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Zusammenfassung

Im Hauptteil dieser Arbeit befassen wir uns mit der Modellierung des makro-
skopischen Verhaltens von Monodomänen flüssigkristalliner Seitenkettenela-
stomere. Dabei konzentrieren wir uns auf den Einfluss, den statische (bzw.
quasistatische), von außen angelegte elektrische und mechanische Felder auf
diese Materialien haben. Die Herleitung einer nichtlinearen makroskopischen
Modellbeschreibung bildet den Kern dieser Arbeit.

Zu Beginn werden die untersuchten Materialien in Kapitel 1 genauer
vorgestellt. Flüssigkristalline Seitenkettenelastomere entstehen durch die
chemische Vernetzung von Polymerketten, an welche flüssigkristalline Ein-
heiten als Seitenketten gebunden werden. In nematischen und cholesteri-
schen Seitenkettenelastomeren ordnen sich diese flüssigkristallinen Einheiten
dann lokal entlang einer mittleren Vorzugsrichtung an. Man beschreibt die
Orientierung dieser Vorzugsrichtung mit Hilfe des Direktorfeldes. Durch
spezielle Syntheseverfahren erhält man Monodomänen der Direktoranord-
nung, die sich über die gesamte Probe erstrecken. Die entsprechenden Ma-
terialien werden mit dem Kürzel SCLSCEs bezeichnet, welches für ,,side-
chain liquid single crystal elastomers“ steht. Im Grundzustand nematischer
SCLSCEs ist der Direktor räumlich homogen über die gesamte Probe orien-
tiert, im cholesterischen Fall ist die Direktoranordnung zu einer helixartigen
Struktur verdrillt. Wie in Kapitel 1 erklärt, besitzen flüssigkristalline Ela-
stomere einzigartige Materialeigenschaften. Sie kombinieren nicht nur die
Eigenschaften flüssigkristalliner Phasen mit der elastischen Verformbarkeit
gummiartiger Festkörper, sondern koppeln diese auch aneinander. So können
sie durch eine erzwungene Reorientierung des Direktors, etwa durch Anlegen
eines äußeren elektrischen Feldes, elastisch deformiert werden. Umgekehrt
lässt sich auch durch eine erzwungene elastische Verzerrung der Direktor re-
orientieren. Aufgrund dieser Eigenschaften sind verschiedene technologische
Anwendungen der Materialien vorstellbar. Beispielsweise wurde ihre Verwen-
dung zur Herstellung künstlicher Muskeln diskutiert.

Wir beschränken uns in dieser Arbeit auf die Charakterisierung des ma-
kroskopischen Verhaltens nematischer und cholesterischer SCLSCEs. Dabei

v



vi Zusammenfassung

nehmen wir die Kopplung zwischen Direktororientierung und mechanischer
Verformbarkeit der Materialien explizit in unsere Beschreibung auf. Dies
geschieht, indem wir Relativrotationen zwischen der Direktororientierung
und dem Polymernetzwerk als eigenständige makroskopische Variable be-
rücksichtigen. Ein lineares Modell dieser Art wurde bereits durch de Gennes
für nematische Elastomere vorgeschlagen. Wir geben in Kapitel 2 einen
entsprechenden Ausdruck für die generalisierte Energiedichte cholesterischer
Elastomere an, wobei auch der Einfluss eines äußeren elektrischen Feldes
berücksichtigt wird. Dieser Ausdruck für die generalisierte Energiedichte
dient als Grundlage unserer linearisierten Untersuchungen cholesterischer
SCLSCEs in den drei darauffolgenden Kapiteln. Den Systemzustand charak-
terisieren wir jeweils durch die Komponenten des Direktorfeldes und des me-
chanischen Verschiebungsfeldes.

In den Kapiteln 3 und 4 untersuchen wir zunächst die Auswirkungen,
welche ein homogenes externes elektrisches Feld auf cholesterische SCLSCEs
hat. Dazu nehmen wir an, dass die Materialien elektrisch isolierend sind, was
für gewöhnliche SCLSCEs eine gute Näherung darstellt. Wir betrachten eine
Geometrie, in der das von außen angelegte elektrische Feld parallel zur Achse
der cholesterischen Helix orientiert ist. Weiterhin berücksichtigen wir nur den
Einfluss derjenigen Oberflächen, deren Normalen parallel zur cholesterischen
Helixachse ausgerichtet sind. Insbesondere zur Beschreibung von Filmen
cholesterischer SCLSCEs ist ein solches Vorgehen angebracht.

Zuerst konzentrieren wir uns in Kapitel 3 auf Effekte, die linear in der
Amplitude des elektrischen Feldes sind. Für die beschriebene Geometrie er-
halten wir im Rahmen unseres Modells ein verblüffendes Ergebnis. Erhöht
oder erniedrigt man die Amplitude des elektrischen Feldes quasistatisch, so
kann dies zu einer Rotation der Direktoranordnung um die cholesterische
Helixachse führen. Dabei dreht sich die flüssigkristalline Vorzugsrichtung
relativ zum makroskopisch fixierten Polymernetzwerk. Der Rotationswinkel
ist proportional zur Feldamplitude und zur Wellenzahl, welche die cholesteri-
sche Helixstruktur kennzeichnet. Das bedeutet insbesondere, dass für unter-
schiedliche Händigkeit der cholesterischen Helix Direktorrotationen in entge-
gengesetzte Richtungen zu erwarten sind. Insgesamt wird der Effekt als ro-
tatoelektrisch bezeichnet und kann als spezifisch für cholesterische SCLSCEs
angesehen werden. Im Rahmen unseres Modells wird er durch die Variablen
der Relativrotationen erzeugt. Da der Effekt experimentell noch nicht un-
tersucht wurde, diskutieren wir einzelne Aspekte, welche für entsprechende
Experimente wichtig werden können. Insbesondere berücksichtigen wir den
Einfluss unterschiedlicher Randbedingungen für die Direktororientierung an
den Probenoberflächen.

Im weiteren Verlauf untersuchen wir in Kapitel 4 das Verhalten choleste-
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rischer SCLSCEs in derselben Geometrie, jedoch für den Fall höherer elek-
trischer Feldstärken. Dann werden die dielektrischen Eigenschaften der Ma-
terialien wichtig, wenn sich der Direktor vorzugsweise parallel zum externen
Feld orientiert. Als Ergebnis einer linearen Stabilitätsanalyse erhalten wir,
dass die ursprüngliche Direktororientierung bei einer kritischen elektrischen
Feldstärke instabil wird. Wir finden zwei mögliche, qualitativ verschiedene
Instabilitäten in der Direktoranordnung, welche aufgrund der spezifischen
Eigenschaften der Materialien mit einer elastischen Verformung einhergehen.
Eine der beiden möglichen Instabilitäten ist räumlich homogen in den Rich-
tungen senkrecht zur cholesterischen Helixachse. Sie entspricht daher der
Instabilität, welche auch am Fréedericksz-Übergang in gewöhnlichen nieder-
molekularen Flüssigkristallen beobachtet wird. Sowohl die Randbedingungen
für die Direktororientierung an den Probenrändern, als auch die cholesteri-
sche Direktoranordnung und die Verankerung des Direktors im Polymernetz-
werk bestimmen den Wert der kritischen elektrischen Feldamplitude. Die
zweite mögliche, qualitativ verschiedene Instabilität ist durch Undulationen
in der Direktororientierung und Verzerrung des Elastomers in mindestens
einer Richtung senkrecht zur Helixachse gekennzeichnet. Für das Zustan-
dekommen dieser Undulationen spielen wieder die Relativrotationen eine
entscheidende Rolle.

Es stellt sich natürlich die Frage, welche der beiden Instabilitäten am
kritischen Punkt tatsächlich auftritt. Als Antwort finden wir, dass die für
die undulatorische Instabilität ermittelte kritische elektrische Feldamplitude
nur dann einen niedrigeren Wert aufweisen kann, wenn einer der Materi-
alparameter ein bestimmtes Vorzeichen besitzt. Es ist dies derjenige Ma-
terialparameter, welcher im Ausdruck der generalisierten Energiedichte die
makroskopische Verzerrung der Materialien und die Relativrotationen kop-
pelt. Wir stellen weiterhin fest, dass im Rahmen unseres linearen Modells
Werte von Materialparametern auftreten können, welche eine Direktorre-
orientierung ohne mechanische Verzerrung des entsprechenden Elastomers
erlauben würden.

Die Ergebnisse dieses Kapitels werden formal identisch erhalten, wenn
man von einem äußeren Magnetfeld anstelle eines elektrischen Feldes ausgeht.

Als Beispiele für erzwungene mechanische Verformungen untersuchen wir
in Kapitel 5 das Verhalten einer cholesterischen Probe, welche parallel bzw.
senkrecht zur cholesterischen Helixachse komprimiert oder gedehnt wird. Im
Fall der Kompression oder Dehnung senkrecht zur Helixachse wird aufgrund
der materialspezifischen Kopplungen im Allgemeinen auch die Struktur der
cholesterischen Direktoranordnung verformt. Wir erhalten ein Szenario, das
man als Auf- oder Abwickeln der cholesterischen Helix beschreiben könnte.
Wird die Probe senkrecht zur Helixachse in zwei orthogonalen Richtun-
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gen gleich stark gedehnt bzw. komprimiert, so finden wir eine Kompres-
sion bzw. Dehnung der cholesterischen Helixstruktur parallel zur Helixachse.
Wie wir erklären, hat dieser Effekt bereits eine Anwendung in der Herstel-
lung spiegelloser Laser gefunden, deren Wellenlänge durch Stauchung und
Dehnung der Helixstruktur durchstimmbar ist.

Durch die Untersuchungen in den Kapiteln 3 bis 5 wird die Bedeutung
der Relativrotationen für die Charakterisierung von SCLSCEs deutlich. Im
Ausdruck der in Kapitel 2 hergeleiteten generalisierten Energiedichte zur line-
arisierten Beschreibung des makroskopischen Verhaltens der Materialien sind
zwei Materialparameter enthalten, welche direkt mit den Relativrotationen
verknüpft sind. Bislang konnten deren Werte jedoch nicht unmittelbar auf
experimentellem Weg bestimmt werden, da direkte Messmethoden unbekannt
sind. Wir schlagen deshalb experimentelle Möglichkeiten zur Abschätzung
ihrer Werte vor. Überhaupt ist uns die experimentelle Überprüfung der
beschriebenen Effekte ein großes Anliegen, da bisher insbesondere der Ein-
fluss der elektrischen Felder auf cholesterische SCLSCEs wenig untersucht
wurde.

Wie erwähnt wird also in den Kapiteln 2 bis 5 ein linearisiertes Modell
zur Charakterisierung des makroskopischen Verhaltens der Materialien vor-
gestellt und angewandt. Im Allgemeinen ist dieses Modell natürlich auf die
Beschreibung von Zuständen kleiner Amplituden der mechanischen Verfor-
mung und der Relativrotationen beschränkt. Damit wir auch die spezifischen
nichtlinearen Eigenschaften von SCLSCEs untersuchen können, stellen wir
die Herleitung einer nichtlinearen makroskopischen Modellbeschreibung in
Kapitel 6 in den Mittelpunkt dieser Arbeit.

Wir erklären dabei zunächst unser verallgemeinertes Bild, welches wir von
den Materialien haben. In nematischen und cholesterischen SCLSCEs liegen
lokal zwei gekoppelte Vorzugsrichtungen vor. Die eine ist durch die mittlere
Orientierung der mesogenen Einheiten und damit durch die lokale Orien-
tierung des Direktors gegeben. Die zweite Vorzugsrichtung ergibt sich als
Folge des jeweiligen Syntheseverfahrens zur Herstellung der Materialien und
beschreibt diejenige Orientierung, welche der Direktor einnimmt, wenn keine
äußeren Felder anliegen. Dabei nehmen wir an, dass diese zweite Vorzugsrich-
tung mit der mechanischen Verformung des jeweiligen Elastomers verknüpft
ist. Als nichtlineare makroskopische Variable verwenden wir dann die Re-
lativrotationen zwischen den beiden gekoppelten Vorzugsrichtungen, wobei
sich aus Symmetriegründen zwei verschiedene Variable ergeben. Im Weiteren
leiten wir Ausdrücke für die nichtlinearen Relativrotationen her, indem wir
sie als Funktionen derjenigen makroskopischen Variablen angeben, welche
den momentanen Zustand des SCLSCE festlegen. Es sind dies wiederum die
Komponenten des Direktorfeldes und des mechanischen Verschiebungsfeldes.
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Wir zeigen, dass unser nichtlineares Modell für kleine Abweichungen vom
energetischen Grundzustand mit der linearen Beschreibung durch de Gennes
übereinstimmt.

In Kapitel 7 wenden wir unser nichtlineares Modell zunächst an, um eine
endliche statische oder quasistatische Scherdeformation eines nematischen
SCLSCE zu untersuchen. Hierbei sollen die Scherkräfte so an das Mate-
rial angelegt werden, dass die Scherebene die Direktororientierung enthält.
Dadurch ergibt sich eine Reorientierung des Direktors in der Scherebene als
linearer Effekt, der bereits früher beschrieben wurde. Aufgrund der Kopp-
lung durch die Relativrotationen führt diese Direktorreorientierung jedoch
zusätzlich zu Dehnungen und Stauchungen des Elastomers. Letzteres sind
nichtlineare Effekte. Wir heben die zentrale Rolle der Relativrotationen für
die makroskopische Charakterisierung der Materialien hervor, indem wir ex-
plizit zeigen, dass die erwähnten Effekte ausschließlich auf die Kopplung
durch die Relativrotationen zurückzuführen sind. Für die entsprechenden
Untersuchungen wird ein kubischer Ausdruck der generalisierten Energie-
dichte hergeleitet und verwendet. Es stellt sich jedoch heraus, dass die
angeführten Effekte qualitativ bereits durch die quadratischen Terme der
generalisierten Energiedichte beschrieben werden. Dazu müssen wir in diese
quadratischen Terme unsere Ausdrücke für die nichtlinearen Relativrotati-
onen einsetzen. Auf diese Weise wird die Bedeutung unserer Ausdrücke für
die nichtlinearen Relativrotationen unterstrichen.

Als weiteres Beispiel untersuchen wir in Kapitel 8 eine der bekanntesten
nichtlinearen Eigenschaften nematischer SCLSCEs unter Verwendung un-
seres Modells. Es wurde in Experimenten, in welchen nematische SCLSCEs
senkrecht zu ihrer ursprünglichen Direktororientierung gedehnt werden, be-
obachtet, dass sich der Direktor in Richtung der Zugachse reorientiert. Mit
dieser Reorientierung des Direktors ist eine deutlich reduzierte Steigung der
zugehörigen Spannungsdehnungskurve verknüpft. Wir zeigen, dass unser
nichtlineares Modell diese experimentellen Beobachtungen beschreibt. Dabei
konzentrieren wir uns auf die Untersuchung kürzlich veröffentlichter Ergeb-
nisse von Urayama et al. Es stellt sich wiederum heraus, dass die Relativrota-
tionen die entscheidende Rolle für das Auftreten der erwähnten Effekte spie-
len. Durch sie wird auch die geringere Steigung der Spannungsdehnungskurve
mit der Reorientierung des Direktors in Zusammenhang gesetzt. Wir stellen
jedoch auch fest, dass derjenige Teil der elastischen Antwort der Materi-
alien, welcher nicht mit einer Reorientierung des Direktors und den Re-
lativrotationen zusammenhängt, einen qualitativen Einfluss auf das Ver-
halten der Elastomere hat. Dieser Teil der elastischen Antwort dominiert
das Gesamterscheinungsbild der Spannungsdehnungskurve und wird durch
lokalisierte Prozesse erzeugt. Deshalb können wir unsere Untersuchungen auf
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die Beschreibung des Verhaltens eines einzelnen repräsentativen Volumenele-
ments reduzieren. Weiterhin erklären wir, dass Scherdeformationen während
des Reorientierungsprozesses nur quantitativen Einfluss auf die Form der
Spannungsdehnungskurve haben. Insgesamt ergibt sich, dass beide Vari-
able, mit denen wir die nichtlinearen Relativrotationen beschreiben, zu einer
vollständigen Charakterisierung der experimentellen Ergebnisse nötig sind.

Schließlich fassen wir unsere Ergebnisse in Kapitel 9 zusammen und geben
darin auch einen Ausblick.

Zur besseren Übersicht wurden einzelne Punkte der Arbeit in die Anhänge
A bis D ausgelagert. In einem weiteren Anhang E berichten wir von der
Untersuchung der Entstehung hochgeordneter Strukturen parabolischer Fo-
kalkegel in Tensidsystemen. Dieses Projekt entstand in Zusammenarbeit
mit Dr. Christian Wolf (Bayreuther Zentrum für Kolloide und Grenzflä-
chen (BZKG), Physikalische Chemie I). Wir führen eine einfache Analyse
der beobachteten Muster durch und geben eine Erklärung für die Entste-
hung der Fokalkegel. Als Ergebnis zeigt sich unter anderem ein universeller
Charakter der Muster in dem Sinn, dass in allen untersuchten Proben weit-
gehend dieselbe Fokalkegelstruktur räumlich isotrop gedehnt oder gestaucht
vorlag.



Chapter 1

Introduction

Liquid crystalline elastomers form a new class of materials. Through their
synthesis it has become possible to combine in one substance the properties
of two components of high technological and industrial importance. These
are liquid crystals on the one hand, as well as polymers and elastomers on the
other hand. Furthermore the coupling of both of these components in one
material leads to new additional and unique features. Consequently, it may
be expected that liquid crystalline elastomers will gain an increasing degree
of significance for technological applications in the future. At the moment
of writing this thesis, the fields of soft actuators and artificial muscles are
certainly among the most promising ones to be mentioned in this context
[1–4].

In order to understand what the outstanding features of liquid crystalline
elastomers are, where they come from, and how they may be character-
ized, we have to turn to some general considerations in the beginning. Our
first step will therefore be to identify important features of liquid crystalline
elastomers that can be clearly assigned to either their liquid crystalline or
polymeric component. After that we will explain what in fact makes up the
outstandingly new properties of these materials. Since closely connected to
this question, we will also address one special route of synthesizing liquid
crystalline elastomers which has become of crucial importance to the field.

Later on, during the major part of this thesis, we will focus on the in-
vestigation and description of the macroscopic behavior of liquid crystalline
elastomers from the point of view of modeling. In this context, we are pre-
dominantly interested in the influence of external electric and mechanical
fields. We have put the development of a nonlinear continuum character-
ization of the materials into the center of this work. This step becomes
necessary in order to qualitatively understand some of the features of liquid
crystalline elastomers from a macroscopic point of view. In addition, it gives

1



2 1. Introduction

Figure 1.1: Transmission polarization microscope picture of a nematic side-
chain liquid single crystal elastomer (SCLSCE). Polarizer and analyzer were
crossed and oriented in horizontal and vertical direction. In this case, the
sample was stretched by about 25 % of the original length. The stretching
direction was oriented perpendicular to the clamped sample edges, one of
which is visible in the upper right part of the picture.

us the possibility of a more profound comparison of experimental results to
the model predictions.

1.1 Liquid crystals

We start our considerations by having a look at Fig. 1.1. What is shown
there is a transmission polarization microscope picture of a thin film of a so-
called nematic side-chain liquid single crystal elastomer (SCLSCE). In the
course of this chapter we will explain what kind of material is described by
this term. Important for us at the moment is the following fact. When
this picture was taken, polarizer and analyzer of the polarization microscope
were oriented perpendicular to each other. Nevertheless, the sample does not
appear completely dark.
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Figure 1.2: Sketch of a nematic liquid crystal in the isotropic (left) and
nematic phase (right).

We can find the reason for this feature in the nematic liquid crystalline
state of the SCLSCE, which turns the sample locally uniaxial. This optical
uniaxiality is a characteristic feature of liquid crystals in the nematic phase.
It arises from the collective ordering of the constituents of the materials.
In order to elucidate this fact we turn to the more instructive example of
a conventional low molecular weight liquid crystal (LMWLC) like 5CB (4-
cyano-4′-n-pentylbiphenyl). For our purposes we can think of this material
as being composed of elongated, rod-like molecules.

At high temperatures this material behaves like an isotropic liquid. It
is optically isotropic and transparent. Apparently, in this phase there is no
long range order between the molecules, neither of a positional nor of an
orientational kind. We have sketched this state in Fig. 1.2 on the left. When
we decrease the temperature below a certain critical value TNI (in the case of
5CB this value is TNI = 35.5 ◦C under atmospheric pressure), the mechanical
properties of the LMWLC are still fluid-like. However, the substance becomes
turbid. This change in the optical properties indicates that some crucial
change in the structure of the material has occurred. Further inspections
reveal that we have passed through a phase transition of weakly first order
by lowering the temperature from above to below its critical value TNI .

When these facts were observed for the first time, they led to quite some
confusion. Obviously, the substance did not pass from the isotropic liquid
phase to a crystalline phase. The latter would be characterized by a long-
range positional order given by a three dimensional lattice structure. Such
an arrangement on a crystalline lattice, however, strongly contradicts the
observed ability to flow.
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As we know today, the explanation for these observations is that a phase
in between the isotropic liquid and the crystalline phase is observed – a so-
called mesophase. The materials that are able to show such a mesophase
have been termed mesogens [5], or, in another way, liquid crystals [6] (see,
e.g., Ref. [7] for an extensive review on the physics of liquid crystals). What
happens in the case of 5CB at the temperature TNI is that the substance
passes from the isotropic liquid phase to a mesophase, which is called nematic.
Here, the arrangement of the molecules does not show long-range positional
order as in a crystal. However, we find the arrangement sketched on the
right of Fig. 1.2. Of course, there are thermal fluctuations, but on average
the molecules orient the direction of their elongation parallel to each other.
They show a long-range orientational order.

This orientational order gives rise to optical anisotropy. We can identify
one local optical axis, which coincides with the direction of the average orien-
tation of the molecules. In continuum descriptions of nematic liquid crystals
this orientation is characterized by a unit vector n̂, the so-called director.
Care has to be taken in such a description to ensure that the director cannot
distinguish between head and tail, corresponding to the appearance of the
optical axis.

It is important to notice that in an ideal case the emergence of the optical
axis at the isotropic-to-nematic phase transition corresponds to the sponta-
neous breaking of a continuous symmetry (see, e.g., Ref. [8]). In practice the
orientation of the director may be influenced for example by grain bound-
aries, surface coating of the sample walls, electric, magnetic or mechanical
static or dynamical fields. It is possible that in these situations we cannot
talk of a spontaneous breaking of the symmetry any more. Such influences
may even cause the isotropic-nematic phase transition not to be of first order
any more. Later on, this will become an important issue.

When the sample contains chiral mesogenic molecules and it is not a
racemic mixture, a different liquid crystalline phase is observed. The latter
has been termed the cholesteric phase and actually was the one first identi-
fied historically. In contrast to the nematic phase, which shows a spatially
homogeneous director orientation in the ground state, the ground state di-
rector in the cholesteric phase features a twisted, helical structure. As usual,
this helix can be characterized by a corresponding wavenumber q0. The sign
of q0 thereby denotes the handedness of the helix, whereas its magnitude
determines the helical pitch 2L = 2π

q0
.

The helical structure of cholesteric phases leads to interesting optical
properties, as for example illustrated in Fig. 1.3. There, we consider a situa-
tion in which a cholesteric liquid crystal is illuminated in a direction parallel
to the helical axis by circularly polarized light. If the handedness of the cir-
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Figure 1.3: Right and left circularly polarized light illuminating a right
handed cholesteric helical structure. The direction of illumination is oriented
parallel to the cholesteric helical axis. It is assumed that the wavelength of
the light approximately coincides with the pitch of the cholesteric helix. The
figure has been reproduced from Ref. [7].
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cularly polarized light coincides with the handedness of the cholesteric helix,
and if simultaneously the wavelength of the illuminating light approximately
matches the pitch of the cholesteric helix, the light will be reflected. In the
other cases transmission prevails.

These properties lead to a colorful appearance of the samples when the
wavelength of the reflected light is located within the visible regime. Ori-
ented cholesteric samples then show a bandgap in their optical transmission
spectrum. This feature can be exploited for various applications, one of them
being the construction of mirrorless lasers [9–11].

For both, the nematic and the cholesteric phase, the director field n̂(r)
describes the local average orientation of the mesogenic molecules. However,
it does not contain any information on the local degree of orientational or-
dering of the molecules. The degree of order may be characterized by a scalar
order parameter S. By convention the latter takes the value S = 0 in an
isotropic, disordered state of the system, and S = 1 in a perfectly ordered
state. Its value can be determined experimentally (see, e.g., Ref. [12]). The
whole information may be captured by a symmetric, traceless tensorial order
parameter, the components of which read Qij = S(ninj − 1

3
δij). Here, as in

the remaining part of this work, δij denotes the Kronecker delta, with δij = 1
if i = j, and δij = 0 otherwise.

Apart from the nematic and the cholesteric phase, a large number of
other liquid crystalline phases has been identified. The various smectic liquid
crystalline phases capture all kinds of examples of combinations of quasi long-
range or long-range positional order with orientational order. However, only
the nematic and cholesteric phases will be treated in the major part of this
thesis, except for appendix E, where we will report our investigations on
lamellar lyotropic systems.

1.2 Polymers and elastomers

Having addressed some of the remarkable optical features, we now turn to
the mechanical properties of the material shown in Fig. 1.1. What cannot
be inferred directly from the picture is that at the moment of taking this
photograph, the depicted film had been uniaxially stretched. The direction
of stretching was oriented perpendicular to the two clamped edges, one of
which is visible in the upper right part of the photograph. In this case, the
sample was stretched by about 25 % of its original length. Such a degree
of deformation would be out of reach for most crystalline solids, no need
to mention that it would be highly irreversible. Not so, however, for the
pictured elastomer. It can be stretched even further, the overall deformation
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Figure 1.4: Typical mechanical response of a polymer sample during a creep
experiment. A constant force is instantaneously applied at t = 0 and released
at t = 7. The curves show the resulting overall elongation of the sample and
the different contributions to this response (further explanation can be found
in the main text). This figure has been reproduced from Ref. [13].

still remaining reversible.

Of course, it is the internal structure of polymeric materials that underlies
this mechanical feature. In the simplest case, these materials consist of linear
polymer chains, which themselves are synthesized by chemically connecting
a large number of single monomer repeat units. The number of monomers
on a polymer chain is then called the degree of polymerization.

With increasing degree of polymerization the respective sample becomes
more and more viscous. Entanglements between the polymer chains become
important and qualitatively influence the linear mechanical behavior of the
respective material.

A sketch of the typical linear mechanical response of a polymer sample
to a constant external mechanical force is depicted in Fig. 1.4. What we find
illustrated in this figure is the resulting elongation during a so-called creep
experiment. At t = 0 the constant external force is applied to the sample.
When we have a look at the linear mechanical response from a macroscopic
point of view, we can in general distinguish between three different compo-
nents. First, the sample reacts instantaneously to the applied external force.
This component is identified with the elastic part of the linear mechanical
response, which is completely reversible (dashed line). Secondly, there exists
a so-called anelastic part of the response, which although being retarded, is
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also completely reversible (dash-dotted line). At least one relaxation time is
connected to this process. Finally, the third component consists of a viscous
flow, which is irreversible (dotted line). When at t = 7 the external force is
released, the elongation due to the viscous flow remains. However, we find
an instantaneous reversion of the elastic part of the elongation, as well as a
relaxing contraction due to the anelastic component.

Adding crosslinking agents to a polymer melt, the polymer chains can be
chemically crosslinked to form a permanent polymer network. From an ide-
alized point of view, this chemical crosslinking suppresses the viscous flow in
the mechanical response. In this case, the mechanical response of the sample
becomes in principle reversible. On the other hand, when the crosslinking
density is not too high, reversible mechanical deformations of large magni-
tude can be observed. We call such a material an elastomer.

For us, it is important to notice the following. Let us assume that we
are only interested in measuring in an experiment the static, relaxed state
of an elastomer which is exposed to a static external field. Then, from the
recorded data it is not possible for us to distinguish between the elastic
and the anelastic part of the response of the material to the external force.
The same is true for the “quasistatic” case, in which the variation of the
respective external field occurs on a time scale sufficiently long compared to
the dominating relaxation time of the anelastic processes. We could also say
that on a sufficiently long time scale the mechanical response of the elastomer
appears elastic. Therefore, it is possible to use classical elasticity theory
in order to describe the mechanical response in the static and quasistatic
case [14].

1.3 Liquid crystalline elastomers

The contents of the two previous sections provides us with the information in
order to characterize the current appearance of the nematic SCLSCE shown
in Fig. 1.1. This stretched thin film of nematic SCLSCE was to a good
approximation residing in a static state. However, fundamental additional
information is connected to the process that led to the state of appearance
of the sample in Fig. 1.1.

In the unconstrained ground state, the director orientation of the pic-
tured thin film of nematic SCLSCE was an essentially different one. To first
approximation it was spatially homogeneous and aligned parallel to the two
clamped edges of the sample. In this state, the sample appeared dark under
the polarization microscope when its clamped edges were aligned parallel to
the analyzer or polarizer, respectively. However, when we align the edges
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of the now stretched sample depicted in Fig. 1.1 parallel to the analyzer or
polarizer, we still observe some bright regions. Therefore, we must conclude
that the director is not aligned in its ground state orientation any more in the
stretched state of the sample. Apparently, only through stretching the ela-
stomer, here in the direction perpendicular to the initial director orientation,
the director rotated out of its initial orientation. Strikingly, the externally
imposed mechanical deformation couples to the orientation of the director
and leads to a rotation of the director field. In the case shown in Fig. 1.1 this
does not happen in a spatially homogeneous way across the pictured film.
Noticing, however, the spatial heterogeneity of the film, such a spatially in-
homogeneous scenario may be expected.

In essence, we can infer the outstanding property of liquid crystalline
elastomers of statically coupling the liquid crystalline order, including the
director orientation, to the elastic mechanical deformation of the materials.
Having identified this remarkable feature of liquid crystalline elastomers, we
can now address the question of how to produce them. In particular, we
will concentrate on the synthesis of nematic and cholesteric SCLSCEs, the
materials mainly under consideration in this work.

As outlined in the previous section, the first step of this procedure consists
of course of the synthesis of the uncrosslinked polymer chains. In order
to obtain liquid crystalline polymers, the segments making up the polymer
chains must contain the respective mesogenic units. There are basically two
approaches to reach this goal, which lead to qualitatively different materials.
In one case, which is shown on the left of Fig. 1.5, the mesogenic units become
part of the backbone of the synthesized polymer chains. Such materials were
named “main-chain” liquid crystalline polymers to stress the location of the
mesogenic units in the polymer chain. The other possibility is sketched on
the right of Fig. 1.5. Here, the mesogenic units are attached as side groups to
the backbone of the polymer chains. Consequently these materials are called
“side-chain” liquid crystalline polymers.

In the year 1978, Finkelmann et al. reported a special procedure to syn-
thesize side-chain liquid crystalline polymers in a way that the formation of
the liquid crystalline phase is facilitated [15]. They chemically attached the
mesogenic units to the monomers in a quite flexible way. This was achieved
via hydrocarbon chains, consisting of two to six hydrocarbon units, the so-
called spacers (see Fig. 1.5). After the polymerization, the spacers reduce
the orientational constraint imposed onto the mesogenic units by the poly-
mer backbones. Therefore, the spacers add to the average orientation of the
mesogenic units along a preferred direction. Performing the synthesis in this
way, liquid crystalline phases can clearly be observed.

The additional step on the way of generating liquid crystalline elastomers
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Figure 1.5: Sketch of a main-chain (left) and side-chain (right) liquid crys-
talline polymer structure. The average orientation of the mesogenic units,
indicated by the rectangular boxes, is identified with the director orienta-
tion. In the main-chain case the mesogenic units are part of the polymeric
backbone, whereas they are attached to the backbone via flexible spacers in
the side-chain case.

consists of chemically crosslinking the corresponding polymers. Finkelmann
et al. reported on the first synthesis of side-chain liquid crystalline elastomers
in 1981 [16]. Nematic, smectic, as well as cholesteric states of the elastomers
could be identified.

However, without further effort, we cannot recover an optical ground
state corresponding to the one of the material shown in Fig. 1.1. In fact, un-
strained materials produced as described above are optically turbid. Their
ground state is characterized by a polydomain structure with different di-
rector orientation in each domain. Consequently, they are referred to as
polydomain liquid crystalline elastomers.

On the other hand, in order to obtain a material which shows a homo-
geneous ground state director in a monodomain across the whole sample,
special routes of synthesis are necessary. Performing this step is important
from a basic as well as from an applied point of view. Starting from side-chain
liquid crystalline polymers then leads to materials which are called side-chain
liquid single crystal elastomers (SCLSCEs), the word “single” in this term
referring to the monodomain of the ground state director orientation.

Küpfer et al. presented a route of generating nematic SCLSCEs in 1991
[17]. Their idea was to use a two step crosslinking procedure, which is illus-
trated in Fig. 1.6. They started with a melt containing the components of
the reaction. This melt includes two kinds of bifunctional crosslinkers, one
that reacts fast at both ends, and one that reacts slow at one end. Chemical
groups which react quickly are indicated by an open circle (◦) in Fig. 1.6,
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Figure 1.6: Sketch of the two step crosslinking procedure used to generate
nematic SCLSCEs. The cylinders represent the mesogenic units, open cir-
cles represent groups that react quickly, and closed circles those with longer
reaction times (further explanation in the main text). This figure has been
reproduced from Ref. [18].
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those which take a longer reaction time by a closed circle (•). After the fast
chemical reaction has taken place during a first crosslinking step, a weakly
crosslinked side-chain liquid crystalline elastomer is obtained. Now, an effect
is put to use, which is related to the one we have introduced above when de-
scribing the appearance of the elastomer pictured in Fig. 1.1. After the first
crosslinking step has occurred, a mechanical stress field σe is applied to the
weakly crosslinked sample. The orientation of the mesogenic units couples
to the strain field, so that on average they orient in one preferred direction.
Then the major part of the slow chemical reactions is completed under the
influence of the external stress field σe. During this second crosslinking step
some part of the external stress field σe is converted to an internal stress σi,
which is locked in the material. Then, even when the external stress field
is released, the homogeneous director orientation across the sample remains
fixed. It has been “frozen” into the sample. From further analysis, Küpfer
et al. concluded that the anisotropy in these samples gets mainly locked in
the vicinity of the crosslinking points [18].

Above, in section 1.1, we have included a short remark on the tensorial
order parameter Qij describing the liquid crystalline order of a liquid crys-
talline state. In an analogous way, a second tensorial order parameter Pij

with related properties has been introduced to characterize the state of the
permanent “frozen-in orientational order” [19, 20].

In the example presented in Fig. 1.6, bifunctional crosslinkers were used,
which in part contained mesogenic units themselves. It has been demon-
strated in the meantime that the nature and concentration of the crosslink-
ers can qualitatively affect the macroscopic behavior of the materials [21]. In
this context, for example the influence of crosslinkers of higher functionality
has been investigated [21, 22].

Furthermore, apart from the presented two step crosslinking process,
other routes of synthesis have been developed. For instance, one possibil-
ity is to align the mesogenic units on average during crosslinking by applying
an external magnetic field [23,24]. Cholesteric SCLSCEs have been produced
for example by a two step crosslinking process, during which first a weakly
crosslinked elastomer is swollen and afterwards anisotropically deswollen.
While this anisotropic deswelling occurs, a transition to the cholesteric mono-
domain state takes place, and the latter is chemically locked by a second
crosslinking process. The result is a cholesteric SCLSCE with uniform Grand-
jean texture over the whole sample [25]. A later route of synthesizing con-
sists of photo-crosslinking a sample in which the mesogenic units have been
oriented macroscopically by surface interactions [3, 26, 27]. Via the latter
method, glass-supported or free-standing films of SCLSCEs can be realized.
These can for instance have a thickness of about 25 µm or less [28]. For
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the cholesteric films synthesized in this way it has been demonstrated that
they feature a larger liquid crystalline order than the films synthesized by
anisotropic deswelling, which is reflected by their optical properties [29].

It is important to note that the continuous orientational symmetry is not
spontaneously broken in SCLSCEs produced in these ways. The symmetry
breaking has been induced from outside during the special routes of synthesis
and has been locked in the materials. This is clearly demonstrated by the
fact that reorientations of the director field like the one shown in Fig. 1.1 are
reversible. When the external stress is released, the sample will relax to its
initial length, and its initial ground state director orientation is recovered.

In conclusion, we have observed in Fig. 1.1 the consequences of the follow-
ing fundamental feature of SCLSCEs. The orientation of a special preferred
direction, characterized by the director field, couples to the mechanical de-
formation of the material. Therefore, as a consequence of stretching the
elastomer, we have found a reorientation of the director field. More pre-
cisely, a static elastic deformation of the material was observed to lead to a
static reoriented state of the director field.

However, the coupling between elastic mechanical deformation and direc-
tor orientation also implies that the opposite effect may occur. This means
that a reorientation of the director field can lead to a mechanical deforma-
tion of the elastomer. Such a behavior has been demonstrated for example by
Urayama et al., who investigated a nematic SCLSCE swollen with a nematic
LMWLC exposed to an external electric field [3]. Fig. 1.7 illustrates their ex-
perimental results. The swollen film has been observed under a polarization
microscope with crossed analyzer and polarizer and the initial director ori-
entation as indicated in the central picture of the figure. An external electric
field has been applied perpendicularly to the plane of the film as indicated
on the right of Fig. 1.7. For the chosen material, the director tends to orient
parallel to the electric field direction. Therefore, the sample observed by the
polarization microscope gets darker under the influence of the external elec-
tric field, which can be inferred by comparing the central and right picture
of Fig. 1.7. Simultaneously, the sample contracts in the vertical direction as
indicated in the figure. This contraction is again a direct consequence of the
fact, that in SCLSCEs the director orientation and the elastic mechanical
deformation of the material are coupled to each other.

With this picture of SCLSCEs in mind, we will turn to their macroscopic
characterization. This will make up the major remaining part of this thesis.
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Figure 1.7: Swollen nematic SCLSCE exposed to an external electric field.
The mesogenic molecules tend to align parallel to the electric field direction.
Therefore, the director orientation differs from its initial state (center) when
the electric field has been switched on (right). Coupling between director
orientation and elastic deformation of the elastomer leads to the indicated
contraction of the film. This figure has been reproduced from Ref. [3].

1.4 Scope of this work

The scope of this thesis can be clearly defined: we want to derive a non-
linear continuum description which models the characteristic features of the
macroscopic behavior of SCLSCEs. We start in the next chapter by giv-
ing an overview on the linear continuum model that has been used so far
in order to characterize the materials. In particular we will introduce the
variables of linear relative rotations, which play a crucial role in this picture.
Chapters 3, 4, and 5 are devoted to illustrate the diversity of predictions on
the macroscopic behavior of SCLSCEs which can be made already by using
the linear description. For this purpose, we will study the reaction of cho-
lesteric SCLSCEs to static or quasistatic external electric fields in chapters
3 and 4, and to external mechanical fields in chapter 5. In this context,
we will investigate qualitatively new effects and instabilities shown by the
materials. Furthermore, we will demonstrate, how some of the values of the
material parameters involved in our characterization could be inferred from
corresponding experiments. From these considerations, also the limitations
of the linear picture will become evident. Consequently, we will come to
the point in chapter 6 and present our generalization of the model to the
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nonlinear regime. Above all, this chapter will be dominated by the intro-
duction of nonlinear expressions for the variables of relative rotations. We
will use our nonlinear concept first in order to study the weakly nonlinear
regime of a static or quasistatic shear deformation of a nematic SCLSCE in
chapter 7. After that, we will demonstrate that our nonlinear model pre-
dicts the specific mechanical and optical behavior found experimentally for
a nematic SCLSCE when the latter is stretched perpendicularly to its initial
director orientation. For this purpose, in chapter 8 we will interpret the re-
sults obtained from recent corresponding stress-strain measurements, using
our model. This investigation will also lead to a qualitatively new picture for
the elastic behavior that can be observed for nematic SCLSCEs during such
experiments. Finally, we will conclude in chapter 9. In order to keep our
presentation compact, we have shifted several technical details of our work
to the appendices. We have also added one appendix in which we describe
our investigations on the formation of highly ordered patterns of parabolic
focal conics in surfactant systems.
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Chapter 2

Linear macroscopic description

In this chapter we will present the elements of the linear continuum model
that has already been successfully applied in order to characterize the macro-
scopic behavior of SCLSCEs [30–35]. Referring to an early idea by de Gennes
this model includes relative rotations [36], as will be further elucidated be-
low. Although we will mainly consider static or quasistatic phenomena, the
energy functional we will derive may be taken as a starting point for a dy-
namical description in the spirit of generalized hydrodynamics [8, 37, 38]. A
first step in the latter direction has already been performed in Ref. [39] for
nematic SCLSCEs.

Our plan for deriving the linear continuum model is the following. First,
we will identify the appropriate minimal set of independent macroscopic vari-
ables which are necessary to characterize the current state of the respective
material. These variables correspond to the degrees of freedom of the sys-
tem under consideration. For simplicity, let us call these variables the “state
variables” of the system. We will use as a framework to identify and clas-
sify them the concepts of generalized hydrodynamics. As a second step, we
will identify the macroscopic variables that can contribute to the generalized
energy density of the system. They will have to be expressed in terms of
the state variables of the system. Finally, since we will deal with static or
quasistatic external electric, magnetic, and mechanical fields, the following
procedure applies. Combining the variables of the second kind using sym-
metry arguments we obtain an expression for the generalized energy density
F of the respective system. Minimizing the generalized energy of the sys-
tem F =

∫

F d3r with respect to the independent state variables leads us
to equations with the help of which we determine the current state of the
elastomer.

17
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2.1 State variables

The actual macroscopic state of a nematic or cholesteric SCLSCE under the
influence of a static external field is identified by the following independent
variables.

First, there are the variables connected to the quantities that can already
be found in the hydrodynamic description of a simple fluid. These are the
density of mass ρ, the density of linear momentum g, and the density of
energy ε. Since they are characterized by conservation laws, they are called
conserved quantities [8, 38]. For example, the conservation law for the mass
density ρ reads

∂ρ

∂t
+ ∇ · g = 0. (2.1)

Here, the density of linear momentum g acts as the current associated with
the conservation of the density of mass ρ. As an example for another con-
served quantity, which has to be included e.g. in the hydrodynamic descrip-
tion of binary mixtures, we may mention the concentration c of one of the
two components [38, 40].

Furthermore, we have to take into account the variables associated with
a spontaneous breaking of continuous symmetries [8, 38].

If we consider the case of a crystalline solid characterized by a three
dimensional crystalline lattice structure, it is clear that we find the contin-
uous translational symmetry being spontaneously broken in three indepen-
dent spatial directions. However, also our case of elastic polymeric solids
corresponds to a situation of a threefold breaking of the continuous trans-
lational symmetry [39]. When we think of the materials as being made up
of infinitesimal volume elements, we can associate the three components of
the displacement field u(r) = r − a(r) with this threefold symmetry break-
ing [8, 37, 39, 41, 42]. Here, r denotes the actual positions of the volume ele-
ments of the polymer network in the final deformed state. By the initial field
a(r) we specify their positions in the initial undeformed state. Obviously, we
can also take the components of a(r) as independent variables instead. The
difference between the two choices of u(r) and a(r) will be discussed later
on [41, 42]. As we will see below, the three components of the displacement
field u(r) describe local strains and rotations of the polymer network. The
same is true for the three components of the initial field a(r).

When we refer to the initial positions of the volume elements by the field
a(r), we express the initial positions as a function of the final positions r. In
this way, also the displacement field u(r) is given as a function of the final
positions r. This approach of characterizing the material with respect to its
final state corresponds to the Euler point of view and is the appropriate one in
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a hydrodynamic description [40–43]. Considering the situation from the point
of view of the initial, undeformed state of the respective material corresponds
to the Lagrange picture, which will not be pursued in the following [14].

On the other hand, there are two independent variables associated with
the breaking of the continuous rotational symmetry in nematic and in cho-
lesteric SCLSCEs. We find the reason in the local uniaxial character of these
two liquid crystalline states. The local orientation of the preferred axis is
characterized by the director field n̂(r). Since n̂ is a unit vector, two in-
dependent variables determine the current state of the director field n̂(r),
corresponding to the twofold rotational symmetry breaking. The ground
state conformation of the director field will be denoted as n̂0(r).

In the linear regime, we can take the two angles that characterize devi-
ations from the ground state director orientation as the appropriate macro-
scopic broken symmetry variables we are looking for. They are given by
variations of the director δn, defined by n̂(r) = n̂0(r) + δn(r), and satisfy
n̂ · δn = n̂0 · δn = 0 in the linear regime.

We mention at this point that in a strictly hydrodynamic sense all the
effects under consideration should appear on much larger length scales than
the inherent length scales of the system. It has been demonstrated that in
this case only one broken symmetry variable contributes to the hydrodynamic
behavior of a cholesteric phase [44]. However, in the following we will study
systems of cholesteric pitch larger than or comparable to the thickness of
the sample. This is the reason why we choose the local description of the
cholesteric phase outlined above, using the deviations of the director field
δn(r) as macroscopic variables.

Our description of the behavior of nematic and cholesteric SCLSCEs will
be restricted to a regime far away from any transition to another liquid crys-
talline or the isotropic state. Therefore, we assume that the scalar degree
of local liquid crystalline order S introduced in the previous chapter is ap-
proximately constant. Consequently, we will not include it explicitly as a
macroscopic variable. Its magnitude implicitly contributes to the values of
the material parameters that will enter the model.

In summary, we have identified five independent variables connected to
the breaking of continuous symmetries. They correspond to the three com-
ponents of the displacement field u(r) and the two independent components
of the director orientation n̂(r). These variables do not characterize con-
served quantities of the system. Consequently, their dynamical behavior is
not described by conservation laws. However, dynamic balance equations of
a similar kind can be derived [37–39]. For the components of the director
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field they for instance have the form

∂n̂

∂t
+ Y = 0. (2.2)

Here, Y is called quasicurrent.

2.2 Variables contributing to the generalized

energy density

When we want to construct an expression for the generalized energy den-
sity of the respective system, we notice that the state variables specified
in the previous section cannot be included in this expression directly. The
functional of the generalized energy has to satisfy certain conditions. For
example, it has to be invariant under a rigid rotation or translation of the
sample under consideration. The values of the state variables given for in-
stance by n̂ or u, however, change their magnitude when the sample is rigidly
rotated or translated, respectively. Consequently our next step is to derive
macroscopic variables that can directly contribute to the expression for the
generalized energy density. These variables must reflect the modifications of
state which change the magnitude of the generalized energy density. We will
have to express these variables as functions of the state variables. Our focus
will be on the variables connected to the broken symmetries.

In the linear regime, it is straightforward to perform this step in view
of the variables characterizing the current director orientation. Only the
gradient tensor ∇n̂ is taken into account as a macroscopic variable which
can contribute to the energy density of the system directly. In this way, rigid
rotations of the whole system do not affect its generalized energy density via
the terms that describe the current energetic state of the director field.

When we consider purely elastic mechanical deformations of the material,
the following picture holds. The magnitude of the generalized energy should
not be influenced by rigid translations or rotations of the material. Only when
the distance between different volume elements of the sample is modified, we
expect a contribution to the generalized energy density. The corresponding
deformations are called deformations of strain. They are characterized by
the strain tensor ε. This tensor consequently measures the changes in the
distance of the volume elements of the material and is defined by

dr2
i − da2

i (r) = 2dridrjεij(r) (2.3)

in the Euler picture (see previous section) [41,43]. The linear expressions for
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the components of ε read

εij =
1

2
[(∂iuj) + (∂jui)] . (2.4)

Here, ε and u are functionals of r, and ∂i denotes the partial derivative ∂
∂ri

(i = 1, 2, 3).
We can see that ε is a function of the tensor of distortions ∇u. Conse-

quently, rigid translations of the material do not contribute to the generalized
energy density of the system through ε. In addition, we find from Eq. (2.4)
that the strain tensor ε coincides with the symmetric part of the distortion
tensor ∇u in the linear regime. This guarantees that rigid rotations of the
whole system can neither contribute to the generalized energy density of the
system. We mention at this point, that the form of the linear expression of
the strain tensor in the Lagrange picture is identical [14].

With ∇n̂ and ε we have introduced the macroscopic variables that sep-
arately arise from the liquid crystalline state and the elastic mechanical re-
sponse of the materials, and which influence the generalized energy density.
The crucial point is now to take into account the special features of liquid
crystalline elastomers. In particular, this means that the coupling between
the local elastic mechanical deformation and the local orientation of the di-
rector field has to be reflected by our description. For this purpose, we adopt
an idea by de Gennes and introduce the variables of relative rotations. Re-
markably, this concept had been presented before the first SCLSCEs have
been synthesized [36].

It is most illustrative to introduce the concept of relative rotations in the
following context. When we consider SCLSCEs of low enough crosslinking
density, the respective isotropic and liquid crystalline states can clearly be
distinguished from each other. This was demonstrated for instance for ne-
matic SCLSCEs in Ref. [45]. In this case we may think of the elastomers
as being made up of two coupled components or subsystems, respectively.
One of these shows the liquid crystalline state, the other one behaves like a
mechanically elastic medium. In a simplified picture, we may for illustrative
purposes identify the first component with the entity of the mesogenic units.
The second component would then be identified with the crosslinked network
of polymeric backbone chains. It is clear that both subsystems are coupled
to each other, already from the fact that the mesogenic units are chemically
bound to the polymeric backbones via the flexible spacer groups.

Due to this coupling an energetic contribution will arise, when the mate-
rial is not rotated rigidly as a whole, but when the two subsystems are rotated
in different ways. For illustration we have sketched a two dimensional ex-
ample of such a situation in Fig. 2.1 (we have used the same symbols as in
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Figure 2.1: Illustrative two dimensional sketch of a situation in which a
relative rotation has occurred. The entity of mesogens has been rotated
by an angle δn, which differs from the rotation angle Ω⊥ of the crosslinked
polymeric backbones.

Fig. 1.5). In this sketch, the mesogenic units have on average been rotated
from the state indicated by the solid boxes to the one given by the dotted
boxes. This rotation is reflected by the reorientation of the director by an
angle δn. On the other hand, the polymer backbones have been rotated by a
different angle Ω⊥, which we obtain by comparing the orientation of the solid
and the dotted lines. In effect, since δn 6= Ω⊥, one of the two subsystems has
been rotated with respect to the other one. Or, in other words, it has been
rotated relatively to the other one.

More generally, we should think of relative rotations as the director re-
orientation with respect to the polymer network. As we have seen in the
previous chapter, the continuous rotational symmetry is not broken sponta-
neously in nematic and cholesteric SCLSCEs. Therefore, the broken symme-
try variable δn is not purely hydrodynamic in these materials. The ground
state director orientation is imprinted into the materials, or frozen in, re-
spectively, during the synthesis. Relative rotations describe the deviations
of the director orientation from its ground state anchoring direction within
the polymer network. This is our concept, which we will also use in order
to generalize the expressions of relative rotations to the nonlinear regime in
chapter 6.
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Clearly, such deviations of the director orientation from the anchoring di-
rection within the polymer network are connected to a change of the general-
ized energy of the system. We therefore have to include relative rotations as
macroscopic variables that can contribute to the generalized energy density.
An appropriate expression for linear relative rotations in a three dimensional
description can be found in the following way.

Rotations can be described by axial vectors. With the two vectors ω
n

and ω
nw denoting the local rotations of the director and the polymer net-

work, respectively, the expression (ωn−ω
nw)× n̂ describes relative rotations

between the two subsystems in the linear regime. This is the way relative
rotations have been introduced in Ref. [36]. The use of n̂ and n̂0 in this
expression is indistinguishable in the linear regime, so we could as well write

Ω̃ = (ωn − ω
nw) × n̂0 (2.5)

for the vector of relative rotations. We have chosen the superscript “nw” as
an abbreviation for polymeric “network”.

In Ref. [39] the notation has been modified and relative rotations have
been defined by

Ω̃ = δn− Ω⊥. (2.6)

This expression refers to the linear regime. Here, δni = ni − n0,i and Ω⊥
i =

njΩji, where in linear order the latter expression cannot be distinguished
from n0,jΩji. Ω denotes the antisymmetric tensor that describes linear rigid
rotations of the polymer network. Therefore, it cannot contribute directly
to the generalized energy density of the system. We obtain Ω in the linear
regime from the distortion tensor ∇u by an additive decomposition:

Ωij = (∂iuj) − εij =
1

2
(∂iuj − ∂jui) . (2.7)

The vector Ω⊥ can then be interpreted as the vector of rigid rotations of
the polymer network perpendicular to the director [39]. This interpretation
only accounts for the linear regime as we will see in chapter 6. It can also be
interpreted as the variation of the director orientation that would take place
if the director was rigidly anchored within the polymer network.

The consistency of Eqs. (2.5) and (2.6) follows from δni = ǫijkω
n
j n0,k and

ωnw
i = 1

2
ǫijkΩjk, where ǫijk denotes the Levi-Civitá tensor. Eqs. (2.5) and

(2.6) imply that in the linear regime

niΩ̃i = 0. (2.8)

Relative rotations will play a central role throughout the remaining ma-
jor part of this work. In our picture they are the crucial variables. They
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include the specific features of liquid crystalline elastomers and couple the
local director orientation to the mechanical deformations. However, this con-
cept is not restricted to the characterization of liquid crystalline elastomers.
Relative rotations occur whenever two or more coupled components of a com-
plex system are globally or locally rotated relatively to each other, or when
a component is rotated relatively to a surrounding anchoring matrix. For
example, also the macroscopic behavior of magnetic gels has been described
successfully using the variables of relative rotations [46, 47].

When we will extend our model to the nonlinear regime in chapter 6, our
major task will be to derive nonlinear expressions for the variables of relative
rotations.

2.3 Generalized energy density

Our next step is now to derive an expression for the generalized energy den-
sity F of the system. For this purpose, we combine the macroscopic variables
that have been introduced in the previous section. In particular, these are
the gradient of the director field ∇n̂, the strain tensor ε, and the variables
of relative rotations Ω̃. We will also include the influence of a homogeneous
static external electric field E, assuming that the material under considera-
tion is a perfect electric insulator. This is a good approximation for common
nematic and cholesteric SCLSCEs.

F as a scalar function has to be invariant under parity, time reversal,
Galilei transformation, and inversion of the director field n̂ → −n̂. The
terms contributing to the series expansion of the generalized energy den-
sity must reflect this behavior under symmetry transformations. Since we
will restrict ourselves to a linearized model, it is sufficient to expand F up
to quadratic order in the variables given above. Implying summation over
repeated indices, the result reads

F = F ′
0 + c1εijεij +

1

2
c2εiiεjj

+
1

2
D1Ω̃iΩ̃i +D2Ω̃iεijnj

+
1

2
K1(∇ · n̂)2 +

1

2
K2[n̂ · (∇× n̂) + q0]

2 +
1

2
K3[n̂ × (∇× n̂)]2

+ e1(niEi)(∂jnj) + e2Ei(nj∂j)ni + γ1(niEi)(∂jΩ̃j) + γ2Ei(nj∂j)Ω̃i

+ ζ (R)q0ǫijkEinjΩ̃k

− 1

2
ǫa(niEi)

2 + χ̃E
ijklEiEjεkl. (2.9)
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In this expression we have not explicitly listed the terms that contain vari-
ables already present in the hydrodynamic description of simple liquids. As
mentioned in section 2.1, these variables are given by the density of mass
ρ, the density of linear momentum g, and the density of energy ε. The
corresponding terms are represented by the character F ′

0 at the beginning
of the formula. We assume that their contributions are not decisive for the
effects studied in the following. Consequently their influence is neglected.
This approach reduces the number of independent state variables, by which
a certain state of the system can be identified, to five: the three components
of the displacement field u(r) plus the two variables that describe the field
of director orientation n̂(r).

The rest of the first line of Eq. (2.9) reflects the energetic contributions
of elastic strain deformations [14]. Whereas the material parameter c2 is
only related to compressions and dilations, c1 also reflects the influence of
shear deformations. Here, the elastic behavior is assumed to be isotropic
for simplicity. In general, this is of course an approximation, although the
anisotropy of solely the mechanical elastic behavior of the materials is not too
pronounced. If one takes into account the anisotropy of the elastic behavior,
one has to add three terms to Eq. (2.9) in the uniaxial case. They can be
written in the form c3niεijnjεkk, c4niεijεjknk, and c5niεijnjnkεklnl [14, 48].
However, we will mainly be interested in the description of qualitatively new
effects, which arise from the coupling of the director orientation to the elastic
behavior of the materials. For the description of these effects, the anisotropy
of the elastic response in the absence of relative rotations plays a minor role.
Therefore, we set the elastic coefficients c3, c4, and c5 equal to zero in order
to obtain the isotropic case. We note, however, that an anisotropy of the
elasticity leads to quantitative corrections.

In the second line of Eq. (2.9), we have listed the terms containing the
variables of relative rotations that have been introduced in Ref. [36]. These
are the crucial contributions in our description, because they include the
specific properties of SCLSCEs. Namely, they represent the coupling of the
director orientation to the elastic mechanical deformations. Two material
parameters are involved in these terms. On the one hand, D1 is related to
the magnitude of the relative rotations. It expresses the energetic penalty
arising directly from the occurrence of a relative rotation. On the other hand,
D2 couples the vector of relative rotations to the strain tensor.

Next, the third line includes the Frank energy density familiar from the
macroscopic description of cholesteric LMWLCs [7]. This part of F is solely
connected to deformations of the homogeneous director orientation, which
result in gradients of the director field ∇n̂. Neglecting surface contributions,
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Figure 2.2: Illustration of the splay, twist, and bend deformation of the
director field. The director is assumed to be strongly anchored on the surfaces
of the sketched glass plates in the depicted orientation. This figure has been
reproduced from Ref. [7].

there are the three independent deformations in the linear regime depicted
in Fig. 2.2. Namely, these are the splay, twist, and bend deformation, cor-
responding in this order to the three terms in Eq. (2.9) with the Frank co-
efficients K1, K2, and K3, respectively. Since the cholesteric director field is
twisted in the ground state, the cholesteric wave number q0 explicitly appears
in the twist term with the coefficient K2.

Finally, the contributions of the homogeneous static external electric field
E are included. We have listed the terms linear in the electric field first,
whereas the terms quadratic in E make up the last line of Eq. (2.9).

The leading contributions linear in E with the coefficients e1 and e2 are
called flexoelectric. They arise because splay and bend deformation of liquid
crystals can lead to a polarization [7]. In our case of a spatially homogeneous
external electric field, the two flexoelectric terms can be reduced to one for
the bulk of the system by neglecting surface contributions. It can be written
as ēnj(∂jni)Ei, where ē = −e1 + e2. The terms with the coefficients γ1 and
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γ2 have already been presented in Ref. [39] for nematic SCLSCEs. Their
structure is analogous to the flexoelectric contributions but involves relative
rotations.

Next we have included the term with the coefficient ζ (R), which has been
named rotatoelectric [49, 50]. It has not been presented before this work for
the local description of cholesteric elastomers [50]. Using vector notation we
can rewrite it as ζ (R)q0E · (n̂× Ω̃). The presence of this term has astonishing
consequences, which seem to be unique for cholesteric SCLSCEs. Chapter 3
is mainly devoted to expand on this issue.

The last line of Eq. (2.9) starts with the dielectric contribution. ǫa denotes
the dielectric anisotropy and can be written as ǫa = ǫ‖ − ǫ⊥. Here, ǫ‖ is the
dielectric constant of the material measured parallel and ǫ⊥ the dielectric
constant measured perpendicular to the director [7]. A term −1

2
ǫ⊥E

2 has
been incorporated into F ′

0 because it does not depend on any of our state
variables, but only on the magnitude of the externally applied electric field.

Finally, we have taken into account electrostrictive effects in Eq. (2.9)
by the term χ̃E

ijklEiEjεkl. Here, χ̃E
ijkl denotes the electrostrictive tensor [48].

Actually, this term is already of cubic order, but we will include a short
discussion of its qualitative influence on the results presented in chapter 4.

Altogether, the terms in Eq. (2.9) have been obtained by assuming local
uniaxial symmetry of the system, with the symmetry axis given by the di-
rector n̂. This only excludes the elastic contributions, as has been discussed
above, and the electrostrictive term. The latter will be expanded for the case
of uniaxial symmetry at a later stage.

We want to point out that the case of a homogeneous static external
magnetic field is formally identically described if we only set the flexoelectric
coefficients e1 and e2, the coefficients γ1 and γ2, as well as the rotatoelectric
coefficient ζ (R) equal to zero, replace ǫaE

2 by χaH
2, and χ̃E

ijklEiEjεkl by
χ̃H

ijklHiHjεkl. Then, χa and χ̃H
ijkl denote the anisotropy of the magnetic

susceptibility and the magnetostrictive tensor, respectively. Both, for an
external electric or magnetic field, we obtain the corresponding nematic case
from Eq. (2.9) simply by setting q0 = 0.

The thermodynamic stability conditions arising from Eq. (2.9) read c1 >
0, 2c1 +3c2 > 0, D1 > 0, D2

2 < 4c1D1, K1 > 0, K2 > 0, and K3 > 0 [7,14,36].

We obtain the generalized energy F of the system via spatial integration
of the expression for the generalized energy density (2.9),

F =

∫

V

F d3r. (2.10)

Here, V denotes the volume of the system.
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A standard procedure of finding the current state of the material under
investigation then consists of minimizing the generalized energy F . It is of
major importance to perform this minimization with respect to the indepen-
dent state variables that characterize the current state of the system. They
correspond to the degrees of freedom of the system under consideration. Fol-
lowing this procedure, it is clear that a realistic situation is described, for
which conditions of compatibility as known from solving problems of elastic-
ity theory are satisfied automatically.

In our case, the five independent state variables are given by u(r), or a(r),
respectively, and by the two variables that specify the orientation of n̂(r).
We have not explicitly included the components of an electric displacement
field D as thermodynamic variables separately. In our situation of a static
electric field E applied to the system externally it is more convenient to
take the components of the electric field Ei as thermodynamic variables.
Technically speaking the connection between both ways of description is given
by a Legendre transformation (more details on this point can be found, e.g.,
in Ref. [39] for nematic SCLSCEs).

Since in our case the electric field is applied externally, we do not minimize
the generalized energy of the system F with respect to the components Ei.
In this way, for example the famous Fréedericksz transition and the flexo-
electric effect of LMWLCs have successfully been analyzed [7]. Indirectly
we do, however, minimize F with respect to the components of the electric
displacement field D, because they are given from Eq. (2.9) by

Di =
∂F

∂Ei

= e1(∂jnj)ni + e2(nj∂j)ni + γ1(∂jΩ̃j)ni + γ2(nj∂j)Ω̃i

+ ζ (R)q0ǫijknjΩ̃k − ǫa(njEj)ni + 2χ̃E
ijklEjεkl. (2.11)

This expression is a combination of our five independent state variables.

Having introduced our model and explained our scheme to characterize
the state of the materials, we will use this macroscopic description in order
to investigate the reaction of cholesteric SCLSCEs to static external fields
in the next three chapters. Whereas the influence of a homogeneous static
external electric field is studied in the following two chapters, we will turn to
external mechanical fields in chapter 5. Before we start our considerations,
however, we will give a short overview on other approaches that have been
proposed to describe liquid crystalline elastomers.
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2.4 Other approaches

A different macroscopic characterization has been proposed for example in
Ref. [51] for nematic elastomers. The main focus of this approach is, how-
ever, on materials which show “soft” elastic distortions [52]. In essence, this
term refers to anisotropic materials which show a vanishing linear elastic
shear modulus when they are sheared within a plane containing a preferred
direction. The feature is based on a spontaneous breaking of the continu-
ous rotational symmetry through the emergence of this preferred direction.
Since the rotational symmetry is not broken spontaneously in SCLSCEs, but
a preferred direction is locked in during the process of synthesis, we conclude
that SCLSCEs behave in a different way. In fact, shear experiments using
piezorheometry have demonstrated that shear deformations of SCLSCEs in a
plane containing the director orientation cost energy, the linear shear modu-
lus being manifestly different from zero [32,34,53]. The possibility of a locked
in uniaxial direction has been mentioned and shortly discussed in Ref. [51].
Relative rotations, the crucial variables in our model, however, have not been
included in this description explicitly.

“Soft” elastic deformations also play a central role in a semi-microscopic
approach, based on rubber elasticity [54]. There, an anisotropic Gaussian
distribution function for the end-to-end vectors of the polymer chains be-
tween the crosslinking points is assumed. The anisotropy is implied to result
from the orientation of the mesogenic units. Consequently, the axis of ori-
entation of the mesogenic units and the axis of anisotropy of the polymer
network are identified with each other (and are assumed to remain iden-
tical during deformations). Entanglements of the polymer chains are not
included, and there is only one independent parameter. Later on, a second
independent parameter has been added, and the model has been extended
to comprise “semi-soft” elastic distortions [54]. A nonvanishing, but small
linear elastic shear modulus for the geometry mentioned above can be ob-
tained in this way. Interpreting the results of macroscopic experiments in the
framework of a semi-microscopic model of this kind is difficult, because one
has to make the assumption that affine deformations of single unentangled
polymer chains between crosslinking points reflect the macroscopic behavior
of the materials [55]. Naturally, including the possibility of macroscopically
spatially inhomogeneous solutions is also problematic in a semi-microscopic
approach. Again, the results obtained from piezorheological shear experi-
ments contradict the association of “soft” elastic shear deformations with
the observed behavior of SCLSCEs [32, 34, 53].

We want to mention, that also a manifestly different semi-microscopic
model has been proposed [56,57]. The latter includes constitutive equations



30 2. Linear macroscopic description

and does not involve the notion of “soft elasticity”.
In the course of this work, we will shortly relate and compare the results

obtained by our model to those obtained by the other approaches, if possible
and appropriate. The basis of a recently proposed biaxial picture of nematic
SCLSCEs [58], which we have not referred to in this section, will be outlined
at the beginning of chapter 6.



Chapter 3

Rotatoelectricity in cholesteric

side-chain liquid single crystal

elastomers

As mentioned in the last chapter, we will start our considerations by investi-
gating the effect of a static or quasistatic homogeneous external electric field
on the macroscopic state of cholesteric SCLSCEs. We begin by studying
the consequences of electric fields of low amplitudes in the following. Higher
electric field amplitudes will be taken into account during the course of the
next chapter.

The effect we want to put into the main focus of this chapter arises directly
from the coupling of the director to the polymer network. It is connected
to the term with the coefficient ζ (R) in the generalized energy density (2.9)
and has been called rotatoelectricity [49, 50]. Furthermore, it represents a
unique feature of cholesteric SCLSCEs and leads to perhaps surprising but
certainly fascinating consequences: we apply a homogeneous static external
electric field parallel to the helical axis of a cholesteric SCLSCE; increasing
the electric field amplitude in a quasistatic way then can result in a rotation
of the director around the helical axis. The director in this case reorients
within the planes perpendicular to the external electric field. As we will see,
the director reorientation may occur in this way even if the electric anisotropy
is positive.

This chapter is organized as follows. First, we will specify the geometry
investigated and give the explicit expression for the corresponding generalized
energy density. After that we will show that the generalized energy density
describes a rotation of the director in the liquid crystalline state – the effect
already mentioned above. In section 3.3, we will propose an experiment in
which the consequences of rotatoelectricity should be observable, and finally,

31



32 3. Rotatoelectricity in cholesteric SCLSCEs
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Figure 3.1: Geometry of the system investigated.

in the last section, we will discuss our results. Concerning the presentation
of the subject we closely follow the one which we have given in Ref. [50].

3.1 Geometry and corresponding generalized

energy density

Our first step is to specify the geometry of the system we want to investigate.
For this purpose, we choose the z-axis of our Cartesian coordinate system
to be parallel to the ground state cholesteric helical axis. We have depicted
this choice in Fig. 3.1.

The ground state conformation n̂0(r) of the director field can then be
parameterized by

n̂0(r) =





nox(z)
noy(z)

0



 =





cos(q0z)
sin(q0z)

0



 . (3.1)

As introduced in chapter 1, q0 denotes the wave number of the rotation of
the cholesteric helix. q0 is equal to π

L , 2L being the cholesteric pitch (see
Fig. 3.1). The sign of q0 reflects the screw sense of the helix. Since the latter
does not change under parity, q0 must be a pseudoscalar.

Variations of the director field w.r.t. its ground state conformation can
then be expressed by

δn(r) = n̂(r) − n̂0(r) =





cos(q0z + ∆(r)) cos(nz(r))
sin(q0z + ∆(r)) cos(nz(r))

sin(nz(r))



−





cos(q0z)
sin(q0z)

0





≈





−noy(z)∆(r)
nox(z)∆(r)
nz(r)



. (3.2)



3.1 Geometry and corresponding generalized energy density 33

Here, nz(r) characterizes a local tilt of the director out of the planes per-
pendicular to the helical axis, whereas ∆(r) denotes local variations of the
phase angle of the helicoidal director orientation and thus local rotations of
the director around the helical axis. Therefore, nz(r) and ∆(r) correspond
to the two independent broken rotational symmetry variables that we have
pointed at in section 2.1. They follow from the local uniaxial symmetry of
the material for a large cholesteric pitch.

Consequently, we can now explicitly list the five independent state vari-
ables which characterize the current state of our system: the three com-
ponents of the displacement field ux(r), uy(r), and uz(r), as well as the two
variables resulting from the broken rotational symmetry, nz(r) and ∆(r). We
will not continue to explicitly note the spatial dependence of these variables
in the following, and neither the z-dependence of the abbreviations nox(z)
and noy(z) introduced in Eq. (3.1).

Combining Eqs. (2.6), (3.1), and (3.2) leads us to an expression for the
variables of relative rotations in the linearized regime,

Ω̃ =





− ∆ sin(q0z) + Ωxy sin(q0z)
∆ cos(q0z) − Ωxy cos(q0z)

nz − Ωxz cos(q0z) − Ωyz sin(q0z)



 =





− ∆noy + Ωxynoy

∆nox − Ωxynox

nz − Ωxznox − Ωyznoy



 .

(3.3)

From Eqs. (3.1), (3.2), and (3.3) we can now also explicitly confirm the prop-
erty niΩ̃i = 0 of linear relative rotations, which we have noted in Eq. (2.8).

As we have mentioned above, the main focus in this chapter, is on the
term ζ (R)q0E ·(n̂×Ω̃) in Eq. (2.9). We can see from the structure of this term
that the consequences of its presence must be unique features of cholesteric
SCLSCEs. On the one hand, the term is proportional to the wave number q0
associated with the cholesteric helix, leading to the fact that it can only be
present in the characterization of a macroscopically chiral state. q0 is a pseu-
doscalar, which is essential for the existence of the term because the whole
term must be even under parity. In turn, this means that in chiral phases
lacking symmetry under parity the effects of rotatoelectricity cannot be ob-
servable. On the other hand, the main feature of SCLSCEs of coupling the
director orientation to the elastic mechanical behavior enters the rotatoelec-
tric term via the relative rotations. Without this coupling, the rotatoelectric
term must vanish.

It is interesting to compare the rotatoelectric term of Eq. (2.9) with the
one in Ref. [49], where rotatoelectricity has been discussed for the first time.
We have noted in section 2.1 that we will include in our picture the director
field n̂(r) in order to characterize the local uniaxial state of the cholesteric
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elastomer. This is because we refer to systems of cholesteric pitch larger than
or comparable to the thickness of the sample. It leads to the introduced form
ζ (R)q0E · (n̂ × Ω̃) of the rotatoelectric term. The approach in Ref. [49] has
been based on the truly hydrodynamic description of cholesteric SCLSCEs.
This means that the effects under consideration are of much larger wave-
lengths than the inherent lengths of the system. The cholesteric phase is
then properly characterized by the direction of orientation of the helical axis
p̂(r) instead of the director field [44].

Consequently, in Ref. [49] the rotatoelectric term has been introduced as

ζ (R)[δφ− piΩi]q0pjEj . (3.4)

There, δφ corresponds to our ∆ and denotes the phase variable characterizing
the rotation of the director around the helical axis. The components pi of
p̂ give the orientation of the helical axis, and Ωi are the components of the
vector of rigid rotations of the polymer network, defined by Ωi = 1

2
ǫijkΩjk =

1
2
ǫijk(∂juk). Using this definition on the one hand and Eq. (3.3) on the other

hand and remembering that our coordinate system has been chosen to satisfy
p̂ ‖ ẑ, we can rewrite the two rotatoelectric terms of Eqs. (2.9) and (3.4) in
the case of E = Eẑ:

• ζ (R)q0ǫijkEinjΩ̃k = ζ (R) [ ∆ − Ωxy ] q0E,

• ζ (R)[δφ− piΩi]q0pjEj = ζ (R) [ δφ − Ωxy ] q0E.
(3.5)

From the comparison of the two terms we can see that for E ‖ ẑ the truly hy-
drodynamic and the local description of cholesteric SCLSCEs are equivalent
concerning rotatoelectricity. However, in general, when E has also nonvan-
ishing components in the directions perpendicular to ẑ, the local description
offers more information on the behavior of the system. This especially be-
comes important when the cholesteric pitch is comparable to the extension of
the system in the direction of the helical axis, as it is the case in the situation
we will investigate here.

Since we want to study in this chapter only effects linear in the external
electric field E, we expand the expression for the generalized energy density
Eq. (2.9) up to quadratic order in ∂iuj (i, j = x, y, z), nz, ∆, and the com-
ponents of the external electric field Ei (i = x, y, z). We have added to this
expression the dielectric contribution in view of later inspections, but we put
it into squared brackets in order to stress that it will not be considered in
the investigations of the current chapter (it is quadratic in E). Neglecting
contributions to the generalized surface energy of the system, we obtain

F = c1

{

(∂xux)
2 + (∂yuy)

2 + (∂zuz)
2 +

1

2

(

(∂yux) + (∂xuy)
)2
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+
1

2

(

(∂zux) + (∂xuz)
)2

+
1

2

(

(∂zuy) + (∂yuz)
)2}

+
1

2
c2

{

(∂xux) + (∂yuy) + (∂zuz)
}2

+
1

2
D1

{[

∆ +
1

2

(

(∂yux) − (∂xuy)
)]2

+
[

nz +
1

2
nox

(

(∂zux) − (∂xuz)
)

+
1

2
noy

(

(∂zuy) − (∂yuz)
)]2}

+D2noxnoy

{

− (∂xux)
[

∆ +
1

2

(

(∂yux) − (∂xuy)
)]

+ (∂yuy)
[

∆ +
1

2

(

(∂yux) − (∂xuy)
)]

+
1

2

(

(∂zux)(∂zuy) − (∂xuz)(∂yuz)
)}

+
1

2
D2n

2
ox

{(

(∂yux) + (∂xuy)
)[

∆ +
1

2

(

(∂yux) − (∂xuy)
)]

+
1

2

[

(∂zux)
2 − (∂xuz)

2
]}

+
1

2
D2n

2
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{

−
(

(∂yux) + (∂xuy)
)[

∆ +
1

2

(

(∂yux) − (∂xuy)
)]

+
1

2

[

(∂zuy)
2 − (∂yuz)

2
]}

+
1

2
D2nz

{

nox

(

(∂zux) + (∂xuz)
)

+ noy

(

(∂zuy) + (∂yuz)
)}

+
1

2
K1

{

nox(∂y∆) − noy(∂x∆) + (∂znz)
}2

+
1

2
K2

{

nox(∂ynz) − noy(∂xnz) − (∂z∆)
}2

+
1

2
K3
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noxnoy(∂y∆) + n2
ox(∂x∆) + q0noxnz

)2
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(

noxnoy(∂x∆) + n2
oy(∂y∆) + q0noynz

)2

+
(

nox(∂xnz) + noy(∂ynz)
)2}

+ (e1 − e2)q0

{

Exnoy −Eynox

}

nz

−1

4
γ1q0

{[

− 2Exnoxnoy + Ey(n
2
ox − n2

oy)
]

(∂zux)

+
[

Ex(n
2
ox − n2

oy) + 2Eynoxnoy

]

(∂zuy)
}

+ γ1q0

{

Exnoy −Eynox

}

nz
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− 1

4
ζ (R)q0

{[

− 2Exnoxnoy + Ey(n
2
ox − n2

oy)
]

(∂zux)

+
[

Ex(n
2
ox − n2

oy) + 2Eynoxnoy

]

(∂zuy)
}

+ ζ (R)q0

{

Exnoy − Eynox

}

nz

+ ζ (R)q0Ez∆
[

− 1

2
ǫa

{

Ex(nox − noy∆) + Ey(noy + nox∆) + Eznz

}2
]

. (3.6)

It is very interesting to note that in the regime where we concentrate on
the generalized bulk energy density and where the amplitude of the external
electric field is considered to be small enough, only the component of the
external electric field parallel to the helical axis leads to a new contribution
resulting explicitly from rotatoelectricity. The other rotatoelectric terms can
be combined with the flexoelectric terms and the γ1-terms. If Ez vanishes, the
remaining terms containing the electric field can be combined to two terms
with coefficients c̄1 = e1 − e2 + γ1 + ζ (R) and c̄2 = γ1 + ζ (R), respectively.
Then rotatoelectricity does not lead to qualitatively new effects. However,
if larger amplitudes and thus higher orders of E are taken into account, for
example via the dielectric term, the situation will, in general, be different.

As mentioned above, small amplitudes of the external electric field E

are investigated in this chapter, and we choose a geometry in which the
external electric field is applied parallel to the helical axis (see Fig. 3.1).
Then Ex = 0 = Ey and the electric field contributes to the generalized
energy density in Eq. (3.6) in linear order only via the rotatoelectric term.
In this case we can study the phenomenon of rotatoelectricity explicitly.

3.2 Rotations of the director

Following the procedure described in the previous chapter, we now derive
the equations that characterize the macroscopic state of the material under
the influence of the respective static or quasistatic external electric field.
For this purpose, we determine the variational derivatives of the generalized
energy F =

∫

F d3r of the system w.r.t. the five independent state variables
and set the resulting expressions equal to zero. The latter step leads us
to Eqs. (A.1)-(A.5) listed in appendix A. We note that in the regime of
small external electric field amplitudes, to which we restrict ourselves in
this chapter, the influence of the dielectric term in Eq. (2.9) will not be
investigated. Therefore, we have put the dielectric contribution between
squared brackets in Eqs. (A.4) and (A.5), in the same way as in Eq. (3.6).
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Only terms linear in Ei (i = x, y, z) enter the inspection of Eqs. (A.1)-(A.5)
in this chapter.

As we have mentioned at the end of the last section, we want to investigate
a situation in which E = Eẑ is parallel to the cholesteric helical axis. The
cholesteric SCLSCE can, for this purpose, be assumed to be confined between
two parallel plates with a distance d, located at z = 0 and z = d, as illustrated
in Fig. 3.1. For simplicity we consider the plates to be infinitely extended in
x̂ and ŷ direction.

If we impose no boundary conditions onto the system, the simplest solu-
tion to the problem is a spatially homogeneous one. Eqs. (A.1)-(A.5) show
that in this case the variable ∆ decouples from the other variables. Since,
however, Eq. (A.5) is the only equation in which the external electric field
E = Eẑ enters, the field E acts exclusively on the phase angle ∆. We there-
fore can set all the other variables equal to zero, without loss of generality,

ux = uy = uz = nz = 0. (3.7)

Eq. (A.5) reduces to
D1∆ + ζ (R)q0E = 0, (3.8)

which leads us to the solution

∆ = − ζ (R)

D1
q0E. (3.9)

On the other hand, if we assume the director to be strongly anchored to
the plates, which may result, for example, from the way films of cholesteric
SCLSCEs are synthesized [26], we obtain as boundary conditions:

nz(z = 0) = nz(z = d) = 0,

∆(z = 0) = ∆(z = d) = 0.
(3.10)

Then we have to treat the problem as z-dependent, but again we look for
a solution which is spatially homogeneous in the lateral directions x̂ and ŷ,
meaning that we set ∂x = 0 = ∂y in Eqs. (A.1)-(A.5). As before, a decoupling
of ∆ from the other variables arises, and the influence of the external electric
field remains restricted to ∆. Thus Eq. (3.7) continues to be valid without
loss of generality, and Eq. (A.5) now reduces to

D1∆ −K2∂
2
z∆ + ζ (R)q0E = 0. (3.11)

From that, together with the boundary conditions, a z-dependent solution
for ∆ is derived,

∆ =
ζ (R)

D1





cosh
(√

D1

K2

(

z − d
2

)

)

cosh
(√

D1

K2

d
2

) − 1



 q0E. (3.12)
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If we calculate from this result the mean value of ∆ over the sample thickness
d, we obtain

<∆> =
1

d

∫ d

0

∆(z) dz =
ζ (R)

D1

[

2

d

√

K2

D1
tanh

(

√

D1

K2

d

2

)

− 1

]

q0E. (3.13)

For large sample thicknesses d this expression again yields the result given by
Eq. (3.9), which is consistent because for large values of d the major part of
the bulk of the system is not hindered by the constraints of strong anchoring
at the sample surfaces.

At this point we want to focus on what our solutions imply. From the
physics of LMWLCs, we are used to the dielectric effects that an external
electric field induces [7]. We will introduce a corresponding example of dia-
magnetic effects in the case of an external magnetic field at the beginning of
the next chapter. For our purposes at the moment, it is sufficient to have a
look at the dielectric term in the expression for the generalized energy density
F (2.9). This term implies that in the case of a dielectric anisotropy ǫa < 0
the mesogenic units try to orient on average perpendicular to an external
electric field. On the contrary, in the case of ǫa > 0, they try to orient par-
allel to the external electric field direction. This leads, for example, to the
typical splay, bend, or twist deformations of the director field, if the direc-
tor is strongly anchored at the boundaries of the system [7]. We recall that
dielectric effects result from contributions quadratic in E to the generalized
energy density of the system.

What we observe in the regime linear in E = Eẑ is rather different from
these dielectric effects. Since ∆ denotes the phase shift of the director ori-
entation around the helical axis, Eqs. (3.9) and (3.12) describe a rotation of
the director around the cholesteric helical axis when compared to the ground
state of E = 0, no matter whether ǫa < 0 or ǫa > 0. Without any bound-
ary conditions for the director, this rotation occurs homogeneously over the
whole sample as given by Eq. (3.9) and depicted in Fig. 3.2. There, the sit-
uation is sketched for a sample of a cholesteric pitch larger than the sample
thickness d. If strong anchoring of the director prevails at the surfaces, the
rotation is hindered at the boundaries as given by Eq. (3.12).

In both cases the amplitude of the rotation is proportional to the ampli-
tude of the external electric field, to the rotatoelectric coefficient ζ (R), as well
as to the wave number of the cholesteric helix q0. We also note that the larger
the coupling between the director and the polymer network of the respec-
tive SCLSCE, reflected by the coefficient D1, the smaller is the amplitude of
the rotatoelectric rotation. This is consistent with Eq. (3.7), which implies
vanishing local rigid rotations of the polymer network and in turn leads to
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n̂0n̂

E
x̂

ẑ
ŷ

z = d

z = 0

d

Figure 3.2: In the case depicted, the director is not anchored at the bound-
aries of the system and the cholesteric pitch is larger than the sample thick-
ness d. The external electric field E induces a rotation of the director from
its ground state conformation n̂0 (solid lines) to its end position n̂ (dashed
lines).

a large amplitude of the relative rotations of Ω̃ = ∆. The latter enters the
expression for the generalized energy density of the system in Eq. (2.9) via
the positive definite term D1Ω̃iΩ̃i. Consistently, in Eqs. (3.9), (3.12), and
(3.13) D1 appears in the denominator and thus reduces the amplitude of the
rotatoelectric reorientation of the director.

For illustration we have plotted in Fig. 3.3 the y-component of the director
field across the sample for the three introduced cases. The y-component of
the director is given by noy(z) = sin(q0z) from Eq. (3.1) without an external
electric field E applied (solid line in Fig. 3.3). On the other hand, the two
cases of boundary conditions we have studied are represented by the two
dashed lines for nonvanishing E. ny,na(z) describes the y-component of a
director which is not anchored at the surfaces of the system, whereas ny,sa(z)
gives the y-component of a director which is strongly anchored at the bottom
and top boundaries. We have obtained the lines by inserting the expressions
for ∆ from Eqs. (3.9) and (3.12) into ny(z) = sin(q0z + ∆). For reasons of

clarity, we have chosen a very large value of ζ(R)

D1
q0E = 0.5, a ratio

√

D1

K2
=

107 m−1, a sample thickness d = 25 µm, and a cholesteric wave number
q0 = 4π

d . As the two dashed lines demonstrate, the effect of the boundaries
remains restricted to the region near the surfaces.

On the whole, the fascinating feature of the rotatoelectric rotation is of
course that the resulting force imposed by the external electric field acts per-
pendicularly to the direction of the external electric field. As described above,
it leads to a reorientation of the director within the planes perpendicular to
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z/d

noy(z)
ny,na(z)

ny,sa(z)
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Figure 3.3: noy(z), ny,na(z), and ny,sa(z) represent the y-component of the
director field across the sample for E = 0, for E 6= 0 and vanishing anchoring
at the boundaries, and for E 6= 0 and strong anchoring, respectively. The
values of the parameters involved have been chosen as described in the text.

the helical axis. Such a behavior is reminiscent of the precession during a
gyroscopic motion in the gravitational field. There, the resulting mechanical
force inducing the motion of precession is also oriented perpendicular to the
external field direction.

3.3 Experimental observation of rotatoelec-

tricity

In the last section we have shown that rotatoelectricity implies interesting
effects, which should be observable in an experiment using a rather simple
set-up. Therefore we present in this section some expressions that might be
helpful for a comparison with experimental results.

The set-up we propose is identical with the geometry depicted in Fig. 3.2.
If thin films of cholesteric SCLSCEs are investigated, for which the choles-
teric pitch is large compared to the sample thickness d, then the director
orientation in such samples should be observable by optical measurements
using polarization microscopy. The viewing direction is assumed to be par-
allel to the helical axis and thus parallel to the direction of the external
electric field. In particular, in experiments during which irradiation of very
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small wavelengths is applied (x-ray), the mean director orientation should be
probed.

Since we think that the condition of strong anchoring of the director
to the sample surfaces leads to more realistic boundary conditions, we will
use the result given by Eq. (3.12) for the calculations below. We choose
the orientation of our coordinate system in such a way that at the bottom
plate at z = 0 the strongly anchored director points into the x̂ direction,
which means n̂(z = 0) ‖ x̂. Due to the requirement of a cholesteric pitch
large compared to the sample thickness d, we assume in the following that
across the whole sample the phase angle of the director orientation around
the helical axis satisfies the condition

q0z + ∆(z) ≤ π

2
. (3.14)

In this section, we may rewrite the cholesteric wave number q0 as

q0 =
απ

d
, (3.15)

α being a constant of a value that guarantees the validity of inequality (3.14).

We have noted before, that also the mean values of the director orientation
may be observed. Because of this we list the expressions for the components
of the director averaged over the sample thickness d. Using relation (3.15) for
the cholesteric wave number q0, the mean values of the x- and y-components
of the ground state director orientation are given by

<nox> =
1

d

∫ d

0

nox dz =
1

απ
sin(απ), (3.16)

<noy> =
1

d

∫ d

0

noy dz =
1

απ
[1 − cos(απ)]. (3.17)

Similarly, the values of the components of the director variation in the planes
perpendicular to the helical axis, namely δnx and δny in Eq. (3.2), averaged
over the sample thickness, lead to the following expressions:

<δnx> =
1

d

∫ d

0

δnx dz

= − ζ (R)E

D1

√

D1

K2
sin(απ) tanh

(√

D1

K2

d
2

)

+ D1

K2

d
απ

[cos(απ) − 1]

D1

K2
d2 + (απ)2

απ,

(3.18)
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<δny> =
1

d

∫ d

0

δny dz

=
ζ (R)E

D1

√

D1

K2
[cos(απ) + 1] tanh

(√

D1

K2

d
2

)

− D1

K2

d
απ

sin(απ)

D1

K2
d2 + (απ)2

απ.

(3.19)

In the case of a large cholesteric pitch, that is for small values of α, the
mean values of the components of the director variation are obtained from
the previous expressions to first order in α as

<δnx> = 0, (3.20)

<δny> =
ζ (R)E

D1

[

2

d

√

K2

D1
tanh

(

√

D1

K2

d

2

)

− 1

]

απ

d
. (3.21)

From the second equation we can infer that for a large cholesteric pitch and
a constant sample thickness d the magnitude of the rotatoelectric rotation
increases linearly with the wave number of the cholesteric sample. This is
because <δny> increases linearly with q0.

The mean values of the components of the director n̂ follow from the
above equations, because

<nx> = <nox> + <δnx> , (3.22)

<ny> = <noy> + <δny> . (3.23)

In an experiment, one challenge consists of the selection of the most
suitable values for the cholesteric pitch and the thickness of the sample.
The relative contributions of three ingredients must be optimized. On the
one hand, we have seen that the rotatoelectric rotation increases linearly
with q0, so that a pronounced cholesteric character of the sample favors the
rotatoelectric effect. On the other hand, the sample must not be too thick
compared to the cholesteric pitch, because then the determination of the
director orientation across the sample using polarization microscopy (or x-
ray) does not lead to results that are easy to interpret. Furthermore, however,
if the cholesteric film is too thin and strong anchoring governs the surfaces
of the system, rotatoelectric effects might not be observable at all due to the
strong anchoring at the boundaries. Thus a compromise must be found in
order to maximize the observable rotatoelectric effects.

The experiment itself should first of all demonstrate the existence of the
rotatoelectric effect discussed here, which has not been done yet. We predict
that the phase angle ∆ of the rotation and its mean < ∆ >, as well as
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the amplitude of the director reorientation and its mean, depend linearly
on the amplitude of the external electric field. These relations are given
by Eqs. (3.2), (3.12), (3.13), and (3.18)-(3.21). In addition, it would be
very interesting to check for samples of different cholesteric pitch the linear
dependence of ∆ and/or<∆> on the cholesteric wave number q0 as predicted
by Eqs. (3.12) and (3.13). Here, in particular, the direction of rotation
of the director should change, when samples of different handedness of the
cholesteric helix, implying a different sign of q0, are investigated. A control
experiment with a nematic SCLSCE (q0 = 0) is expected to give no effect,
since rotatoelectricity is a novel phenomenon only associated with SCLSCEs
of macroscopic handedness.

Furthermore, as can be inferred from Eqs. (3.16)-(3.23), measurements of
samples with different sample thicknesses d should allow an estimate of the
ratio ζ (R)/D1. This is the ratio of the rotatoelectric material parameter to
the material parameter that determines the contribution to the generalized
energy density of the system due to relative rotations exclusively.

3.4 Discussion and conclusion

It is very important to address the question, whether the reaction of a cho-
lesteric SCLSCE in the geometry of Fig. 3.1 to an external electric field
with strong anchoring boundary conditions occurs laterally homogeneously,
or whether spatial modulations in the lateral directions x̂ and ŷ might com-
plicate the experimental observation of rotatoelectricity. Therefore it is in-
structive to compare our situation with that of an external electric field
E = Eẑ of larger magnitude. Then the dielectric term becomes important
in Eq. (2.9) and leads to an additional contribution −ǫaE2nz in Eq. (A.4).

In the case of ǫa < 0 we do not expect an instability arising from the
dielectric term at all, because the ground state orientation of the director
within the planes perpendicular to the helical axis is stabilized. Such a
stabilization of the director adds to the rotation of the director around the
helical axis within these planes due to rotatoelectricity.

On the other hand, we will study the situation of ǫa > 0 in chapter 4,
where we will neglect the rotatoelectric term, the terms with the coefficients
γi (i = 1, 2), and the flexoelectric terms as effects linear in E. At the moment,
for us the most important result of this inspection is the following. Below a
critical threshold field amplitude |Ec| the system remains laterally spatially
homogeneous. Even above this critical amplitude, the system keeps the lat-
eral spatial homogeneity for the bigger part of the parameter range investi-
gated. We estimate |Ec| to be of the order of 30 V µm−1 for ǫa = ǫ0. These
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facts support our assumption that a major group of cholesteric SCLSCEs in
the geometry sketched in Fig. 3.1 should react to the external electric field by
a laterally homogeneous solution, which makes us confident that the effect
of rotatoelectricity can be observed in an experiment.

Concerning the interval of external electric field amplitudes suitable to
detect the rotatoelectric effect we expect no difficulties, because rotatoelec-
tricity describes a phenomenon linear in E. Therefore, the relevant field am-
plitudes must be smaller by orders of magnitude compared to the threshold
field amplitude |Ec| of the instabilities that arise from the dielectric term.

In summary, we have demonstrated that rotatoelectricity is an intrinsic
and unique property of cholesteric SCLSCEs and leads to interesting effects.
By quasistatically increasing the amplitude of an external electric field ap-
plied parallel to the cholesteric helical axis, the director can rotate in a plane
perpendicular to the external field direction. We have proposed an experi-
ment in which rotatoelectricity should be observable, and we hope that such
experiments will be carried out in the future to find out more about the
consequences of this phenomenon.



Chapter 4

Dielectric effects in cholesteric

side-chain liquid single crystal

elastomers

In this chapter, we will continue to study the macroscopic consequences that
arise for a cholesteric SCLSCE when exposed to a homogeneous static or
quasistatic external electric field E. We will investigate the same set-up as
introduced in the previous chapter and illustrated in Fig. 3.1. The difference
arises from the magnitude of the external electric field considered. Whereas
an effect linear in the electric field amplitude has been studied in the previous
chapter, we now put into the focus the dielectric behavior of the materials.
Our treatment of the subject is closely connected to the one we have presented
in Ref. [59].

We will start with some general remarks in the next section, including a
short review of the Fréedericksz transition observed for LMWLCs [7]. After
that, we will investigate the geometry depicted in Fig. 3.1 in detail. As a
consequence of the dielectric response of the systems, we will find two kinds
of instabilities. Whereas the one presented in section 4.2 can be viewed
as the analog to the Fréedericksz instability in LMWLCs, we will detect a
qualitatively new instability in section 4.3. Finally, we will shortly discuss
our results.

4.1 Geometry and macroscopic equations

Throughout this chapter, we will assume the dielectric anisotropy ǫa to be
positive. The reason has already been explained in section 3.2. Only if
ǫa > 0 will the electric field impose a torque onto the director orientation.

45
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This can lead to a reorientation of the director, because then the director
tends to align parallel to the external electric field for energetic reasons. We
can infer this fact directly from Eq. (2.9). If ǫa < 0, the director tends to
align perpendicularly to the external electric field direction and the result
is a stabilization of the director orientation within the planes perpendicular
to the cholesteric helical axis. Again, we suppose that the material under
consideration is a perfect electric insulator.

For nematic LMWLCs, the geometry we want to investigate in this chap-
ter has become quite famous. In the situation corresponding to Fig. 3.1,
the LMWLC is confined between two glass plates separated by a distance
d. Special treatment of the plate surfaces leads to strong anchoring of the
director in one fixed direction at the top and bottom boundaries, within
the boundary planes. Consequently, in the ground state the director of the
nematic liquid crystal is homogeneously oriented in this preferred direction
across the whole sample. We will assume that an external magnetic field is
applied to the low molecular weight nematic sample, instead of an external
electric field [7]. The corresponding energy density describing this system
then reads

FLMW =
1

2
K1(∇· n̂)2 +

1

2
K2[n̂ · (∇× n̂)]2 +

1

2
K3[n̂× (∇× n̂)]2 − 1

2
χa(Hini)

2.

(4.1)
The anisotropy of the magnetic susceptibility is considered to be positive,
χa > 0 [7], and, in analogy to Fig. 3.1, we assume H = H ẑ perpendicular to
n̂0.

Then, from this energy density, we find a clear competition between two
effects. On the one hand, the external magnetic field tries to align the director
perpendicular to its initial orientation. On the other hand, the director
is fixed in its original orientation at the sample boundaries. Therefore, a
reorientation of the director leads to spatial inhomogeneities of the director
orientation. The latter cost energy because in this case ∇n̂ 6= 0.

A linear stability analysis yields the following results. For low magnetic
field amplitudes, the homogeneous ground state director orientation is pre-
served. The energetic gain by orienting the director parallel to the magnetic
field cannot balance the energy which is necessary to distort the homogeneous
director field. There exists, however, a critical external field amplitude, at
which this situation changes. When the field amplitude is increased beyond
this threshold value, the spatially homogeneous director orientation becomes
unstable with respect to a spatially inhomogeneous state. Therefore, the di-
rector starts to reorient. From an analysis of Eq. (4.1), the critical magnetic
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field amplitude is found to be

|Hc| =
π

d

√

K1

χa

, (4.2)

whereas the shape of the instability at threshold reads

δn(r) = N sin(
π

d
z)ẑ. (4.3)

N is the amplitude of the instability and cannot be determined in a linear
stability analysis.

The corresponding transition can be detected optically. It is an example
of the famous Fréedericksz transition of nematic LMWLCs [7]. Since only the
Frank constantK1 characterizing splay deformations (see Fig. 2.2) is involved
in the expression for |Hc|, the described set-up is suitable for measuring this
material parameter in an experiment. For obvious reasons, the geometry has
been named splay geometry.

On the way to the macroscopic investigation of the analogous geometry
for cholesteric SCLSCEs exposed to an external electric field, we are already
well prepared. In Eq. (3.6) of the previous chapter we have listed the explicit
expression for the generalized energy density which characterizes the geome-
try under consideration. Of course, we now include the dielectric term noted
in squared brackets at the end of Eq. (3.6). The independent state variables
defining the current state of the system remain the same as in the previ-
ous chapter, ux, uy, uz, nz, and ∆, namely. Also the macroscopic equations
which characterize the current state of the material under the influence of
the external electric field have already been derived. They are given by the
five coupled partial differential equations (A.1)-(A.5) listed in appendix A.
Again, we now have to include the dielectric contributions added to Eqs.
(A.4) and (A.5) in squared brackets.

When we inspect Eqs. (2.9) and (3.6), we find that the dielectric term
describes an effect quadratic in E. We expect that the dielectric effect in
cholesteric SCLSCEs should occur at rather elevated values of the electric
field amplitude. We will therefore concentrate exclusively on the dielectric
term in this chapter and neglect the contributions linear in E. That is, we
set e1 = e2 = γ1 = γ2 = ζ (R) = 0 in this chapter (and c̄1 = c̄2 = ζ (R) = 0 in
appendix A). In fact, we will confirm our approach by estimations of typical
electric field amplitudes at a later stage of this chapter.

We also expect elevated electric field amplitudes for the dielectric effects
to become observable when we compare to the analogous case of LMWLCs.
Our goal is to investigate the nature of director reorientations by a static
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external electric field applied parallel to the cholesteric helical axis. Because
of the specific coupling in SCLSCEs, in general this will also lead to an elas-
tic mechanical deformation of the respective sample. Since the mechanical
deformation costs energy, we expect a much higher electric threshold field for
director reorientations in cholesteric SCLSCEs than in the case of LMWLCs.

From the special geometry we want to study (see Fig. 3.1), a further
simplification of our task arises. Due to the orientation of the electric field
E = Eẑ, the dielectric contributions to Eqs. (A.4) and (A.5) reduce to only
one term −ǫaE2

znz in Eq. (A.4).
On the other hand, we will also neglect the electrostrictive term of

Eq. (2.9) in the main text of this chapter and discuss its influence separately
in appendix B. The reason for this approach lies with the comparatively small
contributions to the mechanical deformations by electrostriction, as will be
further explained in the appendix. There, we also show that electrostrictive
effects will not change the results of our calculations qualitatively.

As indicated in Fig. 3.1, the bottom surface of the sample under consider-
ation will be located at z = 0, and the top surface at z = d. We will impose
the following restrictions onto these boundaries of the system.

First, in analogy to the Fréedericksz geometry of LMWLCs described
above, the director is assumed to be strongly anchored at the top and bottom
boundaries. Consequently

nz(z = 0) ≡ nz(z = d) ≡ 0, (4.4)

∆(z = 0) ≡ ∆(z = d) ≡ 0. (4.5)

In addition, we require

uz(z = 0) ≡ uz(z = d) ≡ 0. (4.6)

The reason for this boundary condition is that a sample compressed between
two plates should not penetrate these plates or detach from them.

During mechanical deformations of the elastomer, mechanical stress will
arise in the bulk and on the surfaces of the sample under consideration. When
we have found a certain state of the material, which is given by a specific
displacement field u(r) and director field n̂(r), this mechanical stress can be
characterized by a mechanical stress tensor

σmech
ij =

∂F

∂εij

= 2c1εij + c2εkkδij +
1

2
D2(Ω̃inj + Ω̃jni). (4.7)

No tangential mechanical shear stresses should occur on the surfaces of the
sample at z = 0 and z = d. This means that the components σmech

xz = σmech
zx
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and σmech
yz = σmech

zy of the mechanical stress tensor have to vanish on these
surfaces. We therefore obtain as boundary conditions

(∂zux)(z = 0) ≡ (∂zux)(z = d) ≡ 0, (4.8)

(∂zuy)(z = 0) ≡ (∂zuy)(z = d) ≡ 0. (4.9)

For simplicity, in this chapter we will assume that the system is infinitely
extended in the lateral directions x̂ and ŷ.

In the derivation of Eqs. (A.1)-(A.5) we have neglected energetic contribu-
tions of the sample surfaces and concentrated on the energetic contributions
of the bulk. For the lateral directions, this is justified by the dimensions
of the systems under consideration. We take into account the effect of the
surfaces at z = 0 and z = d by the boundary conditions we have imposed.

Before coming to the details of our analysis, we want to include a general
remark concerning the treatment of Eqs. (A.1)-(A.5). We notice that the
resulting set of equations can be solved by an ansatz that separates the z-
dependence of the solution from the lateral dependences, which are the x-
and y-dependences:

ux(r) = cos(kxx+ kyy + ϕ)ũx(z),

uy(r) = cos(kxx+ kyy + ϕ)ũy(z),

uz(r) = sin(kxx+ kyy + ϕ)ũz(z), (4.10)

nz(r) = cos(kxx+ kyy + ϕ)ñz(z),

∆(r) = sin(kxx+ kyy + ϕ)∆̃(z).

This solution contains lateral undulations in x̂ and ŷ direction, where ϕ is
an arbitrary phase angle that only becomes important if both of the wave
numbers kx and ky are zero. It will be one of the goals of our work to find
out, whether instabilities with nonvanishing wave numbers kx and ky could
be identified when minimizing the generalized energy of the system F . Such
an instability would be of qualitatively different character when compared to
the introduced LMWLC Fréedericksz instability.

The possible separation of the z-dependence from the lateral x- and y-
dependences of the solutions proposes the following approach. First we will
treat the problem only z-dependent, which means that we are looking for
solutions that are homogeneous over the whole sample in lateral directions
x̂ and ŷ. In a second step we will demonstrate that, depending on the
material parameters, laterally inhomogeneous solutions may occur and can
be energetically favored over the homogeneous solution.
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4.2 Laterally homogeneous solution

Looking for only z-dependent solutions, we can set ∂x ≡ 0 ≡ ∂y in Eqs. (A.1)-
(A.5) or equally kx = 0 = ky in ansatz (4.10).

Strong anchoring of the director at z = 0 and z = d is maintained, and all
pitches of the cholesteric helix are allowed in the ground state independent of
the sample thickness d. Consequently, the director orientation at the bottom
and top surfaces can be written as

n̂(z = 0) ≡





1
0
0



 and

n̂(z = d) ≡





nox(d)
noy(d)

0



 ≡





cos(q0d)
sin(q0d)

0



 , (4.11)

where

q0 = m
π

d
, m∈R. (4.12)

Since we are looking for only z-dependent solutions, we infer from Eqs. (A.1)-
(A.5) that in this case the variables uz(z) and ∆(z) completely decouple from
the respective other variables. Taking into account Eqs. (4.5) and (4.6), and
minimizing F , we can set uz(z) and ∆(z) equal to zero:

uz(z) = 0, (4.13)

∆(z) = 0. (4.14)

We can now solve the remaining system of equations (A.1), (A.2), and
(A.4) explicitly. Making use of the boundary conditions (4.8) and (4.9) leads
us to the general solution of Eqs. (A.1) and (A.2), which is given by

(∂zux) =
α

β
noxnz, (4.15)

(∂zuy) =
α

β
noynz, (4.16)

with the abbreviations

α = − 1

2
(D1 +D2), (4.17)

β =
1

4
(4c1 +D1 + 2D2). (4.18)
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Substituting this into Eq. (A.4) together with E = Eẑ, we obtain an ordinary
differential equation for nz,

(

−ǫaE2 +D1 +K3q
2
0 −

α2

β

)

nz −K1(∂
2
znz) = 0. (4.19)

In order to satisfy the boundary conditions resulting from (4.11), we solve
this differential equation by a Fourier series, keeping only the sin-terms:

nz =
∑

n∈N

Nn sin
(

n
π

d
z
)

. (4.20)

There always exists the trivial solution of Eq. (4.19) where all the Nn vanish
and nz ≡ 0. For small amplitudes of the electric field |E| this is the only
possible solution in real space. However, when E reaches a certain threshold
value Ec, nontrivial solutions of Eq. (4.19) exist and lead to a lower general-
ized energy of the system than does nz ≡ 0. In our case this threshold value
corresponds to the mode of n = 1 in Eq. (4.20), and it is given by

ǫaE
2
c = K1

(π

d

)2

+K3q
2
0 +

4c1D1 −D2
2

4c1 +D1 + 2D2
. (4.21)

The value of the amplitude of the external electric field given by this
expression is the lowest value of |E| for which we expect a deviation of the
system from its ground state on the basis of the linear stability analysis we
have performed. The final solution of the set of Eqs. (A.1)-(A.5) for E = Ec

is then obtained by integration of Eqs. (4.15) and (4.16) as

ux = N1
α

2β

{

cos[(q0 − π
d
)z]

q0 − π
d

− cos[(q0 + π
d
)z]

q0 + π
d

}

, (4.22)

uy = N1
α

2β

{

sin[(q0 − π
d
)z]

q0 − π
d

− sin[(q0 + π
d
)z]

q0 + π
d

}

, (4.23)

nz = N1 sin
(π

d
z
)

, (4.24)

where N1 is the amplitude of director reorientation and remains undeter-
mined in a linear stability analysis.

In essence, what we have found is a critical threshold value of the electric
field amplitude |Ec|, at which the original orientation of the director becomes
unstable with respect to a tilting of the director out of the planes perpendic-
ular to the helical axis. Since all the terms in Eq. (4.21) are positive because
of conditions of thermodynamic stability, there are four competing effects.



52 4. Dielectric effects in cholesteric SCLSCEs

On the one hand the external electric field tends to align the director paral-
lel to itself, which would lead to a tilting of the director out of its original
position. This is given by the left-hand side of Eq. (4.21). On the other hand
there are three effects that try to keep the director fixed in its ground state
position and thus within the planes perpendicular to the helical axis. These
effects show up in the terms on the right-hand side of Eq. (4.21):

First, the boundaries of the system impose a torque which acts to fix
the director in its original position as known from the common Fréedericksz
transition in the case of nematic LMWLCs [7] and from the Fréedericksz-
like or undulatory instabilities predicted for nematic SCLSCEs [33, 35]. It
is the term K1(

π
d )2 which expresses this effect. Its contribution is due to

a splay deformation of the director field, and its influence vanishes with
increasing distance of the boundaries d in the same way as indicated for
the Fréedericksz transition of nematic LMWLCs in Eq. (4.2). Secondly, the
cholesteric helix structure of the director opposes to a reorientation of the
director by a bend deformation of the director field, given by the term K3q

2
0.

The more pronounced the cholesteric structure, that means the larger q2
0 , the

larger is the influence of this effect. As a third effect, the coupling of the
director to the polymer network also increases |Ec|, which is included by the
last term on the right of Eq. (4.21). It arises because due to this coupling
the elastomer has to be deformed as implied by Eqs. (4.22) and (4.23) when
the director is reoriented.

The first two of the three effects contributing to the right-hand side of
Eq. (4.21) also show up for a common cholesteric LMWLC in the same ge-
ometry. This case is included in our equations and occurs if the coupling
between director and polymer network vanishes, which means D1 → 0 and
D2 → 0. We then obtain from Eq. (A.4) as an instability in the corresponding
low molecular weight system

nz(z) = N1 sin
(π

d
z
)

(4.25)

at a critical electric threshold field given by

ǫaE
2
c = K1

(π

d

)2

+K3 q
2
0. (4.26)

Except for the term K3 q
2
0 arising from the cholesteric structure and the

consideration of an external electric field, these results correspond to the ones
presented in Eqs. (4.2) and (4.3) for the Fréedericksz transition of nematic
LMWLCs.

If we want to estimate values of the critical field amplitude from Eq. (4.21),
we consider the third term on the right-hand side being the dominating
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one. Assuming c1 > −D2/2 as it seems appropriate for common cholesteric
SCLSCEs, this term strictly increases for growing values ofD1. In the limit of
D1 → ∞ we obtain the same result as has been found for nematic SCLSCEs
in Ref. [33],

|Ec| / 2

√

c1
ǫa

. (4.27)

For typical values of c1 in the range of 104−106 Pa and for ǫa = ǫ0 this yields
maximal values for the amplitude of |Ec| in the range of 70 − 700 V µm−1,
for ǫa = 10ǫ0 in the range of 20 − 200 V µm−1. If we more realistically set
D1 = 104 Pa, for example, we obtain |Ec| ≈ 30 V µm−1 in the case of ǫa = ǫ0
and |Ec| ≈ 10 V µm−1 in the case of ǫa = 10ǫ0, quite independently of the
values of c1 and D2. These are field amplitudes that certainly can be realized
in an experiment nowadays.

As we can see from Eqs. (4.22) and (4.23), the cases q0 = ±π
d , where the

cholesteric helix makes exactly one half turn from one boundary at z = 0
to the other at z = d, are special. In these cases, with nz = N1 sin(π

d z), we
obtain by integrating Eqs. (4.15) and (4.16), and from Eq. (4.21),

ux = ∓N1
α

4q0β
[cos(2q0z)], (4.28)

uy = ±N1
α

4q0β
[2q0z − sin(2q0z)], (4.29)

nz = ±N1 sin(q0z), (4.30)

ǫaE
2
c = (K1 +K3)q

2
0 +

4c1D1 −D2
2

4c1 +D1 + 2D2

. (4.31)

Calculating the expressions for ux and uy by taking the limit q0 → ±π
d in

Eqs. (4.22) and (4.23), one term in the expression for ux diverges,

lim
q0→±π

d

cos[(q0 ∓ π
d
)z]

q0 ∓ π
d

= lim
a→0

cos(az)

a
= lim

a→0

1

a
= ∞. (4.32)

However, this divergence does not depend on the value of z, and since here
only the spatial derivative of ux in ẑ direction is important for the physical
behavior of the system we may drop this term.

At the end of this section we want to have a closer look at the me-
chanical deformation of the elastomer. The solutions obtained here are only
z-dependent and thus constant within the planes perpendicular to the helical
axis. As uz vanishes over the whole sample the mechanical deformation of
the elastomer is then identical to a shearing of the different layers perpen-
dicular to the helical axis against each other. We can calculate the shear S
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of the boundary layer at z = d against the boundary layer at z = 0 by using
Eqs. (4.22) and (4.23):

S = Dxx̂ +Dyŷ, (4.33)

where

Dx = ux(d) − ux(0) = −N1
α

β

π

d

1

q2
0 − (π

d )2
[1 + cos(q0d)], (4.34)

Dy = uy(d) − uy(0) = −N1
α

β

π

d

1

q2
0 − (π

d )2
sin(q0d). (4.35)

In the case of q0 = ±π
d , we obtain

Dx = ux(d) − ux(0) = 0, (4.36)

Dy = uy(d) − uy(0) = ±N1
α

2β
d. (4.37)

With the help of these equations we can identify the following special cases
for S:

• S = 0 if q0 = mπ
d , m = ±3,±5, ...

• S‖x̂ if q0 = mπ
d , m = ±2,±4, ...

• S‖ŷ if q0 = ±π
d .

If we now consider for example a system satisfying the condition q0 = ±π
d ,

and if the amplitude N1 of the director reorientation nz can be measured,
the value of

α

2β
= − D1 +D2

4c1 +D1 + 2D2
(4.38)

can be determined from Eq. (4.37). In this way, a relation between the
material parameters D1 and D2 can be obtained when c1 is measured in
another experiment.

4.3 Laterally inhomogeneous solutions

Finally, we have studied solutions that also depend on the x- and/or y-
coordinate, in addition to the z-coordinate, by introducing ansatz (4.10)
into the set of partial differential equations (A.1)-(A.5). These solutions are
characterized by undulations of the director orientation as well as of the
displacement of the elastomer in at least one of the lateral directions x̂ and
ŷ. Furthermore, the displacement of the elastomer parallel to the helical
axis, given by uz, and the reorientation of the director around the helical
axis, described by ∆, do not decouple from the other variables. Therefore,
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the solutions inspected in the following qualitatively differ from the laterally
homogeneous solution of the previous section.

The resulting set of z-dependent ordinary differential equations has been
solved numerically for different values of the material parameters and of the
lateral wave numbers kx and ky. For this purpose we have chosen the sign
of the dominant second order z-derivatives in Eqs. (A.1)-(A.5) to be positive
and used a relaxation method. The resulting equations are dominated by
the diffusive terms and have been developed forward in time according to
the FTCS scheme [60] on a discrete lattice of N + 1 points with a lattice
constant dz. We have mainly investigated situations which correspond to a
sample thickness of d = 25 µm by setting N = 250 and dz = 10−7.

Values of the material parameters in our numerical studies have been
chosen as follows. For the Frank constants we have assumed different val-
ues of about 10−10 Pa, which is one order of magnitude larger than typical
corresponding low molecular weight values. Thereby, the influence of the
exact values of the Frank constants has been found to be negligible. The
behavior of the system is dominated by the material parameter c1 associated
with the elastic behavior of the material in the absence of any relative ro-
tation, and by the two material parameters D1 and D2 that determine the
coupling of the director to the polymer network. We have varied c1 in the
range of 104 − 106 Pa, which corresponds to typical values for common net-
works, and we have set D1 = 104 Pa, so that D1 does neither become much
smaller than |D2| nor much larger than c1 (to our knowledge so far only for
one specific nematic SCLSCE the ratio of D2

2/D1 has been estimated to be
roughly 5 × 104 Pa [32]). D2 has then been varied over the whole range of
values allowed by the thermodynamic stability condition D2

2 < 4c1D1. On
the other hand, the influence of the material parameter c2 associated with
the compressibility of the system was found to be quite small. Increasing c2
over four orders of magnitude affected the amplitude of the critical external
field by not more than a few per cent, no matter whether c2 < c1 or c2 > c1.
In order to account for the low compressibility of common SCLSCEs, we have
always chosen c2 = 104c1 in what follows.

As boundary conditions we have again assumed the director to be strongly
anchored at the bottom and top surface of the sample. However, it should
now be aligned in parallel directions on both surfaces. We have chosen,
without loss of generality,

n̂(z = 0) ‖ n̂(z = d) ‖ x̂. (4.39)

This implies

q0 = m
π

d
, with m = ±1,±2,±3, ... (4.40)
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To simplify the notation we will restrict ourselves to positive values of q0 in
the following. Concerning the displacement field we have kept the conditions
given by Eqs. (4.6), (4.8), and (4.9).

By means of linear stability analysis, we could then determine the ampli-
tude of the critical electric field necessary in order to realize a certain solution
with wave numbers kx and ky for the given set of material parameters. In
particular, we could compare this amplitude with the corresponding value for
the laterally homogeneous solution given by Eq. (4.21). From this compari-
son we can infer whether there exist situations in which at onset an instability
including lateral undulations in x̂ and/or ŷ direction occurs instead of the
laterally homogenous instability of the previous section.

Some of the results obtained in this way are depicted in Figs. 4.1 (a)-(f).
They show maps in the D2-c1-plane for different values of q0 indicated in
the figures, keeping the sample thickness d = 25 µm fixed. On the ordinate
we give the respective value of the material parameter c1 on a logarithmic
scale, where c1 ranges from 104 Pa to 106 Pa as described above. The special
form of the maps results as the abscissa labels on a linear scale the values
of D2, which for the respective value of c1 are limited by the condition of
thermodynamic stability D2

2 < 4c1D1. The black lines indicate D2 = 0. In
Figs. 4.1 (a)-(c) we refer to solutions with ky = 0 and nonvanishing values
of kx as specified in the respective figures; in Figs. 4.1 (d)-(f) we refer to
solutions with kx = 0 and nonvanishing values of ky. For comparison, in
figures corresponding to systems of the same cholesteric pitch, the values
of the nonzero wave numbers kx and ky were taken to be equal, and they
have been chosen to minimize the amplitude of the critical external electric
field |Ec|. Of course the latter cannot be achieved by exactly one value of
kx or ky over the whole range of c1 and D2, but this fact is negligible for
what we want to demonstrate here. In the darker regions of Figs. 4.1 (a)-
(f) we find undulatory instabilities with wave numbers as indicated to have
a lower |Ec| than the laterally homogeneous instability. Therefore we are
sure that in these regions at onset an undulatory instability will be observed
instead of the laterally homogeneous one. The differences in |Ec| for the two
types of solutions thereby can get quite remarkable. In the parameter range
inspected, we have recorded values for the undulatory instabilities which are
about 25% lower than the corresponding values for the laterally homogeneous
instability.

When decreasing the cholesteric pitch or increasing the cholesteric wave
number q0, respectively, we have detected an increase of the value of |Ec| of
the respective undulatory instability compared to the homogeneous solution.
This is also reflected by Figs. 4.1 (a)-(c) and (d)-(f), where in this order
the area of the dark regions gets smaller, respectively. As indicated in the
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π
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Figure 4.1: Maps of the D2-c1-plane, in which we have indicated by the
darker regions where we expect undulations at onset with certainty. (a)-(c)
show a series of increasing q0 for kx 6= 0 and ky = 0, (d)-(f) for kx = 0 and
ky 6= 0. In the respective map, c1 increases vertically from 104 − 106 Pa on
a logarithmic scale; horizontally we label D2 on a linear scale in the range
of thermodynamic stability. The nonzero values of the lateral wave numbers
have been chosen to minimize the amplitude of the critical external electric
field; the values of the remaining parameters have been set at fixed values as
discussed in the text.
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figures, we have also observed a decrease of the relative values of the lateral
wave numbers at which the minimum of |Ec| occurs with increasing q0.

For every set of values for the material parameters inspected, we have
determined the nonzero critical wave numbers kx or ky to be of the order of
q0. Furthermore, we have always found those undulations most favored that
appear perpendicular to the orientation of the strongly anchored director
at the system boundaries. For situations of kx 6= 0 and ky = 0, and for
situations in which both kx and ky are nonzero, always a larger value of |Ec|
has been found than for situations of kx = 0 and ky 6= 0. This shows up
in Figs. 4.1 (a)-(f), where in maps corresponding to systems with the same
cholesteric pitch the dark regions are always larger in area for kx = 0 than
for ky = 0.

As a main result also represented by Figs. 4.1 (a)-(f), we find that re-
gions where we expect an undulatory instability at onset only occur when
the value of the material parameter D2 is negative. Actually we have not
observed any undulations at onset for any set of material parameters as long
as D2 was positive. Our explanation for this fact is the following. In the
maps of Figs. 4.1 (a)-(f) the areas of undulatory instabilities at onset are
always located around the line of D2 = −D1. This value of D2, however,
is special. If we inspect Eqs. (A.1)-(A.5) setting D2 = −D1, we find for
the laterally homogeneous solution that not only uz and ∆ decouple from
the other variables and vanish as given by Eqs. (4.13) and (4.14), but also
the lateral components of the displacement field ux and uy decouple from
nz. Since nz, which describes the tilting of the director out of the planes
perpendicular to the helical axis, is the only variable directly connected to
the external electric field, we can set ux ≡ 0 and uy ≡ 0. Because of this,
the laterally homogeneous solution and the expression for the corresponding
critical external electric field in Eqs. (4.13), (4.14), and (4.21)-(4.24) now
turn into the simple form of

u ≡ 0, (4.41)

nz = N1 sin
(π

d
z
)

, (4.42)

∆ ≡ 0, (4.43)

ǫaE
2
c = K1

(π

d

)2

+K3 q
2
0 +D1. (4.44)

Furthermore, the strain tensor and the tensor describing the rigid rotations
of the polymer network vanish, ε ≡ 0 ≡ Ω, so that the relative rotations
read Ω̃ = (0, 0, nz). This makes the magnitude of the relative rotations
become very large, which increases the value of the term 1

2
D1Ω̃iΩ̃i in the

generalized energy density F of the system in Eq. (2.9). In contrast, the
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term D2Ω̃iεijnj vanishes due to ε ≡ 0. However, apart from some terms
included in F ′

0 and those terms containing the external electric field, the D2-
term is the only contribution to the expression for F that is not positive
definite. Altogether these facts lead to an increase of the generalized energy
of the system F and thus of the amplitude of the critical external electric
field |Ec| compared to the cases in which D2 clearly differs from −D1. On
the contrary, if the system is undulated, none of the variables completely
decouples from nz. Then, by nonvanishing components of the tensors ε and
Ω, the magnitude of the relative rotations can be lowered. Because of that the
contribution of the positive definite term 1

2
D1Ω̃iΩ̃i in the generalized energy

density decreases, and additionally the termD2Ω̃iεijnj can further reduce the
generalized energy of the system F . Both effects resulting from undulations
in the system can lead to a lower value of |Ec| than the one expected for the
laterally homogeneous solution. Due to these reasons, undulations should
really occur at onset if the value of D2 is close to −D1.

For practical purposes this means that an experiment can indicate the
sign of the material parameter D2: if undulations are detected at onset,
it is quite certain that for the sample under investigation D2 is negative.
Furthermore, we find that the occurrence of the undulations in cholesteric
SCLSCEs is governed in the first place by the kind of coupling of the director
to the polymer network, described by the material parameters D1 and D2.
Without this coupling, which implies a vanishing value of D2, undulations
are not expected at onset as can also be seen from Figs. 4.1 (a)-(f).

The reason why we do not find any undulations for large values of c1
can now also be explained. Undulatory instabilities imply a distortion of
the elastomer and thus nonvanishing components of the strain tensor ε. In
particular, these components enter the expression for the generalized energy
density F in Eq. (2.9) by the positive definite terms c1εijεij. If the coefficient
c1 becomes too large, the values of the generalized energy of the system F
and the amplitude of the critical external electric field |Ec| increase over
the corresponding values for the laterally homogeneous solution. Then the
laterally homogeneous instability arises at onset in the case ofD2 = −D1, also
shown by the maps in Figs. 4.1 (a)-(f). What this means is that within our
approach there is a clear indication that theoretically cholesteric SCLSCEs
could be synthesized which allow the reorientation of the director without
any macroscopic distortion of the elastomer.

If in our equations we take the limit of an infinite cholesteric pitch or of
a vanishing wave number q0, respectively, we end up with the situation of
a nematic SCLSCE in a classical splay geometry. The latter situation has
been investigated in Ref. [33]. There, undulatory instabilities likewise are
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expected only for one specific sign of D2. Furthermore, if in the respective
equations of Ref. [33] we also investigate the case of D2 = −D1, we find that
theoretically it should be equally possible to synthesize nematic SCLSCEs
allowing the reorientation of the director without any macroscopic distortion
of the polymer network.

After that, we want to have a short look at the spatial symmetries of the
z-dependent part of the solutions, marked by the ∼ in ansatz (4.10). We
find from Eqs. (A.1)-(A.5) and from our numerical investigations in the case
of q0 = π

d the spatial symmetries as listed in the following table:

ũx(z) ũy(z) ũz(z) ñz(z) ∆̃(z)
kx 6= 0, ky = 0 + − − + −
kx = 0, ky 6= 0 + − + + +

Here “+” means “symmetric in ẑ direction with respect to z = d
2
” and “−”

means “antisymmetric in ẑ direction with respect to z = d
2
”. If both kx 6= 0

and ky 6= 0, the symmetries get mixed up.
We give an example for the z-dependent part of the solutions obtained for

q0 = 2π
d , kx = 0, ky = 7.5q0, c1 = 105 Pa, and D2 = −

√
c1D1 in Fig. 4.2. The

amplitudes of the variables have been rescaled as indicated in the caption of
the figure. One of the amplitudes remains undetermined in a linear stability
analysis.

Finally, in order to study the effect of an increasing cholesteric wave
number q0, we have chosen kx = 0, c1 = 104 Pa, as well as D2 = −

√
c1D1,

and again the sample thickness was kept fixed at d = 25 µm. As can be seen
from Figs. 4.1 (d)-(f), these values of the material parameters strongly favor
the undulations to occur. We have increased q0 from π

d to 10π
d by steps of π

d

in order to satisfy the boundary conditions, and the results we have obtained
are depicted in Fig. 4.3. What we have observed is that on the one hand the
lateral wave number ky,c describing the solution with the minimal amplitude
of the corresponding external electric field increases with increasing q0 as
depicted by the first set of data points. On the other hand, the second set of
data points once again shows that with increasing q0 the undulatory solution
becomes less favored with respect to the laterally homogeneous solution. The
values of the points give the ratio of ǫaE

2
c (ky = ky,c) determined numerically

for the undulatory instability to the respective value of ǫaE
2
c (ky = 0) for

the laterally homogeneous solution calculated from Eq. (4.21). Considering
the absolute values of ǫaE

2
c (ky = ky,c) for the undulatory solutions, we have

found an increase approximately linear in q0, in contrast to the laterally
homogeneous solution where the term K3q

2
0 in Eq. (4.21) leads to an increase

quadratic in q0.
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Figure 4.2: Example for the z-dependent part of the laterally inhomogeneous
solution in the case of q0 = 2π

d . In the plot ũx(z), ũy(z), ũz(z), ñz(z), and
∆̃(z) have been rescaled by 2Υ × 10−8 m, 2Υ × 10−7 m, 2Υ × 10−6 m, 30Υ,
and Υ, respectively, where Υ denotes the amplitude of ∆̃(z). The material
parameters have been selected as specified in the main text.

Interestingly, decreasing the sample thickness from d = 100 µm to d =
5 µm with the same values of the material parameters and a constant value
of q0 = π

d induces an approximately quadratic increase of ǫaE
2
c (ky = ky,c),

which is also the case for the laterally homogeneous solution due to the term
K1(

π
d )2 in Eq. (4.21).

4.4 Discussion and conclusion

In this chapter, we have investigated the dielectric reaction of a cholesteric
SCLSCE which is exposed to a homogeneous static or quasistatic external
electric field oriented parallel to the helical axis (Fig. 3.1). We have detected a
threshold value of the field amplitude at which the ground state conformation
of the system becomes unstable. At onset we have found two qualitatively
different types of instabilities, one of which takes place homogeneously over
the whole sample in the directions perpendicular to the cholesteric helical
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Figure 4.3: Increase of the lateral wave number ky,c, which minimizes the
amplitude of the critical external electric field |Ec|, and increase of the ratio
ǫaE

2
c (ky = ky,c)/ǫaE

2
c (ky = 0) for kx = 0 when q0 is increased. The val-

ues of ky,c have been determined to an accuracy of
π
2d , those of ǫaE

2
c (ky =

ky,c)/ǫaE
2
c (ky = 0) to an accuracy of 0.001. Labels on the left of the frame

correspond to ky,c, those on the right to ǫaE
2
c (ky = ky,c)/ǫaE

2
c (ky = 0).
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axis (section 4.2) while the other one corresponds to undulations in these
directions (section 4.3).

As a reorientation of the director, the first of these two instabilities only
contains a tilting of the director out of the planes perpendicular to the cho-
lesteric helical axis. We have shown that the boundaries of the system, the
cholesteric helical structure, and the coupling to the polymer network oppose
to this reorientation of the director, whereas its amplitude remains undeter-
mined in the linear stability analysis performed here. Together with the
reorientation of the director, a shearing of the layers perpendicular to the
helical axis occurs, from which a relation between the so far undetermined
material parameters D1 and D2 could be estimated.

The other type of instability is characterized by undulations perpendicu-
lar to the cholesteric helical axis that result from the coupling of the director
orientation to the mechanical deformations of the materials. Here, addition-
ally a distortion of the elastomer parallel to the helical axis and a reorienta-
tion of the director within the planes perpendicular to the helical axis occur.
Low values of the elastic coefficient c1 favor undulations. Furthermore, only
for negative values of the material parameter D2 we have found this un-
dulatory type of instability to have a lower amplitude of the corresponding
threshold field than has the laterally homogeneous instability. Therefore, in
an experiment the observation of undulations at onset in general indicates
a negative sign of the material parameter D2 for the sample investigated.
For a situation in which the director is strongly anchored at the top and the
bottom of the sample with same orientation we have found that undulations
perpendicular to this direction of anchoring are favored. Small cholesteric
pitches favor the laterally homogeneous instability at onset. Our results are
consistent with those obtained in the limit of large cholesteric pitches, where
we end up in the case of the splay geometry of nematic SCLSCEs, a situation
that has been investigated in Ref. [33].

Finally, we have concluded that theoretically it should be possible to
synthesize cholesteric and nematic SCLSCEs in which only the director is
reoriented when the sample is put into an external electric field, whereas the
polymer network is not macroscopically distorted. This case can occur if the
material parameter D2 takes the value of −D1.

We would like to add a few remarks. As a first point, we want to stress
that in our macroscopic description the boundary conditions play an impor-
tant role concerning the form of the respective solution. However, we are
sure that the boundary conditions chosen reflect the actual constraints in
corresponding experimental set-ups and/or can easily be realized.

Next, we mention that similar geometries to the ones studied here have
been investigated for cholesteric SCLSCEs by the semi-microscopic approach
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introduced in section 2.4 [61]. The major limitation of the semi-microscopic
inspections is, however, that thereby obtained solutions are spatially homoge-
neous. Therefore, the qualitatively new solution of an undulatory instability
predicted here has not been obtained by using the semi-microscopic model.
In addition, the influence of the system boundaries is not included as a con-
straint imposed only onto the surfaces, neither are the effects of the classical
Frank distortion energy incorporated. However, for systems in which the
director is fixed at the boundaries, terms resulting from these contributions
to the internal energy are essential. Furthermore, in the investigation of cho-
lesteric SCLSCEs in Ref. [61], the cholesteric structure is only accounted for
as a rotated nematic layer structure. Turning to the situation of an exter-
nal electric field applied parallel to the helical axis of a cholesteric SCLSCE,
the result would be that in our expression for the threshold field of director
reorientation in Eq. (4.21), the first two terms would be missing. However,
these are the terms we already expect for LMWLCs in the same geome-
try. If we then, for comparison, also incorporate another consequence of the
semi-microscopic model, namely “soft elasticity” of SCLSCEs, we have to
set D2

2 = 4c1D1 for the material parameter that couples elastic strain to the
relative rotations. In this way, the value of D2 is pushed to the boundaries
of the region of thermodynamic stability. As a consequence, which we have
already pointed at in section 2.4, there result “soft” elastic deformations of
liquid crystalline elastomers in general, which do not change the free energy
of the system [54]. In Ref. [61] no “soft” deformations have been found for
cholesteric SCLSCEs in the geometries inspected.

On the whole, the result would be a completely vanishing threshold field
in Eq. (4.21). This is proposed in Ref. [61], where the influence of an ex-
ternal electric field applied parallel to the cholesteric helical axis is studied
theoretically by the semi-microscopic approach. However, we know already
from the Fréedericksz transition of nematic LMWLCs in the corresponding
geometry that there exists a critical threshold field for the director reorien-
tation in case of nonvanishing anchoring of the director at the boundaries.
When, in addition, the director reorientation is restricted due to a cholesteric
helical structure and coupling to a polymer network, it would be very sur-
prising if the amplitude of the threshold field were even lower. In essence, we
believe that the approach by a macroscopic continuum model is appropriate
in describing the experimental realization of the geometries investigated.

To conclude, it would be of major interest to check in an experiment
whether a threshold value of an external electric field applied parallel to the
cholesteric helical axis can be detected, and whether the undulatory instabili-
ties predicted theoretically in this chapter can be observed. Furthermore, the
proposed experimental access to the material parameters can help to reveal
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their values, most of which are still unknown so far.
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Chapter 5

Mechanical deformations of

cholesteric side-chain liquid

single crystal elastomers

In the course of the two previous chapters, we have investigated the influence
of an external electric field on the state of a cholesteric SCLSCE. Now, we
will turn to a different topic: mechanical deformations of the materials will be
the subject of this chapter. We will start with some general considerations.

A major focus on cholesteric liquid crystalline phases from the applica-
tion point of view is due to their specific optical properties. We have already
indicated in section 1.1 of the introduction that cholesteric phases show a
photonic bandgap. The reason for the occurrence of this bandgap can be
found in the spatially twisted arrangement of the director and the resulting
birefringence. Circularly polarized light with the same handedness as the cho-
lesteric helix and a wavelength comparable to the cholesteric pitch is strongly
reflected when irradiated parallel to the helical axis [7]. As a consequence,
films of cholesteric phases doped with a fluorescent dye, the maximum of
emission of which is located in the photonic bandgap, can act as mirrorless
lasers with a low lasing threshold [10]. The cholesteric film then replaces the
cavity of a common laser. There exist also cholesteric liquid crystals that
additionally act as the active lasing medium themselves [11].

In the same way as the LMWLC films, also films of cholesteric SCLSCEs
doped with a suitable fluorescent dye show lasing activity. However, as a
major advance of using free-standing films of cholesteric SCLSCEs, lasing
cannot only be achieved by means of a mirrorless cavity. In addition, the
wavelength of the emitted light also becomes mechanically tunable over a
range of about 100 nm [29, 62]. Tuning is realized by stretching the sample
in two orthogonal directions perpendicular to the helical axis.

67
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We will investigate the latter situation as a special case in this chapter.
More generally, we will study the behavior of cholesteric SCLSCEs when ex-
posed to static or quasistatic external mechanical fields. The corresponding
macroscopic equations will be specified in the next section. After that, we
will begin by investigating the influence of compressive and dilative forces
applied parallel to the cholesteric helical axis in section 5.2. Closely related
to this issue is the investigation of the influence of static compressive and
dilative forces applied perpendicularly to the cholesteric helical axis in sec-
tion 5.3. There, we will address the geometry relevant for the mechanically
tunable mirrorless lasers as a special case. In this context, we will find that
our results obtained in this respect fully agree with the corresponding ex-
perimental observations [29, 62]. We will summarize and shortly discuss our
results in section 5.4.

In essence, in this chapter we are predominantly interested in the effects
that mechanical deformations of the elastomer have on the orientation of the
director in cholesteric SCLSCEs. Again, our presentation of the topic in this
chapter closely follows the one we have given in Ref. [59].

5.1 Macroscopic equations

The orientation of our Cartesian coordinate system w.r.t. the cholesteric
SCLSCE investigated will be kept the same as in the two previous chapters.
It is illustrated in Fig. 3.1. Without loss of generality, we again locate the
bottom of the sample at z = 0 and the top at z = d. The only difference
in comparison to the geometry depicted in Fig. 3.1 arises from the fact that
now the external electric field has to be set equal to zero, E = 0.

As a consequence, we can use the same macroscopic equations already
derived in chapter 3 and appendix A in order to characterize our system.
A certain state of the system is defined by the respective values of the five
independent variables ux, uy, uz, nz, and ∆. The latter values are calculated
from the five coupled linear partial differential equations (A.1)-(A.5) listed
in appendix A, setting E = 0. In addition, we may specify appropriate
boundary conditions.

We will assume that the director is oriented in parallel directions at the
bottom and at the top of the sample. Without loss of generality, we orient
the director in x̂ direction on these surfaces,

n̂(z = 0) ‖ n̂(z = d) ‖ x̂. (5.1)

The assumption of a strong anchoring of the director on the bottom and top
surfaces is certainly justified for the films synthesized by photo-crosslinking
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Figure 5.1: Compression and dilation of a cholesteric SCLSCE by external
mechanical forces parallel to the cholesteric helical axis.

[26]. In this case, the polymer network gets covalently bound to the substrate
during the crosslinking process, if supported films are produced. If free-
standing films are synthesized, the polymer network gets covalently bound
to a sacrificial layer, by which the substrate is coated. Most of the sacrificial
layer is dissolved in water afterwards in order to separate the film from the
substrate. In the following, we will only investigate situations which on the
surfaces maintain the director orientations given by Eq. (5.1).

In the ground state of the system, the cholesteric pitch 2L (see Fig. 3.1)
for homogeneous structures then satisfies the condition d = mL with m =
1, 2, 3, ... The wave number for the rotation of the cholesteric helix can there-
fore be written as

q0 = m
π

d
, with m = ±1,±2,±3, ... (5.2)

5.2 Compression and dilation parallel to the

helical axis

The first geometry that we want to inspect is the one depicted in Fig. 5.1.
By static external mechanical forces the system is compressed or dilated
parallel to the axis of the cholesteric helix, and we denote the applied force
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densities (per unit area) by A. The corresponding surfaces of the sample
under consideration are oriented by surface vectors ŝ. According to Fig. 5.1,
in this geometry A = (0, 0,±Az) on the surfaces oriented by the surface
vectors ŝ = (0, 0,±1), and A = (0, 0, 0) on the surfaces oriented by the
surface vectors ŝ = (±1, 0, 0) and ŝ = (0,±1, 0). For Az < 0 we obtain a
situation of compression, for Az > 0 the system is dilated.

Using the tensor of mechanical stress introduced in Eq. (4.7), we connect
surface vectors and mechanical force densities on the sample surfaces by

ŝ · σmech = A. (5.3)

As boundary conditions, we assume Eq. (5.1) for the director orientation
at z = 0 and z = d, and, in addition,

uz(z = 0) ≡ 0 and uz(z = d) ≡ Czd (5.4)

for the displacement field. Here, Cz denotes what is usually called the com-
pression or dilation in this context. The reason for the boundary conditions
(5.4) is that a sample compressed between two plates should not penetrate
these plates or detach from them.

We solve Eqs. (A.1)-(A.5) by the ansatz

ux(r) = Cxx,

uy(r) = Cyy,

uz(r) = Czz, (5.5)

nz(r) = 0,

∆(r) = 0.

This describes a homogeneous distortion of the system, by which the director
conformation remains unchanged and the origin of the coordinate system is
kept fixed without loss of generality. The coefficients Cx, Cy, and Cz give
the compression or dilation in the respective direction of space (Ci = ∂iui,
i = x, y, z; no summation over i in this formula).

From Eq. (A.5), it follows that Cx = Cy as it should be due to symme-
try reasons. The relation between the mechanical force density A and the
coefficients is obtained from Eqs. (4.7) and (5.3),

Cx = Cy = − c2Az

2c1(2c1 + 3c2)
, (5.6)

Cz =
(c1 + c2)Az

c1(2c1 + 3c2)
. (5.7)
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Figure 5.2: Lateral compression and dilation of a cholesteric SCLSCE by
external mechanical forces.

As we can see, this is the same result we also obtain for a common elastic
body. For incompressible systems, which are characterized by c2 → ∞ in the
expression for the generalized energy density (2.9), the trace of the strain
tensor ε correctly tends to zero,

Tr(ε) = εii =
Az

2c1 + 3c2

c2→∞−→ 0. (5.8)

Because of the homogeneous distortion also the cholesteric helix gets ho-
mogeneously compressed or stretched along its axis. The change of half of
the cholesteric pitch ∆L = CzL results in a shift of the photonic bandgap to
smaller wavelengths for compression and to larger wavelengths for dilation
of the sample, which is proportional to the applied force density.

We have tested the solution (5.5) numerically up to strains of a magnitude
of ±10%. Thereby, we have probably exceeded the domain of validity of our
linearized model, however, there was no indication of an instability.

5.3 Lateral compression and dilation

A situation of lateral compression and dilation is achieved by applying ex-
ternal mechanical forces in x̂ and ŷ direction to the lateral sample surfaces,
as depicted in Fig. 5.2. Again the surface force densities (per unit area) are
denoted by A, where now A = (±Ax, 0, 0) on the surfaces oriented by the
surface vectors ŝ = (±1, 0, 0), A = (0,±Ay, 0) on the surfaces oriented by
ŝ = (0,±1, 0), and A = (0, 0, 0) on the surfaces oriented by ŝ = (0, 0,±1).

Then we solve the system of partial differential equations (A.1)-(A.5) by
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the following ansatz:

ux(r) = Cxx,

uy(r) = Cyy,

uz(r) = Czz, (5.9)

nz(r) = 0,

∆(r) = D∆ sin(2q0z).

As in the previous section, the components of u(r) describe a homogeneous
deformation of the system, where the coefficients Cx, Cy, and Cz denote the
compression or dilation in the respective direction of space. The origin of
the coordinate system is again kept fixed without loss of generality. nz is set
equal to zero, which means that the director does not tilt out of the planes
perpendicular to ẑ. This corresponds to what is observed in the analogous
situation for nematic SCLSCEs under external mechanical stress below a
certain threshold stress [31]. ∆ as given by solution (5.9) keeps the initial
parallel director orientation of Eq. (5.1), which follows in combination with
Eq. (5.2). The coefficient D∆ can be calculated from Eq. (A.5), and the result
reads

D∆ =
D2(Cx − Cy)

2D1 + 8K2q
2
0

. (5.10)

In order to find the coefficients in solution (5.9), we take into account the
conditions (5.3), which the tensor of mechanical stress from Eq. (4.7) has to
satisfy on the sample surfaces. This leads us to the following expressions:

Cx = + fgAx − fhAy, (5.11)

Cy = − fhAx + fgAy, (5.12)

Cz = − c2
2c1(2c1 + 3c2)

(Ax + Ay), (5.13)

with the abbreviations

f = [4c1(2c1 + 3c2)(8c1D1 + 32c1K2q
2
0 −D2

2)]
−1, (5.14)

g = 32c1(c1 + c2)(D1 + 4K2q
2
0) − (2c1 + c2)D

2
2, (5.15)

h = 16c1c2(D1 + 4K2q
2
0) + (2c1 + c2)D

2
2. (5.16)

From Eqs. (5.9) we see at once that the strain tensor ε has no off-diagonal
components. Its trace is given by the sum of the coefficients Cx, Cy, and Cz,
and with the help of Eqs. (5.11)-(5.16) it turns out to vanish for incompress-
ible systems,

Tr(ε) = εii =
Ax + Ay

(2c1 + 3c2)

c2→∞−→ 0. (5.17)
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ŷ

Figure 5.3: Beginning of twisting and untwisting of the cholesteric helix as
given by ∆(r) in Eq. (5.18).

A further remark concerns the mechanical stress tensor σ
mech. All its off-

diagonal components vanish, except for σmech
xy = σmech

yx ∝ sin(4q0z). However,
the latter also vanish on average, so that on average no mechanical shear
forces are involved.

An interesting result is obtained for the angle of director reorientation
around the cholesteric helical axis,

∆(r) =
2D2(Ay − Ax)

8c1D1 + 32c1K2q2
0 −D2

2

sin(2q0z). (5.18)

What is described by this equation is the beginning of a twisting or an
untwisting of the cholesteric helix as it is known from LMWLCs, to which an
external magnetic field is applied perpendicularly to the helical axis [7]. Here,
by twisting the helix we denote a situation as shown on the left of Fig. 5.3
and by untwisting a situation as depicted on the right. The cholesteric pitch
is not free to adjust because of the boundary conditions and because of the
coupling to the polymer network.

The expression for ∆(r) in Eq. (5.18) is significant, because the material
parameter D2 plays a decisive role in it. Thermodynamic stability requires
the denominator to be positive. As a consequence, for a positive sign of D2

the prefactor of the sin-term becomes positive if only dilative external forces
in ŷ direction or only compressive external forces in x̂ direction are applied.
The helix is then twisted as shown on the left of Fig. 5.3. If the sign of D2

is negative, the forces have to be applied just in the opposite directions in
order to twist the helix, that is a compression in ŷ direction or a dilation
in x̂ direction has to be imposed. Other combinations of the signs of D2

and the external forces lead to an untwisting of the helix as depicted on the
right of Fig. 5.3. It should be noted that these relations offer a possibility of
determining the sign of D2 directly from an experiment.
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In addition to being twisted or untwisted, the cholesteric helix also be-
comes compressed or stretched parallel to its axis, due to the compression or
dilation of the whole elastomer and according to the respective sign of Cz.

If the system is dilated or compressed both in x̂ and ŷ direction by equal
force densities Ax and Ay, the cholesteric helix is neither twisted nor un-
twisted, but the whole sample gets only homogeneously distorted in accor-
dance with section 5.2. In particular, the cholesteric helix gets only homoge-
neously compressed or stretched parallel to its axis, respectively. This is the
situation of applying two orthogonal external mechanical forces perpendicu-
larly to the helical axis as investigated in Refs. [29] and [62]. There, a linear
relationship has been measured between the thickness of the sample and the
wavelength λR of the reflected circularly polarized light irradiated parallel to
the cholesteric helical axis. Since λR is proportional to the pitch of the helix
2L, a homogeneous compression of the cholesteric helix parallel to its axis
under the enforced dilation of the elastomer follows from these experiments
and demonstrates the significance of our solution.

Finally, it is worthwhile to have a closer look at the amplitudes of the
components of the displacement field. First, we find that in Eqs. (5.11)-(5.13)
the situations of applied mechanical forces either in x̂ or in ŷ direction are
completely identical, which we expect for symmetry reasons.

We then consider the system as being incompressible (c2 → ∞) and
concentrate on a situation in which external forces are only applied in x̂

direction (Ay = 0). In this case, the compressions and dilations read

Cx = UxAx = + f̃ [32c1(D1 + 4K2q
2
0) −D2

2]Ax, (5.19)

Cy = UyAx = − f̃ [16c1(D1 + 4K2q
2
0) +D2

2]Ax, (5.20)

Cz = UzAx = − f̃ [16c1(D1 + 4K2q
2
0) − 2D2

2]Ax, (5.21)

with
f̃ = [12c1(8c1D1 + 32c1K2q

2
0 −D2

2)]
−1. (5.22)

What we recognize from these equations is that there are two kinds of con-
tributions to the compressions and dilations in the squared brackets. The
terms ∼ c1(D1 + 4K2q

2
0) describe a homogeneous uniaxial compression or

dilation of the system by external forces parallel to the x̂ direction, which
leads to a dilation or compression of half of the magnitude in ŷ as well as
in ẑ direction. Such a behavior corresponds to the one of a macroscopically
isotropic body. However, our system is not isotropic, on average there is
one special direction marked by the helical axis. This is expressed by the
terms ∼ D2

2 in the squared brackets: in the direction parallel to the helical
axis, that is in ẑ direction, the imposed distortion is by the amount 3f̃D2

2Ax

smaller than in ŷ direction, perpendicular to the helical axis. That means
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the cholesteric helix slightly impedes the imposed distortion, and thus the
system is a little bit stiffer in the direction parallel to the cholesteric helical
axis than perpendicular to it (f̃ > 0 for reasons of thermodynamic stability).
It is very interesting to note that the coupling parameter D2 plays this sig-
nificant isolated role in the behavior of the system, because until now there is
no experimental set-up known where D2 is directly accessible. Consequently,
the value of D2 has not been directly measured so far.

For practical purposes this means the following. In an experiment the
coefficients Ux, Uy, and Uz can be directly measured, where Uz becomes
accessible for example by the methods used in Ref. [29]. From that,

U1 = Ux + 2Uz = −(Ux + 2Uy) = 3f̃D2
2 (5.23)

can be calculated. On the other hand we realize that Eq. (5.18) may be
written in the form

∆(r) = − 24c1f̃D2Ax sin(2q0z) = − U2Ax sin(2q0z). (5.24)

Here, U2 should be accessible by x-ray measurements. Defining the angle of
the local director orientation as

θ(r) = arctan

(

ny(r)

nx(r)

)

, (5.25)

U2 can be determined with the help of the distribution function f(θ), which
for small values of U2Ax becomes

f(θ) =
1

q0d
[1 + 2U2Ax cos(2θ)] + O[(U2Ax)

2]. (5.26)

From the results, the ratio
U1

U2

=
D2

8c1
(5.27)

can be calculated and finally D2 can be derived, obtaining c1 by common
techniques without significant mistake. Further measurements on samples
with different pitches and therefore different wave numbers of the cholesteric
helix q0 could then give information about the material parameters D1 and
K2, the values of which have also not been measured yet.

Because of the symmetry of the system, the whole procedure can also be
conducted by external forces applied only in ŷ direction (Ax = 0), however,
then U2 changes sign as can be inferred from Eq. (5.18).

We have shown in this calculation that the coupling between the relative
rotations and the strain tensor, represented by the material parameter D2 in
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the above equations, leads to an anisotropy of the overall strain of the system.
We emphasize that our results have been obtained for the case of an isotropic
elastic behavior of the materials in the absence of any relative rotation. If,
however, an anisotropic elastic response of the material prevails also in the
latter case, the resulting effects could quantitatively exceed the anisotropic
behavior connected to the material parameter D2. Since the absolute value
of D2 may be small compared to the elastic coefficients, this must be taken
into account when a corresponding experiment is performed.

5.4 Discussion and conclusion

In this chapter we have studied the reaction of cholesteric SCLSCEs to static
or quasistatic external mechanical compressive and dilative forces, applied
parallel or perpendicular to the cholesteric helical axis.

For the situation in which a compressive or dilative strain is applied par-
allel to the helical axis (Fig. 5.1 and section 5.2), we predict a homogeneous
deformation of the whole system. This means that also the cholesteric helix is
homogeneously compressed or stretched and its pitch changes proportionally
to the external force density. The displacement field describing the mechan-
ical deformation is not influenced by the liquid crystalline component at all
and has the same analytical form as for a conventional elastic body.

In contrast, external compressive and dilative forces applied in only one
direction perpendicular to the helical axis (Fig. 5.2 and section 5.3) lead to
an anisotropic deformation of the system. We have shown for incompressible
systems that, due to the influence of the liquid crystalline structure, the
induced deformation parallel to the cholesteric helical axis is hindered with
respect to the resulting deformation perpendicular to both the helical axis
and the external force. The decisive material parameter controlling this
anisotropy is the coefficientD2 of the coupling between the strain deformation
of the elastomer and the relative rotations between director and polymer
network. In addition to the anisotropic deformation of the elastomer, a
twisting or untwisting of the cholesteric helix arises (Fig. 5.3). As pointed
out, both effects together offer the possibility of experimental access to the
so far undetermined material parameter D2. In this context, it has to be
noted that our calculations have been performed assuming an isotropic elastic
behavior of the materials in the case of vanishing relative rotations. If an
anisotropic elastic response prevails in the absence of relative rotations, the
effect can be masked.

As a further result, we have found that a compression or dilation of the
system in both directions perpendicular to the helical axis by equal force
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densities leads to a homogeneous stretching or compression of the cholesteric
helix, respectively. This is consistent with the observations during corre-
sponding experiments [29, 62]. In addition, experiments on the deformation
of the cholesteric helix by external mechanical forces applied perpendicularly
to the cholesteric helical axis have been performed [63]. The results of these
experiments are in agreement with the results of our calculations.

We would like to close this chapter with a few remarks. First, we would
like to recall that we have not included the scalar order parameter S into our
considerations. We have assumed that during the mechanical deformations
either the magnitude of S does not significantly vary, or, if there are changes
in S, they do not have significant impact onto the physics of the respec-
tive system. Our assumption is corroborated by corresponding experimental
observations for nematic SCLSCEs [64].

Next, as already mentioned before, our description should include the
case of quasistatic external fields applied to the elastomers. In the case of
external mechanical fields, this means, for example, that the frequency of the
oscillating external force must be small enough so that the director associated
with the orientational order can reorient properly.

Concerning the surfaces of the cholesteric SCLSCEs, we would like to
emphasize that we have concentrated on geometries and solutions which are
compatible with a parallel alignment of the director at the bottom and top
boundaries of the sample.

Finally, we stress that we have proposed a way of interpreting correspond-
ing experiments in order to determine still unknown values of the material
parameters involved.

On the whole, however, we must note that the validity of our linear de-
scription is confined to cases in which the amplitudes of deformations are
small. This restricts the applicability of our model to the interpretation of
a limited number of experiments. In contrast, many of the unique features
of SCLSCEs become evident mainly in the nonlinear regime. Probably, the
most prominent example in this context is the pronounced nonlinear stress-
strain behavior of nematic SCLSCEs, which can be observed when these
materials are stretched perpendicularly to their ground state director orien-
tation. The results of the corresponding experiment have first been reported
in Ref. [17]. Our goal is to also interpret this nonlinear macroscopic behav-
ior of SCLSCEs. Consequently, as a major step in this direction, we must
extend our model to the nonlinear regime. This makes up the central part
of our work. We will perform this step in the next chapter. The main effort
in this context will consist of deriving nonlinear expressions for the variables
of relative rotations. We will test our model in chapter 7 for a simple shear
geometry. Finally, we will turn to the interpretation of the nonlinear stress-
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strain experiments in chapter 8, where we will concentrate on the results of a
more recent measurement [27]. Although the formalism will be derived in a
more general way, we will confine ourselves to the case of nematic SCLSCEs
in our investigations in chapters 7 and 8.



Chapter 6

Nonlinear macroscopic

description

The first part of this work has been dominated by the linear macroscopic char-
acterization of cholesteric SCLSCEs. We have introduced the linear model in
chapter 2 and investigated the reaction of cholesteric SCLSCEs to static and
quasistatic external fields in the preceding chapters. Whereas we have put
our focus on the reaction of cholesteric SCLSCEs to external electric fields in
chapters 3 and 4, the influence of external mechanical fields has been studied
in chapter 5.

As already announced at the end of the previous chapter, we will now
turn to the extension of our model to the nonlinear regime. This step will be
further motivated in the next section. Although we will concentrate on the
description of nematic SCLSCEs in the present and the next two chapters,
the basic elements of our considerations can also be incorporated into the
characterization of other liquid crystalline states. Cholesteric SCLSCEs can
be studied by the same formalism when the local description of the cholesteric
state in terms of the orientation of the director field is chosen. Therefore, we
will note conceptual deviations arising from the difference between nematic
and cholesteric SCLSCEs.

We have organized the further part of this chapter in the following way.
In section 6.2 we will describe in detail our nonlinear picture of nematic
SCLSCEs. As we will explain, we think of nematic SCLSCEs as materials
of two coupled preferred directions. This concept leads us to nonlinear ex-
pressions for the variables of relative rotations. The analytical treatment
necessary in order to connect the nonlinear variables of relative rotations to
the independent variables characterizing a specific state of the system will
be more involved than in the linear regime. We will derive expressions for
the nonlinear relative rotations in the spirit of a series expansion, which will
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mainly be appropriate for practical purposes. In the subsequent section, we
will also show how to derive exact expressions for the nonlinear relative rota-
tions. After that, in section 6.4, we will demonstrate that in the linear regime
de Gennes’ picture of the materials is recovered within the framework of our
model. Finally, we will shortly summarize and discuss our results in section
6.5. We have added an appendix in which we expand on the importance of
the symmetry relations that have to be taken into account when the mate-
rials are characterized (appendix C). In combination with the elucidation in
this appendix, an alternative approach to the variables of relative rotations
is presented and discussed in view of later applications in chapter 8.

Our presentation of the subject is closely connected to the ones we have
given in Refs. [65] and [66].

6.1 Motivation for the extension of the model

to the nonlinear regime

In the previous chapters we have repeatedly stressed the fact that SCLSCEs
feature a coupling of macroscopic elastic mechanical deformation on the one
hand and reorientation of the director field on the other hand. The first
report of the synthesis of a monodomain nematic side-chain elastomer in
Ref. [17] already contained the description of one characteristic experimental
manifestation of this property.

We refer in this context to the observations made during a stress-strain
experiment, in which a nematic SCLSCE is stretched perpendicularly to its
original director orientation [17]. The result of the corresponding measure-
ment is a stress-strain curve of pronounced nonlinear shape. In Fig. 6.1, the
triangles (△) reflect the stress-strain data reported in Ref. [17]. After a steep
increase of the external stress for small elongations in region “A” of the plot,
we find a significant decrease in the slope of the curve in region “B”. In region
“C”, the stress again strongly increases with increasing strain.

In addition to measuring the stress-strain data, the authors of Ref. [17]
have simultaneously recorded the values of the dichroic ratio which repre-
sents the current orientation of the director in the sample. These data are
described by the stars (∗) in Fig. 6.1. For region “A”, the constant value of
the dichroic ratio indicates that the director remains in its initial orientation
perpendicular to the direction of the externally applied mechanical force. At
a threshold strain on the boundary between the regions “A” and “B”, a con-
tinuous reorientation of the director field sets in and appears to be closely
connected to the decrease in the slope of the stress-strain curve. Finally,
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Figure 6.1: Data obtained from a stress-strain experiment, during which a
nematic SCLSCE has been stretched perpendicularly to its initial director
orientation. On the abscissa, the elongation L/L0 is plotted, with L the
current length of the sample in stretching direction and L0 the correspond-
ing initial length. Triangles (△), with scale on the right, denote values of
the nominal stress applied externally, i.e. the applied force per initial cross-
sectional area of the sample. Stars (∗), with scale on the left, indicate the
dichroic ratio which represents the current director orientation. Further ex-
planations can be found in the main text. The figure has been reproduced
from Ref. [17].
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the value of the dichroic ratio is again constant in region “C”. This means
that the director orientation remains essentially fixed in the reoriented state
for high values of the elongation and does not change noticeably any more.
Investigations by x-ray scattering reveal that in the final state of region “C”
the director has rotated towards the stretching direction.

In various later experiments, this fascinating macroscopic stress-strain
behavior of the materials has been recovered. It has been found to be char-
acteristic for common nematic SCLSCEs investigated in this way. The pho-
tograph included in the introduction by Fig. 1.1 shows the state of a nematic
SCLSCE in this geometry at intermediate values of elongation.

Furthermore, it has been reported that the reorientation can occur via a
splitting of the director orientation into stripe domains [64,67]. These stripes
were elongated into the stretching direction and distinguished by clockwise
and counterclockwise rotation of the director during the reorientation pro-
cess. Stripes in Refs. [64] and [67] could be observed only for samples which
were clamped in a way that the stretching direction was oriented nearly
perfectly perpendicular to the initial director orientation. In this context,
domain walls between neighboring stripes of different orientation have been
detected and their thickness has been estimated [30].

Since the early experiments have been performed, the topic is under thor-
ough discussion from the point of view of modeling. We have introduced in
section 2.4 the semi-microscopic approach based on Gaussian rubber elas-
ticity [54]. Using this approach in order to investigate the geometry, it is
possible to describe a plateau in the stress-strain curve which is connected
to the reorientation of the director, and to give an explanation for the ap-
pearance of the stripe domains introduced above. This characterization of
the materials has also been taken as a basis for numerical studies of the
stress-strain geometry [68]. We have already explained in section 2.4 why we
pursue a manifestly different approach to the problem.

An alternative, qualitatively different semi-microscopic model has been
proposed in Refs. [56] and [57]. This model also addresses the appearance of
the stripe domains, without including the notion of “soft” elastic distortions,
and it recovers the experimental results.

More recently, a biaxial model has been proposed to describe the results
of the nonlinear stress-strain experiments [58]. One of the two directions
defining the biaxiality is assumed to arise from the internal stress imprinted
into the materials during the process of synthesis. This internal stress may
be related, for example, to the stress σi introduced in Fig. 1.6 of chapter 1.
The second direction in this model is defined by the external stress applied
to the material during the stress-strain experiment. Consequently, in this
characterization, one of the two directions results from an internal property
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of the materials, the other one from the force applied externally.
Our picture is different and has already been indicated when we have

introduced the variables of relative rotations in section 2.2. Two coupled
preferred directions will be identified for the elastomers. One of these two
directions will coincide with the liquid crystalline director orientation, the
other one with a preferred direction imprinted into the materials during the
process of their synthesis. We will focus our considerations on the effects
connected to the coupling of these two preferred directions. Within the
framework of our model, we will find that this coupling is the reason for
many of the specific properties of the materials. As demonstrated later on
in chapter 8, the coupling, and consequently relative rotations between the
two preferred directions, can lead to a pronounced nonlinear response during
stress-strain measurements.

In our picture, the two preferred directions are internal properties of the
materials, which makes a major difference compared to the model proposed
in Ref. [58]. Furthermore, our model is macroscopic and can be understood as
a starting point for a description of the materials in the spirit of generalized
hydrodynamics. We keep our characterization general in the sense that we
do not assign specific values to the material parameters from the beginning.
In these ways, it differs from the approach given in Ref. [54].

Before coming to the details of our nonlinear description in the next
section, we want to add some general remarks in advance. When we were
describing the linear effects of SCLSCEs within the macroscopic model in the
previous chapters, our procedure was the following. First, we have derived
linear expressions for the variables that can contribute to the generalized en-
ergy density. These expressions have been given in terms of the independent
state variables, which characterize a certain state of the system. Then, these
linear expressions have been combined to symmetry-allowed quadratic terms,
which have formed an expression for the generalized energy density.

If we want to keep the framework of this procedure and include nonlinear
properties of the materials into the macroscopic characterization, the gener-
alized energy density has to be supplemented by higher-order terms. But also
the quadratic terms in the generalized energy density describe nonlinear ef-
fects, when nonlinear expressions are inserted for the macroscopic variables.
Therefore, nonlinear expressions for the macroscopic variables have to be
derived.

The corresponding result for the strain tensor ε is already well known
and will be included in the next section. It is also straightforward to param-
eterize the tensor ∇n̂ in the nonlinear regime. However, up to now, only a
linear expression for the relative rotations in liquid crystalline elastomers has
been given within the framework of the macroscopic model. Therefore, the
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main task in the next section of this chapter will be to derive nonlinear ex-
pressions for the variables of relative rotations, within the framework of our
macroscopic approach. The resulting formalism can then be used in order to
describe the characteristic nonlinear features of liquid crystalline elastomers
by our continuum model. This will be performed later on in chapters 7 and
8.

6.2 Two coupled preferred directions and

nonlinear relative rotations

In this section, we present in detail the ingredients of our model describing
the macroscopic physical behavior of the elastomers. As we have already
mentioned before, we will first identify two coupled preferred directions as-
sociated with the materials. On the basis of these two preferred directions,
we will then derive nonlinear expressions for the variables of relative ro-
tations between the director field and the polymer network. We will first
expand the corresponding expressions up to quartic order in the variables
that characterize the actual state of the system. This procedure will mainly
be appropriate for practical purposes and can systematically be generalized
to any desirable order. After that, in section 6.3, we will show how an exact
expression for the relative rotations can be found, and we will give the result
for a two-dimensional system.

It is straightforward to identify one preferred direction associated with
the current state of the materials. In the nematic and cholesteric state of the
materials, the mesogens on average orient parallel to each other on the local
scale. As usual, this preferred direction is characterized by the director field
n̂(r).

On the other hand, we can identify a separate, second preferred direc-
tion, which is connected to the way the materials are synthesized. We have
described in section 1.3 that the continuous rotational symmetry is not spon-
taneously broken in nematic and cholesteric SCLSCEs. Instead, the origi-
nal director orientation is imprinted into the materials during the respective
process of synthesis, or, in other words, it is “frozen in” [19]. For exam-
ple, materials generated by the two-step crosslinking procedure described in
section 1.3 are macroscopically stretched after the major part of the first
crosslinking step has been completed. As a consequence, the director aligns
in one preferred direction across the whole elastomer [17, 18]. It has been
demonstrated that during the second crosslinking step some anisotropy gets
locked in the vicinity of the crosslinking points [18]. But also if the director is
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macroscopically aligned by an external magnetic field [23,24], by anisotropic
deswelling [25], or by surface effects [3,26,27] before the crosslinking process
is completed, the respective original orientation of the director field becomes
imprinted into the polymer network. If the director of a nematic SCLSCE
is reoriented during a stress-strain experiment or due to an external electric
or magnetic field, it will relax back to its original imprinted orientation after
the external force has been released. We therefore identify this imprinted
direction as a second preferred direction of the materials. We denote this
direction by n̂nw(r).

In the ground state of the materials, the two preferred directions are
aligned parallel to each other. However, in our picture, the influence of
an external field may lead to a misalignment of the orientations of the two
preferred directions. Clearly, n̂(r) and n̂nw(r) are energetically coupled to
each other and a misalignment of the two orientations leads to a contribution
to the generalized energy density of the system.

We note at this point that a situation in which the two coupled preferred
directions become misaligned corresponds to a relative rotation between these
two directions. Our assumption in the following will be that the rotations of
the imprinted direction n̂nw(r) are connected to the rotations of the polymer
network and can be tracked by the displacement field u(r). Then, situations
of misalignment of the two preferred directions again describe relative rota-
tions of the director with respect to the polymer network (the superscript
“nw” has been chosen as an abbreviation for polymeric “network”).

In section 2.2, where we have introduced the variables of linear relative
rotations, we have already made a corresponding remark. What we have
called the ground state anchoring direction in section 2.2 is now denoted by
the imprinted direction n̂nw(r). In this way, we may use the misalignment
of the two orientations in order to construct nonlinear macroscopic variables
which are suitable for a macroscopic, hydrodynamic-like description.

It is important that the macroscopic variables contributing to a hydrody-
namic-like picture vanish when the system is in equilibrium and no external
forces are applied. As suggested above, we take the misalignment in the
orientations of the two preferred directions as a starting point for our de-
scription. This misalignment can be characterized by the difference between
the two directions n̂(r)− n̂nw(r). However, the difference n̂(r)− n̂nw(r) can-
not be taken directly as an expression of the macroscopic variables we are
looking for due to the following reasons of symmetry.

In the physics of low molecular weight nematics the two directions n̂(r)
and −n̂(r) cannot be distinguished. Therefore, an expression for the gener-
alized energy density characterizing such a system must be invariant under
the symmetry transformation n̂(r) → −n̂(r). For this reason, when deriv-
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ing an expression for the generalized energy density, it makes sense to use
macroscopic variables that show a clear behavior of symmetry under the
transformation n̂(r) → −n̂(r).

Returning to locally uniaxial SCLSCEs, we have two separate preferred
directions n̂(r) and n̂nw(r). The generalized energy density must be invariant
under the symmetry transformation n̂(r) → −n̂(r) as well as under the
symmetry transformation n̂nw(r) → −n̂nw(r), separately (inversion of n̂(r)
does not imply inversion of n̂nw(r) and vice versa). Our macroscopic variables
must show a definite behavior under these transformations of symmetry.

We thus define two sets of nonlinear relative rotations on the basis of the
difference n̂(r) − n̂nw(r). Taking the component of this difference that is
perpendicular to n̂nw(r), we obtain as variables of relative rotations

Ω̃(r) := n̂(r) − [n̂(r) · n̂nw(r)] n̂nw(r). (6.1)

Ω̃(r) is odd under the transformation n̂(r) → −n̂(r) and even under the
transformation n̂nw(r) → −n̂nw(r). Systematically taking the component of
n̂(r) − n̂nw(r) which is perpendicular to n̂(r), we obtain as a second set of
variables of relative rotations

Ω̃nw(r) := −n̂nw(r) + [n̂(r) · n̂nw(r)] n̂(r). (6.2)

Ω̃nw(r) is even under the transformation n̂(r) → −n̂(r) and odd under the
transformation n̂nw(r) → −n̂nw(r). Later we will show that this formulation
is in accordance with the linear description in the spirit of de Gennes [36],
and we will comment on the role of the two sets of relative rotations in
chapter 8.

As a next step, we must connect the orientations of n̂(r) and n̂nw(r) to
the variables which characterize the current macroscopic state of the system.
In our model, the state of a nematic or cholesteric SCLSCE is completely
defined by the orientation of the director field n̂(r) and by the state of elastic
distortion of the polymer network. Elastic distortions are described in terms
of gradients of the displacement field u(r) in the framework of elasticity
theory. More precisely, the initial field a(r) introduced in section 2.1 should
be used in the Eulerian description instead of the displacement field u(r)
[41, 42]. However, in a static picture, we may also perform our analysis in
terms of u(r). We will come back to this point in the discussion.

In order to include the energy density resulting from the elastic distortions
into our expression for the generalized energy density, we will have to use the
nonlinear form of the strain tensor in the Euler notation [41, 43]. We have
already defined the strain tensor in chapter 2 by Eq. (2.3). The complete
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nonlinear expressions for the components of ε read

εij =
1

2
[(∂iuj) + (∂jui) − (∂iuk)(∂juk)] =

1

2
[δij − (∂iak)(∂jak)] . (6.3)

Here, ε, u, and a are functionals of r. We will not explicitly display the
spatial dependence on r in the following. The nonlinear expression for the
strain tensor in the Lagrangian picture differs from the expression in Eq. (6.3)
in the sign of the term (∂iuk)(∂juk) [43].

When we want to connect the preferred direction n̂nw to the elastic de-
formation, we start with the original, undistorted state of the system. Here,
we find that the two macroscopic preferred directions are aligned in parallel
directions. When we denote them as n̂0 and n̂nw

0 , respectively, we may write
n̂0‖n̂nw

0 .
For finite deformations, n̂0 and n̂nw

0 will in general be functionals of u(r)
or a(r), respectively,

n̂0 = n̂0(a(r)), (6.4)

n̂nw

0 = n̂nw

0 (a(r)). (6.5)

We include this dependence on a(r) because the mesogenic units are chem-
ically attached to the polymer backbone chains via flexible spacer groups.
Under finite mechanical deformations, they are displaced together with the
polymer network. In general, the ground state orientation n̂0 at a certain
position a(r) is known as an initial condition. What is not known is the
initial field a(r). These dependences become important for instance in the
nonlinear description of cholesteric SCLSCEs. The case simplifies in nematic
SCLSCEs because of the spatially homogeneous orientation of n̂0 and n̂nw

0

in the ground state.
We now assume that the system has been exposed to the influence of some

external field. When we consider the system in its final state, the director n̂ is
obtained from n̂0 via a rotation matrix S. In general, for finite deformations,
S will also be a functional of r and of u(r) or a(r), respectively, which is a
consequence of Eq. (6.4),

ni(a(r)) = Sij(a(r), r)n0,j(r). (6.6)

Because of this dependence, S(a(r), r) can describe how the mesogenic units
have on average been rotated compared to their ground state orientation at
their ground state position. In short, we can write Eq. (6.6) as

n̂ = S · n̂0. (6.7)
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Figure 6.2: Two local rotations S and R−1 leading to a local misalignment
of the two preferred directions n̂ = Sn̂0 and n̂nw = R−1n̂nw

0 . In the initial
state, the two directions n̂0 and n̂nw

0 have been oriented parallel to each other.
Although we have drawn simple arrows for reasons of clearness, head and tail
of the directions cannot be distinguished in the physics of the system.

We have included Fig. 6.2 in order to illustrate the corresponding rotation.
In the same way, also n̂nw is obtained from n̂nw

0 via a rotation, which we
denote as R−1,

n̂nw = R−1 · n̂nw

0 , (6.8)

and which we have also included in our illustration in Fig. 6.2. As we have
stated above, we identify the rotation matrix R−1 with the matrix that de-
scribes the local rotations of the network of polymer backbones. Therefore,
R−1 is connected to the local elastic mechanical distortion of the elastomer.
Consequently, our next task is to express the rotation matrix R−1 in terms
of the displacement field u, or the initial field a, respectively.

We derive an expression for the matrix R−1 from a comparison between
the initial state and the final state of the system,

dai = drk (∂kai). (6.9)

Here, ∂kai describes the local distortions of the elastomer. Using the polar
decomposition theorem, ∂kai can be rewritten as a product of a rotation
matrix and a symmetric matrix,

∂kai = Rij Ξjk. (6.10)

Altogether we obtain dai = RijΞjkdrk. Ξ tells us how the polymer network
in its final state locally has to be unstrained, and R tells us how it locally
has to be rotated back to retrieve its initial state. In Refs. [41] and [42] it
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has been shown how to calculate Ξ from Eq. (6.10), and Ξ was given up to
quadratic order in the components of ∇u. We now calculate Ξ up to quartic
order and from that derive the rotation matrix R.

From RijRik = δjk and from Eqs. (6.3) and (6.10) we find

δjk − 2εjk = ΞijΞik. (6.11)

Inserting a power expansion of Ξij with respect to ε into Eq. (6.11) we obtain

Ξij = δij − εij −
1

2
εikεkj −

1

2
εikεklεlj −

5

8
εikεklεlmεmj + O

(

(∇u)5
)

. (6.12)

Furthermore, by using (Ξ−1)ijΞjk = δik, we can show that

(Ξ−1)ij = δij+εij+
3

2
εikεkj+

5

2
εikεklεlj+

35

8
εikεklεlmεmj+O

(

(∇u)5
)

. (6.13)

This expression for Ξ−1 together with Eq. (6.10) can then be used to calculate
the components of the rotation matrix R. As we have noted above, we are
interested in the way the network of polymer backbones has been rotated
from the initial to the final state, and so we give the components of R−1,

(R−1)ij = Rji =

(

δik + εik +
3

2
εilεlk +

5

2
εilεlmεmk

+
35

8
εilεlmεmnεnk

)

(∂kaj) + O
(

(∇u)5
)

= δij + εij +
3

2
εikεkj +

5

2
εikεklεlj +

35

8
εikεklεlmεmj

− (∂iuj) − εik(∂kuj) −
3

2
εikεkl(∂luj)

− 5

2
εikεklεlm(∂muj) + O

(

(∇u)5
)

, (6.14)

where we have made use of a(r) = r − u(r) to obtain the final expression.
For a check of consistency we calculate the matrices Ξ̃ and R̃, defined

by ∂kai = Ξ̃ijR̃jk. We multiply this equation by R̃lk, and from the resulting
equation we derive Ξ̃liΞ̃im = (∂kai)(∂nai)R̃lkR̃mn. With the help of this
expression and together with Eq. (6.3) we can verify that

Ξ̃ij = R̃ikR̃jl

(

δkl − εkl −
1

2
εkmεml −

1

2
εkmεmnεnl

− 5

8
εkmεmnεnoεol

)

+ O
(

(∇u)5
)

. (6.15)
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Introducing Ξ̃ij into ∂pai = Ξ̃ijR̃jp, taking into account that R̃jpR̃jl = δlp,
and convincing ourselves that the inverse of the expression in brackets in
Eq. (6.15) is given by Eq. (6.13), we find R̃ = R. There arises no prob-
lem from Ξ̃ 6= Ξ, because in our description we will use the tensor ε as a
macroscopic variable to include strain deformations, not Ξ.

In essence, Eqs. (6.3), (6.8), and (6.14) connect n̂nw to the displacement
field u, or the initial field a, respectively.

At the beginning of this section, we have taken the misalignment n̂− n̂nw

as a starting point for the construction of the variables of relative rotations
in Eqs. (6.1) and (6.2). These expressions for the relative rotations can now
be understood in the following manner, which recovers our previous remarks
on the interpretation of relative rotations in SCLSCEs. Relative rotations
give the difference between the way the director actually has been rotated
starting from its ground state orientation (S), and the way it would have
been rotated if it were rigidly coupled to the polymer network (R−1). The
latter rotation is described by the rotation of the preferred direction n̂nw, and
the connection between both rotations S and R−1 arises from the fact that
n̂nw

0 ‖n̂0 in the ground state, or initial state, respectively, of the material.
We have illustrated the connection between the two rotations S and R−1

in Fig. 6.2. Eqs. (6.7) and (6.8) together with the condition n̂nw

0 ‖n̂0 will
guarantee rotational invariance with respect to the initial state of the system,
when we will set up the expression for the generalized energy density.

We include some remarks concerning the technical approach to concrete
problems. In general, the matrix S does not have to be determined explicitly
for practical purposes. This is because usually for a given problem the two
independent variables that define the current state of n̂(r) have to be found
as a solution to the problem, and because the ground state conformation
n̂0(a(r)) is known as an initial condition in general. In addition, the three
components of a(r), or those of u(r), respectively, must be determined in
a separate step. This procedure is possible since via Eqs. (6.3) and (6.14)
we have expressed the variables of relative rotations in the five independent
variables describing the current state of the SCLSCE.

6.3 Exact expressions for the nonlinear vari-

ables of relative rotations

Combining Eqs. (6.1)-(6.3), (6.8), and (6.14), we have derived in the previous
section expressions for the nonlinear variables of relative rotations in the sense
of a series expansion. These expressions will mainly be useful for practical
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purposes. In addition, we now want to derive an exact expression for the
nonlinear variables of relative rotations. For this purpose we have to find an
exact expression for R−1, which can then be introduced into Eqs. (6.8), (6.1)
and (6.2).

Since Ξ is symmetric it follows from Eq. (6.11) that ε and Ξ are diago-
nalized by the same matrix R,

ε = R ε
DRT , Ξ = RΞDRT , (6.16)

where in our notation diagonalized matrices are marked by ·
D and transposed

matrices by ·
T . Since we know ε from Eq. (6.3), we can calculate exact

expressions for its eigenvalues ei (i = 1, 2, 3) and its eigenvectors. From
the eigenvalues ei the eigenvalues of Ξ follow with the help of Eq. (6.11)
as Xi =

√
1 − 2ei (i = 1, 2, 3). The eigenvectors of ε lead us to an exact

expression for R.

Introducing all these ingredients into Eq. (6.10) we can calculate the exact
expressions for the components of the rotation matrix R:

Rij = (∂kai)Rkl((Ξ
D)−1)lm(RT )mj. (6.17)

Here, the components of the matrix (ΞD)−1 are simply given by ((ΞD)−1)ij =
X−1

i δij (no summation over i in this formula; i, j ∈ {1, 2, 3}). R−1 then of
course follows as R−1 = RT .

Concerning the existence of the expressions above, no problems arise,
and all expressions remain real. First, ε and Ξ are symmetric and thus
can be diagonalized in real space. Next, we consider the relation dai =
drk(∂kai) in the local principal frame of ∇a. It reads dai = λ−1

i dri (i = 1, 2, 3;
no summation over i in this formula), λ−1

i being the eigenvalues of ∇a.
Rewriting the latter equation as dri = λidai implies that λi can be interpreted
as the stretch of the system parallel to the ith principal axis (i = 1, 2, 3). For
physical reasons, 0 < λi <∞ (for a discussion of this point in the Lagrangian
description, see, e.g., Ref. [69]). Furthermore, in the principal frame of ∇a

no rotations occur and thus (∇a)D = ΞD. Due to this fact, Xi = λ−1
i , which

includes 0 < Xi <∞ and ei <
1
2

(i = 1, 2, 3).
Applying this procedure in the two-dimensional case we can derive a result

which still can be written in a manageable form:

R−1 =
1

2

(

A− ±A+

∓A+ A−

)(

X−1
1 0
0 X−1

2

)(

A− ∓A+

±A+ A−

)

×
(

∂xax ∂xay

∂yax ∂yay

)

. (6.18)
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Here, we have used as abbreviations A± =
√

1 ± α, with α = (εxx − εyy)/e

and e =
√

(εxx − εyy)2 + 4ε2
xy. As defined above, we have Xi =

√
1 − 2ei

(i = 1, 2), where the eigenvalues of ε read e1;2 = 1
2
(εxx + εyy ∓ e). From

the multiple signs in Eq. (6.18) the upper sign has to be chosen in the case
εxy > 0 and the lower one for εxy < 0 at the local position r. This ensures
the right-handedness of our coordinate system in the principal frame.

Introducing the rotation matrix into Eqs. (6.8), (6.1) and (6.2) then leads
us to exact expressions for the nonlinear variables of relative rotations in the
two-dimensional case.

6.4 Connection to the linear description

In this section, we want to check whether the description in the spirit of the
nonlinear relative rotations is connected to the linear model which we have
introduced in chapter 2. For this purpose, we demonstrate that in the linear
regime of small strains and small magnitudes of the relative rotations we
recover de Gennes’ expression for the generalized energy density [36].

As a first step, we have to derive an expression for the generalized en-
ergy density. We proceed in the same way as in section 2.3, whereas now
both variables of relative rotations Ω̃ and Ω̃nw contribute as macroscopic
variables. The resulting expression must now not only be invariant with re-
spect to the symmetry transformation n̂ → −n̂, but also with respect to the
transformation n̂nw → −n̂nw, separately. Since we are only interested in this
section in the comparison to the linear regime, it is again sufficient to include
only terms which are quadratic in the macroscopic variables contributing to
the generalized energy density. Concentrating only on terms arising solely
from contributions of the macroscopic variables ε, Ω̃, and Ω̃nw we obtain

F = c1 εijεij +
1

2
c2 εii εjj

+
1

2
D1 Ω̃iΩ̃i +D2 niεijΩ̃j +Dnw

2 nnw
i εijΩ̃

nw
j . (6.19)

Due to Ω̃iΩ̃i = Ω̃nw
i Ω̃nw

i we have not explicitly added the corresponding term
containing only the variable Ω̃nw.

Introducing into Eq. (6.19) the nonlinear expressions for the variables of
relative rotations (6.1) and (6.2) and substituting n̂ = n̂0 + δn as well as
n̂nw = n̂nw

0 + δnnw in the linear regime, we find

F (lin) = c1 εijεij +
1

2
c2 εii εjj +

1

2
D1 Ω̃

(lin)
i Ω̃

(lin)
i + D̄2 niεijΩ̃

(lin)
j . (6.20)
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Here, D̄2 = D2 + Dnw
2 and Ω̃(lin) = δn − δnnw (one has to take care of the

parameterization in the case of antiparallel alignment of n̂0 and n̂nw

0 ). For
isotropic elastic behavior, this expression of F (lin) coincides with de Gennes’
expression as noted in Ref. [36]. We obtain the conditions of thermodynamic
stability c1 > 0, 2c1 + 3c2 > 0, D1 > 0, and

4c1D1 − D̄2
2 = 4c1D1 − (D2 +Dnw

2 )2 > 0. (6.21)

Furthermore, by construction, it follows from Eqs. (6.1) and (6.2) that

n̂nw · Ω̃ = 0, n̂ · Ω̃nw = 0. (6.22)

In the linear regime, this leads to the familiar condition n̂ · Ω̃(lin) = 0, or
equivalently n̂nw · Ω̃(lin) = 0, n̂0 · Ω̃(lin) = 0, and n̂nw

0 · Ω̃(lin) = 0.
When we compare our results in this section to Eqs. (2.8), (2.9), and to

the thermodynamic stability conditions listed above Eq. (2.10) in chapter 2,
we find that we can in fact consider our nonlinear picture as an extension
of the model presented in chapter 2 to the nonlinear regime. Vice versa, we
have demonstrated in this section that we should recover the same results
as in the previous chapters when we confine our nonlinear description to the
linear regime.

6.5 Discussion and perspective

In this chapter we have presented a picture of nematic and cholesteric
SCLSCEs which allows the description of their nonlinear macroscopic behav-
ior. We have proposed that two preferred directions n̂ and n̂nw are important
for the nonlinear characterization of the materials. One of these directions
has been connected to the liquid crystalline properties, the other one to the
elastic mechanical behavior of the polymer network. From these two pre-
ferred directions, two sets of nonlinear relative rotations Ω̃ and Ω̃nw have
been derived. The major problem in the latter step consisted of finding the
matrix of local rotations of the polymer network R. We have demonstrated
how this matrix can be approximated by a series expansion and how it can be
determined using a local transformation to the principal system of the strain
tensor ε. Finally, we have shown that for small deviations from the energetic
ground state our picture is consistent with the previous characterization of
the materials using only one set of relative rotations.

In section 6.2 we have postponed an explanation for our remark that we
should use the initial field a(r) instead of the displacement field u(r) in order
to formulate the expressions for our macroscopic variables. We will shortly
comment on this issue at this point.
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It has been shown in Ref. [41] that the use of the displacement field u(r)
should be handled with care when dynamic deformations of anisotropic sys-
tems are investigated. This feature arises from the fact that the components
of u(r) = r − a(r) connect two different spaces [41, 42]. On the one hand,
this is the space in which the initial/ground state of the system is described,
and we call this space the initial space. The field a(r) is associated with the
initial space. On the other hand, we have the space in which the final state of
the material is characterized. We call this space the final space. The current
positions r of the volume elements of the material are associated with the
final space. We can simply avoid the problems arising from the connection
of the two spaces by replacing u(r) by r − a(r) in the expressions for the
macroscopic variables. In doing so we correctly distinguish between initial
space and final space. This is the reason why we have given the expressions
in Eqs. (6.3) and (6.14) also in terms of the initial field a(r) and not only in
terms of the displacement field u(r).

Using the initial field a(r) instead of the displacement field u(r), we find
that our macroscopic variables have a well defined symmetry behavior in the
initial as well as in the final space, separately. For example, we infer from
Eq. (6.3) that ε is even under parity in the initial space, when a(r) → −a(r).
Separately, ε is also even under parity in the final space, when together with
r → −r also ∂i → −∂i, (i = 1, 2, 3).

We have added an appendix, in which we further expand on the conse-
quences of the distinction between the two different spaces (appendix C).
There, we discuss in particular the symmetry relations associated with the
directions n̂ and n̂nw connected to the distorted state of the elastomer, and
n̂0 and n̂nw

0 connected to the undistorted state. Furthermore, in combina-
tion with this discussion, we outline an alternative approach to the nonlinear
variables of relative rotations.

In closing this chapter, we may conclude that we have for the first time
explicitly derived nonlinear expressions for the variables of relative rotations
within the framework of the macroscopic theory. We have formulated these
expressions as a function of the variables u(r) (or a(r)) and n̂(r), which
completely describe the state of the material. In the following two chapters,
we will explicitly include the nonlinear variables of relative rotations into
expressions for the generalized energy density in order to characterize the
nonlinear macroscopic behavior of nematic SCLSCEs.

As a perspective, we may emphasize that the nonlinear expressions for the
relative rotations will also be helpful in the macroscopic description of other
complex systems. For example, these expressions can directly be included in
the macroscopic characterization of magnetic gels [46, 47]. In this case, the
analog to the director orientation n̂(r) in nematic SCLSCEs is given by the
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local magnetization m(r).
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Chapter 7

Finite shear deformation of a

nematic side-chain liquid single

crystal elastomer

In the previous chapter, we have presented our picture of nematic and choles-
teric SCLSCEs as materials of two coupled preferred directions. We have
put our focus onto the derivation of nonlinear expressions for the variables
of relative rotations.

One goal of the current chapter will be to demonstrate that our picture
is appropriate as a basis for a nonlinear macroscopic description of nematic
SCLSCEs. For this purpose, we will investigate the behavior of a nematic
SCLSCE exposed to a static or quasistatic shear deformation. We will spec-
ify the geometry in the next section. There, in the same way as in chapter
2, we will also systematically derive an expression for the corresponding gen-
eralized energy density, now, however, up to cubic order. A crucial point of
this procedure is that nonlinearities arise in the characterization from two
different sources. On the one hand, they are included via the nonlinear terms
in the expression for the generalized energy density. On the other hand, they
are due to the nonlinear expressions of the macroscopic variables contribut-
ing to the generalized energy density. Including both kinds of nonlinearities,
we will analyze the macroscopic behavior of a nematic SCLSCE under shear
deformation in detail in section 7.2. The nonlinear description of the materi-
als will reveal additional features of their reaction which are not covered by
the linear model. In combination with appendix D, we again demonstrate
that relative rotations play a decisive role in the macroscopic behavior of
the elastomers. Finally, we shortly discuss our results and compare them to
other approaches.

The presentation of the contents of this chapter closely follows the one

97
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n̂0

x̂

ẑ

ŷ

Figure 7.1: Geometry of the static or quasistatic shear deformation investi-
gated. The bulk volume element of the nematic SCLSCE is oriented such
that n̂0 ‖ x̂. The shear is applied within the x-z-plane as indicated by the
arrows.

we have given in Ref. [65].

7.1 Geometry and generalized energy density

In the course of this chapter, we will demonstrate that nonlinear effects at-
tributed solely to the possibility of relative rotations can lead to qualitatively
new information in comparison to the linear picture. For this purpose, we
will go one order beyond the linear model in our nonlinear description of this
chapter, which means, for instance, that we will expand the expression for
the generalized energy density up to cubic order. As announced before, we
will investigate the situation of a nematic SCLSCE exposed to a static or
quasistatic shear deformation. The geometry we have in mind is depicted in
Fig. 7.1.

As illustrated in the figure, the nematic elastomer in the ground state
is oriented such that the mesogenic units are aligned on average parallel
to the x-axis. Thus the director in the ground state conformation may be
parameterized by

n̂0 = (1, 0, 0). (7.1)

This conformation is spatially homogeneous. Therefore, we do not have to
explicitly account for an a(r)-dependence of n̂0 according to Eq. (6.4), which
simplifies the problem significantly. As we have noted in section 6.2, the
direction n̂nw

0 is oriented parallel to n̂0 in the initial state.
In order to parameterize the current state of the director field, we set

n̂ =
(

[1 − sin2 ny − sin2 nz]
1/2, sin ny, sinnz

)

. (7.2)

Here, ny and nz describe the angles between the director orientation and the
planes of y = 0 and z = 0, respectively. This parameterization is sufficient
for an investigation of the problem up to cubic order.
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On the other hand, we have to characterize the elastic mechanical defor-
mations of the elastomer by three independent variables. We will use the
three components of the more intuitive field u(r), rather than those of a(r).

Furthermore, for illustration, we will only study the bulk effect of an
external shear imposed on the elastomer. In other words, we will neglect in-
fluences of the boundaries and only look for spatially homogeneous solutions
of the director reorientation and the mechanical distortion. For this reason,
terms containing components of ∇n̂ are not explicitly listed below.

In the following, we will derive an expression for the generalized energy
density F of the system up to cubic order. For this purpose, we will proceed
in the same way as in section 2.3, whereas now, as an additional condition
of symmetry, the final expression of F must also be invariant under the
transformation n̂nw → −n̂nw. We will concentrate on the terms made up
by the three macroscopic variables ε, Ω̃, and Ω̃nw that contribute to the
generalized energy density. Minimizing the generalized energy F =

∫

F d3r
we then can find the current state of the elastomer under an imposed shear
deformation.

Isotropic behavior is again assumed for all the terms that are solely con-
nected to the elastic mechanical behavior in the case in which no reorientation
of the director takes place. In this way, we guarantee that the behavior we
will predict for the nematic SCLSCE is directly connected to the influence of
relative rotations and cannot be found by simply including anisotropic elastic
behavior via the terms made up only by the strain tensor ε. (In appendix D,
we demonstrate that our results are not changed qualitatively if, in addition,
this kind of anisotropic elastic behavior is taken into account.)

It is then straightforward to write down a nonlinear convex expression for
the generalized energy density of the system up to quartic order in the vari-
ables ny, nz, and in the components of ∇u. However, if, in the following, for
demonstrative purposes we are only interested in the small-amplitude first
order corrections to the linear theory, quartic terms are negligible. It is then
a legitimate procedure to only consider terms up to cubic order. Further-
more, in the illustrative example we will investigate below, the amplitude of
the solution will be imposed onto the system externally. This additionally
guarantees the stability of our solution.

We obtain

F = F0 + c1 εijεij +
1

2
c2 εii εjj

+
1

2
D1 Ω̃iΩ̃i

+D2 Ω̃iεijnj +D2,n niΩ̃i njεjknk +D2,tr niΩ̃i εjj
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+Dnw
2 Ω̃nw

i εijn
nw
j +Dnw

2,n n
nw
i Ω̃nw

i nnw
j εjkn

nw
k

+ ζ1 εii εjj εkk + ζ2 εii εjkεjk + ζ3 εijεjkεki

+ φ1 niεijΩ̃j εkk + φ2 niεijεjkΩ̃k + φ3 niεijΩ̃j nkεklnl

+ ψ1 Ω̃iΩ̃i εjj + ψ2 Ω̃iεijΩ̃j + ψ3 Ω̃iΩ̃i njεjknk. (7.3)

In the first line, F0 incorporates all the terms that contain variables other
than ε, Ω̃, and Ω̃nw. As mentioned above, their influence will not be studied
in this chapter.

What follows are the quadratic terms with the coefficients c1, c2, D1, and
D2, which are already well known from the linear theory introduced in section
2.3 [36,39]. There are two new quadratic terms with the coefficients D2,n and
D2,tr in addition to the linear theory because in the nonlinear regime Eq. (2.8)
does not apply anymore. Furthermore, there arise the contributions with
the coefficients Dnw

2 and Dnw
2,n in contrast to the linear theory, because in the

nonlinear regime the preferred directions n̂ and n̂nw have to be distinguished,
and two sets of relative rotations have to be included.

Next, we have listed the three cubic terms arising from the deformation of
an isotropic elastic body [48] with coefficients ζi (i = 1, 2, 3), and afterward
the cubic terms containing relative rotations are included with coefficients
φi and ψi (i = 1, 2, 3). The terms ∼ ψ1 and ∼ ψ3 can be thought of as
modifications of the contribution ∼ D1, while the terms ∼ φ1 and ∼ φ3 can
be viewed as modifications of the contribution ∼ D2. The components of ε

and Ω̃ have to be introduced into the cubic terms only to linear order, and
as a consequence Eq. (2.8) applies. For this reason we have not listed the
cubic terms containing niΩ̃i.

Formally, further terms arise respecting the necessary conditions of sym-
metry. However, we have not explicitly noted the other symmetry allowed
terms containing components of n̂nw and/or Ω̃nw. They are either formally
identical to or linearly dependent on the expressions that we have listed in
Eq. (7.3), or they are not distinguishable to the order that will be considered
below. The possible qualitative impact of these terms is therefore already
covered by the contributions included.

Before turning to our example of the sheared nematic SCLSCE, we want
to recall once again that nonlinearities arising from Eq. (7.3) have two dif-
ferent sources. On the one hand, these are the explicitly nonlinear cubic
terms in Eq. (7.3). On the other hand, the quadratic terms also contain
nonlinear contributions, because the nonlinear expression for ε as well as the
new nonlinear expressions for Ω̃ and Ω̃nw derived in the preceding chapter
must be inserted into the quadratic terms. That is the reason why the mate-
rial parameters c1, D1, D2, and also Dnw

2 will significantly contribute to the
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nonlinear results listed in the next section.

7.2 Analysis of the shear deformation

We now want to analyze the consequences of a shear deformation of the
bulk of the nematic SCLSCE as indicated in Fig. 7.1. Denoting the shear
amplitude by A0 and looking only for homogeneous solutions due to the
reasons elucidated in the previous section, we make the ansatz

ux(r) = A0z + A1x, (7.4)

uy(r) = B1y, (7.5)

uz(r) = C1z, (7.6)

ny(r) = ny, (7.7)

nz(r) = nz. (7.8)

If we assume the system to be incompressible, which is a good approximation
for the elastomers under investigation, we obtain

B1 =
A1C1 − A1 − C1

1 + A1C1 −A1 − C1
. (7.9)

Furthermore, the terms with the coefficients ζ1, ζ2, φ1, and ψ1 are of higher
order due to incompressibility and thus vanish in our consideration of the
problem.

Since we study a spatially homogeneous solution, F is minimized simul-
taneously with F . Thus we can find the actual state of the system by solving
the set of equations ∂F

∂A1
= 0, ∂F

∂C1
= 0, ∂F

∂ny
= 0, and ∂F

∂nz
= 0. For this purpose

we expand the coefficients in ansatz (7.4)-(7.8) in a small parameter ǫ up to
quadratic order,

A0 = A
(1)
0 ǫ, (7.10)

A1 = A
(1)
1 ǫ+ A

(2)
1 ǫ2, (7.11)

C1 = C
(1)
1 ǫ+ C

(2)
1 ǫ2, (7.12)

ny = n(1)
y ǫ+ n(2)

y ǫ2, (7.13)

nz = n(1)
z ǫ+ n(2)

z ǫ2, (7.14)

and introduce them into the set of equations. Here, A
(1)
0 ǫ has been used as

input. Up to quadratic order in ǫ we obtain the following results, which are
also depicted in Fig. 7.2.
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n̂

x̂

ẑ

Figure 7.2: Consequences of a static or quasistatic mechanical shear deforma-
tion of a bulk volume element of a nematic SCLSCE. The director is rotated
within the plane of the applied shear. In addition, dilative and compressive
strains occur. The black arrows indicate one possible case of the resulting
deformations. Relative rotations are the mediator between these effects.

The director n̂ acquires a z-component given by the angle

nz = − D1 + D̄2

2D1

A0, (7.15)

where we have introduced the abbreviation

D̄2 = D2 +Dnw
2 . (7.16)

As we can see, this is an effect linear in the shear amplitude A0, and indeed
this effect has already been predicted by the linear theory [32]. Up to the

order investigated there is no correction to this result for nz: n
(2)
z = 0.

Furthermore, we find that the director remains oriented within the x-z-plane,
which is not surprising for a spatially homogeneous solution due to reasons
of symmetry:

ny = 0. (7.17)

It turns out that A
(1)
1 and C

(1)
1 vanish identically. Thus, in addition to

the reorientation of the director, we observe a compression and/or dilation
of the SCLSCE parallel to the x̂, ŷ, and ẑ direction, described by

A1 =
A2

0

24c1D
2
1

(4c1D
2
1 +D1D̄

2
2 + D̄3

2 − 2D̄2,nD̄
2
2 − 3ζ3D

2
1

+ φ2D1D̄2 + 2φ3D1D̄2 + ψ2D̄
2
2 − 2ψ3D̄

2
2 +Dnw

2 D̄2
2), (7.18)

B1 =
A2

0

48c1D2
1

( − 16c1D
2
1 + 2D1D̄

2
2 + 2D̄3

2 + 2D̄2,nD̄
2
2 + 12ζ3D

2
1

− 4φ2D1D̄2 − 2φ3D1D̄2 + 2ψ2D̄
2
2 + 2ψ3D̄

2
2 − 4Dnw

2 D̄2
2), (7.19)
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C1 =
A2

0

48c1D2
1

(8c1D
2
1 − 4D1D̄

2
2 − 4D̄3

2 + 2D̄2,nD̄
2
2 − 6ζ3D

2
1

+ 2φ2D1D̄2 − 2φ3D1D̄2 − 4ψ2D̄
2
2 + 2ψ3D̄

2
2 + 2Dnw

2 D̄2
2). (7.20)

The amplitudes given by these strain coefficients are proportional to the
square of the shear amplitude A0. So they describe nonlinear effects, which
cannot be predicted by a linear theory. In these expressions we have intro-
duced another abbreviation, namely

D̄2,n = D2,n −Dnw
2,n. (7.21)

We can interpret these results in the following way. Due to the external
mechanical shear deformation the director is reoriented. This is a linear
effect which arises from the coupling between the mechanical deformation and
the director orientation, mediated by the relative rotations. However, this
reorientation of the director itself acts back onto the mechanical deformation
and leads to compressive and/or dilative strains. From that point of view, the
nonlinear character of the compressive and/or dilative strain deformations
becomes clear. Again, this action of the director reorientation back onto the
mechanical deformation is mediated by the relative rotations.

The described effects cannot be attributed to an anisotropy of the elastic
mechanical behavior observed in the case that no reorientation of the director
occurs. We have excluded anisotropy from all terms of F that are solely
related to the elastic mechanical behavior. All the terms in Eqs. (7.15)
and (7.18)-(7.20) directly depend on the coefficients of Eq. (7.3) that are
connected to relative rotations.

If in those terms of Eq. (7.3) containing relative rotations we furthermore
take into account the isotropy of the elastic mechanical behavior, we have to
set D̄2,n, φ3, and ψ3 equal to zero. However, this does not affect our results
qualitatively.

On the other hand, as already mentioned, in appendix D we investigate
the effect of an anisotropic elastic mechanical behavior explicitly. Up to the
inspected order, we do not find a correction to the reorientation of the director
field as given by Eqs. (7.15) and (7.17). The corrections to the expressions
in Eqs. (7.18)-(7.20) do not change the results given above qualitatively. We
also demonstrate in the appendix that concentrating only on an anisotropic
elastic mechanical behavior and neglecting relative rotations one does not
recover the compressive and/or dilative deformations described above.

The interesting physics of the geometry investigated mainly occurs in the
x-z-plane of the system. In this plane the rotation of the director takes place,
and the relative rotations between the director orientation and the direction
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imprinted into the polymer network also occur within this plane. The com-
pression or dilation in the ŷ direction only results from the incompressibility
condition (7.9) and influences the coefficients A1 and C1. We qualitatively
obtain the same result concerning the physics in the x-z-plane, if we treat
the system as two-dimensional. In this case and up to the order investigated,
including incompressibility of the system, we obtain

nz = − D1 + D̄2

2D1
A0, (7.22)

A1 = A2
0

D̄2

16c1D
2
1

(

D̄2
2 + D̄2(D1 − D̄2,n) +D1φ3 + D̄2(ψ2 − ψ3)

)

, (7.23)

C1 = − A1. (7.24)

Therefore, the director reorients in the same way as described for the three-
dimensional geometry. In the two-dimensional case, compression or dilation
in x̂ direction coincides with dilation or compression in ẑ direction, respec-
tively. This is the situation indicated by the black arrows in Fig. 7.2.

7.3 Discussion

We want add one technical remark concerning our way of describing the
shear deformation of the nematic SCLSCE. In this chapter, we have used the
components of the displacement field u(r) instead of those of a(r) in order to
characterize the current state of distortion of the material. We have made this
choice, because u(r) gives the more intuitive and illustrative variables. This
procedure is convenient when static deformations are considered. However,
as we have noted in section 6.5, the use of u(r) should be handled with care
when dynamic deformations of anisotropic systems are studied [41].

Next, we should shortly compare our model to other approaches proposed
to describe the shear deformation of nematic elastomers. As mentioned in
section 2.4, the macroscopic characterization in Ref. [51] to a big extent
concentrates on “soft” elastic shear deformations connected to materials fea-
turing a spontaneously broken continuous rotational symmetry. Our model
qualitatively differs from the one proposed in Ref. [51]. We explicitly include
nonlinear relative rotations as macroscopic variables when we obtain the ex-
pression for the generalized energy density of the system. For this purpose,
we have derived for the first time explicit nonlinear expressions for the rel-
ative rotations within the framework of the macroscopic theory, which we
have formulated in terms of the fields u(r) (or a(r)) and n̂(r).

When we compare our description to the semi-microscopic approach pro-
posed in Ref. [54], we may note the following. It has been demonstrated
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in Ref. [70] that the semi-microscopic model formally contains the D1- and
D2-terms listed in Eq. (7.3); however, the material parameters D1 and D2

are not independent in this model. Also the terms ∼ ψ2 and ∼ ψ3 are shown
to be included, but again with dependent coefficients [54]. We have not fixed
the values of the material parameters so that they are still independent of
each other. This renders the characterization of the materials more general.
In particular, this means that our description is not restricted to “soft” or
“semi-soft” elastic deformations.

Moreover, in Ref. [54] the linear expressions of relative rotations are used
in the way they have been introduced in Ref. [36]. Consequently, it is con-
cluded in Ref. [54] that the D1- and D2-terms cannot describe nonlinear
effects, and cubic terms like the ones ∼ ψ2 and ∼ ψ3 in Eq. (7.3) must be
incorporated in a macroscopic characterization. On the contrary, by our il-
lustrative example we have demonstrated that already the D1- and D2-terms
can model corresponding effects, when appropriate nonlinear expressions for
the variables of relative rotations are inserted. (More precisely, in Ref. [54]
a geometry corresponding to the experimental situation of, e.g., Refs. [24]
and [64] is referred to. There, compressive or dilative mechanical strains
couple to the reorientation of the director field. In the linear description, the
D2-term in Eq. (7.3) does not contain this coupling because linear relative
rotations are always perpendicular to n̂(r), as given by Eq. (2.8). We have
indicated in Eq. (7.3) and noted thereafter that relation (2.8) is, however,
restricted to the linear regime.)

To conclude, we have demonstrated that we can account for additional
effects not covered by our linear model when we include nonlinear expressions
for the variables of relative rotations. In our example of shearing a bulk
volume element of a nematic SCLSCE, the compressive and dilative strain
deformations have been identified with these additional effects. They arise
as a consequence of the relative rotations that occur when a reorientation of
the director is enforced by an imposed shear deformation. The latter effect
is already described by the linear characterization of nematic SCLSCEs.

Again, the variables of relative rotations have played a central role in
our investigations. We will study a second nonlinear example of a mechan-
ically distorted nematic SCLSCE in the next chapter. In doing so, we will
once more underline the importance of relative rotations for the macroscopic
description of the materials.
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Chapter 8

Nonlinear stress-strain

behavior of nematic side-chain

liquid single crystal elastomers

In this chapter, we will analyze the geometry of stretching a nematic SCLSCE
perpendicularly to its original director orientation, which leads to a reorien-
tation of the director field. Thus we will come back to the kind of experiment
described in section 6.1, and to the photograph presented in the introduction
in Fig. 1.1. We will include a semi-quantitative comparison of the predictions
of our model to the results obtained from recent corresponding reorientation
experiments. The main goal of this procedure will be to reveal the dominat-
ing underlying processes which from a macroscopic point of view take place
during the reorientation of the director field.

We will first derive an expression for the generalized energy density which
is appropriate in order to characterize the macroscopic processes underlying
the reorientation experiment. Next, in section 8.2, we will further specify
the geometry and connect our variables to the set-up under investigation.
In particular, since we want to compare the predictions of our model to the
experimental results, we must link our Eulerian picture to the quantities
measured during a stress-strain experiment. After that, we will perform our
major inspection of the subject in three steps. First, we will concentrate on
the reorientation process of the director in section 8.3. Then, we will turn
to the nonlinear stress-strain behavior, where we will first suppress elastic
shear deformations in section 8.4, whereas we will include them in section
8.5. Finally, we will summarize and discuss our results and give a short
perspective in the last section.

Before we start our analysis, we want to stress that the nonlinearities
in the stress-strain behavior in our investigations will be associated directly
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with the reorientation of the director field. We will not include any nonlin-
earity of the elastic mechanical behavior that can appear without reorienting
at least one of the two preferred directions. Consequently, as might be ex-
pected, relative rotations will again play the major role in our analysis in this
chapter. The comparison with the experimental results reported in Ref. [27]
will corroborate our concept.

We will closely follow in this chapter the presentation of the analysis
which we have given in Ref. [66].

8.1 Generalized energy density

In this chapter, we will concentrate on the investigation of strain-induced
reorientation processes at constant temperature. It has been observed for
this situation that within domains of one orientation of the director, the
scalar order parameter S is either slightly decreasing or constant within the
experimental error bar [64]. Due to this fact, we will not take into account
the scalar degree of ordering S of the mesogens, but only deal with the
orientation of the macroscopic director field.

Using symmetry arguments, we derive in this section an expression for
the generalized energy density of the system which will be shown to cover
the basic features of the materials underlying the strain-induced reorienta-
tion process. We follow the same procedure as described in section 2.3. The
macroscopic variables that can contribute to the generalized energy density
comprise the conserved quantities of mass density ρ, density of momentum g,
and density of energy ε, as well as the macroscopic variables of strain ε, given
by Eq. (6.3), relative rotations Ω̃ and Ω̃nw, given by Eqs. (6.1) and (6.2),
and gradient fields like ∇n̂. We combine these variables to contributions
which satisfy the symmetry requirements, such as invariance under parity
and under the transformations n̂ → −n̂ and n̂nw → −n̂nw, separately. In
the following, we will assume that for the investigation of the stress-strain
geometry the strains ε and the relative rotations Ω̃ and Ω̃nw play the domi-
nant role. Therefore, only terms composed of ε, Ω̃, and Ω̃nw are taken into
consideration. In particular, this means that we assume that spatial hetero-
geneities such as the stripe domains reported in Refs. [64] and [67] do not play
a generic role for the effects described in this chapter. The comparison to the
experimental results will corroborate our assumption, and we will comment
on this issue later in section 8.6. As a consequence, it will turn out that the
following expression for the generalized energy density is appropriate for our
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studies in this chapter:

F = c1 εijεij +
1

2
c2 εii εjj

+
1

2
D1 Ω̃iΩ̃i +D

(2)
1 (Ω̃iΩ̃i)

2 +D
(3)
1 (Ω̃iΩ̃i)

3

+D2 niεijΩ̃j +Dnw
2 nnw

i εijΩ̃
nw
j

+D
(2)
2 niεijεjkΩ̃k +D

nw,(2)
2 nnw

i εijεjkΩ̃
nw
k . (8.1)

In appendix C we have introduced an alternative definition of the nonlin-
ear variables of relative rotations. We have demonstrated in this appendix
that these alternatively defined nonlinear relative rotations lead to the same
expression for the generalized energy density.

Again, in expression (8.1), the elastic behavior of the elastomer is assumed
to be isotropic in the case that no relative rotations occur. This can be in-
ferred from the first two terms of Eq. (8.1). We will comment on this point

in section 8.6. The terms with the coefficients D1, D
(2)
1 , and D

(3)
1 include

energetic contributions only related to relative rotations. For symmetry rea-
sons, namely the required invariance under the transformations n̂ → −n̂ and
n̂nw → −n̂nw, only even powers of the relative rotations may appear in these

terms. Due to Ω̃iΩ̃i = Ω̃nw
i Ω̃nw

i we did not explicitly add the corresponding
terms containing only the variable Ω̃nw. What comes next in expression (8.1)
are the terms that couple the relative rotations to the strain of the elasto-
mer. As we can see, the terms with the coefficients D2 and Dnw

2 couple to

the strain tensor in a linear way, whereas the terms with the coefficients D
(2)
2

and D
nw,(2)
2 couple to the strain tensor quadratically. An additional term

εijεij Ω̃kΩ̃k can be included in order to model an effective change of the elas-
tic coefficient c1 with increasing relative rotations between the director and
the polymer network. However, we will not need this term for the follow-
ing discussion. For all terms, strain is only included up to quadratic order.
The motivation for this approach will become more transparent during the
procedure of our further inspections.

8.2 Geometry and Eulerian description

We begin this section by further specifying the geometry under consideration,
which is illustrated in Fig. 8.1. The ẑ direction of our Cartesian coordinate
system will be oriented parallel to the externally applied stretching force
Fext. Furthermore, the initial directions n̂0 and n̂nw

0 are chosen to be oriented
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n̂0

ϑ0

n̂

ϑ

x̂

ẑ

ŷ

Fext

−Fext

n̂nw
0

β0

n̂nw

β

Figure 8.1: Geometry of the system investigated. An external force Fext is
applied parallel to the z-axis, the initial directions n̂0 and n̂nw

0 are oriented
in the x-z-plane. The angles between the x-axis and n̂0, n̂, n̂nw

0 , and n̂nw

are called ϑ0, ϑ, β0, and β, respectively.

parallel within the x-z-plane, so that we can denote them as

n̂0 =





cos(ϑ0)
0

sin(ϑ0)



 , n̂nw

0 =





cos(β0)
0

sin(β0)



 , ϑ0 = β0 + nπ, n ∈ Z.

(8.2)
When we set ϑ0 = 0 we obtain the case of stretching the elastomer exactly
perpendicularly to the original director orientation. Then, n̂0 and n̂nw

0 are
oriented parallel to the x̂ direction.

It is straightforward to study an inhomogeneous deformation and to in-
clude, e.g., heterogeneous initial director orientations. However, in this chap-
ter we will adopt the assumption of a homogeneous deformation, which in-
cludes a homogeneous orientation of the initial directions n̂0 and n̂nw

0 . One
should rather think of the homogeneous deformation of a characteristic vol-
ume element, not of the whole sample, a concept which we will further mo-
tivate later on.

In this spirit, we take as an ansatz for the displacement field

uz = Az + Sx, (8.3)

ux = Bx+ Tz, (8.4)

uy = Cy. (8.5)

Here, the amplitudes A, B, C, S, and T reflect the strain deformation of the
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elastomer. We know from the experiments that the reaction of the director
field to the external forces is mainly determined by a reorientation within
the x-z-plane. Previous calculations in the spirit of our model, for example
in Ref. [32] and in chapter 7, show that within this plane the reorientation
of the director is closely connected to a shear deformation of the elastomer.
This relation has also been found from other models. In ansatz (8.3)-(8.5),
we therefore allow for a shear deformation in the x-z-plane and discuss its
role later.

We start our calculations by deriving an expression for the matrix R−1,
which describes the elastic rotational deformation of the elastomer. For this
purpose, we introduce ansatz (8.3)-(8.5) into Eqs. (6.3) and (6.14). Up to
quartic order in the deformation amplitudes we obtain

R−1 =





cos(β − β0) 0 − sin(β − β0)
0 1 + O(C5) 0

sin(β − β0) 0 cos(β − β0)



 , (8.6)

where

β − β0 = −1

2

(

1 +
1

2
(A +B) +

1

4
(A+B)2 +

1

8
(A+B)3

)

(T − S)

+
1

24

(

1 +
3

2
(A+B)

)

(T − S)3 + O(|5). (8.7)

Here, O(|5) represents terms of quintic or higher order in the deformation
amplitudes A, B, C, S, and T .

We add four remarks. First, we see from Eqs. (8.6) and (8.7) that in
the absence of any shear deformation (i.e. S = T = 0) we do not find any
elastic rotational deformation. The same is true for equal shear amplitudes
S = T . Furthermore, in the linear regime we recover the fact that shear and
rotational elastic deformations are equivalent: β − β0 = −1

2
(T − S). Finally,

only the shear amplitudes S and T determine the degree of elastic rotational
deformation in the case of B = −A and C = 0 (which is often referred to as
a “pure shear” deformation; see, e.g., Ref. [71]).

Using Eqs. (6.8), (8.6), and (8.7) we can now parameterize n̂nw in terms
of the deformation amplitudes. On the other hand, we have to include a
further degree of freedom ϑ, which is connected to the reorientation of the
director n̂ within the x-z-plane. More precisely, ϑ− ϑ0 is denoting the angle
by which the director has rotated from its original orientation n̂0 to its final
orientation n̂. We obtain

n̂ =





cos(ϑ)
0

sin(ϑ)



 , n̂nw =





cos(β)
0

sin(β)



 . (8.8)
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It is a very good approximation to assume that common nematic
SCLSCEs do not change their volume during the deformations investigated
in the following. We include this feature, which is also denoted as incom-
pressibility, by setting

C =
−A− B + AB

1 −A− B + AB
. (8.9)

In particular, this expression for the amplitude C implies that up to cu-
bic order in the strain amplitudes the term with the coefficient c2 does not
contribute to Eq. (8.1).

We can now obtain an expression for the generalized energy density F
which is a function only of the strain amplitudes A, B, C, S, and T , as
well as of the reorientation angle ϑ. For this purpose, we have to introduce
expressions (6.1)-(6.3), (8.3)-(8.5), and (8.7)-(8.9) into Eq. (8.1). We want
to stress at this point that we will only take into account the strains up to
quadratic order in the generalized energy density (8.1). The quadratic term
of the strain tensor (6.3) enters F only in the terms with the coefficients D2

and Dnw
2 , and Eq. (8.7) is reduced to β−β0 = −1

2
(T −S). This way we make

sure that the nonlinear stress-strain behavior we will recover in the following
originates solely from the influence of the relative rotations. There will be
no terms included in the final form of expression (8.1) that can describe a
nonlinear elastic behavior when no reorientation of the director occurs.

In our approach, we then have to minimize the generalized energy F =
∫

V
Fd3r of the system, V being the volume of the respective sample. This

means that we treat the system in a static or quasistatic way. We consider
the respective elongation of the sample in ẑ direction to be imposed onto the
system externally. Therefore, since we are dealing with a spatially homoge-
neous deformation, the value of the strain amplitude A is considered to be
fixed from outside. For every value of A we determine the equilibrium state
of the system.

Following this procedure, we have to minimize the generalized energy
density F with respect to the strain amplitudes B, C, S, and T , as well as
to the reorientation angle ϑ. From this minimization we obtain the values
of B, C, S, T , and ϑ as a function of A. Consequently, also the generalized
energy density F can be expressed as a function of A. From the change of the
generalized energy density F with respect to A, that is from the derivative
dF
dA

, we can then deduce the value of the externally applied force Fext. Fext

is connected to the external stress amplitude, and it is the cause of the
respective elongation characterized by A. In this way our picture is closed.

Since we want to compare the results obtained from our model to experi-
mental results, we should address two more issues before we start to evaluate
the expression for F .
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On the one hand, a completely spatially homogeneous deformation of the
entire sample can of course not be realized in an experiment. This results
already from the geometrical constraints connected to the respective exper-
imental set-up, in interplay with the low compressibility of the materials.
Especially near the top and bottom edges, where the samples are usually
clamped during reorientation experiments, the strain deformation is quite
heterogeneous. Because of this, a spatially homogeneous characterization
can only describe the behavior of one volume element of the sample. Only
if the geometry of the sample investigated is chosen such that most of the
regions of the sample react in a similar way, and only if the behavior of a
characteristic volume element can reflect the overall behavior of the sample,
then this approach is meaningful.

Furthermore, for polymer materials it is difficult to map the overall bound-
ary conditions of a clamped sample to one volume element. It seems plausible
that shear deformations characterized by T 6= 0 play a minor role. This is
also suggested by the observations of the stripe domains, which are oriented
parallel to the direction of the externally applied force [64, 67]. As a conse-
quence, we will set

T = 0 (8.10)

during the rest of our considerations. The discussion is not as clear for
shear deformations described by S 6= 0. Narrow stripes of alternating shear
deformation S > 0 and S < 0, respectively, do not lead to a large deviation
from the boundary conditions imposed by the clamps. We will therefore
study the case of S = 0 first, however, we will also discuss the influence of a
nonvanishing shear deformation S 6= 0.

On the other hand, we have to connect the variables the values of which
are measured during the experiments to the variables that appear in our
hydrodynamic-like Eulerian picture. Usually, in the experiments the value of
the current macroscopic dimension l of the respective sample in the direction
of the externally applied force is recorded step by step. Comparing to the
initial dimension l0 of the sample in this direction, the ratio

λ =
l

l0
(8.11)

is determined and taken as a measure of the induced strain. Sometimes,
like for instance in Ref. [27], the so-called true strain ǫ = ln(λ) is taken
as a variable. We will choose our Cartesian coordinate system such that
the externally applied force is oriented parallel to the ẑ direction (Fig. 8.1).
Then, λ ≡ λz, l ≡ lz, and l0 ≡ lz,0. In the same way, we define the current
dimensions lx and ly as well as the initial dimensions lx,0 and ly,0 of the
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respective sample in the lateral directions. Stresses are recorded either as
true stress

σext =
Fext

lxly
(8.12)

or as nominal stress

σN
ext =

Fext

lx,0ly,0

, (8.13)

where Fext again denotes the magnitude of the force externally applied to
the sample edges in ẑ direction. Underlying these definitions is, of course,
the assumption that the sample deforms in a spatially homogeneous way.
Naturally, from the experimental point of view the initial dimension l0 is
considered to be constant and the current sample dimension l is changed.

In the hydrodynamic-like picture, however, the situation is different.
Here, we have to adopt an Eulerian point of view. Therefore, the current
dimension of the sample l is considered to be constant, and what changes is
the initial dimension l0.

Because of lz,0 = lz − Alz, in a spatially homogeneous deformation we
obtain

λ =
1

1 − A
. (8.14)

Furthermore, from

dF = Fextd(lz − lz,0) = −Fextdlz,0
!
= lxlylz

dF

dA
dA (8.15)

we find

σext =
Fext

lxly
=

dF

dA
, (8.16)

σN
ext =

Fext

lx,0ly,0
= (1 − A)

dF

dA
. (8.17)

Here, the expressions on the left of Eqs. (8.16) and (8.17) are given as func-
tions of λ, the expressions on the right as functions of A. The connection
between both follows from Eq. (8.14).

In the following, we will continue our considerations in three steps. First,
we will focus on the reorientation of the director field. In this context, we
can elucidate the different roles of the two sets of relative rotations. After
that, we will address the stress-strain curves. Here, we will first completely
exclude shear deformations from our considerations in section 8.4 (S = 0),
and then allow for shear deformations in section 8.5 (S 6= 0). We keep in
mind that the reorientation of the director field and the nonlinear shape of
the respective stress-strain curve are closely connected to each other.
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8.3 Reorientation of the director field

For illustration we will suppress shear elastic deformations in this section,
that is we set S = T = 0. Therefore, no rotation of the polymer network
occurs and β = β0. Furthermore, we will only take into account the quadratic
terms with the coefficients c1, D1, D2, D

nw
2 , as well as the term with the

coefficient D
(2)
1 . Only the linear components of the strain tensor (6.3) will be

included in the beginning, so the strain tensor adopts the very simple form
εxx = B, εyy = C, εzz = A, and εij = 0 for i 6= j.

As explained before, we then have to solve the system of equations dF
dB

=
dF
dϑ

= 0. For the values of the material parameters, we choose c1 = 121 ×
103 J m−3, D1 = 12 × 103 J m−3, D2 = −32 × 103 J m−3, Dnw

2 = −32 ×
103 J m−3, and D

(2)
1 = 4.5 × 103 J m−3. In general, c1 is obtained from the

initial slope of the respective stress-strain curve before any reorientation of
the director takes place. The choice of the other material parameters can be
motivated in the following way. From a stability analysis for ϑ0 = 0◦, we find
that the original orientation of the director ϑ = ϑ0 = 0◦ becomes unstable at
a critical strain given by A = Ac,

Ac = − D1

2D2 +Dnw
2

. (8.18)

With increasing A > Ac the director continuously rotates and reaches an
orientation of ϑ = 90◦ at A = Ar,

Ar = Ac −
8c1D

(2)
1 − (Dnw

2 )2

2c1(2D2 +Dnw
2 )

. (8.19)

For A > Ar the director remains at this orientation of ϑ = 90◦.

We can infer from Eq. (8.18) that 2D2 + Dnw
2

!
< 0, if a rotation of the

director shall occur (D1 > 0). Furthermore, if the values of D2 and Dnw
2

are set and the value of Ac is adopted from an experiment, we can estimate
the value of D1. On the contrary, estimate (8.19) has to be taken with
care. The experiments show that the strain amplitudes corresponding to
a saturation of the director reorientation are rather high so that nonlinear
effects will probably play a major role. Therefore, Eq. (8.19) should mainly

be considered as an estimate for the order of magnitude of the value of D
(2)
1 .

As a result, we obtain the curves depicted in Fig. 8.2, where the orienta-
tion angle of the director ϑ is plotted against the externally applied strain A
(in the corresponding calculations the strain amplitudes have been taken into
account up to quadratic order). The different curves correspond to different
initial orientation angles ϑ0 = 0◦, 0.1◦, 2◦, 10◦ to 80◦ in steps of 10◦, and
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A

ϑ [◦]

Figure 8.2: Angle ϑ between the director orientation and the x-axis under the
influence of an externally applied strain A. The initial director orientations
for A = 0 were given by ϑ(A = 0) = ϑ0 = 0◦, 0.1◦, 2◦, 10◦ to 80◦ in steps
of 10◦, and 89.9◦, respectively. They can be inferred from the scaling labels
on the ordinate (the value ϑ0 = 0.1◦ has not been marked explicitly). For
ϑ0 = 0◦ a pronounced threshold behavior is found (values of the material
parameters as specified in the main text).
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89.9◦, respectively, which can be inferred from the scaling labels on the or-
dinate (the value of ϑ0 = 0.1◦ has not been marked explicitly). At small and
large strain amplitudes the curves for ϑ0 = 0◦ and ϑ0 = 0.1◦ nearly coincide.
Significantly, for an external force applied perfectly perpendicularly to the
initial director orientation, that is for ϑ0 = 0◦, we find a pronounced thresh-
old at a critical strain Ac ≈ 0.13. However, the curve strongly smoothes
out already for the small value of ϑ0 = 0.1◦. Naturally, when the director is
already aligned parallel to the externally applied force (ϑ0 ≈ 90◦), practically
no further reorientation occurs.

It is interesting to note that we find a complete alignment of the direc-
tor parallel to the external force direction, that is ϑ = 90◦ at finite strains,
only for the perfectly perpendicular geometry of ϑ0 = 0◦. In order to under-
stand this point, we have a look at the terms with the coefficients D2 and
D

(nw)
2 , which induce the reorientation of the director field. For the geometry

investigated, they read

D2 niεijΩ̃j +Dnw
2 nnw

i εijΩ̃
nw
j = (D2nxεxxΩ̃x +Dnw

2 nnw
z εzzΩ̃

nw
z )

+ (D2nzεzzΩ̃z +Dnw
2 nnw

x εxxΩ̃
nw
x ). (8.20)

The two terms in the first bracket are always positive, whereas the two terms
in the second bracket are always negative. This follows from definitions (6.1)
and (6.2), as well as from εxx < 0 and εzz > 0. In general, the energetic
penalty arising from the first two terms inhibits a complete alignment of the
director parallel to the external force direction. However, these terms van-
ish in a geometry in which the external stress is always oriented perfectly
perpendicular to n̂nw (ϑ0 = 0◦, S = T = 0). More illustratively, we can
say that the stretching of the elastomer given by εzz > 0 enforces, whereas
the induced contraction described by εxx < 0 hinders the director reorien-
tation via the relative rotations Ω̃. The opposite is true for the role of the
relative rotations Ω̃nw: here the stretching εzz > 0 hinders and the induced
contraction εxx < 0 enforces the director reorientation. Only in the case of
the perfectly perpendicular geometry without shear deformation, Eq. (8.20)
solely leads to contributions that drive the director to ϑ = 90◦. In all the
other cases, additional contributions leading to the opposite effect arise. This
is the reason for the very different appearances of the curves in Fig. 8.2.

For the special case of ϑ0 = 0◦ and S = T = 0, we can further elucidate
the roles of the two sets of relative rotations Ω̃ and Ω̃nw. Ω̃ directly cou-
ples to the externally imposed strain εzz = A, and this coupling induces the
reorientation of the director field. On the other hand, εzz > 0 results in a
contraction εxx < 0, which couples to Ω̃nw. Then, Ω̃nw also enforces the di-
rector reorientation. Because of the coupling between Ω̃nw and εxx, however,
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the material parameter Dnw
2 simultaneously influences the magnitude of the

lateral contraction εxx.
When we want to compare the shape of the curves in Fig. 8.2 to the ones

obtained during measurements, we have to rescale the abscissa via Eq. (8.14),
introducing λ as a variable. This procedure stretches the shape of the curves
for higher strains, a tendency which is also observed experimentally [67].
In our model, it is possible to fine-tune the shape of the curves especially
for larger angles ϑ via the values of the material parameters D

(2)
1 and D

(3)
1

(and using terms in the expression for F of even higher order in the relative

rotations, if necessary). We note that for values D1 > 0, D
(2)
1 < 0, and

D
(3)
1 > 0 our model predicts a jump of the orientation angle ϑ to higher

values at a certain strain amplitude. A related behavior has been reported,
for example, in Ref. [24].

8.4 Stress-strain curves

In this section we will use our model in order to study the mechanical stress-
strain behavior of nematic SCLSCEs deformed in a geometry as described
above. For this purpose we will compare the results of our model with data
measured during recent stress-strain experiments.

We have decided to focus on the stress-strain curve shown in Fig. 8.3. It
has been measured by Urayama et al. and it is reproduced from Fig. 5 of
Ref. [27]. The authors of Ref. [27] have investigated a thin film of nematic
SCLSCE of homeotropic ground state director alignment. At 70◦C the film
was deeply in the nematic state and showed a pronounced decrease in the
slope of the stress-strain curve at intermediate strain amplitudes (Fig. 8.3).
The reasons for us to focus on these data are of different kinds. For one
thing, the data curve apparently represents a material which has sufficiently
equilibrated for each step of increasing the strain. In particular, besides the
stress-strain data, also measurements revealing the orientation of the director
field as well as measurements on the dimensional shape change of the sample
during the strain deformation are presented for the same material and thus
give a complete picture.

Two important facts can be extracted from the region of high strain
amplitudes in Fig. 8.3. We can see that the elastomer reacts in a well defined
way to the imposed strain deformation. A fairly linear relationship has been
found between the nominal stress σN

ext and the logarithm of the elongation
ln(λ) for these high strain amplitudes. This especially applies to the data
points in the regime 0.4 < ǫ < 0.5. For ǫ > 0.5 the data points start to
scatter and slightly deviate from this linear relationship. We interpret this
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Figure 8.3: Nominal stress σN
ext versus the true strain ǫ = ln(λ), measured for

a nematic SCLSCE by Urayama et al. The data points were acquired for a
thin film of homeotropic alignment at 70◦C. This figure has been reproduced
from Fig. 5 of Ref. [27].
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Figure 8.4: Stress-strain data from Fig. 8.3 measured by Urayama et al.,
transferred to the representation in terms of A and dF

dA
.

fact as the onset of a qualitatively different behavior at very high strain
amplitudes. Therefore, we will restrict our considerations to the regime of
ǫ < 0.5. The authors of Ref. [27] could further demonstrate by infrared
dichroism measurements that in the regime of high strain amplitudes (ǫ >
0.4) the director reorientation has been completed and practically no further
reorientation occurs. Moreover, the slope of the stress-strain curve for 0.4 <
ǫ < 0.5 is roughly as large as for low strain amplitudes.

In order to compare with our model, we have to convert the stress-strain
curve from Fig. 8.3 to the corresponding representation in terms of the vari-
ables A and dF

dA
. We perform this step with the help of Eqs. (8.14) and (8.17).

As a result, we obtain the curve depicted in Fig. 8.4.

Furthermore, we remember that in our approach we have derived the
expression for the generalized energy density F by means of a series expansion
in the strain tensor ε. As mentioned before, in our calculations pure elastic
strain is explicitly included only to quadratic order. Nonlinear behavior of
the stress-strain curve predicted by our expression for the generalized energy
density F always has to be connected to a reorientation process of the director
field. If the director orientation remains constant w.r.t. the polymer network,
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we will find a linear relationship between A and dF
dA

.

A nonlinear behavior of the stress-strain curve in a regime of constant
director orientation (and constant relative rotations) has to arise solely from
an intrinsic nonlinear elastic behavior, resulting from stretching the network
of polymer backbones. We will subtract this nonlinear elastic behavior from
the stress-strain curve. For this purpose we have fitted the linear regime of
high strains in Fig. 8.3 by a straight line. With the help of Eqs. (8.14) and
(8.17), we could transfer this straight line from the ln(λ)-σN

ext representation
of Fig. 8.3 to the A-dF

dA
representation of Fig. 8.4. We obtain dF

dA
as a power

series of A, dF
dA

= a0 + a1A + a2A
2 + a3A

3 + ... . As mentioned above, the
authors of Ref. [27] have demonstrated that for these high strain amplitudes
no reorientation process of the director occurs. The nonlinear contributions in
A must therefore result from intrinsic nonlinear purely elastic contributions
resulting from stretching the network of polymer backbones. Since these
effects are not included in the characterization by our model, we can exclude
them from our considerations: we subtract the values a2A

2 + a3A
3 + ... from

the data points of our stress-strain curve in the A-dF
dA

representation. This
is possible on the basis of our approach in the spirit of a series expansion, in
which every effect is connected to a limited number of terms. As a result, we
obtain the curve of data points shown by Fig. 8.5.

We have to note that, as a consequence of this procedure, we make a
small error in the following sense. Terms, like for instance εijεjkεkiΩ̃lΩ̃l,
include the strain to higher than quadratic order and couple, for example,
to relative rotations. At low strain amplitudes the term may vanish due
to Ω̃ = 0. On the contrary, it may lead to a contribution nonlinear in A
for higher strain amplitudes when Ω̃ = const 6= 0. In this case, we may
subtract the nonlinear influence of this term from the A-dF

dA
curve only for

the higher strain amplitudes where Ω̃ = const 6= 0, not for the lower strain
amplitudes of Ω̃ = 0. However, we have checked that the error resulting from
these deviations is only minor. For this purpose, we have repeated the whole
procedure, now fitting the linear regime of small strains of the ln(λ)-σN

ext plot
with a straight line. Eventually, after subtracting the elastic nonlinearities
resulting from this regime, we have obtained almost the same curve as before.
In short: we have verified that our procedure of fitting the original stress-
strain curve leads essentially to the same results for both regimes, small and
large amplitudes of strain.

As mentioned above, as a first step in order to investigate the stress-
strain behavior, we suppress elastic shear deformations completely by setting
S = T = 0. This means that n̂nw‖n̂nw

0 during the whole deformation. We
solve the equations dF

dB
= dF

dϑ
= 0, and we obtain B and ϑ as a function of A.
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Figure 8.5: Same stress-strain data as in Fig. 8.4 with nonlinear purely elastic
contributions by the network of polymer backbones subtracted. The exact
procedure behind this subtraction is described in the main text. A curve that
has been obtained with the help of our model is also shown. In this case,
the amplitude S of the shear deformation has been free to adjust (material
parameters characterizing this curve as specified in the main text).



8.5 Including shear deformations 123

As a result, by choosing appropriate values for the material parameters, we
obtain curves for dF

dA
(A) which qualitatively correspond to the arrangement

of the data points in Fig. 8.5. When we choose ϑ0 = 0◦ for the angle of initial
director orientation, corresponding to n̂nw‖x̂, we find pronounced cusps in
the A-dF

dA
curve. These cusps are located at the strain amplitudes where

the director orientation starts and ends. They correspond to the kinks in the
curve of ϑ0 = 0◦ in Fig. 8.2. It is not surprising that such a threshold behavior
occurs in the perfectly perpendicular geometry. We could demonstrate that
a pretilt in the initial director orientation (ϑ0 6= 0◦) smoothes out the stress-
strain curves. Simultaneously, however, it leads to an increase of the slope in
the intermediate strain region. Spatial heterogeneities of the materials also
play a major role in this context. They correspond to a spatial variation of
the values of the material parameters in our model. As a qualitative estimate,
we have taken simple averages over stress-strain curves obtained for different
values of only one material parameter. The result indicates that the curves
will be strongly smoothed under the influence of spatial variations.

Comparing the curves obtained in this way for S = 0 to the data points
in Fig. 8.5, there is a major difference: the length of the interval of negative
slope cannot be quantitatively reproduced. The reasons for this fact may
comprise additional effects induced by spatial heterogeneities, which then
would have to be included in our model. Furthermore, nonlinear contribu-
tions not considered up to now (such as, for example, described by higher
order coupling terms of strain and relative rotations) can extend the width
of the interval. However, the suppression of the shear deformation by setting
S = 0 also plays a major role, as will be demonstrated in the following.

8.5 Including shear deformations

When we want to inspect the situation of S 6= 0, we have to solve the system
of equations given by dF

dB
= dF

dS
= dF

dϑ
= 0. As a result, we obtain B, S,

and ϑ as a function of A, noting that the corresponding algebra becomes
quite complex. Here, we have investigated the situation of an initial director
orientation given by ϑ0 = 0◦. An example for the stress-strain curves we
obtain by this procedure is shown in Fig. 8.5. In addition, we have plotted
the corresponding angle of director orientation as a function of the strain A in
Fig. 8.6. We find that the threshold strain at which the director reorientation
starts shifts to a lower value, when compared to the situation of S = 0.
Significantly, the strain interval over which the director reorientation takes
place becomes considerably longer when the shear amplitude S is free to
adjust.
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Figure 8.6: Angle of director orientation ϑ during the strain deformation
which corresponds to the solid line in Fig. 8.5. The shear amplitude S has
been free to adjust in this case (material parameters as given in the main
text).
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Figure 8.7: Shear deformation of a volume element exposed to a strain A,
during which the shear amplitude S is free to adjust (material parameters as
specified in the main text).

The shear amplitude S connected to the corresponding deformation is
depicted in Fig. 8.7. We can see that no shear deformation occurs below
threshold. When the threshold strain amplitude has been passed and the
director starts to reorient, the shear deformation steeply increases. It steeply
decreases again when the reorientation angle of the director comes close to
90◦. In the reoriented state we find no shear deformation, as it has been the
case for the low strain amplitudes.

We have plotted the evolution of the strain amplitude B corresponding
to the resulting contraction in x̂ direction in Fig. 8.8. This is the direction
parallel to the original orientations n̂0 and n̂nw

0 . The dependence of the
amplitude B on the externally imposed strain A reflects well the experimental
observations [27]. For low strain amplitudes A < Ac we obtain the linear
isotropic elastic behavior of an incompressible material, characterized by B =
−1

2
A. As soon as the director reorientation sets in, however, this behavior

changes qualitatively. We find that during the reorientation of the director
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Figure 8.8: Amplitude B describing the lateral contraction of a volume el-
ement exposed to a strain A, where the shear amplitude S is free to adjust
(material parameters as specified in the main text).
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field the lateral contraction mainly occurs in x̂ direction and can be described
approximately by B ≈ −A. This means that the elastic deformation occurs
mainly in the plane of the director reorientation. Consequently, the material
in this regime reacts approximately in a two dimensional way, which agrees
well with the experimental observation [3, 27]. This kind of deformation is
often referred to as a “pure shear” deformation [71]. When the reorientation
process has been completed, we again find a behavior close to B = −1

2
A. We

would like to stress at this point that the respective magnitudes of the lateral
contractions for A > Ac are mainly determined by the influence of the relative
rotations Ω̃nw. When this second set of relative rotations is neglected, the
elastic behavior of the materials is not recovered correctly. Related remarks
have already been included in the discussion below Eq. (8.20).

In order to obtain the curves presented in Figs. 8.5 - 8.8, the values
of the material parameters have been set to c1 = 121 × 103 J m−3, D1 =

22.9 × 103 J m−3, D
(2)
1 = 3.5 × 103 J m−3, D

(3)
1 = 0.9 × 103 J m−3, D2 =

−42.0 × 103 J m−3, Dnw
2 = −42.2 × 103 J m−3, D

(2)
2 = −53.5 × 103 J m−3,

and D
(2),nw
2 = −22.0 × 103 J m−3. Here, the value of c1 follows from a fit

of the initial slope of the stress-strain curve resulting from the experimental
data points. As explained above, the relationship between D1, D2, and Dnw

2

strongly influences the value of the threshold strain amplitude at which the
reorientation of the director starts. D

(2)
1 and D

(3)
1 affect the length of the

reorientation interval and the shape of the curve during this interval to a large
extent. The same is true for D

(2)
2 and D

(2),nw
2 , whereas D2 and Dnw

2 mainly
influence the shape of the curve. As has already been mentioned above, the
relative rotations Ω̃nw and therefore the values of the material parameters
Dnw

2 and D
(2),nw
2 strongly affect the magnitude of the lateral contractions.

We have carefully adjusted the values of the material parameters. However,
small deviations from these values qualitatively lead to the same results.

Finally, we note that the slope of the stress-strain curve for high strain
amplitudes is lower than for small strain amplitudes. This means that the
generalized energy of the system increases less with increasing strain. If this
were not the case, there would be no reason for the director to remain in the
reoriented position.

8.6 Discussion and perspective

In this chapter, we have demonstrated that the experimentally observed pro-
cess of director reorientation and the connected decrease in the slope of the
stress-strain curves can be described by our model. In this context, we have
explained that the two sets of relative rotations Ω̃ and Ω̃nw are necessary



128 8. Nonlinear stress-strain behavior of nematic SCLSCEs

so that the overall behavior of the materials can be recovered correctly. In
addition, we have pointed out that one has to take into account explicitly the
contribution of the nonlinear elastic behavior of the materials which is not
connected to any reorientation of the director field. This plays a significant
role for the interpretation of the stress-strain curves.

From our investigations, it is difficult to judge to what degree the shear
described by S 6= 0 may be observed for a volume element which behaves in
a representative way. We have found that both a deformation without shear
S = 0 as well as a deformation including the shear S 6= 0 can qualitatively
reproduce the stress-strain behavior observed in the experiments. When we
allow for a shear deformation S 6= 0 to occur, the interval of the stress-
strain curve with lower slope increases, or in other words, the strain interval
during which the director reorients becomes larger. On the other hand we
have demonstrated that the length of this interval is closely connected to the
influence of nonlinear terms coupling strain to relative rotations (in our case

the terms with the coefficients D
(2)
2 and D

nw,(2)
2 ). There is a clear tendency

that more nonlinear terms of this kind further increase the length of the
reorientation interval. Accordingly, the observed stress-strain curve could
also be modeled by a deformation of S = 0.

On the whole we will probably find a mixture of the two scenarios and
intermediate states. We have to be aware, that the materials which are
produced by the common techniques show a large degree of spatial inho-
mogeneities. Already by optical investigation one usually can detect some
of these heterogeneities. Furthermore, also recent studies using NMR and
calorimetry measurements have revealed the same scenario on a different
length scale [72, 73]. Due to these inhomogeneities and the interaction of
the various volume elements in the polymer material, we will find an elastic
deformation which is to a large degree spatially heterogeneous. In addition,
the boundary conditions of clamping the material induce further inhomo-
geneities in the deformation. Therefore, a macroscopically observed strain
behavior will always be an average over varying strain behavior across the
whole sample.

As a consequence, we must conclude that the degree of elastic shear defor-
mation of one volume element does not only result strictly from minimizing
its generalized energy. It seems to be more likely that the shear deformation
is predominantly imposed onto the respective volume element by spatially
inhomogeneous deformations. The local, spatially varying strain deforma-
tions have to arrange themselves in a way such that for the clamped edges of
the elastomer we find the macroscopic displacement imposed from outside.
Already by Fig. 1.1 in the introduction we have illustrated a corresponding
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situation, in which the degree of shear deformation is strongly varying across
the sample. However, we have demonstrated that both for suppressed shear
deformation S = 0 as well as for the energetically favored shear deformation
S 6= 0 the stress-strain curves can qualitatively be reproduced.

Next, concerning the original data points in Fig. 8.3, reproduced from
Ref. [27], we would like to compare the final slope for high strain amplitudes
to the initial slope at low strains. We find approximately the same value for
the two slopes, although the elastomer is stretched perpendicularly to the
director in the beginning and in parallel direction at the end. Consequently,
we may conclude that the overall elastic behavior of the sample is virtually
isotropic with respect to the orientation of the director field. This justifies our
choice of the elastic part of the generalized energy density (8.1), in which we
have neglected anisotropic elastic terms. The remaining difference between
the initial and final slope of the curves in Fig. 8.5 can be explained by the
influence of the relative rotations.

It is very important to address the slope of the data points in Fig. 8.5 for
intermediate strain amplitudes as well. Here, we find a negative slope. On
the contrary, we find a pronounced positive slope when we look at the overall
stress-strain curves in Figs. 8.3 and 8.4. This means that, in the regime
of intermediate strain amplitudes, the elastomer gains energy due to the
reorientation of the director field on increasing strain deformation. However,
during every step of increasing the strain, the intrinsic nonlinear part of the
purely elastic deformation of the network of polymer backbones costs more
energy than is gained from the process of director reorientation. Therefore,
the slope of the overall stress-strain curve is positive. We have also analyzed
other recently measured stress-strain data in the same way [74], and we have
qualitatively obtained the same results.

We conclude that the underlying nonlinear elastic behavior of the network
of polymer backbones can to a great extent be separated from the reorien-
tation process. However, it has a major influence on the overall appearance
of the stress-strain data. It prevents a plateau-like zero-slope intermediate
region of the stress-strain curves. Due to its dominant contribution, it also
seems to be justified to break down the interpretation of the stress-strain data
to the spatially homogeneous behavior of one representative volume element:
the nonlinear elastic behavior can mainly be attributed to every volume ele-
ment of the material as a local effect, which does not arise from the nonlocal
interaction of the different volume elements. The experimental data which
we have selected in order to test our model clearly show this trend.

Possibly, oriented elastomer films in which this nonlinear elastic behavior
plays a less dominant role can be produced. In this case, spatial hetero-
geneities become important for the macroscopic response of the system, and
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the interaction between different volume elements is certainly essential. Sce-
narios similar to those found for polydomain samples may occur [75]. Then
the connection between the homogeneous behavior of one volume element
and the overall behavior of the whole elastomer becomes a challenging prob-
lem. Phenomenologically, it may be attacked by an averaging approach in a
spirit similar to a Maxwell construction. These issues can be investigated in
future studies on the basis of our model.



Chapter 9

Conclusions

The continuum characterization of the macroscopic behavior of side-chain
liquid single crystal elastomers (SCLSCEs) has been the major topic of this
thesis. In particular, we have concentrated on the response that these mate-
rials show when they are exposed to static or quasistatic external electric and
mechanical fields. We have put the development of a nonlinear macroscopic
description of SCLSCEs into the center of this work.

In chapter 1, we have introduced the materials under investigation –
SCLSCEs, namely. Belonging to a new class of materials, SCLSCEs consist
of chemically crosslinked polymer backbones, to which mesogenic units are
attached as side-groups. The arrangement of the mesogenic units shows
liquid crystalline order in a monodomain, which spans the whole sample.
Consequently, SCLSCEs combine properties of liquid crystalline phases on
the one hand, and the elastic mechanical behavior of crosslinked polymers on
the other hand. In addition, they feature further specific properties, which
make them unique. Above all, we should mention in the latter context their
static (and quasistatic) macroscopic coupling between the liquid crystalline
director orientation and elastic mechanical deformations.

It is a decisive feature of our continuum description that this coupling is
taken into account explicitly. This is possible by including as macroscopic
variables the relative rotations between the director orientation and the poly-
mer network, the state of which is assumed to be connected to the mechanical
deformations of the elastomers. A linear formulation of this model has first
been given by de Gennes [36] and has been introduced in chapter 2. There,
we have derived an expression for the generalized energy density in order to
give a linear macroscopic characterization of nematic or cholesteric SCLSCEs
when exposed to a static or quasistatic external electric or mechanical field.
A current state of the respective elastomer is described by the field of director
orientation on the one hand, and the displacement field characterizing the
current state of mechanical distortion on the other hand.

131
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We have first concentrated in chapter 3 on the investigation of an effect
specific for cholesteric SCLSCEs, which has been named rotatoelectric for
the following reason. When a spatially homogeneous external electric field is
applied parallel to the cholesteric helical axis, and when the electric field am-
plitude is quasistatically increased or decreased, the director orientation has
been predicted to rotate around the cholesteric helical axis relatively to the
polymer network. The magnitude of this effect has been found to be linear in
the external electric field amplitude and the wave number associated with the
cholesteric helical structure. In particular, the sense of rotation should de-
pend on the handedness of the cholesteric helix. We stress that the variables
of relative rotations play a decisive role as generators of rotatoelectricity.
Since the rotatoelectric effect has not been studied experimentally yet, we
have discussed the ingredients important for an experimental observation,
with a major focus on the boundary conditions of the director field.

Next, we have turned to the dielectric effects of cholesteric SCLSCEs in
chapter 4. We have studied the same geometry as in the rotatoelectric case.
The dielectric effects then become important at elevated external electric
field amplitudes, if the director tends to align parallel to the electric field di-
rection. From a linear stability analysis, we have predicted the competition
of two qualitatively different instabilities at threshold. One of them corre-
sponds to the instability of low molecular weight liquid crystals observed at
the Fréedericksz transition, and it is spatially homogeneous in the directions
perpendicular to the helical axis. We have shown that the influence of the
boundaries, the cholesteric helical structure, as well as the anchoring of the
director orientation within the polymer network determine the critical ex-
ternal electric field amplitude. On the other hand, the second instability
we have identified is qualitatively different in that it features undulations in
director orientation and distortion in at least one direction perpendicular to
the cholesteric helical axis. This instability arises from the specific feature
of SCLSCEs of coupling the director orientation to the elastic mechanical
deformation. In particular, we have demonstrated and explained that this
instability can be preferred over the Fréedericksz-like instability at threshold
only for one specific sign of the material parameter which couples relative ro-
tations to the strain deformations (D2). In this context, we have also found
that the linear continuum model includes the possibility of a specific set of
values of the material parameters that allow a reorientation of the direc-
tor field without distorting the elastomer. The results in this chapter are
obtained formally identically in the case of an external magnetic field.

In chapter 5, we have studied elastic mechanical deformations of choles-
teric SCLSCEs. First, we have focused on compressions and dilations im-
posed onto the elastomers parallel to the cholesteric helical axis. After that,
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we have described the effects of compressive and dilative forces applied per-
pendicularly to the helical axis. In the latter case, we have predicted a
twisting or untwisting of the structure of the cholesteric director orientation
in general. If the elastomer is stretched or compressed perpendicularly to the
cholesteric helical axis in two orthogonal directions by equal force densities,
we find a compression or dilation of the cholesteric structure along the helical
axis. This case is important from an application point of view, because it
has been exploited for the construction of tunable mirrorless lasers.

Based on the linear picture, we have in both of these chapters, 4 and 5,
suggested ways of experimental access to the values of the material parame-
ters that are related to the variables of relative rotations (D1 and D2).

Naturally, the predictions made by the linear continuum model are in
general restricted to small amplitudes of strain deformations and relative ro-
tations. However, many of the unique features of SCLSCEs are connected
to their nonlinear behavior. We have therefore developed a nonlinear macro-
scopic description of the materials in chapter 6, which can be viewed as the
central part of our work. Our first step in this direction has been to general-
ize our macroscopic picture of nematic and cholesteric SCLSCEs to that of
elastic materials of two coupled preferred directions. One of these directions
is given by the liquid crystalline director. The other one is imprinted into
the polymer network during the procedure of synthesis and is identified with
the direction to which the director rotates back when the external forces are
released. We have made the assumption that the orientation of the second
direction is connected to the distortions of the polymer network. Our major
task in this context has been to derive nonlinear expressions for the variables
of relative rotations between these two directions, and to connect these ex-
pressions to the components of the director field and the displacement field.
It has turned out that two sets of variables of relative rotations are necessary
in order to respect the conditions of symmetry. Our nonlinear description
contains the linear picture by de Gennes as a limiting case.

As a first application of our nonlinear model, we have investigated the
static (or quasistatic) shear deformation of a nematic SCLSCE in chapter 7.
The shear has been applied in a plane containing the director orientation.
We have recovered the linear effect already analyzed in earlier work – a
reorientation of the director due to the imposed shear deformation. As an
additional nonlinear effect, however, we have found that the reorientation of
the director acts back onto the elastic deformation and leads to compressive
and dilative strains. Our analysis has been made using an expression of the
generalized energy density to cubic order. We have demonstrated that all the
effects are mediated by the variables of relative rotations and are not obtained
without these variables. Significantly, the effects are qualitatively described
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already by the quadratic terms in the generalized energy density when the
nonlinear expressions for the variables of relative rotations are included.

Eventually, in chapter 8, we have turned to the inspection of the charac-
teristic results obtained for nematic SCLSCEs during nonlinear stress-strain
experiments. It has been found for nematic SCLSCEs stretched perpendic-
ularly to the initial director orientation that their director reorients towards
the stretching direction. Closely connected to this reorientation is a decrease
in the slope of the stress-strain curve. We could demonstrate in chapter 8
that our model describes the experimentally observed behavior. In partic-
ular, we have semi-quantitatively compared the predictions of our model to
the results obtained during recent stress-strain experiments which have been
reported in Ref. [27]. We have shown that, within our model, the decrease in
the slope of the stress-strain curve is associated with the coupling between
the director orientation and the elastic mechanical deformation, described
by the variables of relative rotations. As one result, however, we have found
that a qualitatively different part of the elastic response dominates the over-
all appearance of the stress-strain curve. This is the kind of elastic response
already present in the absence of relative rotations, which may be attributed
solely to the elastic deformation of the network of crosslinked polymer back-
bones. Since this is a local effect, we could reduce our analysis to that of
a single representative volume element. In addition, we have discussed the
role of shear deformations during the stretching process. We have found that
shear deformations do not qualitatively influence the overall response of the
materials. Furthermore, we have demonstrated that both of the two sets of
nonlinear relative rotations must be included in order to give a complete view
of the experimental situation. This confirms our macroscopic picture of the
materials.

In closing this summary, we mention that we have kept the introduction
of our nonlinear model to be quite general. Also other materials of coupled
preferred directions may be characterized in the same spirit, using nonlinear
relative rotations between the preferred directions as the crucial variables.
As indicated before, uniaxial magnetic gels appear to be natural candidates
in this respect.

Concerning the future development of our model, one of the next steps
would clearly be the extension to a dynamic description, which includes non-
linear strain deformations and the nonlinear variables of relative rotations.
A possible application of such a dynamic picture can be found in the field of
swelling dynamics of liquid crystalline elastomers. Various experiments have
already been performed in this area, using low molecular weight liquid crys-
tals as a swelling agent. A complete macroscopic characterization of these
experiments is still forthcoming.



Appendix A

Variational derivatives of the

generalized energy

In this appendix, we list the variational derivatives of the generalized energy
F =

∫

F d3r with respect to the five independent state variables ux, uy, uz,
nz, and ∆. Here, the generalized energy density F is given by Eq. (3.6), and
we use the abbreviations c̄1 = e1−e2+γ1+ζ

(R) and c̄2 = γ1+ζ
(R) introduced at

the end of section 3.1. We neglect energetic surface contributions. In analogy
to Eq. (3.6) we include the dielectric contribution, but we put it into squared
brackets in order to indicate that its influence is not studied in chapter 3.
Setting the resulting expressions equal to zero, we obtain
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Appendix B

Electrostrictive effects in

cholesteric side-chain liquid

single crystal elastomers

As mentioned in the main text of chapter 4, in this appendix we want to study
the effect of the electrostrictive contribution χ̃E

ijklEiEjεkl to the generalized
energy density F in Eq. (2.9). Therefore, we expand the electrostrictive
tensor χ̃E

ijkl assuming local uniaxial symmetry of the system. The symmetry
axis is given by the components ni of the director. In this way, we can rewrite
the electrostrictive tensor as

χ̃E
ijkl = χ̃1δijδkl + χ̃2(δikδjl + δilδjk)

+ χ̃3δijnknl + χ̃4δklninj

+ χ̃5(δiknjnl + δjkninl + δilnjnk + δjlnink)

+ χ̃6ninjnknl. (B.1)

We then have to introduce this expression into the term χ̃E
ijklEiEjεkl and

expand the result up to quadratic order in the five independent variables
ux, uy, uz, nz, and ∆ of the system. For this purpose we take into account
that Ei = Eδiz, and we need the nonlinear expressions for the components
of the Eulerian strain tensor ε up to quadratic order, which are given by
εij = 1

2
(∂iuj + ∂jui) − 1

2
(∂iuk)(∂juk) [41, 43]. After that, the variational

derivatives of the resulting expression with respect to the five variables ux,
uy, uz, nz, and ∆ have to be calculated and added to Eqs. (A.1)-(A.5), where
we once again neglect energetic surface contributions. We do not present the
explicit calculations here because they follow the same procedure as those
for the other terms arising from Eq. (2.9).

The results we have obtained in this way do not qualitatively differ from
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those we have already presented in section 4. In the case of a laterally
homogeneous solution (see section 4.2), the instability is still described by
Eqs. (4.22)-(4.24) and (4.28)-(4.30), respectively, where only the amplitudes
are slightly influenced by the external electric field: in these equations, the
ratio α

β
now has to be replaced following the scheme

α

β
→ α−

(

χ̃3 + 1
2
χ̃5

)

E2

β − (χ̃1 + χ̃2)E
2

. (B.2)

Taking into account terms up to quadratic order, the expression for the
amplitude of the critical external electric field turns into

E2
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α2 − βA

2α
(

χ̃3 + 1
2
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)

− βǫa − (χ̃1 + χ̃2)A
, (B.3)

where

A = D1 +K3q
2
0 +K1

(π

d

)2

. (B.4)

Usually, for common nonpolar elastomers, the electrostrictive coefficients
are very small compared to the other material parameters in Eq. (2.9). For
example, Ref. [76] reports the measurement of electrostrictive coefficients of
polyurethane, which shows unusually large electrostriction. The magnitude
of the coefficients listed there does not imply any qualitative impact on our
results. Consequently, we expect the expression for the threshold value E2

c

to yield again Eqs. (4.21) and (4.31). This can be verified by taking the limit
of χ̃i → 0 (i = 1, 2, 3, 5) in Eq. (B.3).

Concerning the laterally inhomogeneous instability (see section 4.3), the
results presented in the main text are neither influenced qualitatively by the
electrostrictive corrections. Eqs. (A.1)-(A.5) including the additional terms
arising from electrostrictive contributions can still be solved by ansatz (4.10),
which implies the undulations we have found in section 4.3. When we then
investigate the resulting set of ordinary differential equations numerically
for a common nonpolar elastomer, it is a good approximation to set the
electrostrictive coefficients equal to zero for the reasons already mentioned
above.



Appendix C

Symmetry relations and an

alternative definition of relative

rotations

In the first part of this appendix, we discuss an alternative definition of the
variables of relative rotations, which also takes into account the presence
of the two local preferred directions n̂ and n̂nw in nematic and cholesteric
SCLSCEs. The symmetry relations connected to these preferred directions
play a major role in this context. After that, in the second part of the
appendix, we demonstrate that the alternative definition of the nonlinear
relative rotations leads to the same expression of the generalized energy den-
sity that we have derived in chapter 8 and used in order to characterize the
nonlinear stress-strain behavior of nematic SCLSCEs.

Talking about the variables of relative rotations, it might be more sug-
gestive at a first glance to start the construction of the macroscopic variables
with a rotation matrix. In our case, the matrix should describe the rotation
of the direction given by n̂nw to the direction given by n̂. We call this matrix
W.

As we have already explained in section 6.5, two spaces must be thought
of in order to statically describe a distorted material in general. One is
connected to the initial, undistorted state of the material and may be called
the initial space, the other one is connected to the distorted state and may
be called final space [41, 42]. Symmetry transformations in one of the two
spaces do not imply the respective transformations in the other space. For
example, this means that the transformation n̂0 → −n̂0, which takes place in
the initial space, does not imply n̂ → −n̂ in the final space, and vice versa.
The same is true for n̂nw

0 and n̂nw.
We can see from definition (6.7) that S is odd under the symmetry trans-
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formations n̂0 → −n̂0 and n̂ → −n̂, separately. From definition (6.8) we
infer that R is odd under the symmetry transformations n̂nw

0 → −n̂nw

0 and
n̂nw → −n̂nw, separately. A rotation matrix S ·R describes how a direction
parallel to n̂nw is rotated to a direction parallel to n̂, however, this product
matrix is odd under n̂0 → −n̂0, n̂nw

0 → −n̂nw

0 , n̂ → −n̂, and n̂nw → −n̂nw,
separately. In order to set up a hydrodynamic-like Eulerian picture, the
variables must be independent of the initial space. Formally, we thus have
to insert an additional matrix that transforms n̂nw

0 into n̂0 according to
n̂0 = T · n̂nw

0 , so that we define W = S · T · R.

W is the matrix we have been looking for, which rotates n̂nw to n̂. How-
ever, we cannot use the matrix W directly as a macroscopic variable: as al-
ready mentioned in section 6.2, in a hydrodynamic-like Eulerian picture the
macroscopic variables contributing to the generalized energy density must
vanish when the system is in equilibrium and no external forces are applied.
Subtracting unity from W in order to satisfy this condition leads to prob-
lems, because W is odd with respect to the transformations n̂ → −n̂ and
n̂nw → −n̂nw, separately. Consequently, the resulting object would not have
a clearly defined symmetry behavior under these transformations. The prob-
lem cannot be solved by simple projections as those which have led to the
definitions (6.1) and (6.2).

We therefore propose a different approach. All the information stored in
the rotation matrix W is given by the direction of the rotation axis and the
angle of rotation. However, the same information is also provided by the
cross product of n̂nw and n̂, so that, alternatively to Eqs. (6.1) and (6.2), in
this appendix we define as variables of relative rotations

Ω̃alt := n̂nw × n̂. (C.1)

The components of Ω̃alt read

Ω̃alt
i = ǫijkn

nw
j nk. (C.2)

If we use this definition of the relative rotations, we can show that ex-
pression (8.1) for the generalized energy density F in chapter 8 is obtained
identically.

It is straightforward to verify that

Ω̃iΩ̃i = Ω̃nw
i Ω̃nw

i = Ω̃alt
i Ω̃alt

i . (C.3)

For this reason, the terms in Eq. (8.1) with the coefficients D1, D
(2)
1 , and

D
(3)
1 are recovered.
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Coupling Ω̃alt to the strain ε in lowest order and respecting the symmetry
behavior of F leads to two terms

niεijǫjkln
nw
k Ω̃alt

l = −[niεijnj − niεijn
nw
j (nkn

nw
k )] = −niεijΩ̃j (C.4)

and

nnw
i εijǫjklnkΩ̃

alt
l = −[−nnw

i εijn
nw
j + nnw

i εijnj (nkn
nw
k )] = −nnw

i εijΩ̃
nw
j . (C.5)

They correspond to the terms with the coefficients D2 and Dnw
2 in the gen-

eralized energy density F of Eq. (8.1). The terms with the coefficients D
(2)
2

and D
nw,(2)
2 in Eq. (8.1) are obtained in the same way.

Therefore, a characterization of the materials by the two definitions of
relative rotations (6.1) and (6.2) on the one hand, and (C.1) on the other hand
are identical as long as we confine ourselves to the terms listed in expression
(8.1). In particular, the analysis presented in chapter 8 would be the same
if one uses as an alternative definition of relative rotations expression (C.1).
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Appendix D

Finite shear deformation of an

elastically anisotropic nematic

side-chain liquid single crystal

elastomer

In chapter 7 we have studied the reaction of a nematic SCLSCE to an imposed
static or quasistatic shear deformation. There, we have concentrated on the
role the relative rotations play during this kind of deformation. Because
of that we have assumed an isotropic elastic mechanical behavior of the
materials in the case that no reorientation of the director occurs. We now
demonstrate that an anisotropic elastic mechanical behavior of the elastomers
does not qualitatively change the results derived in chapter 7.

If we want to include an anisotropic elastic mechanical behavior of the
elastomers into our description, we have to supplement our expression for
the generalized energy density (7.3) by some additional terms (compare, e.g.,
Refs. [77] and [78]):

c3 εii n
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nw
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m εmnn
nw
n .

(D.1)

It seems natural to use n̂nw as a preferred direction in these terms, because
we have connected the orientation of the direction n̂nw to the macroscopic
distortion of the elastomer characterized by the displacement field u(r). In
this case, due to the transverse isotropy of the elastic terms with respect
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to the direction n̂nw, only nine of the ten terms with the coefficients ζi (i =
1, ..., 10) are independent [77,78]. We have checked that the terms associated
with n̂ as a preferred direction do not qualitatively alter our conclusions
below. Following the procedure described in section 7.2, we obtain the results
listed hereafter.

Concerning the reorientation of the director field, Eqs. (7.15) and (7.17)
are recovered identically. We find, however, that the amplitudes of the com-
pression and/or dilation of the SCLSCE as given by Eqs. (7.18)-(7.20) are
slightly modified in the anisotropic case,
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However, all terms appearing in these expressions directly depend on
those coefficients of Eq. (7.3) that are directly related to relative rotations.
This means that without including the variables of relative rotations com-
pressive and dilative deformations are not found in this description at all.
The material parameters ζ5, ζ6, and ζ7 do not enter the expressions listed
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above because the respective terms in the generalized energy density are
of higher order due to incompressibility. From Eqs. (D.2)-(D.4) the special
case of an isotropic elastic mechanical behavior of the elastomers is simply
recovered by letting the coefficients appearing in expression (D.1) tend to
zero.

Overall, we find that the results derived in this appendix for an elastically
anisotropic nematic SCLSCE qualitatively coincide with those obtained in
the isotropic case in section 7.2.
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Appendix E

Highly ordered patterns of

parabolic focal conics in

lamellar lyotropic systems

In this appendix we report on the experimental observation of the formation
of highly ordered parabolic focal conical patterns in lamellar surfactant solu-
tions, and on some quantitative analysis of these patterns. This work is only
loosely connected to the main topic of this thesis. However, it has been per-
formed during the same period at the Universität Bayreuth in collaboration
with Dr. Christian Wolf (Bayreuther Zentrum für Kolloide und Grenzflächen
(BZKG), Physikalische Chemie I).

During this work, predominantly mixtures of sodiumdodecylsulfate, wa-
ter, hexanol, and decane, located in the immediate vicinity of the region of
the L3 and Lα phase coexistence have been investigated. Experimental stud-
ies on the formation of the patterns and on their temporal development are
described, which were mainly performed by Dr. Wolf [79]. We give a simple
model picture for the underlying structure, corroborated by the experimental
results. There appears to be only one independent length scale that controls
the appearance of the whole respective pattern.

Our presentation of the subject in this appendix is closely connected to
the one we have given in Ref. [80].

E.1 Introduction

The term “focal conics” refers to a special kind of defect structure that has
been investigated since the beginning of the last century [81]. Focal conics can
be observed, for example, in lamellar phases of smectic A liquid crystals [7,82]
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and in those shown by various surfactant systems.
In an ideal lamellar system of infinite compressional layer modulus, which

implies a constant layer thickness over the whole sample, these structures
are modeled as families of so-called Dupin cyclides (see, e.g., Ref. [83] and
references therein). The Dupin cyclides describe, for instance, a family of
surfaces which are obtained in the following way: a pair of an ellipse and a
hyperbola are chosen such that the plane containing the ellipse is oriented
perpendicular to the plane containing the hyperbola. In addition, both lines
run through a focal point of the respective other line. We then connect every
point of the ellipse to every point of the hyperbola by straight lines, the
so-called generators. Surfaces that are in every point oriented perpendicular
to these generators contribute to the family of surfaces we are looking for.
A focal conic domain structure can be described as a system of equidistant
lamellae, obtained as Dupin cyclides. By construction, some of the lamellae
form cusps located on the ellipse or hyperbola, respectively. The conical
shape of these lamellae in the vicinity of the cusps gives rise to the name
of the defect structures. Extensive effort has been made on calculating the
curvature energy of these structures and their spatial arrangement [84–88].

Already in Ref. [81] the possibility that the ellipse and the hyperbola
are degenerated into a pair of parabolae was pointed out, although not
observed. The resulting defect structures are called parabolic focal conics
(PFCs). These are the kinds of defect structures investigated in the follow-
ing.

For this purpose, we have studied a lyotropic system in which highly
ordered PFC structures could be observed. In particular, this was a mixture
of sodiumdodecylsulfate (SDS) / water / hexanol / decane, the behavior
of which has been examined in the immediate vicinity of the L3 and Lα

phase coexistence. For this kind of system it had been found that highly-
arranged PFC structures can form, which are visible under the polarization
microscope [89, 90].

It is well-known that ordered lamellar smectic phases can form PFC pat-
terns by forced dilation [91,92]. In the examined surfactant systems, the sam-
ple containers were, however, not dilated by an external mechanical stress.
Nevertheless, well distinguishable PFCs were observed, and we suggest an
explanation for the driving force behind their formation.

This appendix is organized as follows. In the next section, the procedure
of generating the samples and their chemical composition will be described.
After that, in section E.3, we will illustrate the experimental results obtained
from the observation of these samples. In section E.4, we will relate the ex-
perimental data to the common model description of focal conical structures,
and we will propose some quantitative analysis. Finally, we will summarize
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our results.

E.2 Sample preparation

The following chemicals were used: SDS from Serva in quality p.a., hex-
anol p.a., and decane fraction without further purification. The water was
demineralized.

Solutions of ten milliliters were produced for each sample. The alco-
hol and the hydrocarbon were added to a solution of water and approxi-
mately 15 wt-% SDS at 25 ◦C. The samples were then magnetically stirred
for 10 minutes. In samples of coexisting Lα and L3 phases, the phase vol-
umes were determined after one day by visual observation. Microcuvettes
(microslides from Camlab England) with a capillary thickness of 0.05 mm,
0.1 mm, 0.2 mm, 0.3 mm, and 0.4 mm were used for observations with a
Leica DMR XE polarization microscope with the option of differential inter-
ference contrasting. The samples were homogenized by shaking, drawn into
the microslides by capillary forces, and afterwards sealed with “Seal Ease
Tube Sealer and Holder” from Becton Dickinson and Vacutainer Systems.

In order to study the influence of the composition on the velocity of for-
mation of the textures, we also prepared samples from material that had not
been homogenized by shaking before. Instead, the respective initial solutions
had been equilibrated so that they showed fractions of the optically isotropic
and lamellar phases, L3 and Lα, respectively. Varying small amounts of L3

material were then added to samples exclusively taken from material in the
phase Lα.

A more detailed description of the preparation of the samples can be
found in Ref. [79]. The following observations are based on the study of a
few hundred microslide samples.

E.3 Experimental observations on the para-

bolic focal conical structures

For the investigation of the structure formation, samples were generated from
the lamellar single phase and from the two-phase region, respectively. The
samples were sealed in microslides of different thicknesses and observed using
polarization microscopy. It was found that ordered lamellar structures did
not form in the lamellar single phase region. All samples remained disordered
and showed strong birefringence. However, when the lamellar phase was
prepared from samples with a coexisting Lα and L3 phase, pseudoisotropy
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Figure E.1: Illustration of the formation process of highly ordered PFC do-
mains. The PFC pattern develops from the wedge-like domain located in the
central left part of the picture. On the whole, a flow of mass directed to the
left was observed. Time of exposure: 2 sec.

developed in all cases within a short time. Bands of oily streaks vanished,
and the sample appeared entirely dark under the polarization microscope.
The duration of this process increased with the thickness of the microslides;
it took about 10 minutes for the 0.1 mm microslides. Starting from the sealed
edges of the microslides, a nebular haze began to grow into the capillary in the
pseudoisotropic samples as depicted in Fig. E.1. The photo was taken next
to one of the sealed edges of the microslide, where this edge was located close
to the left of the pictured area. The wedge-like shaped haze grew towards the
right of the pictured region. On the whole, a flow of mass towards the left of
the pictured area and thus towards the sealed edge of the microslide could
be identified. With a high magnification of the fog we could observe how
ordered patterns formed from the diffuse structures. During the motion,
the fog size, contrast, and order of these patterns increased strongly until
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Figure E.2: Highly ordered pattern of PFCs (taken from Ref. [90]).

finally large ranges with almost perfect squares had developed. The growth
of PFCs began as soon as the phase had become pseudoisotropic at the ends of
the sealed microslides. Having chosen the method of preparation described
above, it was possible to produce and observe highly ordered domains of
perfect square patterns over the entire visual field of the microscope as shown
in Fig. E.2. It could be verified that the orientation of the regular pattern to
the direction of the flow is always the same.

In order to determine the driving force behind the formation of the PFC
structures, the samples were prepared, sealed, and weighed in certain time
intervals. A loss of mass was observed and after prolonged time gas bubbles
were found within the surfactant phase. It was demonstrated by separate
experiments that each of the three constituents water, hexanol, and decane
are able to diffuse through the sealed microslides. The loss of decane, how-
ever, was significantly higher than that of water or hexanol as can be seen
from Fig. E.3.

For illustration, we include the phase digram Fig. E.4 as it had been
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Figure E.3: Average loss of mass per area by diffusion through the sealings of
0.2 mm thick microslide samples as a function of time. The data points refer
to the components decane, hexanol, and water, respectively, as well as to a
quaternary system of a composition of 17 wt-% decane, 17 wt-% hexanol,
51 wt-% water, and 15 wt-% SDS.
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Figure E.4: Phase diagram for a quaternary system of 15 wt-% SDS and vary-
ing fractions of decane, hexanol, and water at 25 ◦C (taken from Ref. [90]).
The scales on the upper left, upper right, and bottom edge of the triangle
refer to the relative fractions of water, decane, and hexanol, respectively, be-
sides SDS. This phase diagram has been determined via optical investigation,
therefore the term “isotropic” refers to an optically isotropic state.

determined for a quaternary system of a constant fraction of 15 wt-% SDS
and varying fractions of decane, hexanol, and water by A. Stark [90]. In
our work we have concentrated on the regions indicated as “lamellar” and
“isotropic/lamellar” in Fig. E.4, where the term “isotropic” refers to an op-
tically isotropic state. It has been verified experimentally that the material
shows the phase L3 in the regions we have investigated. Potassiumdodecyl-
sulfate turned out to be just as suitable as SDS, the lamellar phases occupy
roughly the same portion of the corresponding phase diagram.

During the optical observations, polarizer and analyzer of the polariza-
tion microscope were oriented in perpendicular directions. Looking at the
microslide from above, three characteristic planes of focus of the PFC struc-
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Figure E.5: The three characteristic planes that can be focused on with the
help of a polarizing microscope as described in the text. Left: upper plane;
center: middle plane; right: lower plane. The distance between the upper
and middle plane, and between the middle and lower plane, was 21 ± 1 µm,
respectively.

tures could be visualized at the exact center plane of the microslide and a
few micrometers above and below, respectively. They are illustrated by the
three pictures in Fig. E.5, and they can be obtained by orienting the long
axis of the microslide parallel or perpendicular to the analyzer.

As we have observed, there are many factors which affect the growth
of the PFCs. Investigating the samples that had been prepared by adding
different small amounts of material showing the phase L3 to material in
the lamellar phase, we found that an increase of the portion taken from
the phase L3 during sample preparation leads to a faster development of the
pseudoisotropy. However, smallest amounts of material taken from the phase
L3 were sufficient in order to observe the formation of the PFC textures.

Pentanol proved to be an appropriate cosurfactant like hexanol to form
PFCs. When filled into microslides, the PFCs align themselves in a most
perfect order when the weight ratio of cosurfactant and hydrocarbon was
roughly 1 : 1 in the two-phase-region. The lamellar phases of the samples in
this boundary area display the lowest viscosity and the lowest elastic moduli
of all samples in the lamellar region.

An additional factor influencing the order and the propagation speed of
the PFCs, is the quality of the sealing of the microslides. An improved sealing
adds to a slow nebula propagation and a better order of the system.

Well developed patterns are very long transients in time. Mostly, they
remain nearly unaltered for days or weeks, or even longer. Very slow move-
ments of flow within the samples could be detected. Flows within the entire
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Figure E.6: Strain deformation of the PFC patterns a long time after for-
mation. The characteristic squares of the previous pattern are continuously
deformed to rhombi.

samples arise. The flow can be obstructed by defects in the texture such as
bubbles. Thus distortions of the patterns are generated. It could be demon-
strated that such distortions lead to the formation of a new rhombic lattice
of a different symmetry: the 90◦ angle of the square corners of the previous
undistorted pattern changes to a 60◦ angle as depicted in Fig. E.6. It is
interesting to note that during this process the distinction of the three focal
layers mentioned above disappears.

Finally, a transition to hexagonal structures could be observed. In par-
ticular, this was the case for samples that were predominantly composed of
material showing the phase L3 during sample preparation. Clearly, more
investigations are necessary in order to further clarify this point.
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Figure E.7: Structure of the arranged parabolic focal conics, corresponding
to the pattern depicted in Fig. E.5. Parabolae that open towards the reader
in Fig. E.5 appear dark, the ones opening away from the reader in Fig. E.5
appear bright.

E.4 Discussion

Based on the experimental data presented in the last section and as already
done in the previous sections, it is quite reasonable to interpret the inves-
tigated patterns as an array of ordered focal conical structures. The high
symmetry of the patterns in all three dimensions, which is illustrated for
example by Figs. E.2 and E.5, suggests that parabolic focal conics (PFCs)
were observed. A model picture which corresponds to the array observed in
Fig. E.5 is presented in Fig. E.7.

One single PFC consists of a pair of parabolae that can be parameter-
ized in the following way: referring to Fig. E.5, we choose the z-axis of our
Cartesian coordinate system such that it is pointing out of the plane towards
the reader. The x- and y-axes are oriented in diagonal directions within the
plane, following the bright arms of the crosses. In Fig. E.8 we have illus-
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Figure E.8: Choice of the coordinate system in order to parameterize the
pair of parabolae of one single PFC in Fig. E.5. The middle plane, which
corresponds to the plane focused on in the center of Fig. E.5, is also indicated.

trated this choice of the coordinate frame, and we have also indicated the
middle plane focused on in the center of Fig. E.5. We choose the origin of
the coordinate system within the middle plane such that for the inspected
single PFC the focal points of both parabolae can be found on the z-axis.
The parabola which opens towards the reader in Fig. E.5 (dark in Fig. E.8)
may then be parameterized by

z = − f

2
+

1

4f
x2, y = 0, (E.1)

and the parabola that opens away from the reader in Fig. E.5 (bright in
Fig. E.8) can be parameterized by

z = +
f

2
− 1

4f
y2, x = 0, (E.2)

f denoting the focal length of the parabolae.
The single PFCs are then arranged in a quadratic array in the way de-

picted by Fig. E.7. At each of the central points of the sharp crosses in the
left picture of Fig. E.5, four of the parabolae opened towards the reader meet
(dark in Fig. E.7). These points can be put into the focus of the microscope



160 E. Highly ordered patterns of PFCs in lamellar lyotropic systems

Figure E.9: Linear relationship between the characteristic lengths of D and
H of the PFCs, as introduced in the text. Each data point represents the
size of the PFCs in the respective sample investigated.

as was done in this picture. Between the sharp crosses, blurred crosses are ob-
served, which however turn sharp on turning to the right picture of Fig. E.5.
On the contrary, the sharp crosses of the left picture appear blurred in the
right one. So we expect that on turning to the right picture, we put into the
focus of the microscope the points where four of the parabolae opening away
from the reader meet (bright in Fig. E.7). Focusing the plane in between, the
intersecting points of both kinds of crosses become equally blurred (picture
in the middle of Fig. E.5).

This concept is corroborated by the following analysis. The total height
H of the PFC structure can be measured. In Fig. E.5 it equals the distance
between the two focal planes on the left and on the right. In addition, within
these focal planes, the opening distance D of one parabola (measuring the
distance between the points where four parabolae meet) can be determined
for each array of PFCs.

For various samples of the four different microslide thicknesses of 0.1 mm,
0.2 mm, 0.3 mm, and 0.4 mm, the total height H and the opening distance D
of a relaxed PFC structure have been measured. The results are presented in
Fig. E.9, which shows H as a function of D and suggests a linear relationship
between the two lengths. This means that also the focal length f must
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increase linearly with the opening distance D. f can be calculated from
Eqs. (E.1) and (E.2) as

f = − H

2
+

1

2

√

H2 +
1

2
D2, (E.3)

and we find values of f ≈ 0.7 − 4.7 µm for the samples investigated.

We conclude from our results that for the systems under consideration
there exists only one characteristic ratio for the values of lengths involved:
H/D ≈ 1.60, or f/D ≈ 0.07, respectively. From this fact, we further con-
clude that the energy of the defect structure is minimized for these special
values of the ratios, irrespective of the actual size of the underlying PFC
structure. The pattern can scale in size only isotropically, and the knowl-
edge of the value of one characteristic length determines the appearance of
the whole structure.

Next, we want to address the issue of how the PFC structure is embed-
ded in the surrounding texture. As we have described above, the PFCs form
in the middle region distant from the upper and lower glassy boundary of
the respective microslide. On the upper and lower glass surfaces of the mi-
croslides, homeotropic alignment prevails in the lamellar phase Lα. Thus, a
lyotropic solution tends to orient its lamellae parallel to the glass surfaces.

On the other hand, the optical investigations of the samples indicate that
the parabolic defect lines of the PFC structure end at least very close to the
points where four of the parabolae meet. Above the upper and below the
lower plane focused on in the left and right part of Fig. E.5, respectively,
a crossover from the PFC to the lamellar structure then must occur. By
construction, the arrangement of the layers becomes more and more planar
with increasing distance from the middle plane of the PFC texture, so that
a rather smooth crossover from a PFC structure to planar layers becomes
possible far away from the middle plane.

However, above and below the points where the parabolae meet, respec-
tively, some irregularities in the layer structure must occur. The appearance
of focal defect lines that end on air surfaces – or on glass surfaces with
homeotropic boundary conditions – has been discussed in the literature, pre-
dominantly for smectic A liquid crystals (see, e.g., Refs. [87] and [93]). It
has been observed and suggested that some kind of dips occur in the layer
structure at the ending points of the defect lines. We expect a similar be-
havior above and below the points where the parabolae meet, and we can
think of two different scenarios. On the one hand, there may be a smooth
crossover from the PFC to a planar texture by variations of the concentra-
tions and thus of the layer thickness in the regions where the dips in the
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layer structure are expected to appear. On the other hand, filling additional
space by material in the state L3, the PFC texture can be embedded in the
surrounding geometry. However, we were not able to distinguish between
these two scenarios on the basis of our experimental results.

Of course, already the assumption of a focal conical domain structure of
incompressible layers is an idealization. It has been shown for smectic A
focal conics that, in particular close to the singular lines of the structure,
the assumption of constant layer thickness does not hold [94]. However, the
picture of the ideal focal conical structure has turned out to be very useful
for the interpretation of many experimental results. For most of the coarse-
grained discussion presented, the influence of a finite compressional layer
modulus and thus the deviation from an ideal focal conical domain structure
can be neglected.

There remains the question of how the PFC defect structure is formed.
From the investigation of smectic A liquid crystalline phases the following
results are known: stretching an oriented sample of a smectic A liquid crystal
parallel to the smectic layer normal, there emerges an undulatory instability
at a critical dilation [7,91,92]. Forming these undulations, the system can fill
the additional space, avoiding as far as possible the energetically expensive
dilation of the layers. When the sample is stretched further, there exists the
possibility that a second critical point is approached. If this point is crossed,
PFC structures can be observed [82]. Simple geometrical considerations show
that forming a PFC structure leads to an extension of the system in the
direction of dilation by a distance equal to the focal length f , when compared
to the undisturbed ground state. Thus forming the PFC structure seems to
be an effective way in order to relax the mechanical stress.

We interpret the appearance of the PFCs in our system taking into ac-
count these observations. As has been described in section E.3, the sealing
of the microslides does not completely suppress the fractional loss of the
included solution. Especially the hydrocarbons have been shown to slowly
evaporate through the sealing. This drives the convection within the sample
as has been explained for instance on the basis of Fig. E.1. Due to the result-
ing loss of mass, the system is effectively dilated, which forces the formation
of the PFCs.

For microslides of a thickness of 0.2 mm, we measured the overall loss of
mass of some of the samples as a function of time. In addition, we measured
the loss of mass of sealed 0.2 mm microslides, containing only one of the pure
components, respectively, as shown in Fig. E.3. Together with the known
densities of the pure components we have then inferred the effective loss of
volume ∆V in the samples. Finally, as a crude estimate, we have related the
focal length f , the thickness d of the microslide, the loss of volume ∆V , and
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the overall volume V of the microslide by

2f

d
=

∆V

V
, (E.4)

where we follow the ideas outlined above. During that period after sealing
the microslides in which PFCs could be observed, the values of f obtained
from Eq. (E.4) amount to f ≈ 2 − 10 µm. On the other hand, the values
of f determined with the help of Eq. (E.3) by measuring the dimensions of
the PFCs with the polarizing microscope were f ≈ 0.8− 2.5 µm. As the loss
of volume ∆V is partly compensated by air bubbles in the microslide, the
values obtained for f in the two different ways are comparable to each other.
This underlines our scenario of analysis of the observed patterns.

The above mentioned investigations on the separate diffusion of the com-
ponents through the sealings of the microslides revealed that the loss of
material is dominated by the escape of decane, as demonstrated by Fig. E.3.
More exactly, the loss of decane by weight is more than 10 times larger than
that of water, and 5−10 times larger than that of hexanol, which changes the
composition of our system. It has been demonstrated that a change in the
composition of surfactant solutions can qualitatively influence their macro-
scopic behavior [95]. Varying the modulus of curvature may even change the
phase present in the system [96]. However, in our case, a change of the phase
in which the respective solution appears has not been observed. We find the
reason for this behavior in the phase diagram Fig. E.4. The dominance of the
loss of decane secures that for the observed overall loss of mass the system
remains in the two-phase region which is indicated as “isotropic/lamellar”.
This is the region in which the PFC structures form. To be sure, we deter-
mined the boundaries between the regions “lamellar”, “isotropic/lamellar”,
and “isotropic” in the phase diagram once more with higher precision than
the one used in order to acquire Fig. E.4. However, we roughly found the
same positions for these boundaries.

Finally, we want to discuss the role of the flow in our samples. In section
E.3, we have described the process of formation of the PFC texture. There,
we have noted that a macroscopic flow can be observed which is directed
towards the sealing of the microslides. A lot of work has already been per-
formed in order to investigate the behavior of thermotropic and lyotropic
lamellar phases exposed to macroscopic flow. In particular, the relations be-
tween macroscopic shear flows and mesoscopic structures have drawn a lot
of attention [97, 98]. It has been noted in this context that the behavior
of thermotropic smectic A liquid crystals and lyotropic systems can be very
different. Shear flow enhances and suppresses fluctuations in the arrange-
ment of the layers differently in thermotropic smectic A liquid crystals and
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surfactant solutions, because in the latter case local variations of the con-
centration can play a crucial role [99]. In addition, thermotropic smectic A
liquid crystals can show non-Newtonian behavior of varying viscosity already
at low shear rates, where the formation of multilamellar cylinders elongated
in flow direction has been observed [100]. On the contrary, lyotropic systems
usually react to low shear rates in a Newtonian way with a constant viscosity,
having the layers oriented parallel to the shearing surfaces. When the total
shear flow is increased by either controlling the shear rate or the amplitude
of the shear stress, the formation of multilamellar vesicles can take place
in various lyotropic systems. The latter include solutions that contain the
ionic surfactant SDS [95,101,102]. In certain systems multilamellar cylinders
oriented with their axis parallel to the flow direction can be identified as an
intermediate state, before the vesicle formation occurs [103]. For high shear
rates, a transition to planar layers oriented perpendicular or again parallel
to the shear plates could be detected in various systems [95,97, 98, 101].

As mentioned above, the flow observed in our samples results from the
evaporation at the ends of the microslides. Naturally, shear deformation
is also involved in this motion. Due to the low velocity of this flow, the
planar alignment of the layers near the surfaces of the microslides agrees well
with the experimental findings for low shear rates summarized before. The
formation of the PFC texture around the middle plane of the microslides,
however, seems to be mainly related to another aspect. We think that here
the procedure of effective dilation due to evaporation plays a major role.

A good test of our explanation for the formation of the PFC structures
would of course be a mechanical control experiment. During this experiment,
the samples should be mechanically stretched by increasing the distance be-
tween the boundary plates, whereas evaporation of the components should
be avoided. Then, if the boundaries are moved slowly enough, similar pat-
terns should form. Such an experiment, however, was beyond the scope of
our work.

E.5 Conclusions

In this appendix, we have described and analyzed our investigations on the
highly ordered patterns that we observed in lamellar lyotropic systems. From
the signature of their optical appearance and the high symmetry in all three
dimensions we conclude that PFCs determine the underlying structure of
these patterns. Measuring the characteristic lengths of the pattern for dif-
ferent samples we found that the height of the PFCs and the focal length of
the parabolae scaled linearly with their lateral extensions. This supports the
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idea that there exists one energetically favored defect pattern, which adjusts
to the overall size of the sample by varying only one independent length scale.
Finally, we have given an explanation for the origin of the formation of the
observed patterns. We suggest that the system is effectively dilated, and we
have supported this picture by relating the corresponding loss of mass to the
focal length of the PFC structure.
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