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1 Introduction

Receding horizon control (RHC), often also termed model predictive control (MPC), is
by now a well established method for the optimal control of linear and nonlinear systems
[1, 3, 16]. One way of interpreting this method in a discrete time setting is the following:
In order to approximate the solution to a (computationally intractable) infinite horizon
optimal control problem, a sequence of — often suitably constrained — finite horizon
optimal control problems is solved. Then in each time step the first element of the resulting
optimal control sequence is used as a feedback control value for the current state.

This interpretation immediately leads to the question about the suboptimality of the result-
ing RHC feedback: how good is the resulting RHC controller with respect to the original
infinite horizon cost functional? This question has been addressed in a number of papers
and estimates for the infinite horizon performance are given, e.g., for nonlinear systems in
[13] with zero endpoint constrained finite horizon problems and in [10] with (local) Lya-
punov function terminal cost, respectively, and for linear systems in [19] without terminal
costs or constraints. The paper [4], again dealing with linear systems, presents a nega-
tive result about the monotonicity of the infinite horizon performance of RHC controllers
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with terminal cost. In this paper we consider discrete time nonlinear systems on arbitrary
metric spaces both without and with terminal costs and constraints. For these systems we
derive explicit estimates for the degree of suboptimality which in particular induce bounds
for the minimal optimization horizon needed for stabilization.

Despite the fact that RHC schemes without stabilizing terminal costs and constraints pos-
sess a number of advantages (see the discussion at the beginning of Section 4), in the
literature they appear less frequently addressed. Notable exceptions from this rule are,
among others, the papers by Shamma and Xiong [19], Primbs and Nevistić [17], Jadbabaie
and Hauser [12] and Grimm et al. [5]. In [19], for discrete time linear finite dimensional
systems it is shown that the knowledge of the finite horizon optimal value functions can
be used in order to compute a bound on the degree of suboptimality of the receding hori-
zon controller and that this result can be applied by using numerical approximations of
the optimal value functions. This result was extended in [17] to linear systems subject to
linear constraints. For nonlinear continuous time systems with stabilizable linearization,
it is shown in [12] that a receding horizon controller stabilizes the system for sufficiently
large optimization horizon. The paper [5] addressing discrete time nonlinear systems is
in a similar spirit, however, instead of imposing conditions on the linearization it uses
rather general and genuinely nonlinear detectability conditions. The papers [5, 12] have
in common that suboptimality is not considered and that the stability results are merely
asymptotic, i.e., for sufficiently large horizon. Compared to these four papers, our contri-
bution is most similar to [19] and [5]: as in [19] we derive explicit bounds on the degree
of suboptimality of the RHC closed loop system and as in [5] we address general discrete
time nonlinear systems (here even on arbitrary metric spaces) without imposing conditions
on the linearization. The main difference to [19] is that our conditions do not rely on the
knowledge of the finite time optimal value functions but rather on suitable bounds on these
functions, see Remark 4.10 for details. The main difference to [5] is that we derive explicit
bounds for suboptimality and stability instead of asymptotic estimates for sufficiently large
horizons; furthermore, some aspects of our conditions are more general, cf. Remark 5.11.

Concerning our results for RHC schemes with terminal costs and constraints, a property
which is related to our question is the inverse optimality of RHC controllers: it is well known
that under suitable conditions RHC controllers are infinite horizon inversely optimal, i.e.,
they are optimal for an infinite horizon optimal control problem with a suitably adjusted
running cost, see, e.g., [2, 16, 15]. However, this property does not yield estimates for
the suboptimality with respect to the original running cost, as the adjusted running cost
contains precisely those terms which characterize the mismatch between the infinite horizon
optimal and the RHC controller, i.e., those terms that we intend to estimate. A paper
which is closer to our approach is [10] in which it is shown that infinite horizon optimality
is maintained if the terminal cost equals the infinite horizon optimal value function. In this
paper we extend this result by showing how and in which quantitative sense this results
remains true if the terminal cost merely approximates the infinite horizon optimal value
function, cf. Remark 6.3 for details.

The common technique for all our results in the different settings is a relaxed dynamic
programming inequality. Inequalities of such type have been used frequently in the optimal
control literature, however, a systematic study seems to have performed only recently in
[14, 18]. A specific relaxed dynamic programming inequality, formulated in Proposition
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2.2, is the cornerstone of our analysis.

The paper is organized as follows. We start by describing the setup and some preliminary
results on relaxed dynamic programming in Section 2. Section 4 contains our main results
on RHC without using terminal costs and constraints and presents an assumptions under
which we can prove suboptimality for RHC schemes for asymptotically stabilizable sys-
tems. Section 5 shows how to relax this assumption in order to deal with only practically
stabilizable systems and Section 6 presents our results for RHC with terminal cost and
terminal constraints. The final Section 7 concludes our paper.

2 Setup and preliminary results

We consider a nonlinear discrete time system given by

x(n + 1) = f(x(n), u(n)), x(0) = x0 (2.1)

with x(n) ∈ X and u(n) ∈ U for n ∈ N0. Here we denote the space of control sequences
u : N0 → U by U and the solution trajectory for some u ∈ U by xu(n). Here the state
space X is an arbitrary metric space, which in particular means that our results also apply
to the discrete time dynamics induced by a sampled infinite dimensional system, cf. [11]
for a continuous time analysis of this setting.

Our goal is to find a feedback control law u = µ(x) minimizing the infinite horizon cost

J∞(x0, u) =
∞∑

n=0

l(xu(n), u(n)), (2.2)

with running cost l : X ×U → R+
0 . We denote the optimal value function for this problem

by
V∞(x0) = inf

u∈U
J∞(x0, u).

If this optimal value function is known, it is easy to prove using Bellman’s optimality
principle that the optimal feedback law µ is given by

µ(x) := argmin
u∈U

{V∞(f(x, u)) + l(x, u)}.

Remark 2.1 We assume throughout this paper that in all relevant expressions the mini-
mum with respect to u ∈ U is attained. Although it is possible to give modified statements
using approximate minimizers, we decided to make this assumption in order to simplify
and streamline the presentation.

Since infinite horizon optimal control problems are often computationally infeasible, we
use a receding horizon approach in order to compute a controller by considering the finite
horizon problem given by

JN (x0, u) =
N−1∑
n=0

l(xu(n), u(n)) (2.3)
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for N ∈ N0 (using
∑−1

n=0 = 0) with optimal value function

VN (x0) = inf
u∈U

JN (x0, u). (2.4)

A variant of this approach often considered in the literature is obtained when we add a
terminal cost F : X → R+

0 to the problem. In this case, (2.3) is changed to

JN (x0, u) =
N−1∑
n=0

l(xu(n), u(n)) + F (xu(N)). (2.5)

Another common extension is the introduction of a terminal constraint set Xf ⊂ X for the
finite horizon optimization, which amounts to replacing (2.4) by

VN (x0) = inf
u∈U :xu(N)∈Xf

JN (x0, u). (2.6)

Here we assume that the set Xf is forward invariant, i.e., for each x ∈ Xf there exists
u ∈ U with f(x, u) ∈ Xf . When imposing such a terminal constraint, the domain of points
on which VN is defined is restricted to the feasible set XN , which is the set of initial values
which can be controlled to Xf in at most N steps, i.e.,

XN := {x0 ∈ X | there exists u ∈ U with xu(N) ∈ Xf}.

Note that (2.3) is a special case of (2.5), with F ≡ 0, and that (2.4) is a special case of
(2.6) with Xf = X. Here we have stated (2.3) and (2.4) explicitly because it is the simplest
version of receding horizon control and a major part of our results apply particularly to
this case.

Based on this finite horizon optimal value function we define a feedback law µN by pick-
ing the first element of the optimal control sequence for this problem. Since Bellman’s
optimality principle for the functions VN reads

VN (x) = min
u∈UN (x)

{VN−1(f(x, u)) + l(x, u)}, (2.7)

with UN (x) := {u ∈ U | f(x, u) ∈ XN−1} this amounts to defining

µN (x) := argmin
u∈UN (x)

{VN−1(f(x, u)) + l(x, u)}. (2.8)

Note that the feedback law µN is not the optimal controller for the problem (2.4). However,
the optimal trajectory for this problem can be expressed via the controllers µ1, . . . , µN in
the following inductive fashion

x(0) = x0, x(n + 1) = f(x(n), µN−n(x(n))), n = 0, . . . , N − 1. (2.9)

The goal of the present paper is to give estimates about the suboptimality of the feedback
µN for the infinite horizon problem. More precisely, if xµN denotes the solution of the
closed loop system

xµN (n + 1) = f(xµN (n), µN (xµN (n))), xµN (0) = x0
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and we define the infinite horizon cost corresponding to µN by

V µN
∞ (x0) :=

∞∑
n=0

l(xµN (n), µN (xµN (n))

then we are interested in upper bounds for this infinite horizon value, either in terms of
the finite horizon optimal value function VN or in terms of the infinite horizon optimal
value function V∞. In particular, the latter will give us estimates about the “degree of
suboptimality” of the controller µN .

A result closely related to our problem is the inverse optimality of receding horizon schemes,
see [16, Section 3.5], [15] or [2]. This result states that the controller µN is an infinite
horizon optimal controller for the cost

l̄(x, u) := l(x, u) + VN−1(f(x, µN (x)))− VN (f(x, µN (x)))

and that VN is the corresponding infinite horizon optimal value function. The importance
of this result lies in the fact that it establishes infinite horizon optimality for the resulting
controller. However, its disadvantage is that — unless one has informations about the
relation between l and l̄ — it only does so for the new running cost l̄. Thus, in general this
result does not tell us much about the performance of µN with respect to the original cost
l, which is what we are interested in.

Note that in (undiscounted) infinite horizon optimal control one is in general interested
in nonnegative running cost functions, in order to be able to conclude, e.g., stability of
the closed loop system. Thus, in this context the inverse optimality result is only useful if
l̄(x, u) ≥ 0, implying the condition VN−1(f(x, µN (x))) − VN (f(x, µN (x))) ≥ −l(x, u). Es-
sentially, our approach is based on deriving estimates of this type (for precise formulations
see the Lemmas 4.1 and 5.3) from appropriate conditions on either the functions VN or on
the running cost l.

The approach we take in this paper relies on recently developed results on relaxed dynamic
programming [14, 18]. In the remainder of this section we present a variant of the basic
relaxed dynamic programming inequality in Proposition 2.2 and give a sufficient condition
for it which is adapted to our receding horizon setting in Lemma 4.1.

Proposition 2.2 Consider a feedback law µ̃ : X → U and a function Ṽ : X → R+
0

satisfying the inequality

Ṽ (x) ≥ Ṽ (f(x, µ̃(x))) + αl(x, µ̃(x)) (2.10)

for some α ∈ [0, 1] and all x ∈ X. Then for all x ∈ X the estimate

αV∞(x) ≤ αV µ̃
∞(x) ≤ Ṽ (x)

holds.

Proof: The proof is similar to that of [18, Proposition 3]: Consider x0 ∈ X, the trajectory
x(n) = xµ̃(n) generated by the closed loop system using µ̃, and the control sequence
generated by u(n) = µ̃(x(n)). Then from (2.10) we obtain

αl(x(n), u(n)) ≤ Ṽ (x(n))− Ṽ (x(n + 1)).
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Thus, summing over n yields

α

K−1∑
n=0

l(x(n), u(n)) ≤ Ṽ (x(0))− Ṽ (x(K)) ≤ Ṽ (x(0)).

Thus, Ṽ is an upper bound on αV µ̃
∞ and we immediately obtain

αV∞(x) ≤ αV µ̃
∞(x) ≤ Ṽ (x).

Remark 2.3 All of our results remain true if the set U of admissible control values is
subject to — possibly state dependent — constraints.

Similarly, the set of states X does not necessarily need to be the original state space of
the system. Indeed, all of our results immediately carry over if X is an arbitrary subset of
the state space which is forward invariant under the receding horizon feedback. Another
generalization would be to choose X as the feasible set of a state constrained problem,
similar to the construction used in [17] in the linear setting in order to carry over the
stability results from [19] to constrained systems.

3 Summary of the main results

Before we turn to the technical presentation, in this section we give a brief non–technical
summary of our results.

The main theme of this paper is to apply relaxed dynamic programming techniques to
receding horizon control schemes for discrete time nonlinear systems on arbitrary metric
spaces. The basis for our results is Proposition 2.2 which we are going to apply to Ṽ = VN ,
i.e., to the finite time optimal value function. Hence, we need to establish checkable
conditions under which VN satisfies (2.10). As we will see, these techniques are applicable
to schemes with and without terminal costs and constraints as well as to “mixed” forms.

Our results for RHC schemes without terminal cost in Section 4 are in the spirit of [19,
17, 5, 12] and give conditions on the running cost under which Proposition 2.2 can be
applied and thus precise suboptimality estimates (and thus stability, cf. Remark 4.6(i)) can
be derived. Intuitively, our results state that if the instantaneous running cost contains
sufficient information about the optimal value function, then the resulting controller will
also be sub–optimal. Here, the term “sufficient information” is formalized by an inequality,
requiring that the scaled running cost (γ + 1)l for some γ ≥ 0 be larger than the optimal
value functions VN , cf. Assumption 4.2. If this is the case, then the α in Proposition 2.2
and consequently the degree of suboptimality of the controller µN can be readily computed
from the factor γ and the horizon length N . These conditions can be either checked
analytically using a priori controllability information about the system, cf. Proposition 4.7
or numerically at the time the scheme (or a numerical simulation) is running, cf. Remark
4.6(ii).

A variant of these results is presented in Section 5 in which we do no longer assume that the
system is controllable to the 0–level set of the running cost l. In this situation we can show
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the existence of a set around the 0–level which is forward invariant for the RHC controller
and that the resulting trajectories are sub–optimal until they enter this set. This is similar
to practical asymptotic stability results, in which a system behaves like an asymptotically
stable system until it reaches a forward invariant set, which is why we call this property
“practical suboptimality”

Our final set of results is given in Section 6 in which we deal with RHC schemes with
Lyapunov function terminal costs, the situation most widely discussed in the literature.
Again, we use a condition on the running cost l, however, in contrast to the results without
terminal costs now the condition is on the relation between l and the terminal cost F .
The results in Theorem 6.2, which extend those in [10], show that if the terminal cost
F approximates the infinite horizon optimal value function V∞ and is in a suitable sense
compatible with the running cost l (cf. Assumption 6.1), then the degree of suboptimality
precisely equals the difference F − V∞. Again, the proof is based on Proposition 2.2, now
with α = 1. As we only assume F to be a local Lyapunov function, these results are
only valid on those regions of the state space from which the optimal trajectories enter the
region on which the local Lyapunov function is valid, which may be small if the optimization
horizon is small. However, this local terminal cost can be coupled with the conditions on the
running cost outside the domain of the terminal cost. Thus, combining the two conditions
in Theorem 6.4 we obtain a scheme which is locally stable and suboptimal by virtue of
the local terminal cost and globally suboptimal by virtue of properties of the running cost
away from the origin.

4 Results without terminal cost

The presumably simplest version of RHC schemes are those in which the infinite horizon
functional is truncated to a finite horizon functional and no constraints are imposed. In
the literature, this version appears less frequently addressed than versions with terminal
costs and constraints, although it has a number of advantages compared to more com-
plicated schemes: for nonlinear systems the Lyapunov function property of the terminal
cost — which is typically needed in order to ensure stability — is difficult to establish
globally. Local Lyapunov functions are easily computed at equilibria if the linearization is
controllable but they require terminal constraints making the optimization problem com-
putationally harder and restricting the operating region to the feasible set, often leading to
large optimization horizons for large operating regions. Local Lyapunov functions are also
difficult to obtain if more general sets than equilibria are to be stabilized or if the problem
is time varying, like in tracking problems, where in our own numerical experiments we
observed RHC without terminal cost to perform very well, see [7, 8].

It seems that one reason for not exploiting these advantages in practice — at least in the
practice reported in the literature — is the lack of theoretical foundation, in particular a
lack of rigorous stability proofs, given that within the vast amount of papers on RHC/MPC
there are only few papers addressing this issue. Notable papers among these few are, e.g.,
the papers [19, 17] for linear and [5, 12] for nonlinear systems, whose contributions were
already discussed in the introduction.

When using RHC schemes without terminal cost, the first straightforward observation is
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the inequality
VM (x) ≤ VN (x) ≤ V∞(x) (4.1)

for all M,N ∈ N0 with M ≤ N .

Our approach now is to apply Proposition 2.2 to Ṽ = VN . More precisely, our goal is
to provide checkable conditions under which VN satisfies (2.10). For this purpose, the
following straightforward observation is useful.

Lemma 4.1 Consider N ∈ N and the receding horizon feedback law µN . Assume that

VN (f(x, µN (x)))− VN−1(f(x, µN (x))) ≤ (1− α)l(x, µN (x)) (4.2)

holds for some α ∈ [0, 1] and all x ∈ X. Then Ṽ = VN satisfies (2.10) and, in particular,

αV µN
∞ (x) ≤ VN (x)

holds for all x ∈ X.

Proof: Combining (2.7) and (2.8) and inserting (4.2) yields

VN (x) = min
u
{VN−1(f(x, u)) + l(x, u)} = VN−1(f(x, µN (x))) + l(x, µN (x))

≥ VN (f(x, µN (x)))− (1− α)l(x, µN (x)) + l(x, µN (x))
= VN (f(x, µN (x))) + αl(x, µN (x)),

which shows (2.10). Now Proposition 2.2 yields the assertion.

The following assumption contains our central condition.

Assumption 4.2 For a given N ∈ N there exists γ > 0 such that the inequalities

V2(x) ≤ (γ + 1)V1(x) and Vk(x) ≤ (γ + 1)l(x, µk(x)), k = 2, . . . , N

hold for all x ∈ X.

Remark 4.3 If the inequality VN (x) ≤ (γ + 1)l(x, u) holds for all x ∈ X and all u ∈ U ,
then (4.1) immediately implies Assumption 4.2.

Proposition 4.4 Let N ≥ 2 and assume that Assumption 4.2 holds for this N . Then the
inequality

(γ + 1)N−2

(γ + 1)N−2 + γN−1
VN (x) ≤ VN−1(x)

holds for all x ∈ X.

Proof: We first show that Assumption 4.2 implies the estimate

Vk−1(f(x, µk(x)) ≤ γl(x, µk(x)) (4.3)
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for all k = 2, . . . , N and all x ∈ X. In order to prove (4.3), we use the optimality principle

Vk(x) = Vk−1(f(x, µk(x)) + l(x, µk(x)).

Now Assumption 4.2 implies

Vk−1(f(x, µk(x)) = Vk(x)− l(x, µk(x))

≤ (γ + 1)l(x, µk(x))− l(x, µk(x)) = γl(x, µk(x)),

which shows (4.3).

By induction over k = 2, . . . , N we prove

ηkVk(x) ≤ Vk−1(x) (4.4)

for

ηk =
(γ + 1)k−2

(γ + 1)k−2 + γk−1
.

For k = 2 (4.4) follows directly from Assumption 4.2 because

V2(x) ≤ (γ + 1)V1(x) =
1
η2

V1(x).

For the induction step k → k + 1, for x ∈ X we obtain

Vk(x) = Vk−1(f(x, µk(x))) + l(x, µk(x))

≥
(

1 +
1− ηk

γ + ηk

)
Vk−1(f(x, µk(x))) +

(
1− γ

1− ηk

γ + ηk

)
l(x, µk(x))

≥ ηk

(
1 +

1− ηk

γ + ηk

)
Vk(f(x, µk(x))) +

(
1− γ

1− ηk

γ + ηk

)
l(x, µk(x))

= ηk
γ + 1
γ + ηk

{Vk(f(x, µk(x))) + l(x, µk(x))}

≥ ηk
γ + 1
γ + ηk

min
u∈U

{Vk(f(x, u)) + l(x, u)} = ηk
γ + 1
γ + ηk

Vk+1(x),

where we have used (4.3) in the first inequality and the induction assumption in the second
inequality. This implies (4.4) because

ηk
γ + 1
γ + ηk

=
(γ + 1)k−2

(γ + 1)k−2 + γk−1

γ + 1

γ + (γ+1)k−2

(γ+1)k−2+γk−1

=
(γ + 1)k−1

(γ + 1)k−1 + γk
= ηk+1.

Combining Proposition 4.4 with Lemma 4.1 we can now derive the main result of this
section.

Theorem 4.5 Consider γ > 0 and N ∈ N such that (γ +1)N−2 > γN holds. Assume that
Assumption 4.2 holds for these γ and N . Then the inequality

V µN
∞ (x) ≤ (γ + 1)N−2

(γ + 1)N−2 − γN
V∞(x)
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holds for all x ∈ X. In particular, the inequality

V µN∞ (x)− V∞(x)
V∞(x)

≤ γN

(γ + 1)N−2 − γN

holds for the relative difference between V µN∞ and V∞.

Proof: From Proposition 4.4 we obtain

VN (x)− VN−1(x) ≤
(

(γ + 1)N−2 + γN−1

(γ + 1)N−2
− 1

)
VN−1(x) =

γN−1

(γ + 1)N−2
VN−1(x).

Using this inequality for x = f(x, FN (x)) and combining it with inequality (4.3) for k = N
we can conclude

VN (f(x, FN (x))− VN−1(f(x, FN (x))) ≤ γN

(γ + 1)N−2
l(x, FN (x)).

Hence we can apply Lemma 4.1 with

α = 1− γN

(γ + 1)N−2
=

(γ + 1)N−2 − γN

(γ + 1)N−2

in order to obtain the assertion.

The following remark summarizes a number of observations for our result.

Remark 4.6 (i) If the running cost l is positive definite and proper with respect to some
compact set A and X is a finite dimensional space, then Theorem 4.5 implies asymptotic
stability of A if (γ + 1)N−2 > γN or, equivalently, N > 2 + 2 log(γ)/(log(γ + 1)− log(γ)).
This follows from inequality (4.2) which holds by virtue of Theorem 4.5 and immediately
yields that VN is a Lyapunov function for the closed loop system. More generally, one
can obtain stability replacing the positive definiteness of l by a detectability condition, for
details we refer, e.g., to [5].

(ii) Our condition depends on the knowledge of γ which can be computed in two different
ways: on the one hand it is possible to give sufficient analytical conditions on the dynamics
of the system seen through the “output” l(x, u). Such conditions are developed in the
remainder of this section. On the other hand, our conditions can be checked during the
runtime of the RHC algorithm or respective numerical simulations: although we have
supposed the inequalities in Assumption 4.2 to hold for all x ∈ X, in the proofs of our
results we only need these inequalities along the optimal trajectories which are known
once the optimization problem has been solved. This way we can estimate the degree of
suboptimality of the RHC feedback scheme a posteriori. Details of such run time estimates
and algorithms which use this a posteriori information for an online adaptation of the
optimization horizon N are currently under investigation.

(iii) Note that our results give precise suboptimality bounds on the performance once the
quantity γ has been computed according to (ii). In particular, the results are not merely
asymptotic (“for sufficiently large N”) but provide precise quantitative information for the
size of N needed in order to ensure a desired performance.
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(iv) As an alternative to the inequalities in Assumption 4.2 one could use

Vk(f(x, µk(x))) ≤ γl(x, µk(x))

in order to prove a result similar to Theorem 4.5, see [9] for details.

In the remainder of this section we investigate analytical conditions on the running cost l
which ensure Assumption 4.2.

Proposition 4.7 Assume that there exists a function W : X → R+
0 and constants α, β >

0, and 0 ≤ λ < 1 such that for all x ∈ X the following two conditions hold:

(i) l(x, u) ≥ αW (x) for all u ∈ U

(ii) there exists a control sequence u∗ ∈ U such that the corresponding solution x(n) with
x(0) = x satisfies

l(x(n), u∗(n)) ≤ βλnW (x).

Then Assumption 4.2 holds with γ = β
α(1−λ) − 1.

Proof: Condition (ii) implies

Vk(x) ≤ V∞(x)

≤
∞∑

n=0

l(x(n), u∗(n)) ≤
∞∑

n=0

βλnW (x) =
β

1− λ
W (x).

Combining this with condition (i) yields

Vk(x) ≤ β

1− λ
W (x) ≤ β

α(1− λ)
l(x, u)

for all u ∈ U and thus in particular for u = µ1(x), implying Assumption 4.2 for k = 2 and
for u = µk(x), implying Assumption 4.2 for k ≥ 3.

Remark 4.8 (i) The condition is a combination of an observability condition (i) and a
controllability condition (ii). More precisely, condition (ii) is an exponential controllability
condition for the running cost l. Note that exponentially converging cost functions can
always be constructed from control Lyapunov functions, however, since such control Lya-
punov functions are hard to find, this approach may not be feasible. In an RHC context,
exponential controllability conditions for the running cost are discussed in [5, Section III],
in particular for homogeneous systems. Note that if the system is exponentially control-
lable to the origin, then the condition is always satisfied for l(x, u) = ‖x‖2 + ‖u‖2 and
W (x) = ‖x‖2, although other choices of l and W may yield better constants α, β and γ.

(ii) In order to check the condition we need to know a null controlling control sequence u∗.
Note, however, that this sequence does not need to be optimal and that it does not need
to be in feedback form in order to apply the proposition. Example 4.9, below, illustrates
this procedure.
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For Theorem 4.5 we do now have three types of assumptions and conditions, which differ
in the type of information used:

• an assumption involving the optimal value functions and the RHC controllers (As-
sumption 4.2)

• a sufficient condition involving the optimal value functions (Remark 4.3)

• a sufficient condition involving an auxiliary function W (Proposition 4.7)

The following simple example highlights the difference between these assumptions.

Example 4.9 Consider the linear one–dimensional control system

x(n + 1) = 2x(n) + u(n) =: f(x(n), u(n))

with x(n) ∈ X = R and u(n) ∈ U = R. We first consider the running cost

l(x) = x2.

Here it is easy to solve the infinite horizon optimal control problem, because for µ(x) = −2x
the related optimal value function

V µ
∞(x) = x2

satisfies the optimality principle, because

x2 = V µ
∞(x) = inf

u∈R
{l(x) + V µ

∞(f(x, u))} = inf
u∈R

{x2 + (2x + u)2} = x2.

Using the same argument one also sees that the finite time optimal value functions are
given by

VN (x) = x2, N ≥ 1

with corresponding RHC feedback laws

µN (x) = −2x, N ≥ 2.

Thus, for N ≥ 2, the RHC controller is indeed optimal for the infinite horizon problem.

This optimality property can be obtained from Theorem 4.5 using Assumption 4.2: this
Assumption is satisfied for each N ∈ N with γ = 0 for X = R. Thus, for each N ≥ 2 we
obtain the estimate

V µN∞ (x)− V∞(x)
V∞(x)

≤ γN

(γ + 1)N−2 − γN
= 0,

i.e., a sharp estimate.

Note that for checking Assumption 4.2 directly we have used information about the RHC
controller, which we cannot expect to know in general. If this information is not available,
Remark 4.3 can be used instead: its assumptions are easily verified by estimating Vk using
the control sequence u∗ = (−2x(0), 0, 0, . . .), yielding Vk(x) ≤ x2 and thus again γ = 0.
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In order to illustrate the use of Proposition 4.7 we alter the running cost to

l(x, u) = x2 + u2.

Then, using W (x) = x2 one obtains (i) with α = 1. Applying the control sequence
u∗ = (−x(0),−x(0)/2,−x(0)/4, . . .) yields (ii) with β = 2 and λ = 1/4, resulting in
γ = 8/3. Table 4.1 shows the minimal horizon length N needed according to Theorem 4.5
in order to ensure the given values for the relative accuracy.

relative accuracy needed horizon length N

0.50 12
0.10 16
0.01 23

Table 4.1: Performance for running cost l(x, u) = x2 + u2

Note that we do not claim that these estimates in Table 4.1 are tight or even optimal. In
particular, the use of other sequences u∗ might lead to smaller values of γ and hence tighter
estimates. We have chosen the given sequence u∗ because it allows for easy computations.
In fact, the possibility to use arbitrary null controlling control sequences allowing for easy
computations can be considered as a particular advantage of our approach.

Remark 4.10 Our results bear some similarities with those obtained for linear finite di-
mensional systems in [19]. Apart from the fact that here we treat nonlinear systems on
arbitrary metric spaces, the main difference of our results to [19] is that we provide sufficient
conditions on the running cost l in order to ensure that the difference between VN−1 and
VN is small, while in [19] this is a condition which is to be verified by computing numerical
approximations to the optimal value functions VN−1 and VN . While for linear systems —
at least in low dimensions — the numerical computation of ‖VN−1−VN‖ is a feasible task,
in our nonlinear setting on arbitrary metric spaces this is typically impossible, which is
why our conditions, which can be either verified analytically or checked numerically at run
time, are preferable. It may, however, be possible to modify the approach in [19] in order
to yield conditions which are also checkable at run time.

5 Practical optimality

There are cases where it is too optimistic to expect that the conditions presented in the
last section hold. For instance, it may happen that the discrete time system considered
is obtained from sampling a continuous time system with zero order hold and even if
this continuous time system is controllable to some fixed point x∗ it is likely that the
corresponding sampled–data system is only controllable to a neighborhood of this fixed
point (see the example in [6, Section 9.4]), i.e., it is only practically stabilizable at x∗. In
this case, for a positive definite running cost with respect to x∗, i.e., l(x, u) = 0 ⇔ x = x∗,
it is not possible to find a control sequence yielding l(x(n), u(n)) → 0 and it is easily seen
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that in this case Assumption 4.2 is not satisfied because the functions Vk grow unboundedly
for k →∞.

If we are able to compute a forward invariant stabilizable neighborhood N of x∗ then it is
straightforward to apply our results from the previous section to running costs l which are
positive definite with respect to N . In practice, however, it may be impossible to compute
such a set N which makes the design of an appropriate cost function a difficult task. In this
case, a much simpler approach is to choose l positive definite with respect to x∗ ignoring
the lack of exact stabilizability. Since such a function is smaller near x∗ than far away from
x∗ one may expect that the RHC controller will still drive the system to a neighborhood
of x∗, thus yielding the closed loop system practically stable and — more important in our
context — yielding suboptimal trajectories before reaching this neighborhood.

In this section we relax our Assumption 4.2 in order to cope with this setting. Before
we investigate practical versions of our relaxed dynamic programming assumptions and
statements and illustrate them in Example 5.10, below, we prove appropriate practical
versions of the preliminary results from Section 2. We start with a practical version of
Proposition 2.2.

Proposition 5.1 Consider a feedback law µ̃ : X → U and a nonnegative function Ṽ :
X → R+

0 satisfying the inequality

Ṽ (x) ≥ Ṽ (f(x, µ̃(x))) + min{α(l(x, µ̃(x))− ε), l(x, µ̃(x))− ε} (5.1)

for some α ∈ [0, 1], some ε > 0 and all x ∈ X.

Let L ⊂ X be the minimal set which is invariant for µ̃ such that for all x ∈ X \ L the
inequality

Ṽ (f(x, µ̃(x))) ≤ Ṽ (x)

holds and let
σ := inf{Ṽ (f(x, µ̃(x))) |x ∈ X \ L}.

Consider the modified running cost

l̄(x, u) =
{

max{l(x, u)− ε, 0}, x /∈ L
0, x ∈ L ,

the corresponding infinite horizon optimal value function V∞ and the corresponding func-
tional V

µ̃
∞ using the controller µ̃.

Then for all x ∈ X the estimate

αV∞(x) ≤ αV
µ̃
∞(x) ≤ Ṽ (x)− σ

holds.

Proof: Consider x0 ∈ X, the trajectory x(n) = xµ̃(n) generated by the closed loop system
using µ̃, and the control sequence generated by u(n) = µ̃(x(n)). Let n0 ∈ N0 be minimal
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with x(n0 + 1) ∈ L setting n0 = ∞ if this never happens. Then, from the definition of l̄
and (5.1) for n = 1, . . . , n0 we obtain

αl̄(x(n), u(n)) = max{αl(x(n), u(n))− αε, 0} ≤ Ṽ (x(n))− Ṽ (x(n + 1)),

where we have used in the inequality that the right hand side is nonnegative because of
x(n) 6∈ L and the definition of L. For n ≥ n0 +1 the invariance of L implies x(n) ∈ L, thus
l̄(x(n), u(n)) = 0. Hence, for any K ∈ N and K0 = min{K, n0} summing over n yields

α

K∑
n=0

l̄(x(n), u(n)) = α

K0∑
n=0

l̄(x(n), u(n)) ≤ Ṽ (x(0))− Ṽ (x(K0 + 1)) ≤ Ṽ (x(0))− σ.

Since K ∈ N was arbitrary, Ṽ − σ is an upper bound for V
µ̃
∞ and we obtain the asser-

tion.

Remark 5.2 The definition of L in this proposition is implicit and the precise shape of L
can not be deduced from (5.1). However, we can obtain an estimate for L from (5.1) by
defining

η := sup{Ṽ (x) |x ∈ X, min
u∈U

l(x, u) ≤ ε}+ ε.

Then the inclusion
L ⊆ V := {x ∈ X | Ṽ (x) ≤ η}.

holds.

In order to prove this claim it is sufficient to show that V is invariant under µ̃ and

Ṽ (f(x, µ̃(x))) ≤ Ṽ (x)

for all x ∈ X \ V. The stated inequality follows immediately from (5.1) because outside
V the inequality l(x, µ̃(x)) − ε ≥ 0 holds. In order to show invariance of V under µ̃, i.e.,
f(x, µ̃(x)) ∈ V for x ∈ V, we distinguish two cases:

Case 1: Ṽ (x) ≤ η − ε. In this case (5.1) and l(x, µ̃(x)) ≥ 0 yields

Ṽ (f(x, µ̃(x))) ≤ Ṽ (x)−max{α(l(x, µ̃(x))− ε), l(x, µ̃(x))− ε} ≤ η − ε + ε = η,

implying f(x, µ̃(x)) ∈ V
Case 2: Ṽ (x) ∈ (η − ε, η]. In this case the definition of η yields l(x, µ̃(x)) ≥ ε, hence the
maximum in (5.1) is attained in the first term and thus we obtain

Ṽ (f(x, µ̃(x))) ≤ Ṽ (x)− α(l(x, µ̃(x)) + ε) ≤ Ṽ (x) ≤ η,

again implying f(x, µ̃(x)) ∈ V.

The reason for formulating Proposition 5.1 using the implicitly defined set L lies in the
fact that the estimate via V may be conservative and using L in general yields a sharper
estimate.

We would also like to point out that there are other methods for estimating L, like, e.g.,
the techniques developed in [5].
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The next lemma is a practical version of Lemma 4.1.

Lemma 5.3 Consider N ∈ N and the receding horizon feedback law µN . Assume that

VN (f(x, µN (x)))− VN−1(f(x, µN (x))) ≤ max{(1− α)l(x, µN (x)) + αε, ε} (5.2)

holds for some α ∈ [0, 1] and all x ∈ X. Then Ṽ = VN satisfies (5.1) and, in particular,

αV
µN

∞ (x) ≤ VN (x)− σ

holds for all x ∈ X using the notation from Proposition 5.1.

Proof: Combining (2.7) and (2.8) and inserting (5.2) yields

VN (x) = min
u
{VN−1(f(x, u)) + l(x, u)} = VN−1(f(x, µN (x))) + l(x, µN (x))

≥ VN (f(x, µN (x)))−max{(1− α)l(x, µN (x)) + αε, ε}+ l(x, µN (x))
= VN (f(x, µN (x))) + min{αl(x, µN (x))− αε, l(x, µN (x))− ε},

which shows (5.1). Now Proposition 5.1 yields the assertion.

Having derived the appropriate practical versions of our preliminary results we can now
turn to the formulation of a practical version of Assumption 4.2.

Assumption 5.4 For given N ∈ N there exists γ > 0 and ε > 0 such that the inequalities

V2(x) ≤ max{V1(x) + ε, (γ + 1)V1 + (1− γ)ε}

and

Vk(x) ≤ max{l(x, µk(x)) + (k − 1)ε, (γ + 1)l(x, µk(x)) + (k − 1− γ)ε}, k = 2, . . . , N

hold for all x ∈ X.

Remark 5.5 Essentially, this assumption relaxes Assumption 4.2 by requiring (suitably
shifted versions of) the inequalities from Assumption 4.2 only in those parts of the state
space where V1(x) or l(x, µk(x)) are relatively large compared to ε, while on the rest of
the state space we only require a weaker bound which does not scale linearly with V1(x)
or l(x, µk(x)). An important feature of this assumption is that it also applies if the Vk

grow unboundedly in k on the whole state space X, cf. also Remark 5.11. Furthermore,
in practical examples there may be a tradeoff between ε and γ. Example 5.10, below,
illustrates this situation.

The next proposition is the modification of Proposition 4.4 for Assumption 5.4.

Proposition 5.6 Let N ∈ N and assume that Assumption 5.4 holds for this N . Then the
inequality

min
{

(γ + 1)N−2

(γ + 1)N−2 + γN−1
(VN (x)−Nε), VN (x)−Nε

}
≤ VN−1(x)− (N − 1)ε

holds for all x ∈ X.
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Proof: Consider the optimal control problem with running cost l̃ defined by

l̃(x, u) = l(x, u)− ε.

The corresponding optimal value functions Ṽk satisfy

Ṽk(x) = Vk(x)− kε,

and the optimal controls for Ṽk and Vk coincide. This implies

Ṽk(x) ≤ max{l(x, µk(x)) + (k − 1)ε, (γ + 1)l(x, µk(x)) + (k − 1− γ)ε} − kε

= max{l(x, µk(x))− ε, (γ + 1)l(x, µk(x))− (γ + 1)ε}
= max{l̃(x, µk(x)), (γ + 1)l̃(x, µk(x))}

and similarly
Ṽ2(x) ≤ max{Ṽ1(x), (γ + 1)Ṽ1(x)}.

Now we can proceed inductively as in the proof of Proposition 4.4 (note that nonnegativity
of Vk and l is not needed in this induction) using either γ from Assumption 5.4 or γ = 1
in each induction step. This proves the estimate

min{ηkṼk(x), Ṽk} ≤ Ṽk−1(x) (5.3)

for ηk as in the proof of Proposition 4.4. Translated back to Vk, this yields the asserted
inequality.

Remark 5.7 Note that the inequality from Proposition 5.6 implies the more explicit es-
timate

(γ + 1)N−2

(γ + 1)N−2 + γN−1
VN (x) ≤ VN−1(x) + ε,

however, for our subsequent calculations the sharper inequality stated in Proposition 5.6
is more suitable.

Finally, we can state the practical version of Theorem 4.5.

Theorem 5.8 Consider γ > 0 and N ∈ N such that (γ +1)N−2 > γN holds. Assume that
Assumption 5.4 holds for these γ and N and some ε > 0. Then

V
µN

∞ (x) ≤ (γ + 1)N−2

(γ + 1)N−2 − γN
(VN (x)− σ) ≤ (γ + 1)N−2

(γ + 1)N−2 − γN
(V∞(x)− σ)

using the notation from Proposition 5.1.

Proof: From Proposition 5.6 we obtain the inequality

min
{

(γ + 1)N−2

(γ + 1)N−2 + γN−1
(VN (x)−Nε), VN (x)−Nε

}
≤ VN−1(x)− (N − 1)ε



18 LARS GRÜNE, ANDERS RANTZER

which implies

VN (x)− VN−1(x)− ε ≤ max
{

γN−1

(γ + 1)N−2
(VN−1(x)− (N − 1)ε), 0

}
. (5.4)

Analogous to (4.3), from Assumption 5.4 for k = N we obtain

VN−1(f(x, µN (x))− (N − 1)ε ≤ max{γ(l(x, µN (x))− ε), 0}.

Combining this with (5.4) for x = f(x, µN (x)) yields

VN (f(x, µN (x))− VN−1(f(x, µN (x))− ε ≤ max
{

γN

(γ + 1)N−2
(l(x, µN (x))− ε), 0

}
.

Hence, we obtain (5.2) with

α = 1− γN

(γ + 1)N−2
=

(γ + 1)N−2 − γN

(γ + 1)N−2

which using Lemma 5.3 implies

V
µN

∞ (x) ≤ 1
α

(VN (x)− σ) ≤ 1
α

(V∞(x)− σ).

Remark 5.9 It should be noted that in the motivating example at the beginning of this
section V∞ is unbounded, in which case the final inequality in Theorem 5.8 is useless.

We illustrate Theorem 5.8 by a simple example.

Example 5.10 Consider the discrete time system

x(n + 1) = x(n) + u(n)hβ(x(n)) =: f(x(n), u(n))

with
hβ(x) = max{x− β, −β − x, 0}

for some β > 0, X = R and U = [−1, 1] (this discrete time system mimics the behavior of
the radial component of the 2d sampled–data system discussed in [6, Section 9.4]).

Using the feedback law u(x) = sgn(x) one easily sees that the set Aβ = [−β, β] is asymp-
totically (even finite time) stable, however, it is not possible to steer the system into the
interior of this set.

We choose the running cost l(x, u) = |x|(1+ |u|) and fix ε ≥ β. Using the control sequence
u = (0, 0, 0, . . .), for |x| ≤ ε one obtains

Vk(x) ≤ k|x| ≤ V1(x) + (k − 1)ε ≤ l(x, u) + (k − 1)ε

which yields Assumption 5.4 for arbitrary γ ≥ 1.
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For x > ε, using the control sequence u = (−(x− ε)/(x− β), 0, 0, . . .) we obtain

x(n) = ε

for all n ≥ 1 and thus

Vk(x) ≤ x

(
1 +

x− ε

x− β

)
+ (k − 1)ε =

(
1 +

x

x− β

)
x +

(
k − 1− x

x− β

)
ε. (5.5)

Since x ≤ l(x, u) for all u ∈ U , for ε > β this implies Assumption 5.4 for

γ = sup
x≥ε

x

x− β
=

ε

ε− β
.

For symmetry reasons, the same estimate holds for x < −ε. Thus, Assumption 5.4 holds
for all x ∈ X with γ = ε/(ε−β). Note that ε ↘ β results in γ →∞, i.e., there is a tradeoff
between ε and γ.

Using the fact that no trajectory from outside Aβ can be controlled into the interior of Aβ

we immediately obtain Aβ ⊆ L and σ ≥ Nβ2. Thus, Theorem 5.8 yields the estimate

V
µN

∞ (x) ≤

(
1 + ε

ε−β

)N−2

(
1 + ε

ε−β

)N−2
−

(
ε

ε−β

)N
(VN (x)− σ) ≤

(
1 + ε

ε−β

)N−2

(
1 + ε

ε−β

)N−2
−

(
ε

ε−β

)N
2x

for the modified cost function l̄ from Proposition 5.1, provided N is so large that the
denominator of the fraction is positive. Here we have used the first inequality in (5.5) for
k = N and ε = β for estimating VN in the last step.

It remains to estimate the stabilized set L. Here we proceed similar to Remark 5.2 exploit-
ing, however, the symmetry of the problem: since the problem is symmetric with respect
to the origin and l(x, u) is monotonically increasing with respect to |x| we obtain that VN

is symmetric and monotonically increasing in |x|, too. From this it is easy to conclude that
the set

{x ∈ X, min
u∈U

l(x, u) ≤ ε} = [−ε, ε]

is a sublevel set for each VN which implies that it is forward invariant. Thus, we do not
have to construct the forward invariant set V from Remark 5.2 but can conclude directly
that the receding horizon controller will stabilize the set [−ε, ε]. Since for N →∞ we can
choose ε arbitrarily close to β if N , this stabilized set converges to Aβ as N →∞.

Remark 5.11 In some references, an inequality of the form

Vk(x) ≤ Φ(x)

for some function Φ : X → R+
0 , all k ∈ N and all x ∈ X is imposed in order to conclude

stability or practical stability of the RHC closed loop, cf. e.g. [5, Standing Assumption 4].
While our Assumption 4.2 fits into this framework, Assumption 5.4 is more general, since
in the example above we obtain global practical asymptotic stability of the set [−β, β] even
though Vk(x) ≥ kβ2 holds for all k ∈ N and all x ∈ R with |x| ≥ β.
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6 Results for terminal costs being Lyapunov functions

Many RHC schemes make use of a suitable terminal cost in order to ensure closed loop
asymptotic stability of the RHC controller. Often, in these settings the terminal costs are
chosen as Lyapunov functions with respect to the running cost l, see [16] and the references
therein. In this section we discuss the consequences on suboptimality of these choices. Here
we make the following assumption on the terminal cost F .

Assumption 6.1 For a neighborhood Y0 of 0 and each x ∈ Y0 there exists u ∈ U such
that

f(x, u) ∈ Y0 and F (f(x, u)) ≤ F (x)− l(x, u).

This condition is often imposed in receding horizon schemes in order to ensure asymptotic
stability of the closed loop, see [10, Section II] or [16, Section 3.3 and the references therein].
Note that Assumption 6.1 implies (2.10) for Ṽ = F with α = 1. Hence, Proposition 2.2
implies F (x) ≥ V∞(x) on Y0 and we can define the positive difference η := supx∈X F (x)−
V∞(x) ≥ 0. Observe that in order to simplify the presentation we assume F to be defined
on the whole state space X. If F is only defined locally then, for instance, one could choose
Y0 as a sublevel set of F and extend F continuously outside Y0 by a constant function, cf.
[10, Formula (8)].

A typical situation in which F meeting Assumption 6.1 can be found is if the linearization
of f is controllable to 0 and l is close to a quadratic function around the origin. In this
case, F can be chosen as the optimal value function of the linear quadratic problem for a
quadratic cost function l̃ which is strictly smaller than l. Then, the closer l and l̃ are and
the smaller the neighborhood Y0 is chosen, the smaller η becomes, see also the discussion
after Lemma 3 in [12].

In the following theorem we distinguish the case with and without terminal constraint set.

Theorem 6.2 Assume that the terminal cost in (2.5) satisfies Assumption 6.1 on some
neighborhood Y0 of the origin. Define η := supx∈X F (x)− V∞(x) and let N ∈ N.

(i) Consider the optimal receding horizon controller µN from (2.8) based on VN from (2.4),
i.e., without terminal constraint. Let YN ⊂ X be the set of initial values for which the
optimal solution x(n) for the finite horizon functional (2.5) satisfies x(N) ∈ Y0. Then the
inequality

V µN
∞ (x) ≤ VN (x) ≤ V∞(x) + η

holds for each x ∈ YN .

(ii) Consider the optimal receding horizon controller µN from (2.8) based on VN from (2.6)
with terminal constraint set Xf = Y0. Then the inequality

V µN
∞ (x) ≤ VN (x)

holds on the feasible set XN . Let, furthermore, Y N
∞ ⊂ XN be the set of initial values for

which the optimal solution x(n) for the infinite horizon functional (2.2) satisfies x(N) ∈ Y0.
Then the inequality

VN (x) ≤ V∞(x) + η
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holds for each x ∈ Y N
∞ .

Proof: (i) For x ∈ YN abbreviate x+ = f(x, µN (x)). Then, from the optimality principle
we obtain x+ ∈ YN−1. Now consider an optimal control sequence uN−1 ∈ U for the
problem (2.4) with horizon length N − 1 and the corresponding trajectory xuN−1 with
initial value xuN−1(0) = x+. Since x+ ∈ YN−1 we obtain x̄ := xuN−1(N − 1) ∈ Y0.
Let ū denote the control value from Assumption 6.1 for x̄ and define a control sequence
ũ = (uN−1(0), . . . , uN−1(N − 1), ū, . . .). This sequence yields

VN (x+) ≤ JN (x+, ũ) = VN−1(x+)− F (x̄) + l(x̄, ū) + F (f(x̄, ū)) ≤ VN−1(x+).

Thus, (4.2) follows with α = 1 which implies

V µN
∞ (x) ≤ VN (x).

The inequality VN (x) ≤ V∞(x) + η follows immediately from the definition of JN and J∞
and F ≥ V∞, which was observed in the discussion after Assumption 6.1.

(ii) The inequality V µN∞ (x) ≤ VN (x) is concluded as in (i). The second inequality again
follows from the definition of JN and J∞ and F ≥ V∞, observing that for x ∈ Y N

∞ the
optimal control sequence u for (2.2) satisfies the constraint in (2.6).

Remark 6.3 (i) Note for terminal cost functions which are continuous and constant out-
side Y0, Theorem 6.2(i) remains true under the terminal state constraint Xf = Y0. This
follows from [10, Theorem 1] where it is shown that YN is forward invariant under the RHC
feedback µN . For this specific structure of the terminal cost the proof of this theorem can
also be used as an alternative proof of the first inequality in Theorem 6.2(i), because there
VN ≥ VN (x+) + l(x, µN (x)) is shown for x ∈ YN . Summing up this inequality again yields
the desired inequality.

(ii) For the particular case F = V∞ we get η = 0 and thus Theorem 6.2 yields infinite
horizon optimality of the receding horizon controller on YN or Y N

∞ , respectively. Thus we
recover the result from [10, Theorem 2]. Our more general result proves the conjecture
posed at the end of the introduction of [10], i.e., that one obtains suboptimality with
guaranteed error bounds when F approximates V∞.

The last result we are going to present shows how Theorem 6.2(i) may be combined with
the results from Section 4. For the purpose of brevity we restrict ourselves to Assumption
4.2.

The motivation for such a combination stems from the fact that Assumption 4.2 may hold
away from the origin but may fail to hold in a neighborhood of the origin. Then, on this
neighborhood, a local Lyapunov function terminal cost may be used in order to stabilize
the RHC scheme. Since this construction works without imposing terminal constraints, we
can combine local stability with global operating region because we do not need to consider
any feasible sets.

Theorem 6.4 Assume that the terminal cost in (2.5) satisfies Assumption 6.1 on some
neighborhood Y0 of the origin. Define η := supx∈X F (x)− V∞(x) and let N ∈ N.
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Consider the optimal receding horizon controller µN from (2.8) based on VN from (2.4),
i.e., without terminal constraint. Let Yk ⊂ X be the set of initial values for which the
optimal solution x(n) for the finite horizon functional (2.5) with N = k satisfies x(k) ∈ Y0

and assume that Assumption 4.2 holds for some γ > 0 and each k = 1, . . . , N on X \ Yk.

Then the inequality

V µN
∞ (x) ≤ (γ + 1)N−2

(γ + 1)N−2 − γN
VN (x) ≤ (γ + 1)N−2

(γ + 1)N−2 − γN
(V∞(x) + η)

holds for each x ∈ X.

Proof: For x ∈ Yk the proof of Theorem 6.2(i) yields

Vk(x+) ≤ Vk−1(x+)

for x+ = f(x, µk(x)). This implies

Vk(x) = Vk−1(x+) + l(x, µk(x)) ≥ Vk(x+) + l(x, µk(x)) ≥ Vk+1(x), x ∈ Yk. (6.1)

For x 6∈ Yk we can proceed as in the proof of Proposition 4.4 in order to conclude

Vk(x) ≥ (γ + 1)k−1

(γ + 1)k−1 + γk
Vk+1(x), x ∈ X \ Yk. (6.2)

Combining (6.1) and (6.2) yields the inequality in (6.2) for all x ∈ X. From this the first
inequality of the assertion follows similarly to the proof of Theorem 4.5 while the second
follows as in the proof of Theorem 6.2(i).

7 Conclusions

We have derived rigorous suboptimality estimates for the infinite horizon performance of
RHC controllers. In particular, we have shown that suitable exponential controllability
assumptions for the running cost allow for obtaining suboptimality estimates for RHC
schemes without terminal cost and constraints, a setting which to the best of our knowledge
is not covered by the existing inverse optimality results. These results are complemented
by novel estimates for the case where the RHC terminal cost is a Lyapunov functions,
which is the classical setting for inverse optimality results. In both cases, techniques from
relaxed dynamic programming are the main tool for establishing our results.
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[7] L. Grüne, D. Nešić, and J. Pannek, Model predictive sampled–data redesign for
nonlinear systems, in Proceedings of the 44th IEEE Conference on Decision and Con-
trol and European Control Conference, Sevilla, Spain, 2005, pp. 36–41.
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