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Abstract

Using standard preferences for asset pricing has not been very suc-
cessful in matching asset price characteristics such as the risk-free in-
terest rate, equity premium and the Sharpe ratio to time series data.
Behavioral finance has recently proposed more realistic preferences
such as those with loss aversion. Research is starting to explore the
implications of behaviorally founded preferences for asset price charac-
teristics. Encouraged by some studies of Benartzki and Thaler (1995)
and Barberis et al. (2001) we study asset pricing with loss aversion
in a production economy. Here, we employ a stochastic growth model
and use a stochastic version of a dynamic programming method with
adaptive grid scheme to compute the above mentioned asset price char-
acteristics of a model with loss aversion in preferences. As our results
show using loss aversion we get considerably better results than one
obtains from pure consumption-based asset pricing models including
the habit formation variant.
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1 Introduction

Consumption based asset pricing models with time separable preferences,
such as power utility, have been shown to encounter serious difficulties in
matching financial market characteristics such as the risk-free interest rate,
the equity premium and the Sharpe ratio with time series data. In those
models, even if the coefficient of relative risk aversion in the power utility
function, is significantly raised, neither the risk free rate nor the mean equity
premium and Sharpe ratio fit the observed data. The former is usually too
high and the latter two are much too low in the model when compared to
the data.

One important concern has been that asset pricing models have often
used models with exogenous dividend streams.1 The difficulties of matching
stylized financial statistics may have come from the fact that consumption
was not endogenized. There is a tradition in asset pricing that is based on
the stochastic growth model which endogenizes consumption, see Brock and
Mirman (1972) and Brock (1979, 1982). The Brock approach extends the
asset pricing strategy beyond endowment economies to economies that have
endogenous state variables including capital stocks that are used in produc-
tion. Authors, building on this tradition,2 have argued that how consumption
is endogenized is crucial. In stochastic growth models the randomness occurs
to the production function of firms and consumption and dividends are de-
rived endogenously. Yet, models with production have turned out to be even
less successful. Given a production shock, consumption can be smoothed
through savings and, thus, asset market features are even harder to match.3

Recent developments in asset pricing have focused attention on extensions
of intertemporal models, conjecturing that the difficulties in matching real
and financial time series characteristics may be related to the simple structure
of the basic model. In order to better match the asset price characteristics of
the model to the data, economic research has explored numerous extensions of
the baseline stochastic growth model.4 An enormous effort has been invested
into models with time non-separable preferences5, such as habit formation

1Those models originate in Lucas (1978) and Breeden (1979) for example.
2See Rouwenhorst (1995, Akdeniz and Dechert (1997), Jerman (1998), Boldrin, Christiano
and Fisher (2001), Lettau and Uhlig (1999) and Hansen and Sargent (2002), the latter in
a linear-quadratic economy. The Brock model has also been used to evaluate the effect
of corporate income tax on asset prices, see McGrattan and Prescott (2001).

3For a recent account of the gap between such models and facts, see Boldrin, Christiano
and Fisher (2001), Cochrane (2001, ch. 21), Lettau and Gong and Semmler (2001).

4For detailed studies of those extensions see, for example, Campbell and Cochrane (2000),
Jerman (1998), Boldrin, Christiano and Fisher (2001) and Cochrane (2001, ch. 21).

5For an extensive exploration of the role of preferences for asset pricing, see Backus et al.
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models, which allow for adjacent complementarity in consumption. This type
of habit specification gives rise to time non-separable preferences and time
varying risk aversion. The risk aversion falls with rising surplus consumption
and the reverse holds for falling surplus consumption. A high volatility in the
surplus consumption will lead to a high volatility in the growth of marginal
utility and thus to a high volatility in the stochastic discount factor.

Such habit persistence was introduced in asset pricing models by Con-
stantinides (1990) in order to account for high equity premia. Asset pricing
models along this line have been further explored by Campbell and Cochrane
(2000), Jerman (1998) and Boldrin et al. (2001). As the literature has
demonstrated 6 one needs not only habit formation but also adjustment costs
of investment in order to reduce the elasticity of the supply of capital to gen-
erate higher equity premium and Sharpe ratio. Yet, a habit formation models
can only slightly improve the equity premium and Sharpe ratio. It also does
not generate enough co-variance of consumption growth with asset returns
so as to match the data.7

Current research has focused on prospect theory which moves away from
consumption based asset pricing models. The new strategy is to look for the
impact of wealth fluctuation on the households’ welfare. Here then decision
on a portfolio is impacted by both preferences over a consumption stream as
well as by changes in financial wealth. In the preferences there will be thus
an extra term representing the change of wealth. Furthermore, as prospect
theory has taught us, an investor may be much more sensitive to losses
than to gains. This is known as loss aversion. Loss aversion, in particular,
seems to hold if there have been prior losses already. By extending the asset
pricing model in this direction one does not need to raise the co-variance of
consumption growth and asset returns, a feature not found in the data.8

Not only low variance of consumption growth, but a higher mean and
volatility of asset returns, might be achieved by a time varying risk aversion
arising from the fluctuation of asset value. The idea is that after an asset
price boom the agents may become less risk averse because their gains may
dominate any fear of losses. On the other hand, after an asset price fall the
agents become more cautious and more risk averse. This way, the variation
of risk aversion would allow the asset returns to be more volatile than the
underlying pay-offs, the dividend payments, a property that Shiller (1991)
has studied extensively. Generous dividend payments and an asset price
boom makes the investor less risk averse and drives the asset price still higher.

(2004).
6See Jerman (1998), and Boldrin et al. (2001)
7For details, see Grüne and Semmler (2006).
8See Semmler (2003, ch. 9)
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The reverse can be predicted to happen if large losses occur. This may give
rise to some waves of optimism and pessimism and associated asset price
movements.

Habit formation models attempt to increase the equity premium and
Sharpe ratio by constructing a time varying risk aversion arising from the
change of consumption. Loss aversion models do not rely on surplus con-
sumption, as in the habit formation model, but rather on the fluctuation in
asset value affecting the stochastic discount factor. This is likely to produce
a substantial equity premium and Sharpe ratio, high volatility of returns, yet
it allows for a low co-variance of the growth rate of consumption and asset
returns.

The basic idea of loss aversion as developed in the context of prospect the-
ory goes back to Kahneman and Tversky (1979) and Tversky and Kahneman
(1992). It was further developed for applications in asset pricing by Benartzi
and Thaler (1995), although their work is set in the context of a single period
portfolio decision model. Barberis et al. (2001) have extended it to an in-
tertemporal model of an endowment economy.9 Yet, without the asymmetry
in gains and losses, whereby prior losses will play an important role, the risk
aversion will be constant over time and the theory cannot contribute to the
explanation of the equity premium.10

The most interesting feature of the loss aversion model, the feedback effect
of asset value – and changes of wealth – on preferences on the one hand, and
the choice of consumption path on asset value, on the other hand, creates
a complicated stochastic dynamic optimization problem that we propose to
be solved by a dynamic programming algorithm as presented in Grüne and
Semmler (2004).

Since the accuracy of the solution method is an intricate issue for mod-
els with more complicated decision structure, confidence in the accuracy of
the solution method when solving such models is essential. In Grüne and
Semmler (2004, 2007) a stochastic dynamic programming method with flex-
ible grid size is used to solve such models. In that method an efficient and
reliable local error estimation is undertaken and used as a basis for a local
refinement of the grid in order to deal with regions of steep slopes or other
non-smooth properties of the value function (such as non-differentiability).
This procedure allows for a global dynamic analysis of deterministic as well
as stochastic intertemporal decision problems. 11 This dynamic program-

9Further important literature along this line is Thaler et al. (1997), Barberis and Huang
(2003), Barberis et al. (2004a,b), Barberis and Thaler (2003).

10As has been pointed out by a referee the model without asymmetry can still generate a
high Sharpe ratio.

11For deterministic versions of this paper, see Grüne (1997), Santos and Vigo–Aguiar
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ming method is used in this paper. A model of loss aversion, as proposed by
Benartzi and Thaler (1995) and Barberis et al. (2001), is reformulated for a
production economy and numerically solved.

The paper is organized as follows. Section 2 presents the model. Section
3 illustrates the expected results in a simpler setting. Section 4 introduces
the stochastic dynamic programming algorithm. Section 5 studies our model
of loss aversion and reports numerical results. Section 6 evaluates the results
in the context of other recent asset pricing models with production. Section
7 concludes the paper. The appendix presents the details of the algorithm
used in this paper.

2 The Asset Pricing Model with Loss Aver-

sion

In order to formalize the new idea on asset pricing we may follow Barberis
et al. (2001) and specify the following preference

E

[
∞∑

t=0

(
ρt C1−γ

t

1− γ
+ btρ

t+1ν(Xt+1, St, zt)

)]
(1)

The first term in equ. (1) represents, as usual, the utility over consump-
tion, using power utility, ρ is the discount factor and γ, the parameter of

relative risk aversion. For γ = 1 we replace
C1−γ

t

1−γ
by the log–utility ln Ct.

The second term captures the effect of the change of the value of risky asset
on the agent’s welfare. More precisely it represents the value of risky assets.
Hereby Xt+1 is the change of wealth relative to a benchmark and St, the
value of the agent’s risky assets. Finally, we want to note that zt is a vari-
able, measuring the agent’s gains or losses prior to period t as fraction of St.
The variables St and zt express the way of how the agent has experienced
gains or losses in the past affecting his or her willingness to take risk.

In particular it is presumed that

Xt+1 = StRt+1 − StRf,t (2)

which means that the gain or loss StRt, with Rt the risky return, Rf,t the
risk free return, is measured relative to a return StRf,t from a risk-free asset
which serves as benchmark. The difference Rt −Rf,t can be positive, zero or
negative and the variable zt can be greater, equal or smaller than one, with

(1998), and Grüne and Semmler (2004).
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ν(Xt+1, St, zt) =



Xt+1, Rt+1 ≥ ztRf,t and zt ≤ 1

St(ztRf,t −Rf,t)

+λSt(Rt+1 − ztRf,t),
Rt+1 < ztRf,t and zt ≤ 1

Xt+1 Rt+1 ≥ Rf,t and zt > 1

λ̂(zt)Xt+1 Rt+1 < Rf,t and zt ≤ 1

(3)

with λ ≥ 1 and

λ̂(zt) = λ + k(zt − 1) (4)

expressing the fact that a loss is more severe than a gain with k > 0, and

zt+1 = ηzt
R

Rt+1

+ (1− η) (5)

with η ∈ [0, 1] and R a fixed parameter which is chosen to be the long
time average of the asset return. Moreover, it is presumed that

bt = b0C̃
−γ
t (6)

with b0, a scaling factor, and C̃t some aggregate consumption which will
be specified below, so that the price-dividend ratio and the risky asset pre-
mium remain stationary. Hereby b0 is an important parameter indicating
the relevance that financial wealth has in utility gains or losses relative to
consumption. In case b0 = 0, we recover the consumption based asset pricing
model with power utility.

Barberis et al. (2001) employ such a model of loss aversion and asset
pricing to two stochastic variants of an endowment economy without produc-
tion. In their model variant there is only one stochastic pay-off for the asset
holder, a stochastic dividend, whereby dividend pay-offs are always equal
to consumption. In their second model variant dividends and consumption
follow different stochastic processes.

From the agent’s Euler equation for the optimality of the equilibrium,
Barberis et al. (2001) obtain a characterization of the risk-free rate, Rf,t,
given by

1 = Rf,tρEt

[
(C̃t+1/C̃t)

−γ
]

(7)

Let us define
mf,t+1 = ρ(C̃t+1/C̃t)

−γ.
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The risk free rate then is

Rf,t = 1/Et[mf,t+1]

which coincides with the stochastic discount factor for the consumption
based model, see Cochrane (2001, sect. 1.2). The stochastic discount factor
for risky asset in the context of the loss aversion model is

1 = ρEt

[
Rt+1(C̃t+1/C̃t)

−γ
]

+ b0ρEt [ν̂(Rt+1, zt)] (8)

with

ν̂(Rt+1, zt) =


Rt+1 −Rf,t, Rt+1 ≥ ztRf,t and zt ≤ 1
(zt − 1)Rf,t + λ(Rt+1 − ztRf,t), Rt+1 < ztRf,t and zt ≤ 1
Rt+1 −Rf,t, Rt+1 ≥ Rf,t and zt > 1

λ̂(zt)(Rt+1 −Rf,t), Rt+1 < Rf,t and zt > 1
(9)

As compared to (7), equ. (8) has two terms. The first term is obtained
from consumption based asset pricing and is also found in (7). The second
term expresses the fact that if the agent consumes less today and invests in
risky assets the agent is exposed to the risk of greater losses, a risk that is
represented by the state variable zt.

In order to derive a stochastic discount factor from (8), observe that the
definition of ν̂ in (9) implies that (8) can be rewritten as

1 = Et

[
ρ

((
C̃t+1/C̃t

)−γ

+ b0α1

)
Rt+1 − ρb0α2Rf,t

]
with α1 and α2 given by

α1 = 1, α2 = 1 for Rt+1 ≥ ztRf,t and zt ≤ 1
α1 = λ, α2 = (λ− 1)zt + 1 for Rt+1 < ztRf,t and zt ≤ 1
α1 = 1, α2 = 1 for Rt+1 ≥ Rf,t and zt > 1

α1 = λ̂(zt), α2 = λ̂(zt) for Rt+1 < Rf,t and zt > 1

(10)

Since this equation is affinely linear in Rf,t, we can further rewrite it as

1 + ρb0Et[α2]Rf,t = Et

[(
ρ
(
C̃t+1/C̃t

)−γ

+ b0α1

)
Rt+1

]
(11)

Now, using the equation

Rt+1 =
Pt+1 + Dt+1

Pt

(12)
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for the risky return with Pt denoting the asset price and Dt the dividend,
which we chose equal to C̃t in our model and plugging this equation into (11)
we obtain

Pt = Et

ρ
(
C̃t+1/C̃t

)−γ

+ ρb0α1

1 + ρb0Et[α2]Rf,t︸ ︷︷ ︸
=mt+1

(C̃t+1 + Pt+1)

 (13)

Note, again, that for b0 = 0 this equation coincides with the stochastic
discount factor for the consumption based model, see Cochrane (2001, sect.
1.2) Note, however, that for b0 6= 0, in contrast to the consumption based
case the stochastic discount factor depends on Rt+1,

12 which in turn depends
on Pt+1. Thus, the right hand side of (10) becomes nonlinear and even
discontinuous in Pt+1.

In order to generate the consumption C̃t, we use the basic growth model
from Brock and Mirman (1972). This amounts to choosing C̃t to be the
optimal control of the problem13

max
C̃t

E

(
∞∑

t=0

ρt C̃1−γ
t

1− γ

)
(14)

subject to the dynamics

kt+1 = ytAkα
t − C̃t (15)

ln yt+1 = σ ln yt + εt (16)

with k the capital stock, g the stochastic shock to output, and εt being i.i.d.
random variables. Here γ is the same as in (1) and as there we replace the
utility function by log–utility ln C̃t for γ = 1. In this case, i.e. for log–utility,
the optimal consumption policy is known and is given by

C̃(kt, yt) = (1− αρ)Aytk
α
t . (17)

For γ 6= 1 we compute C̃t numerically.
For this model we want to compute a number of financial measures: the

risk free interest rate Rf,t, the equity return Rt+1, the stochastic discount

12See equ. (11) where it is visible that Rt+1 relative to the risk free rate impacts the
stochastic discount factor in equ. (12).

13Note that we start with the subsequent utility functional in order to generate a con-
sumption stream to be used as part of the stochastic discount factor in equ. (13).
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factor mt+1 as well as mf,t+1, all of which are specified above. In addition we
will compute the Sharpe Ratio given by14

SR =

∣∣∣∣E(Rt+1)− E(Rf,t)

σ(Rt+1)

∣∣∣∣ . (18)

Next, in a simplified set up we want to illustrate the link between loss
aversion and the stochastic discount factor.

3 Intuitions from the Loss Aversion Model

The essential point in loss aversion theory is that it de-links asset returns from
consumption growth and gains and losses in asset value have a significant
impact on the stochastic discount factor (SDF). This comes to the forefront
if one compares the SDF from the loss aversion theory to the SDF based
consumption based asset pricing. As one can observe from equ. (13) the
SDF, derived from loss aversion, encompasses the SDF from consumption
based asset pricing. If we set the parameter in equ. (13) to b0 = 0, the
latter case is recovered from the former. Some intuitions on asset pricing,
implied by the SDF of equ. (10) can be best spelled out if we view equ. (10)
simply as model that allows for gains and losses in consecutive periods. Using
some benchmark parameters – which we will also employ in our intertemporal
infinite horizon version of sect. 5 – we can define the asset price characteristics
that one might expect from the loss aversion model. As parameters we
presume ρ = 0.99, λ = 7.5, k = 3, Rf,t = 1.03 and for b0 = {0, 0.3, 1, 3} We
study the four cases as stated in (10); Case 1: no current gain, no prior loss;
Case 2: current loss, prior gain; Case 3: current gain, prior loss; Case 4:
current loss, prior loss.

We take Rt+1 as a constant for each case but vary it across the cases. In
studying the four cases we use the above parameters in equs. (4), (5) and
equ. (10).

14See Cochrane (2001)
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b0 = 0 b0 = 0.3 b0 = 1 b0 = 3
Case 1
(no current gains, 0.99 0.98557 0.98034 0.97558
no prior loss)
Case 2
(current loss, 0.99 0.97726 0.97383 0.97248
prior gain)
Case 3
(current gain 0.99 0.98552 0.98034 0.97558
prior loss
Case 4
(current loss, 0.99 0.97652 0.97300 0.97164
prior loss)

Table 1: Stochastic discount factor for varying b0

In table 1 we have employed the expected value of the SDF for the con-
sumption based asset pricing model (fixed at 0.99 and obtained by setting
b0 = 0). As one can observe from table 1, for all b0 > 0 the SDF is lower
than for b0 = 0, the benchmark case. Moreover, as one would expect the
SDF decreases with increasing b0. The greater b0 is, the more current and
past gains and losses exert their influence on the SDF.

Moreover, as current and past losses are allowed to enter the SDF, one
can observe that the SDF falls. One can see this by moving down from case
1 to case 4, except that the SDF is the same for case 1 and case 3. The latter
result comes from the fact that, for reason of simplicity, we have assumed
that case 1 represents a break-even case. In our computation this is presumed
to give the same outcome as case 3 (current gain, prior loss).

Table 1 and the asset pricing equation (13) capture the varying loss aver-
sion and its impact on the stochastic discount factor mt+1. This can help us
intuitively understand the impact of loss aversion on asset pricing character-
istics. In pursuing this, we note, that in table 1 we assume that the discount
factor will vary only due to gains and losses in asset value. The effects of
stochastic shocks on the growth rates of marginal utility are left aside. Given
this simplification we can state the following

• Asset prices and returns are likely to be more volatile than dividend
payments when the discount factor varies due to gains and losses in the
investor’s asset value affecting the loss aversion.

• Investors’ loss aversion depend on past investment performance and is
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thus state dependent. Switching from bull to bear positions in asset
markets is thus endogenous. Loss aversion increases when investors ex-
perience current loss in addition to a prior loss.15 When, subsequently,
the investors increase the degree of loss aversion the discount factor
falls and asset prices move down – and may stay down16.

• As the loss aversion varies over time, following the experience of current
and prior gains and losses, so the risk premium for risky assets expected
to vary over time.

• Investors’ loss aversion, as formulated in the cases (1) - (4) in equ. (10),
predicts substantial equity premia of risky assets. This is also exhibited
in table 1. It is observable that the discount factor is lowest for the
highest b0 = 0. Moreover, it decreases as one moves from case 1 to case
4.

• The price-dividend ratio is expected to be mean reverting. 17 It has
been found to be a good predictor for stock price movements. Loss
aversion theory captures this feature.18 During a bull market the dis-
count rate decreases, asset prices rise, the average returns tend to be
lower and, thus, tend to revert to the mean.

• Loss aversion theory predicts a de-linking of consumption growth and
asset returns. Theories of risk aversion using power utility and habit
formation, can increase the equity premium by increasing the risk aver-
sion parameter γ or introducing time varying risk aversion (as in habit
formation models). Yet this creates the puzzle of the risk-free rates
(which rises too) when γ rises.

We note that this section is included to help understand some asset price
characteristics by referring to a rather simplified theory of loss aversion and
its impact on the discount factor. An extended version of a loss aversion
model could presume further asymmetric effects of gains and losses on the
value function. In Tversky and Kahneman (1992) the value function is con-
cave in gains and convex in losses. This is achieved by introducing an ex-
ponent for gains and losses. Because of the difficulties in deriving an asset

15Keynes (1936, ch. 17) extensively discusses this case, in the ”General Theory”, however,
with respect to the risk-free rate and long bonds.

16For example, if case 3 becomes case 4.
17For classic studies on this point, see Campbell and Shiller (1988) and Fama and French

(1988) who predict a positive autocorrelation for the short horizon but a negative one
for the long horizon.

18For details see Barberis et al. (2001: 26)
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pricing equation such as equ. (13) and the SDF, denoted there as mt+1, we
keep the exponent equal to one as Barberis et al (2001). These same dif-
ficulties arise from an endogenous degree of loss aversion whereby the loss
aversion could be allowed to vary with the size of the loss.19 In fact, it is
expected that introducing an endogenous degree of loss aversion would even
accentuate our result since the SDF would fluctuate even more. For example,
switching from b0 = 0.3 to b0 = 3 accentuates the discount factor and thus
the asset price movements and the risk premium. Yet, given the computa-
tional complexity of such an extended version, we will stay with a rather
simple benchmark model to explore a loss aversion model with production.

4 Solving the Model through Stochastic Dy-

namic Programming

Next we briefly sketch the algorithm that is used to solve our proposed model
of loss aversion with production, for details see the appendix. Our approach
is a stochastic dynamic programming method using the risk free rate and the
stochastic discount factors from the previous section. More precisely, using
the state vector

xt = (kt, ln yt, zt),

the equations (15), (16) and (5) for kt+1, ln yt+1 and zt+1 define dynamics for
xt which we can write consisely as

xt+1 = ϕ(xt, C̃t, εt).

Now using Bellman’s optimality principle the optimal value function V of
the problem (14) is characterized by

V (x) = max
C̃

Et

[
C̃1−γ

1− γ
+ ρV (ϕ(x, C̃, ε))

]
(19)

which can be used as the basis of our algorithm.
In contrast to other stochastic dynamic programming methods, here the

dynamic programming principle (19) is not sufficient to solve the problem
because the dynamics, ϕ depend not only on the state vector xt, the control
C̃t and the random variable εt, but also on the the risk free interest rate,
Rf,t, and on the risky return Rt+1, i.e., the equations are externally coupled.
Since Rf,t and Rt+1 are, in turn, obtained from stochastic factors and from

19See Frydman and Goldberg (2006).
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the asset price function P , now the crucial observation is that using mf and
m, the values Pt and Rf,t are again characterized by the equations

Rf,t = 1/Et [mf,t+1] (20)

Pt = Et

[
mt+1(C̃t+1 + Pt+1)

]
. (21)

While (20) is explicit, equation (21) is implicit, more precisely it is again
of dynamic programming type and thus needs to be solved iteratively in
conjunction with (19). Due to the fact that the t-dependence in the equations
(19), (20) and (21) is induced by the underlying optimal control problem (14),
which admits an optimal control strategy in feedback form, i.e., C̃t = C̃∗(xt),
the functions V , P and Rf as well as all auxiliary functions can be expressed
as functions in x instead of t. Our numerical approximation now solves the
two dynamic programming equations (19) and (21) simultaneously in order
to obtain the solutions V , P as functions of x. The algorithm, whose details
can be found in the appendix, yields approximations20 of V , C∗, R, and Rf .

Using these values and the dynamics (5), (15) and (16) it is easy to simu-
late approximately optimal solution trajectories xt and evaluate the numeri-
cally computed functions along these trajectories in order to obtain simulated
data for

C∗
t = C∗(xt), Rt+1 = R(xt), and Rf,t = Rf (xt).

For each set of parameters we have used a numerical simulation for t =
0, . . . , 20000 in order to compute the expectations and standard deviations
reported in our tables and from which we computed the Sharpe Ratio ac-
cording to (18).

5 Presentation of the Results

Using the method described in the previous section we have chosen certain
benchmark parameters to be evaluated. For the underlying Brock–Mirman
production model the parameters were chosen as

A = 5, α = 0.34, ρ = 0.99,

Note that in equ. (16), σ is a persistence parameter and our variable in
(16) is a Gaussian distributed random variable with standard deviation σε.
The latter is chosen in such a way as to obtain a standard deviation in

20For our problem one can even find the exact C∗, cf. Grüne and Semmler (2007), which
was used in our computations.
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consumption that is consistent with the literature. Since the volatility of
consumption (and its covariance with the asset return) is typically considered
crucial for asset pricing we will explore a range of the standard deviations
of consumption. We also explore the effect of variation in the persistence
parameter, σ, in equ. (16).

We also study the effect of the loss aversion parameter, b0. With b0 =
0, one can turn the loss aversion model, with the asset price fluctuations,
affecting the stochastic discount factor, into the standard consumption based
asset pricing model working with risk aversion only. We thus expect, as b0

goes to zero, the risk premium and Sharpe ratio to fall. For the loss aversion
model, for b0 > 0, we also explore the role of the asymmetry in gains and
losses on the risk premium and the Sharpe ratio.

Our standard set of parameters are

γ = 1, λ = 7.5 η = 0.9, b0 = 3 and k = 3.

In each of the tables below one of the parameters σ, σε, λ and b0 are varied
in order to study the variation of the financial characteristics with respect
to the parameter. The parameters listed in the caption of the figure indicate
the standard parameters.

In a first set of tests we explore the role of stochastic shocks. Barberis
et al (2001) do not include production in their model. They explore two
variants of a loss aversion model: Model I, where consumption is equal to
dividend payments and another model, Model II, where dividend payments
are correlated to the consumption stream but the former is more volatile
than the latter. In Model I they have an annual σD = σc = 3.79 percent, in
Model II they postulate a σD = 12 percent. In order to come close to their
experiment in our model with production, where consumption is endogenous
but consumption is equal to dividend payments, we explore the volatilities
of dividend flows that are above and below the ones they assume in their
Model II.

Using our first set of parameters, employed for the results in Table 2,
we do not want a strong persistence in the stochastic shocks, represented
by σ in equ. (16). So we choose σ = 0.5. We vary the standard deviation
of the shocks σε in such a way that we obtain various volatilities for the
consumptions stream, one of them similar to the one presumed by Barberis
et al (2001) in their Model II. The results are reported in table 2.
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σε = 0.072 σε = 0.036 σε = 0.0180
E(Rf ) 1.01212 1.01343 1.01290
E(R) 1.02948 1.02037 1.01602
SD(R) 0.1034 0.0441 0.0227
E(R)− E(Rf ) % 1.73603 0.6939 0.3117
annual E(R)− E(Rf ) % 6.9442 2.7756 1.2468
E(c) 4.3600 4.3427 4.3380
SD(c) 0.4558 0.2264 0.1130
SD(c) % 10.4557 5.2137 2.6048
SR 0.1730 0.1575 0.1373
annual SR 0.346 0.3150 0.2746
Cov(m, R) -0.00770 -0.0017 -0.00044

Table 2: Variation of shock σε, with σ = 0.5, λ = 7.5, b0 = 3, k = 3

In all of our tables 2-5, E(Rf ) denotes the expected risk free rate, E(R),
the expected equity return, SD(R), the standard deviation of it, E(R) −
E(Rf ) and annualE(R)−E(Rf ) are the equity premium quarterly and an-
nually respectively, E(c), SD(c), SD(c)% the expected value of consumption,
its absolute and relative standard deviation, SR, the Sharpe ratio, from
the model and annually respectively, and Cov(m, R), the covariance of the
stochastic discount factor with the asset return.21

Our result in the third column of table 2, for the volatility of the con-
sumption with SD(c) = 5.2137% is particularly interesting. It gives roughly
an annual volatility of 10.4%, which is still below the value of Barberis et al
(2001), but the annual equity premium of roughly 2.8 percent and the Sharpe
ratio is 0.32. Both are reasonable values for a model with loss aversion in
a production economy. Correspondingly, a higher volatility of consumption
gives a higher equity premium and Sharpe ratio; lower volatility corresponds
to lower values. Note that in our model with production, which is still kept
simple, consumption is equal to dividend payments.

Table 2, however, shows, in all cases, the Cov(m, R) is very low, indicating
that the consumption correlation with the asset return does not contribute
to the equity premium and Sharpe ratio. Note that here we have b0 = 3;
the effects of the variation of b0 is explored in table 4, where we also can
observe that for the standard consumption based asset pricing model, which
in our model is achieved for b0 = 0, the equity premium disappears and the
Sharpe ratio becomes very small. Next we explore the effects of the variation
of shocks for higher persistence parameter σ of equ. (16).

21For the computation of the annual SR and corresponding data of the US economy, see
table 6, column 5.
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σε = 0.072 σε = 0.036 σε = 0.018
E(Rf ) 1.01375 1.01207 1.01229
E(R) 1.04069 1.02157 1.01629
SD(R) 0.1249 0.0502 0.02389
E(R)− E(Rf ) 2.6939 0.9496 0.3996
annual E(R)− E(Rf ) 10.7766 3.7984 1.5984
E(c) 4.4580 4.3660 4.3440
SD(c) 1.0804 0.5232 0.2594
SD(c)% 24.2307 11.9833 5.9727
SR 0.2156 0.1893 0.1672
annual SR 0.4312 0.3786 0.3354
Cov(m, R) -0.00893 -0.00187 -0.00045

Table 3: Variation of shock σε, with σ = 0.9, λ = 7.5, b0 = 3, k = 3

The results are reported in table 3. Here too, in the case of a larger
persistence parameter for the stochastic shock, σ, in equ. (16), we can observe
that for larger shocks to consumption, see SD(c)%, the equity premium and
Sharpe ratio will also, as in the previous case, correspondingly rise. Note,
that the volatility of consumption in column 2 is very extreme as compared
to the data used by Barberis et al. (2001). Here now the equity premium is
much too high. Overall, in table 3 too we observe a very low covariance of
the stochastic discount factor with asset returns.

Table 4 reports the results on the impact of the variation of b0 on the
financial characteristics of our loss aversion model with production.

b0 = 3 b0 = 1 b0 = 0.1 b0 = 0
σε = 0.036 σε = 0.036 σε = 0.036 σε = 0.036

E(Rf ) 1.01207 1.01207 1.01290 1.01068
E(R) 1.02157 1.0203 1.01068 1.01082
SD(R) 0.0502 0.0486 0.04151 0.03857
E(R)− E(Rf ) 0.9499 0.8231 0.3652 0.0144
annual E(R)− E(Rf ) 3.7996 3.4124 1.4608 0.0576
E(c) 4.3664 4.3664 4.3664 4.3664
SD(c) 0.5234 0.5232 0.5232 0.5232
SD(c)% 11.9833 11.9833 11.9833 11.9833
SR 0.1892 0.1693 0.0879 0.00374
annual SR 0.3784 0.3386 0.1758 0.00748
Cov(m, R) -0.00187 -0.00181 -0.00156 -0.00145

Table 4: Variation of loss aversion b0, with σ = 0.9, λ = 7.5, k = 3
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As table 4 shows, equity premia and Sharpe ratios are higher with higher
b0. This is as one would expect from the intuition laid out in sect. 3 for
the static case. Table 4 shows that if the stochastic discount factor responds
to past gains and losses in asset value, the financial characteristics of the
model are brought closer to the data. On the other hand, with b0 converging
to zero, the effect of the asset price fluctuations on the stochastic discount
factor dissipates and, with the reemergence of the consumption based asset
pricing model, the equity premium and Sharpe ratio disappear (see column
5 of table 4). In this exercise too, one can observe a very low covariance of
the discount factor and the asset return.
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λ = 3 λ = 5 λ = 10 λ = 20
σε = 0.036 σε = 0.036 σε = 0.036 σε = 0.036

E(Rf ) 1.01343 1.01343 1.01343 1.01343
E(R) 1.01724 1.01916 1.02107 1.02320
SD(R) 0.0438 0.04433 0.04382 0.04296
E(R)− E(Rf ) 0.3825 0.5737 0.7647 0.9776
annual E(R)− E(Rf ) 1.5300 2.2948 3.0588 3.9104
E(c) 4.3427 4.3427 4.3427 4.3427
SD(c) 0.2264 0.2264 0.2264 0.2264
SD(c)% 5.2137 5.2137 5.2137 5.2137
SR 0.0872 0.1294 0.1745 0.2275
annual SR 0.1744 0.2588 0.3490 0.4550
Cov(m, R) -0.00170 -0.00171 -0.00169 -0.00166

Table 5: Variation of asymmetry of loss and gains λ, with σ = 0.5, b0 =
3, k = 3

In table 5 we explore the effect of the degree of asymmetry of gains and
losses for asset price characteristics. To be closer to the exercise proposed by
Barberis et al (2001) we here go back to the persistence parameter σ = 0.5
of table 2, which avoids the impact of the strong persistence of shocks on
consumption volatility. Here we also presume σε = 0.036 so that we come
close to what Barberis et al (2001) use as their standard case for the the
volatility of divident payments.22.

As one can observe in table 5, the equity premium and Sharpe ratio rise
with the degree of asymmetry in the weight of losses for the value function as
compared to gains. The larger increases in the equity premium and Sharpe
ratio occur in the range of 3 < λ < 7.5. Since we do not use a nonlinear
loss aversion function as in Kahneman and Tversky (1979) or Tversky and
Kahnemann (1992) which gives more curvature to the value function by using
exponents for the loss part of the value function, 23 the use of a higher λ as
our standard case may be justifiable.

Overall, we stress that the loss aversion model, since it considers the echo
effects of past gains and losses in the stochastic discount factor brings the
financial characteristics of the model closer to the data. Our loss aversion

22Note that they take annual values of σD = 12%
23For a discussion on this point see di Georgi, Hens and Mayer (2006). We want to note

that Barberis et al (2001:42) obtain higher values for the equity premium and Sharpe
ratio for lower values of λ in their Model II, but in their model this comes from the fact
that the k is chosen rather high, namely k = 10, we want to stay with our lower k to
make the result comparable to the other tables.
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model with production yields slightly lower equity premia and Sharpe ratios
than those obtained by Barberis et al. (2001) in their Model II, a result to
be discussed below. Note also, that in our loss aversion model with produc-
tion we have, with the Brock-Mirman model, taken a rather parsimonious
version of a production model. Other advances in asset pricing models such
as models of habit formation and adjustment cost of investment have not
been considered yet in our model.24. It maybe worthwhile interpreting our
results in the context of other recent advances in modelling asset prices in
the context of a production economy. This is undertaken next.

6 Interpretation of the Results

We focus here on recent advances in consumption based asset pricing studies
that include production.25 We, in particular, will restrict ourselves to a com-
parison with the results of habit formation models as proposed and studied
in Boldrin et al. (2001), Jerman (1998) and Grüne and Semmler (2006),
since those are models that include production.

Whereas Boldrin et al. (2001) use a model with log utility for internal
habit, but endogenous labor supply in the household’s preferences, Jerman
studies the asset price implication of a production economy, also with internal
habit formation, but, as in Grüne and Semmler (2006), labor effort is not a
choice variable. In order to allow for some frictions in the model, all three
papers, Boldrin et al. (2001), Jerman (1998) and Grüne and Semmler (2006),
use adjustment costs of investment in a model with habit formation. As has
been shown by Boldrin et al. (2001) habit formation is not sufficient to
obtain proper characteristics of asset prices and returns. Adjustments costs
of investment are needed.

Both, Boldrin et al. and Jerman claim that habit formation models with
adjustment costs can match the financial characteristics of the data. Yet,
both studies have chosen parameters that appear to be conducive to results
which replicate better the financial characteristics such as risk free rate, eq-
uity premium and the Sharpe ratio. In comparison to their parameter choices,
Grüne and Semmler (2006) have chosen parameters that have commonly been
used for stochastic growth models26 and that seem to describe the first and

24Since it is extremely difficult in the context of a loss aversion model to build in the latter
features and to derive the stochastic discount factor we were forced to work with our
simple version.

25For a recent comparison of the relative performance of models with different types of
preferences, see Lettau and Uhlig (2002).

26See Santos and Vigo-Aguiar (1998).
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second moments of the data well. Table 6 reports the parameters and the
results.

Both, the study by Boldrin et al. (2001) and Jerman (1998), have chosen
to set ϕ = 4.05, in the adjustment costs of investment, a very high value which
is at the very upper bound found in the data.27 Since a high parameter ϕ
strongly increases frictions in the fluctuation of the capital stock and makes
the supply of capital very inelastic, Grüne and Semmler (2006) have rather
worked with a ϕ = 0.8 in order to avoid such strong volatility of returns.
Moreover, both papers use a higher parameter for past consumption, b, than
Grüne and Semmler (2006) have chosen. Those parameters increase the
volatility of the stochastic discount factor, a crucial ingredient to raise the
equity premium and the Sharpe ratio.

27See for example, Kim (2002) for a summary of the empirical results reported on ϕ in
empirical studies.
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Boldrin et
al.a)

Jermanb) Grüne et
al. c)

LAP d) US Data e)

b= 0.73-0.9 b= 0.83 b= 0.5
ϕ=4.15 ϕ=4.05 ϕ= 0.8
σ = 0.9 σ = 0.99 σ = 0.9 σ = 0.5
ρ= 0.999 ρ= 0.99 ρ= 0.95 ρ = 0.99
γ= 1 γ= 5 γ= 1 γ= 1
rf = 1.2 rf = 0.81 rf = 24.0 rf = 5.32 rf = 0.8
EP =6.63 EP =6.2 EP =1.32 EP =2.78 EP =6.18
SR= 0.36 SR= 0.33 SR=0.11 SR=0.32 SR=0.35

a) Boldrin et al.(2001) use a model with endogenous labor supply, log utility for habit
formation and adjustment costs. Here, as in the following columns, rf , EP and
SR denote the riskfree rate (in percent), the equity premium and Sharpe ratio
respective. Return data and SR are annualized.

b) Jerman (1998) uses a model with exogenous labor supply, habit formation with
coefficient of RRA of 5, and adjustment costs, annualized data.

c) In Grüne and Semmler (2006) the labor supply is also exogenous. Note that here
the risk-free rate, rf , is high, because the subjective discount factor, ρ = 0.95, is
low (which implies a high subjective discount rate). Return data and the SR are
annualized.

d) LAP stands for our loss aversion model with production, detailed results of various
parameter constellations are reported in sect. 5. We present here the results of the
third column of table 2, which may be taken as representative for the loss aversion
model with production, since it avoids extreme parameter values. Here we have
σ = 0.5 which avoids a high persistence in the technology shock.

e) The following financial characteristics of the data are reported in Jerman (1998).
The data range from 1954.1 to 1990.4. Note that the covariance between consump-
tion growth and asset return with Cov(∆C,R)=0.0027 is low in the data, which
translates also in a low Cov(m,R).

Table 6: Models with Production

Jerman sets the relative risk aversion parameters γ = 5, which also in-
creases the volatility of the discount factor and increases the equity premium
when used for the pricing of assets. Jerman also presumes a much higher
persistence parameter for the technology shocks, a σ = 0.99, from which
one knows that it will make the stochastic discount factor more volatile too.
All in all, both studies have chosen parameters which are known to bias
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the results toward the empirically found financial characteristics.28 Grüne
and Semmler (2006) have chosen a model variant with no endogenous labor
supply. As Lettau and Uhlig (2000) show, this is the most favorable model
for asset pricing in a production economy, since including labor supply as a
choice variable, would even reduce the equity premium and the Sharpe ratio.

One is thus inclined to state that previous studies on habit formation
models with production have not satisfactorily solved the dynamics of asset
prices and the equity premium puzzle. At the heart of the consumption based
asset pricing model, including the habit formation model, is the co-variance
of consumption growth with asset return, which, in the context of that model,
needs to be increased to get a higher equity premium and Sharpe ratio. Yet
as the empirical data show,29 this co-variance is very low.

As compared to models with habit formation, column 4 of table 6 reports
some typical results of the loss aversion model with production. As argued
previously, the model with loss aversion does not have to increase the covari-
ance of consumption with asset returns. As shown above, the proposed loss
aversion model with production includes echo effects from gains and losses in
asset value, which appear in the preferences, producing a time varying loss
aversion, a low risk free rate (with low volatility), a higher equity premium
(with high volatility) and a reasonably high Sharpe ratio. All this holds for
a γ = 1 and thus the risk aversion parameter does not have to be increased
in order to increase the equity premium and Sharpe ratio.

As table 6, column 4, shows, for a discount factor of ρ = 0.98 one obtains
a risk-free interest rate of approximately 5 percent which is still high as
compared to the data. The equity premium, if we take the case as reported
in table 6, column 4, as representing the loss aversion model, is still too
low. But the tables 2 to 5 have shown results from different parameter
constellations which are significantly higher.30 We want to note that the

28We also want to remark that both, Jerman and Boldrin et al., do not provide any accu-
racy test for their procedure that they have chosen to solve the intertemporal decision
problem. Boldrin et al. use the Lagrangian multiplier from the corresponding planner’s
problem to solve for asset prices with no accuracy test for the procedure. Jerman uses a
log-linear approach to solve the model and an accuracy test of this procedure is also not
provided in the paper. An accuracy test for the dynamic programming procedure that
is used in Grüne and Semmler (2006) is provided in Grüne and Semmler (2007). We also
want to note that there is a crucial constraint in habit formation models, namely that
the surplus consumption has to remain non-negative when the optimal solution, Ct, is
computed. As shown in Grüne and Semmler (2006) this constraint has to be treated
properly in the numerical solution method.

29See table 6, column 5 and the note e)
30For computing the annual Sharpe ratio we have used here, and for the tables 2-5, a

conversion formula developed by Lo (2002) with SR(q) =
√

qSR, with q the number of
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habit formation model in Grüne and Semmler (2006), see table 6, column
3, is the same, in terms of its basic structures and parameters, as the here
solved model with loss aversion. One can therefore be quite confident that
the loss aversion model produces quantitatively important contributions to
the equity premium and Sharpe ratio puzzles. Yet, in these types of models
with production there is no friction in consumption and capital investment
as one has in the habit formation models.

Overall, however, in our loss aversion model with production we ob-
tain lower values of the equity premia and Sharpe ratios as in Barberis et
al. (2001) with exogenous consumption. This comes from the fact that
in models with production and endogenous consumption, consumption can
be smoothed through intertemporal decisions, see Lettau and Uhlig (2002).
Moreover, as mentioned above, in order to solve the model analytically for the
stochastic discount factor, the loss aversion model with production presented
here, does not include habit formation and adjustment costs of investment.
Including those, will presumably improve the model further.

7 Conclusion

Extensive research has recently been devoted to the study of asset price
characteristics, such as the risk-free interest rate, the equity premium and the
Sharpe ratio, arising from the stochastic growth model of the Brock-Mirman
type. The failure of the basic model to match the empirical characteristics of
asset prices and returns has given rise to numerous attempts to extend the
model by allowing for different preferences and technology shocks, adjustment
costs of investment, the effect of leverage on asset prices and heterogenous
households and firms.31

In this paper we have gone beyond the consumption based asset pric-
ing model and have studied asset price characteristics when a consumption
stream as well as the fluctuation of the agent’s value of assets affect the
utility of the agent. We have presumed, as recently proposed that agents
become even more loss averse when they have prior experiences large with
losses in asset value and are again hit by a decline in their asset value in the
current period. This gives rise, as we have shown in sect. 2 of the paper,

periods. We have, even for our case reported in table 6, column 4 an annual Sharpe
ratio of 0.32 which is in the vicinity of the actual annual Sharpe ratio as reported in
table 6, column 5.

31A model with heterogenous firms in the context of a Brock type stochastic growth model
can be found in Akdeniz and Dechert (1997) who are able to match, to some extent, the
equity premium by building on idiosynchratic stochastic shocks to firms.
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to a new form of a stochastic discount factor pricing the income stream in a
production economy.

In the context of this model, the agents do not have to experience large
losses in current consumption in order to induce them to change asset hold-
ings. 32 In our model, as one finds in time series data, consumption growth is
de-linked from asset prices booms and busts and the co-variance of consump-
tion growth and asset returns can, as the empirical data show, allowed to be
weak. Thus one might want to design empirical estimation strategies that
accepts a de-linked relationship of consumption growth and asset returns.33

The next step of research would be to integrate more frictions such as habit
formation and adjustment costs of investment into the loss aversion model
with production studied here.

32We think this is an important feature of loss aversion models, since the financial loss of
large institutional investors, such as pension funds, foundations and university endow-
ments does not result directly in a consumption loss. The loss in wealth appears to be
more painful for those institutions since they have to adjust downward their operations.

33For empirical results on prospect theory, using a Markov regime change model, see Zhang
and Semmler (2005)

24



8 Appendix: details of the numerical algo-

rithm

The aim of the numerical algorithm is to simultaneously solve the equations
(19) and (21) using the fact that the time dependence of the values Rf,t and
Pt can be replaced by the dependence on xt, such that we can compute these
values as functions of the state x. Thus, we can compute V and P by solving
the dynamic programming equations

V (x) = max
C̃

E

[
C̃1−γ

1− γ
+ ρV (ϕ(x, C̃, ε))

]

P (x) = E
[
m(x, ϕ(x, C̃∗(x), ε))(C̃∗(ϕ(x, C̃∗(x), ε)) + P (ϕ(x, C̃∗(x), ε)))

]
where C̃∗(x) denotes the maximizing value for the right hand side of the
V –equation. Instead of solving the P–equation directly we solve

P̃ (x) = E
[
C̃∗(x) + m(x, ϕ(x, C̃∗(x), ε))P̃ (ϕ(x, C̃∗(x), ε))

]
which has the same structure as the V –equation and from which P is easily
obtained via P (x) = P̃ (x)− C̃∗(x).

In order to approximate these functions numerically, we chose an appro-
priate domain Ω ⊂ R3 for our state vector (in all our examples this was
chosen as Ω = [0.2, 22] × [−0.32, 0.32] × [0.5, 2]) and a three dimensional
cuboidal grid Γ on Ω with nodes xi. On this grid, we compute sequences of
continuous and piecewise multilinear approximations Ṽ (j) ≈ V , P̃ (j) ≈ P̃ and
C̃(j) ≈ C̃∗, j = 0, 1, 2, . . .. Note that each function is uniquely determined
by its values in the nodes xi of the grid, hence we only need to store these
values. We proceed iteratively by setting Ṽ (0) = P̃ (0) ≡ 0 and computing

C̃(j)(xi) = argmax
C̃

E

[
C̃1−γ

1− γ
+ ρṼ (j)(ϕ(xi, C̃, ε))

]

Ṽ (j+1)(xi) = E

[
C̃(j)(xi)1−γ

1− γ
+ ρṼ (j)(ϕ(xi, C̃(j)(xi), ε))

]

P̃ (j+1)(xi) = E
[
C(j)(xi) + m(j)(xi, ϕ(xi, C̃(j)(xi), ε))P̃ (j)(ϕ(xi, C̃(j)(xi), ε)

]
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for all nodes xi of the grid Γ using the auxiliary functions

m(j)(x1, x2) =
ρ
(
C̃(j)(x2)/C̃

(j)(x1)
)−γ

+ ρb0α1

1 + ρb0Et[α2]R
(j)
f (x1, x2)

R
(j)
f (x1, x2) = E

[
(C̃(j)(x2)/C̃

(j)(x1))
−γ
]

whose formulas are derived from (13) and (20), (7), respectively. The value
α2 appearing in the equation for m(j) is computed according to (10) using
the approximations

Rf,t ≈ R
(j)
f (xi, ϕ(xi, C̃(j)(xi), ε))

Rt+1 ≈ R(j)(xi, ϕ(xi, C̃(j)(xi), ε))

for R
(j)
f from above and

R(j)(x1, x2) =
P̃ (j)(x2)

P̃ (j)(x1)− C̃(j)(x1)
,

which is derived from (12) observing that P̃ (j) ≈ P̃ = P + C̃∗.
Note that this iteration resembles a Jacobi iteration for solving systems of

linear equation. In order to speed up the iteration process we use the Gauss-
Seidel type increasing coordinate algorithm described in Grüne (1997) and

perform the iteration for j = 0, 1, 2, . . . until ‖Ṽ (j+1) − Ṽ (j+1)‖∞ ≤ δV and

‖P̃ (j+1) − P̃ (j+1)‖∞ ≤ δP , where we chose δV = 10−5 and δP = 10−3. If the
exact value C∗ for the optimal feedback law of (14) is known analytically,
which happens to be the case in the log-utility setting γ = 1, cf. e.g., Grüne
and Semmler (2007), then the evaluation of the argmax can be replaced by
C(j)(xi) = C∗(xi). At the end of the iteration we also store the auxiliary

functions R
(j)
f and R(j) for later evaluation along optimal trajectories.

Note that the value α2 — which enters the equation for P̃ (j+1) via m(j),
R(j) and (10) — depends nonlinearly on P̃ (j). Hence, the equation for P̃ (j+1)

becomes nonlinear and it is not clear a priori whether this iteration will con-
verge at all and if so, for which initial values. This issue certainly deserves
further mathematical investigation which is, however, beyond the scope of
this paper. Nevertheless, numerically we observed convergence for all con-
sidered parameter sets starting from P (0) ≡ 0.

In order to make the grid node distribution efficient, we choose the grid
adaptively using the a posteriori error estimation based grid generation tech-
nique described in Grüne and Semmler (2004). For each set of parameters
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we have performed 1–3 adaptation steps depending on the error estimates re-
sulting in a grid with ≈ 5000–10000 cuboidal elements and an error of order
10−5 (measured accumulated along the optimal trajectories). This proce-
dure results in computational times of ≈ 2–4 minutes per parameter set on
a Pentium 4 Linux Computer with 3.06GHz.
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