality condition A\ = —(Xn(2) — gn) "
Notice, that the adjoint equation is solved backward in time.
Exploiting these relations yields

N-1
- Z hAL 1 @ [ti]
i=0

It is straightforward to show that G’(z) = J'(z) holds, see
[14, Thm. 6.2.2], and thus we obtained a formula for the
gradient of G.

Notice, that the derivatives ®/ and @, have to be
computed. This is straightforward for Euler’s method with
®(x,u,h) = f(x,u), but it is more involved for more
general Runge Kutta methods.

The overall integration scheme with (1) and (2) turns out
to be a symplectic integration scheme, see [13].

Remarks:

e The direct discretization approach outlined above can
be easily extended to more complicated control con-
straints. Even state constraints and boundary conditions
can be added. However, the calculation of gradients
using the adjoint approach may not be the most suitable
one if non-linear control and/or state constraints are
present in the optimal control problem. In this case the
sensitivity approach is preferable, details can be found
in [14].

o The effort for solving the discretized optimal control
problems and the number of grid points increases as
the step-size h decreases.

Please note that the computation of reachable sets is
inherently a challenging task and this is reflected by
the above comment.

o Common nonlinear programming methods are only
capable of finding a local minimizer of the above



optimization problem. Global optimality is practically
not achievable with a reasonable computational effort.
However, approximation properties for the reachable set
can only be guaranteed for global solutions. Local so-
lutions may cause the approximate reachable set to miss
out parts of the actual reachable set. The computational
results in the next section however suggest that even
local optimization methods usually lead to very good
approximations. This effect seems to be compensated
by considering many grid points.

IIT. NUMERICAL EXAMPLES

The true reachable sets in this section are either known
analytically (Kenderov example) or reference solutions using
exhaustive calculations are available, see [9]. Using these
reference solutions, it turns out that the above optimal
control strategy actually finds correct approximations to the
reachable set without missing out parts of it, despite the fact
that only local optimization algorithms were used. In addition
to the standard algorithm outlined above, an adaptive version
was created. The basic idea of the adaptive algorithm is based
on the following lemma.

Lemma 1: Let gy, be a grid point and x*(T'; gp,) an optimal
solution of DOCP(gy). Then no grid point within the ball
B,(gn) and radius v = ||z} (T; gn.) — gn|| is reachable.

Proof: As r is supposed to be minimal, no grid point
within the ball B,.(gy,) is reachable. O

Lemma 1 implies that the grid points within the ball
B,.(gn) need not to be projected. This simple strategy turned
out to be useful in order to reduce the computational effort.

A. Example 1: Brachistochrone

The first example is the well-known Brachistochrone ex-
ample posed in the 17th century by Johann Bernoulli. The
corresponding control problem reads as follows.

a'(t) = /2gy(t) cos(u(t))
y'(t) = /2gy(t)sin(u(t))
z(0) = 0
y(0) = 1
u(t) € [—m, 7]

t € [0,1]

The numerical computations reveal that the reachable set is
convex although the control problem itself is non-convex.
Figure 1 shows the numerical results for a discretization of
N = 5,10, 20, 40:

Fig. 1. Reachable set for the Brachistochrone example with N =
5,10, 20, 40.

The numerical solution of this problem turned out to be
nasty because the root function in the differential equations is
not defined for negative arguments. To avoid trajectories with
negative y component, an additional state constraint y(t) >
0 was introduced. The resulting optimal control problems
became more difficult to solve and more advanced methods
than previously mentioned are required.

B. Example 2: Rayleigh Problem

The second example originates from an optimal control
problem of an electric circuit and is known as the Rayleigh
problem. The nonlinear control problem reads as follows.

'(t) = y(t)
y(t) = —z(t)+y(t)(1.4 —0.14y(t)?) + du(t)
z(0) = =5
y(0) = =5
ut) € [-1,1]
t € 0,2

The numerical computations reveal that the reachable set
is non-convex. Figure 2 shows the numerical results for a
discretization of N = 10, 20, 40, 80, 160:



Fig. 2. Reachable set for the Rayleigh problem with N =
10, 20, 40, 80, 160.

CPU times for the Rayleigh problem can be found in
Table I.

TABLE I
CPU TIMES FOR THE RAYLEIGH PROBLEM: COMPARISON OF
NON-ADAPTIVE AND ADAPTIVE ALGORITHM.

O O

Fig. 3. Reachable set for Kenderov’s problem with N =
20, 40, 80, 160, 320.

CPU times for Kenderov’s problem are summarized in
Table II. The adaptive algorithm turns out to be very effi-
cient in view of CPU time because the low dimension of
the reachable set. However, for this example, the adaptive
algorithm causes some regions of the reachable set to be
cut-off because the optimization algorithm only found local
minimizers instead of global ones.

TABLE 11
CPU TIMES FOR KENDEROV’S PROBLEM: COMPARISON OF

NON-ADAPTIVE AND ADAPTIVE ALGORITHM.

N | CPU User CPU User
full adaptive
10 | Om 2.076s Om 0.148s
20 | Om 24.302s Om 1.988s
40 | 7Tm  4.195s Om 33.334s
80 - - 11m 24.691s
160 - — | 5h 25m 00.000s

C. Example 3: Kenderov

The third example was suggested by Petar Kenderov. It
is constructed in such a way that the reachable set is a
circle, that is the reachable set is a set of measure zero.
The nonlinear control problem reads as follows.

2'(t) = 8(anz(t) + anxy(t) — 2a12y(t)u(t))
Y'(t) = 8(—aix(t)+ any(t) + 2a12x(t)u(t))
z(0) = 2
y(0) = 2
u(t) € [-1,1]

t e 0,1]

Herein, a1 = 02 — 1, a1 = 0v/1 — 02, and o = 0.9.

The numerical computations reveal that the reachable set
is non-convex and the approximations apparently converge
to a circle. Figure 3 shows the numerical results for a
discretization of N = 20, 40, 80, 160, 320:

N CPU User CPU User
full adaptive
20 Om 1.296s Om 0.152s
40 Om 14.313s Om 0.752s
80 3m 54.151s | Om 5.980s
160 86m 48.758s Im 6.528s
320 | 2802m 35.469s | 21m 23.856s

IV. EXTENSIONS AND RELATED PROBLEMS
A. Domains of Attraction

There is also a close relationship between reachable sets
and domains of attraction for dynamical systems, that is the
domain of attraction of a given point zp at time ¢ is just the
reachable set R (o, T, zr) of the backward dynamic system.

B. Robust Control

Another field of applications are robust control problems.
Consider a control problem with uncertain dynamics

2(t) = f(x(t),ult),p(t), p()€ P,

where P denotes an appropriate parameter region within
a suitable function space. Let u* be a given control law,



for instance an optimal control for a fixed p*(-) € P. Let
x(u*, p)(-) denote the solution for any p(-) € P. The task in
robust control is to decide whether u* robustly obeys given
constraints, e.g. whether

c(z(u,p)(t),u"(t)) <0

holds for any p(-) € P. If the reachable set of x for a fixed u*
and for varying p(-) € P can be approximated for any time
t, then the validity of the above constraint can be checked
by inserting the reachable set, i.e.

c(z,u*(t)) <0, Vo € R(t,t0,20), t € [to, T].

A similar task can be defined for feedback systems. Suppose
the control u is fixed by a nonlinear feedback law u = g(z).
Introducing this relation into the dynamic system yields

' (t) = f(a(t),9(x(t),p(t), p(-) €P.

The solution operator z(p)(-) and the reachable set w.r.t.
p allows to verify whether inequality constraints of type
é(xz(p)(t)) < 0 are fulfilled or not.

V. CONCLUSIONS AND FUTURE WORKS

A computational method for the approximation of reach-
able sets for non-linear control systems was presented. For
a number of examples the method showed its capability of
computing the reachable set. The results are comparable with
the ones computed by a parallelized version of set-valued
Euler’s method in [9]. Differently to the approach in [9],
which needs intermediate state grids of step-size O(h?) at
each of the N Euler steps, this approach only needs one grid
of step-size O(h). Another advantage of the method is the
flexibility with respect to adding control and state constraints
and boundary conditions.

A thorough analysis of theoretical approximation proper-
ties of the proposed algorithm has to be completed. More-
over, the effect of local optimization methods has to be
studied in more detail, in particular in combination with
adaptive algorithms as local solutions of the projection
problems may cause parts of the reachable set to be cut-off.
Furthermore, it would be desirable to not only approximate
the reachable set at a given time point 7' but instead for a
whole time interval [tg, 7. It has to be investigated whether
the solutions of the optimal control problems, which live on
[to, T'], can be used to at least approximate the reachable sets
at intermediate time points in [tg, T
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