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Abstract

We propose a new numerical method for the computation of the
optimal value function of perturbed control systems and associated
globally stabilizing optimal feedback controllers. The method is based
on a set oriented discretization of state space in combination with
a new algorithm for the computation of shortest paths in weighted
directed hypergraphs. Using the concept of a multivalued game, we
prove convergence of the scheme as the discretization parameter goes
to zero.

Key Words: optimal control, dynamic game, set oriented numerics,
graph theory

1 Introduction

Global infinite horizon optimal control methods for the solution of general
nonlinear stabilization problems are attractive for their flexibility and theo-
retical properties, because they are applicable to virtually all types of non-
linear dynamics, their optimal value functions can typically be identified as
Lyapunov functions and they allow for a rigorous treatment of perturbations
in a game theoretical setting. However, these methods have the drawback
that their numerical solution requires the discretization of the state space
which results in huge numerical problems both in terms of computational
cost and in terms of memory requirements. Hence, in order to make these
methods applicable to a broader range of systems, advanced numerical tech-
niques are needed in order to reduce the computational effort as much as
possible.

A novel approach to such problems was presented in the recent paper [1],
where a set oriented numerical method for the approximate computation of
the optimal value function of certain nonlinear optimal control problems has
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been developed. The approach relies on a division of state space into boxes
that constitute the nodes of a directed weighted graph, where the weights
are constructed from the given cost function. On this graph, standard graph
theoretic algorithms for computing shortest paths can directly be applied,
yielding an approximate value function which is piecewise constant on the
state space. At the same time, for every node in the graph, these algorithms
compute the successor node on a shortest path, yielding approximate opti-
mal pseudo-trajectories of the original system. Hence, this method combines
a simple and hierarchically implementable discretization technique with ef-
ficient graph theoretic algorithms yielding both low memory consumption
and a fast solution. For the problem of feedback stabilization the solution
from [1], however, is not directly applicable, because the resulting pseudo-
trajectories would have to be postprocessed in order to obtain true solutions
of the system.

In [2] it was subsequently shown that the approximate optimal value
function can in fact be used in order to construct a stabilizing feedback con-
troller. Based on concepts from dynamic programming [3] and Lyapunov
based approximate stability analysis [4], a statement about its optimality
properties was given and a local a posteriori error estimate derived that
enables an adaptive construction of the division of state space. However,
due to the fact that the approximate optimal value function is not contin-
uous, the constructed feedback law is in general not robust with respect to
perturbations of the system.

In the present paper, we show how to incorporate arbitrary perturba-
tions into the framework sketched above. These perturbations can be either
inherently contained in the underlying model, describing, e.g., external dis-
turbances or the effect of unmodelled dynamics, or they could be added on
top of the original model to account, e.g., for discretization errors.

Our goal in this paper is to construct a feedback which is robust in
the sense that on a certain subset of state space it stabilizes the system
regardless on how the perturbation acts. Conceptually, this problem leads to
a dynamic game, where the controls and the perturbations are associated to
two “players” that try to minimize and to maximize a given cost functional,
respectively. We show how the discretization of state space in a natural way
leads to a multivalued dynamic game (i.e. a discrete inclusion) and prove
convergence of the associated value function when the images of the inclusion
shrink to the original single-valued map. From this multivalued game we
derive a directed weighted hypergraph that gives a finite state model of the
original game. We formulate an adapted version of Dijsktra’s algorithm
in order to compute the associated approximate value function and prove
convergence when the box-diameter of the state space division goes to zero.

It should be noted that the convergence analysis developed in this pa-
per using multivalued dynamics is new also for the discretization of optimal
control problems without perturbations in [1]. An interesting side result of
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our study is that using this technique we are able to keep track of the effects
of discontinuities in the approximated optimal value function as induced,
e.g., by state space constraints. This allows us to prove not only L∞ conver-
gence in regions of continuity but also L1 convergence in the whole domain
of the optimal value function, provided that the optimal value function is
continuous with respect to small changes in the state space constraints.

Compared to other dynamic programming approaches to the stabiliza-
tion of perturbed nonlinear systems (see, e.g., [5] and the references therein),
the main advantages of our method are these general and rigorously prov-
able convergence properties and the low computational cost of our perturbed
version of Dijkstra’s algorithm, cf. Section 6.1. However, our new algorithm
is also advantageous for unperturbed problems when treating the spatial
discretization errors as perturbation: as Example (19) illustrates, this ap-
proach leads to considerably improved performance on a significantly coarser
discretization compared to [2].

The paper is organized as follows. In the ensuing Section 2 we describe
the problem formulation and the associated game theoretic interpretation.
In Section 3 we introduce the concept of a multivalued game and an enclo-
sure and prove a statement about the convergence of the value function of
a sequence of enclosures of a multivalued game. These result are extended
to systems with state constraints in Section 4. In Section 5 we show how
via the division of state space one obtains a multivalued game from the
original system, construct the corresponding hypergraph and introduce an
associated shortest path algorithm. Some hints on its implementation, com-
plexity issues as well as two numerical examples are addresed in Section 6.
Convergence of the numerical approximation to the optimal value function
and the construction of approximately optimal feedback laws are discussed
in Sections 7 and 8, respectively.

2 Problem formulation

We consider the problem of optimally stabilizing the discrete-time perturbed
control system

xk+1 = f(xk, uk, wk), k = 0, 1, . . . , (1)

where f : X ×U ×W → X is continuous, xk ∈ X is the state of the system,
uk ∈ U is the control input and wk ∈ W is a perturbation parameter, chosen
from sets X ⊂ Rd, U ⊂ Rm and W ⊂ R`. In addition to the evolution law,
we are given a continuous cost function g : X × U → [0,∞), that assigns
the cost g(xk, uk) to any transition xk+1 = f(xk, uk, wk), wk ∈ W .

Our goal is to derive an (optimal) feedback law u : X → U that stabilizes
the system in the sense that for a certain subset S ⊂ X any trajectory
starting in S tends to some prescribed set O ⊂ X, while the worst case
accumulated cost is minimized.
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Let us be more precise. For a given initial point x ∈ X, a control
sequence u = (uk)k∈N ∈ UN and a perturbation sequence w = (wk)k∈N ∈
W N yield the trajectory x(x,u,w) = (xk(x,u,w))k∈N, defined by x0 = x
and

xk+1 = f(xk(x,u,w), uk, wk), k = 0, 1, . . . , (2)

while the associated accumulated cost is given by

J(x,u,w) =
∞∑

k=0

g(xk(x,u,w), uk).

In order to formalize the interplay between the control and the pertur-
bation we employ a game theoretic viewpoint which we describe next. The
problem formulation actually already describes a game (see, e.g., [6]), where
at each step of the iteration (1) two “players” choose a control value uk and
a perturbation value wk, respectively. The goal of the controlling player is
to minimize J , while the perturbing player tries to maximize this quantity.

We assume that the controlling player has to choose the value uk first and
that the perturbing player has the advantage of knowing uk when choosing
the perturbation value wk. However, the perturbing player is not able to
forsee future choices of the controlling one. More formally, we restrict the
choice of perturbation sequences w ∈ W N to those that result from applying
a nonanticipating strategy β : UN → W N to a given control sequence u ∈ UN,
i.e. we have w = β(u), with β satisfying

uk = u′k ∀k ≤ K ⇒ β(u)k = β(u′)k ∀k ≤ K

for any two control sequences u = (uk)k,u′ = (u′k)k ∈ UN. Let B denote the
set of all nonanticipating strategies β : UN → W N.

As mentioned, our goal is to find a feedback law u : X → U such that
with controls uk = u(xk), xk approaches a given set O ⊂ X, regardless of
how the perturbation sequence w is chosen. Accordingly, we assume that
we know a compact robust forward invariant set O ⊂ X, i.e. for all x ∈ O
there is a control u ∈ U such that f(x, u, W ) ⊂ O. Since we are done with
controlling the system once we are on O, we assume that g(x, u) = 0 for
all x ∈ O and all u ∈ U and g(x, u) > 0 for all x 6∈ O and all u ∈ U .
Further assumptions on g and on the dynamics in a neighborhood of O will
be specified later.

Our construction of the feedback law will be based on the upper value
function V : X → [0,∞],

V (x) = sup
β∈B

inf
u∈UN

J(x,u, β(u)), (3)

of the game (1), which fulfills the optimality principle

V (x) = inf
u∈U

[
g(x, u) + sup

w∈W
V (f(x, u, w))

]
. (4)
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3 Multivalued games

As we will see in the next section, our set oriented approach to the discretiza-
tion of state space of the perturbed control system (1) leads to a finite state
multivalued system. For the convergence analysis of this discretization it
turns out to be useful to introduce as an intermediate object an infinite
state multivalued game defined by a discrete inclusion. This is given by a
multivalued map

F : X × U ×W ⇒ X,

where X ⊂ Rd is a closed set and U ⊂ Rm, W ∈ R` and the images of F are
compact sets, together with a cost function

G : X ×X × U ×W → [0,∞).

In order to simplify our presentation we first assume that F (x, u, w) 6= ∅ for
all x ∈ X, u ∈ U , w ∈ W , which will be relaxed later, cf. Section 4. Further
regularity assumptions on these maps will be imposed when needed. Note
that we have introduced a second state argument in G, which allows to as-
sociate different costs to the trajectories of the associated discrete inclusion.

For a given initial state x ∈ X, a given control sequence u = (uk)k∈N ∈
UN and a given perturbation sequence w = (wk)k∈N ∈ W N, a trajectory of
the game is given by any sequence x = (xk)k∈N ∈ XN such that x0 = x and

xk+1 ∈ F (xk, uk, wk), k = 0, 1, 2, . . . .

We denote by

XF (x,u,w) =
{

(xk)k ∈ XN | x0 = x, xk+1 ∈ F (xk, uk, wk) ∀k ∈ N
}

the set of all trajectories of F associated to x, u and w. The accumulated
cost is given by

J(F,G)(x,u,w) = inf
(xk)k∈XF (x,u,w)

∞∑
k=0

G(xk, xk+1, uk, wk).

As in the previous section, we are interested in computing the upper value
function

V(F,G)(x) = sup
β∈B

inf
u∈UN

J(F,G)(x,u, β(u)), x ∈ X, (5)

of this game. By standard dynamic programming arguments [7] one sees
that this function fulfills the optimality principle

V(F,G)(x) = inf
u∈U

sup
w∈W

inf
x1∈F (x,u,w)

{
G(x, x1, u, w) + V(F,G)(x1)

}
. (6)
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Observe that our original “single valued” game (2)–(3) can be recast in
this multivalued setting by defining

F (x, u, w) := {f(x, u, w)} and G(x, x1, u, w) := g(x, u).

We will now investigate the relation of the value functions of different
multivalued games. For this purpose we first introduce the concept of an
enclosure.

Definition 1. If (F1, G1) and (F2, G2) are two multivalued games such that

F2(x, u, w) ⊂ F1(x, u, w)

for all x, u and w and

G1(x, x′, u, w) ≤ G2(x, x′, u, w)

for all x, x′ ∈ F2(x, u, w) and all u and w, then (F1, G1) is called an enclosure
of (F2, G2).

From this definition we immediately obtain the following proposition.

Proposition 1. Let the game (F1, G1) be an enclosure of the game (F2, G2).
Then

V(F1,G1) ≤ V(F2,G2).

The next proposition studies the convergence of the value functions
V(Fi,Gi) of a sequence of games (Fi, Gi). In this proposition H denotes the
Hausdorff distance for compact sets.

Proposition 2. Let the sequence of games (Fi, Gi), i ∈ N, be enclosures of
the game (F,G) and assume

sup
x∈X,u∈U,w∈W

H(Fi(x, u, w), F (x, u, w)) → 0 as i →∞ (7)

and

sup
x,x1∈X,u∈U,w∈W

|Gi(x, x1, u, w)−G(x, x1, u, w)| → 0 as i →∞. (8)

Assume furthermore that F is upper semi–continuous in x and that G is
continuous in x and x1, both uniformly in u and w and on compact subsets
of X. In addition, we assume that there exists α ∈ K∞1 with

G(x, x1, u, w) ≥ α(d(x,O) + d(x1, O))
1A function γ : [0,∞)→ [0,∞) is of class K if it is continuous, zero at zero and strictly

increasing. It is of class K∞, if, in addition, it is unbounded.
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and
Gi(x, x1, u, w) ≥ α(d(x,O) + d(x1, O))

for all i ∈ N, u ∈ U , w ∈ W , and that V(F,G) is continuous on ∂O. Then
for each compact set K ⊂ X for which supx∈K V(F,G)(x) < ∞ we have

sup
x∈K

|V(Fi,Gi)(x)− V(F,G)(x)| → 0 as i →∞,

i.e., uniform convergence on compact sets in the domain of V(F,G).

Proof. Let k∗ : XN → N be a bounded map. Then from the optimality
principle (6) we obtain by induction

V(F,G)(x) = sup
β∈B

inf
u∈UN

inf
x∈XF (x,u,β(u))

{
k∗(x)−1∑

k=0

G(xk, xk+1, uk, β(u)k)

+ V(F,G)(xk∗(x))

}

Now let γ := supx∈K V(F,G)(x). Due to the lower bound α on G, for
every δ > 0 there exists a time kγ,δ ∈ N such that for each trajectory
x ∈ XF (x,u, β(u)) with cost bounded by γ there exists a time k∗(x) ≤ kγ,δ

such that xk∗(x) ∈ Bδ(O). We fix ε > 0 and x ∈ K and choose δ > 0 such
that V(F,G)(x) ≤ ε for all x ∈ Bδ(O) (δ exists because of the continuity of
V(F,G) on ∂O). Then, using an ε–optimal perturbation strategy β∗ ∈ B and
an arbitrary u∗ ∈ UN, from the above optimality principle we obtain

V(F,G)(x) ≤ inf
u∈UN

inf
x∈XF (x,u,β∗(u))


k∗(x)−1∑

k=0

G(xk, xk+1, uk, β
∗(u)k)

+V(F,G)(xk∗(x))

}
+ ε

≤ inf
u∈UN

inf
x∈XF (x,u,β∗(u))


k∗(x)−1∑

k=0

G(xk, xk+1, uk, β
∗(u)k)

 + 2ε

≤ inf
x∈XF (x,u∗,β∗(u∗))


k∗(x)−1∑

k=0

G(xk, xk+1, u
∗
k, β

∗(u∗)k)

 + 2ε.

Now, fixing β∗, for any i ∈ N we can pick an ε–optimal control u∗i ,
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yielding

γ ≥ V(Fi,Gi)(x)

≥ inf
x∈XFi

(x,u∗i ,β∗(u∗i ))

{ ∞∑
k=0

Gi(xk, xk+1, (u∗i )k, β
∗(u∗i )k)

}
− ε

≥ inf
x∈XFi

(x,u∗i ,β∗(u∗i ))


k∗(x)∑
k=0

Gi(xk, xk+1, (u∗i )k, β
∗(u∗i )k)

− ε.

In particular, this last expression is bounded by γ and hence the lower bound
α for Gi implies that there exists a compact set K1 such that each ε–optimal
trajectory (xk)k ∈ XFi(x,u∗i , β

∗(u∗i )) lies in K1 for all i ∈ N.
Now assumption (7) and the upper semicontinuity of F imply that for

each ε1 > 0 there exists an i0 ∈ N such that for i ≥ i0 and each such
ε–optimal trajectory (xk)k ∈ XFi(x,u∗i , β

∗(u∗i )) there exists a trajectory
(x̃k)k ∈ XF (x,u∗i , β

∗(u∗i )) with ‖xk − x̃k‖ ≤ ε1 for all k = 1, . . . , kγ,δ. Hence
(8) and the continuity of G imply that we can find i1 ∈ N such that∣∣∣∣∣ inf

(xk)k∈XF (x,u∗i ,β∗(u∗i ))

{
k∗∑

k=0

G(xk, xk+1, (u∗i )k, β
∗(u∗i )k)

}

− inf
(xk)k∈XFi

(x,u∗i ,β∗(u∗i ))

{
k∗∑

k=0

Gi(xk, xk+1, (u∗i )k, β
∗(u∗i )k)

}∣∣∣∣∣ ≤ ε

for all i ≥ i1 and all k∗ ∈ {1, . . . , kγ,δ}. Combining this inequality with the
estimates for V(F,G) and V(Fi,Gi) using u∗ = u∗i in the former we obtain

V(F,G)(x) ≤ V(Fi,Gi)(x) + 5ε

for all i ≥ i1. Since i1 depends only on kγ,δ and ε, hence only on the set K
and not on the individual x, we obtain the desired uniform convergence.

Remark 1. Note that we have obtained our result under very weak as-
sumptions on F and G using, however, the crucial continuity assumption of
V(F,G) on ∂O. This assumption — which is implicit and in general difficult
to check directly — can be ensured by the following asymptotic controllability
assumption on the dynamics F and the cost function G in a neighborhood
of O:

Assume that there exists a neighborhood N of O and a KL function2 η
such that for each x ∈ N and each perturbation strategy β ∈ B there exists
a control sequence u ∈ UN and a trajectory (xk)k ∈ XF (x,u, β(u)) with

d(xk, O) ≤ η(d(x0, O), k). (9)
2A function η : [0,∞)× [0,∞)→ [0,∞) is of class KL if it is continuous, of class K in

the first variable and strictly decreasing to 0 in the second variable.
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Then, using the construction from [8, Proof of Theorem 5.4], we find a K
function ρ (denoted ρ2 in [8]) such that G(x0, x1, u, w) ≤ ρ(d(x0, O)) for
x0 ∈ N implies

∞∑
k=0

G(xk, xk+1, uk, β(u)k) ≤ σ̃(d(x0, O))

for some K function σ̃. Since σ̃(d(x,O)) → 0 as d(x,O) → 0 this implies
V (x) → 0 as d(x,O) → 0 which yields continuity of V on ∂O. Note that
condition (9) is weaker than controllability conditions typically employed to
ensure continuity in minimum time problems or pursuit–evasion games (cf.
e.g. [9, Chapter IV]) because we do not require to be able to steer the system
into the “target” set O but only asymptotically to O.

We also emphasize that we only need continuity at the boundary of O
and that our optimal value function may be discontinuous elsewhere.

4 State space constraints

So far we have assumed F (x, u, w) 6= ∅ for all x ∈ X, u ∈ U , w ∈ W
which guarantees that for each initial value x, and each pair of control
and perturbation sequences u and w we obtain at least one trajectory (xk)k

which is defined for all k ∈ N0. However, in practice it will often be necessary
to relax this assumption.

In order to motivate this relaxation, assume that we are given a multi-
valued game (F̃ , G) on a state space X̃ ⊆ Rd. In our numerical approach,
the state space set X on which we can solve the problem will be a compact
set while the state space X̃ of the given problem is often unbounded. In
addition, from a modeling point of view it might be desirable to introduce
state constraints, e.g., in order to avoid certain critical regions of the state
space. In both cases, it will be necessary to restrict the state space of the
original problem defining

F (x, u, w) := F̃ (x, u, w) ∩X, x ∈ X, u ∈ U, w ∈ W.

This construction may result in F (x, u, w) = ∅ for certain x ∈ X, u ∈ U ,
w ∈ W and consequently it may happen that a solution trajectory will only
exist for finite time. More precisely, for given F , given u = (uk)k ∈ UN,
given w = (wk)k ∈ W N and any sequence x = (xk)k ∈ XN let

kmax
F (x,u,w) = max

{
k̂ ∈ N : xk+1 ∈ F (xk, uk, wk), k = 0, . . . , k̂ − 1

}
be the maximal index up to which the sequence x constitutes a trajectory
of F . Since a trajectory with kmax

F (x,u,w) < ∞ cannot converge to the set
O we set

J(F,G)(x,u,w) := ∞ if kmax
F (x,u,w) < ∞ for each x ∈ XN with x = x0.
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It is easy to see that Proposition 1 remains valid in this case, while Propo-
sition 2 is more difficult to recover in this setting. The reason lies in the
fact that any enclosure will necessarily enlarge the set of possible trajec-
tories, even if we apply the same state space constraints to F and Fi. In
the presence of state space constraints this means that for any i there may
exist a trajectory xi of Fi for which all nearby trajectories x of F violate
the space constraints. In other words, unless very specific knowledge about
the dynamics F is available and used for the construction of the enclosure
Fi, the enlargement of the dynamics has the implicit effect of relaxing the
state space constraints.

However, if we assume that the optimal value function is continuous with
respect to relaxations of the state space constraints, then we can recover
Proposition 2. In order to formalize this relaxation, for ε > 0 we define the
space

Xε := {x ∈ X̃ | d(x,X) ≤ ε},

the multivalued dynamics

Fε(x, u, w) := F̃ (x, u, w) ∩Xε

and the related optimal value function V(Fε,G). Using this notation we can
prove the following variant of Proposition 2.

Proposition 3. Consider the state space constrained dynamics F of F̃ and
consider a sequence of enclosures (Fi, Gi) of F on X. Let the assumptions
of Proposition 2 hold for F and Fi, where (7) in the case of F (x, u, w) = ∅
is to be understood as

Fi(x, u, w) = ∅ for all i ∈ N and all x, u, w with F (x, u, w) = ∅.

Assume, furthermore, that F̃ is upper semi–continuous in x uniformly in u
and w on compact subsets of X̃ and let ‖ · ‖p be the usual p–norm for real
valued functions on X for some p ∈ {1, . . . ,∞}.

Then for each compact set K ⊂ X for which supx∈K V(F,G)(x) < ∞ and
on which the continuity assumption

‖V(Fε,G)|K − V(F,G)|K‖p → 0 as ε → 0 (10)

holds, we have

‖V(Fi,Gi)|K − V(F,G)|K‖p → 0 as i →∞.

Proof. The assumptions on F̃ and Fi imply that for each ε > 0, each k∗ ∈ N
and each sufficiently large i ∈ N, for each trajectory xi of Fi we can find a
trajectory xε of F̃ with ‖xε

k − xk‖ ≤ ε, k = 0, . . . , k∗. Hence, up to the time
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k∗ the trajectory xε is also a trajectory of Fε. Thus, replacing F by Fε we
can follow the proof of Proposition 2 in order to obtain

V(Fε,G)(x) ≤ V(Fi,Gi)(x) + 5ε

for all sufficiently large i ∈ N and all x ∈ K. Now (10) implies the assertion.

Remark 2. Basically, the continuity assumption (10) demands that an ar-
bitrarily small relaxation of the state space constraints does not lead to large
changes in the optimal value function. If V(F,G) is continuous on K then
one can expect (10) to hold for p = ∞ while if V(F,G) is discontinuous on
K (note that state space restrictions may introduce discontinuities in the
optimal value function) then we would only expect (10) to hold with p < ∞
because the location of the discontinuity is likely to change when the state
constraint changes. We conjecture that (10) holds under mild regularity
conditions on the optimal control problem, a formal verification, however, is
beyond the scope of this paper.

In any case, we would like to emphasize that our result allows for a rigor-
ous convergence proof of the approximating multivalued game in the presence
of discontinuities, a feature which is rarely found in other approximation
techniques.

5 Discretization of the game

In this section we describe the set oriented discretization technique which
transforms our problem into a graph theoretic problem. In order to introduce
our method, we first recall the corresponding procedure for unperturbed
systems developed in [1] before we turn to the general setting.

5.1 Discretizing the Unperturbed System

If X is finite and there are no perturbations, then one can use a shortest
path algorithm like Dijkstra’s method [10], see also the appendix, in order
to compute the value function, see, e.g., [7]. In [1] it has been shown how
to discretize general optimal control problems with continuous state space
such that this approach can be applied. We review this method here in a
different formulation that directly carries over to the case of a perturbed
control system in the next section.

We consider a single valued control system f : X×U → X (f continuous,
X ⊂ Rd and U ⊂ Rm compact, 0 ∈ X, 0 ∈ U , f(0, 0) = 0), together with a
continuous cost function g : X × U → [0,∞) with g(x, u) > 0 for x 6= 0 and
g(0, 0) = 0. Let P be a finite partition of X, i.e. P is a finite set of mutually
disjoint subsets P ⊂ X. Define the map π : X → P, π(x) = P , x ∈ P , as
well as ρ : X ⇒ X, ρ = π−1 ◦ π (i.e. to each x, ρ associates the set of the
partition P which contains x).
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Box-enclosure of the system. Consider the multivalued game (which is
actually a multivalued control system since there are no perturbations here)
(F,G) with

F (x, u, w) = F (x, u) := ρ(f(x, u)) and G(x, x1, u, w) = g(x, u).

The optimality principle (6) in this case reads

V(F,G)(x) = inf
u∈U

{
g(x, u) + inf

x1∈F (x,u)
V(F,G)(x1)

}
. (11)

Projection onto piecewise constant functions. The right hand side
of (11) defines an operator on real valued functions on X, the dynamic
programming operator L : RX → RX ,

L[v](x) = inf
u∈U

{
g(x, u) + inf

x1∈F (x,u)
v(x1)

}
.

Note that the optimal value function V(F,G) is, by definition of L, a fixed
point of L, i.e. L[V(F,G)] = V(F,G). Abusing notation, we identify the space
RP with the subspace of real valued functions on X that are piecewise
constant on the elements of the partition P (in fact, we view v ∈ RP as the
function v ◦ π ∈ RX). We define the projection ϕ : RX → RP ⊂ RX ,

ϕ[v](x) = inf
x′∈ρ(x)

v(x′),

and the corresponding discretized dynamic programming operator LP : RP →
RP ,

LP = ϕ ◦ L.

Explicitely, the discretized operator reads

LP [v](x) = inf
x′∈ρ(x)

{
inf
u∈U

{
g(x′, u) + inf

x1∈F (x′,u)
v(x1)

}}
= inf

x′∈ρ(x),u∈U

{
g(x′, u) + v(f(x′, u))

}
,

since v ∈ RP is constant on each element of P, i.e. on each set F (x′, u).
We define the discretized optimal value function VP ∈ RP as the unique

fixed point of LP with VP(0) = 0. Then VP satisfies the optimality principle

VP(x) = inf
x′∈ρ(x),u∈U

{
g(x′, u) + VP(f(x′, u))

}
. (12)

12



Graph theoretic formulation. Note that since P is finite, VP(f(x′, u))
in (12) can only take finitely many values. We can therefore rewrite (12) as

VP(x) = min
P∈π(f(ρ(x),U))

inf
x′∈ρ(x),u∈U :f(x′,u)∈P

{
g(x′, u) + VP(P )

}
(13)

where VP(P ) = VP(x) for any x ∈ P ∈ P. If we define the multivalued map
(or, equivalently, the directed graph) F : P ⇒ P,

F(P ) = π(f(π−1(P ), U)), P ∈ P, (14)

and the cost function

G(P ′, P ) = inf{g(x, u) | x ∈ P ′, f(x, u) ∈ P, u ∈ U}, (15)

we can rewrite (13) as

VP(P ) = min
P1∈F(P )

{G(P, P1) + VP(P1)}.

Note that this optimality principle can be interpreted as being solved by
Dijkstra’s algorithm.

5.2 Discretization of the Perturbed System

Now we want to carry over the discretization procedure from the last section
to our game setting. We proceed in a completely analogous way, additionally
incorporating the perturbations now. This will ultimately lead to a directed
hypergraph (actually a forward hypergraph or F -graph in the terminology
of [11]) instead of an ordinary graph for which we formulate the associated
shortest path algorithm at the end of the section.

Box-enclosure of the system. Consider the multivalued game (F,G)
with

F (x, u, w) = ρ(f(x, u, w)) and G(x, x1, u, w) = g(x, u), (16)

(where f and g are the control system and cost function introduced in Sec-
tion 2). From the optimality principle (6) we obtain

V(F,G)(x) = inf
u∈U

sup
w∈W

inf
x1∈F (x,u,w)

{
g(x, u) + V(F,G)(x1)

}
= inf

u∈U

{
g(x, u) + sup

w∈W
inf

x1∈F (x,u,w)
V(F,G)(x1)

}
.

13



Projection onto piecewise constant functions. The dynamic pro-
gramming operator L : RX → RX here reads

L[v](x) = inf
u∈U

{
g(x, u) + sup

w∈W
inf

x1∈F (x,u,w)
v(x1)

}
.

Correspondingly, the discretized operator LP : RP → RP is given by

LP [v](x) = inf
x′∈ρ(x)

{
inf
u∈U

{
g(x′, u) + sup

w∈W
inf

x1∈F (x′,u,w)
v(x1)

}}
= inf

x′∈ρ(x),u∈U

{
g(x′, u) + sup

x1∈F (x′,u,W )
v(x1)

}
,

since v ∈ RP is constant on each element of P, i.e. on each set F (x′, u, w).
We define the discretized optimal value function VP ∈ RP as the unique

fixed point of LP with VP(P ) = 0 for all partition elements P ∈ P with
π−1(P ) ∩O 6= ∅. Then VP satisfies the optimality principle

VP(x) = inf
x′∈ρ(x),u∈U

{
g(x′, u) + sup

x1∈F (x′,u,W )
VP(x1)

}
. (17)

Graph theoretic formulation. In order to derive the corresponding
shortest path algorithm, it is useful to formulate (17) equivalently in terms
of an associated graph. To this end note that for any pair (x, u) ∈ X × U ,
the set F (x, u, W ) ⊂ X is the union of a finite set of elements from the
partition P. In particular, the family {F (x′, u,W ) : (x′, u) ∈ ρ(x) × U}
of subsets of X is finite for any x ∈ X. Putting this in terms of a corre-
sponding map on P: each partition element P is mapped to a finite family
{Ni}i=1,...,i(P ), Ni ⊂ P, of subsets of P under all perturbations. Formally,
we have a directed hypergraph (P, E) with the set E ⊂ P×2P of hyperedges
given by

E = {(P,N ) | π(F (x, u, W )) = N for some (x, u) ∈ P × U} ,

or, equivalently, the multivalued map F : P ⇒ 2P ,

F(P ) = {π(F (x, u, W )) : (x, u) ∈ P × U},

c.f. Figure 1.
If we define weights on the edges of this hypergraph by

G(P,N ) = inf{g(x, u) : (x, u) ∈ P × U, π(F (x, u, W )) = N},

then we can write (17) equivalently as

VP(P ) = inf
N∈F(P )

{
G(P,N ) + sup

N∈N
VP(N)

}
. (18)
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f(x, u, W )

F (x, u, W )π(f(x, u, W ))
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Figure 1: Illustration of the construction of the hypergraph.

Dijkstra’s method for the perturbed system. We are now going to
generalize Dijkstra’s algorithm (see the appendix) such that it computes the
value function of a weighted directed hypergraph (i.e. the function defined
by the optimality principle (18)).

Let (P, E), E ⊂ P × 2P , be a hypergraph with weights G : E → [0,∞).
In order to adapt Algorithm 2, we need to modify the relaxing step in lines
7–9, such that the maximization over all perturbations (i.e. over N ∈ N ) in
(18) is taken into account. The modified version of lines 7–9 reads:

7 for each (Q,N ) ∈ E with P ∈ N
8 if V (Q) > G(Q,N ) + maxN∈N V (N) then
9 V (Q) := G(Q,N ) + maxN∈N V (N)

As justified by Proposition 5 (see the Appendix), if N ⊂ P\Q, then

max
N∈N

V (N) = V (P ),

and the node Q will never be relaxed again. On the other hand, ifN 6⊂ P\Q,
then Q will be relaxed at a later time again and we do not need to relax it in
this iteration of the while-loop. These considerations lead to the following
further modification of lines 7–9:

7 for each (Q,N ) ∈ E with P ∈ N
8 if N ⊂ P\Q then
9 if V (Q) > G(Q,N ) + V (P ) then
10 V (Q) := G(Q,N ) + V (P )

Including the adapted initialization, the overall algorithm for the case of
a perturbed system reads as follows. Here, D ⊂ P is the set of destination
nodes which typically will be chosen as D = {P ∈ P : P ∩O 6= ∅} (with the
robust forward invariant set O from Section 2).

15



Algorithm 1. Perturbed Dijkstra((P, E),G,D)

1 for each P ∈ P set V (P ) := ∞
2 for each P ∈ D set V (P ) := 0
3 Q := P
4 while Q 6= ∅
5 P := argminP ′∈Q V (P ′)
6 Q := Q\{P}
7 for each (Q,N ) ∈ E with P ∈ N
8 if N ⊂ P\Q then
9 if V (Q) > G(Q,N ) + V (P ) then
10 V (Q) := G(Q,N ) + V (P )

We note that this algorithm bears similarities with the SBT-algorithm
in [11]. However, in our case the graph has a special structure (namely,
the heads of the hyperedges consist of only a single node, i.e. we have an
F -graph as defined in [11]). This yields the subquadratic complexity in the
number of nodes as derived above and thus gives an improvement over SBT.

6 Implementation and Numerical Examples

6.1 Implementation

In the numerical realization we always let the state space X be a box in Rd

and construct a partition P of it by dividing X uniformly into smaller boxes.
In fact, we realize this division by repeatedly bisecting the current division
(changing the coordinate direction after each bisection). The resulting se-
quence of partitions can efficiently be stored as a binary tree — see [12] for
more details.

In order to compute (or rather approximate) the set E ⊂ P × 2P of
hyperedges, we choose finite sets P̃ ⊂ P , Ũ ⊂ U and W̃ ⊂ W of test points
– typically on an equidistant grid in each of these sets. We then compute

F̃(P ) := {π(F (x, u, W̃ )) : (x, u) ∈ P̃ × Ũ} ⊂ 2P

as an approximation to F(P ) and correspondingly approximate the weights
on the hyperedges by

G̃(P,N ) = min{g(x, u) : (x, u) ∈ P̃ × Ũ , π(F (x, u, W̃ )) = N}.

Time and space complexity. The time complexity of the standard Di-
jkstra algorithm (Algorithm 2 in the appendix) strongly depends on the
data structure which is used in order to store the set Q. In particular, the
complexity of the operations in lines 5 (extracting the node with minimal
V -value) and line 9 (decreasing the V -value and the associated reorganiza-
tion of the data structure) have a crucial influence. In our implementation
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we are using a binary heap in order to store Q which leads to a complexity
of O((|P|+ |E|) log |P|).

In the perturbed case (Algorithm 1), each hyperedge is considered at
most N times in line 7, with N being a bound on the cardinality of the
hypernodes N . Additionally, we need to perform the check in line 8, which
has linear complexity in N . Thus, the overall complexity of the perturbed
Dijkstra algorithm is O(|P| log |P|+ |E|N(N + log |P|)).

The space requirements grow linearly with the number of partition ele-
ments. Since typically the whole state space has to be covered, this number
grows exponentially with the dimension of phase space (assuming a uni-
form partioning). The concrete storage consumption strongly depends on
the properties of the underlying control system. While the number of hyper-
edges is essentially determined by the Lipschitz constant of f , the size of the
hypernodes N will crucially be influenced by the size of the perturbation.
In the applications that we have in mind in this paper, these numbers are
of moderate size.

As a rule of thumb, the main computational effort in our approach goes
into the construction of the hypergraph via the mapping of test points – in
particular, if the system is given by a short-time integration of a continuous
time system. Note that this “sampling” of the system will be required in any
method that computes the value function. Typically however, in standard
methods like value iteration, certain points are sampled multiple times which
leads to a higher computational effort in comparison to our approach.

6.2 Numerical Examples

A simple 1D system. We start by looking at an additively perturbed
version of a simple 1D map from [2]:

xk+1 = xk + (1− a)ukxk + wk, k = 0, 1, . . . ,

with xk ∈ [0, 1], uk ∈ [−1, 1], wk ∈ [−ε, ε] for some ε > 0 and the fixed
parameter a ∈ (0, 1). The cost function is

g(x, u) = (1− a)x

so that (regardless of how the perturbation sequence is chosen) the optimal
control policy is to steer to the origin as fast as possible, i.e. to choose
uk = −1 for all k. Similarly, the optimal strategy for the “perturbing
player” is to slow down the dynamics as much as possible, corresponding to
wk = ε for all k. The resulting dynamical system is the affine linear map

xk+1 = axk + ε, k = 0, 1, . . . ,

which has a fixed point at x = ε/(1 − a), i.e. under worst case conditions
(assuming wk = ε for all k) it will be impossible to get any closer than
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Figure 2: Perturbed simple 1D map: Upper value function and its approxi-
mations on various partitions.

α0 := ε/(1 − a) to the origin. Correspondingly, we choose a neighborhood
O = [0, α] with α > α0 as our target region. With

k(x) =

⌈
log α−α0

x−α0

log a

⌉
+ 1,

the exact optimal value function is

V (x) = (x− α0)
(
1− ak(x)

)
+ εk(x),

as shown in Figure 2 for a = 0.8, ε = 0.01 and α = 1.1α0. In that Figure, we
also show the approximate optimal value functions on partitions of 64, 256
and 1024 intervals, respectively. In the construction of the hypergraph, we
used an equidistant grid of ten points in each partition interval, in the control
space and in the perturbation space.

The inverted pendulum – reloaded. As a more challenging test case,
we reconsider the problem of designing an optimal globally stabilizing con-
troller for an inverted pendulum on a cart (see [1, 2]):(

4
3
−mr cos2 ϕ

)
ϕ̈ +

1
2
mrϕ̇

2 sin 2ϕ− g

`
sinϕ = −u

mr

m`
cos ϕ. (19)

The equation models the (planar) motion of an inverted pendulum with
mass m = 2 on a cart with mass M = 8 which moves under an applied
horizontal force u. The angle ϕ measures the offset angle from the vertical
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Figure 3: Approximate optimal value function and feedback trajectory (left)
and the approximate optimal value function along the feedback trajectory
(right) for the inverted pendulum on a 218 box partition.

up position. The parameter mr = m/(m+M) is the mass ratio and ` = 0.5
the distance of the pendulum mass from the pivot. We use g = 9.8 for the
gravitational constant. The instantaneous cost is

q(ϕ, ϕ̇, u) =
1
2

(
0.1ϕ2 + 0.05ϕ̇2 + 0.01u2

)
. (20)

Denoting the evolution operator of the control system (19) for constant
control functions u by Φt(t, u), we consider the time-T -map ΦT (x, u) of
this system as our discrete time system with T = 0.1. The map ΦT is
approximated via the classical Runge-Kutta scheme of order 4 with step
size 0.02. Thus we arrive at the cost function

g(ϕ, ϕ̇, u) =
∫ T

0
q(Φt((ϕ, ϕ̇), u), u) dt,

We choose X = [−8, 8]× [−10, 10] as the region of interest.
In [2], a feedback trajectory with initial value (3.1, 0.1) was computed

that was based on an approximate optimal value function on a partition of
218 boxes (cf. Figure 3 (left)). In contrast to what one might expect, the
approximate optimal value function does actually not decrease monotoni-
cally along this trajectory (cf. Figure 3 (right)). This effect is due to the
fact that the discretization method used in [2] allows for jumps in the tra-
jectories which cannot be reproduced by the real system. The fact that the
approximate optimal value function is not always decreasing indicates that
the approximation accuracy in this example is just fine enough to allow for
stabilization, and in fact, on a coarser partition of 214 boxes, the associated
feedback is not stabilizing this initial condition any more.

We are now going to use the approach developed in this paper in order
to design a stabilizing feedback controller on basis of the coarser partition
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Figure 4: Approximate upper value function and feedback trajectory (left)
and the approximate upper value function along the feedback trajectory
(right) for the inverted pendulum on a 214 box partition using the robust
feedback construction.

(214 boxes). To this end, we imagine the perturbation of our system being
given as “for a given state (ϕ, ϕ̇), be prepared to start anywhere in the box
that contains (ϕ, ϕ̇)”, i.e. we define our game by

F ((ϕ, ϕ̇), u,W ) := ΦT (B, u),

where B ∈ P is the box in the partition P under consideration which con-
tains the point (ϕ, ϕ̇). Note that we do not need to parameterize the points
in ΦT (B, u) with w ∈ W for the construction of the hypergraph.

Figure 4 shows the approximate upper value function on a partition
of 214 boxes with target region O = [−0.1, 0.1]2 as well as the trajectory
generated by the associated feedback for the initial value (3.1, 0.1). As
expected, the approximate value function is decreasing monotonically along
this trajectory. Furthermore, despite the fact that we used considerably
fewer boxes as for Figure 3, the resulting trajectory is obviously closer to
the optimal one because it converges to the origin much faster.

7 Convergence Analysis

In this section we show that and in which sense the approximate optimal
value function constructed in the preceeding section converges to the true
one as the underlying partitions are refined, using the abstract results for
multivalued games developed in the Sections 3 and 4.

We begin with the following observation on the relation between VP and
V(F,G) with F , G from (16).

Proposition 4. Consider the discretized optimal value function VP and the
optimal value function V(F,G) from (5) corresponding to the game (16). If
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V(F,G) is continuous on ∂O, then these functions are related by

VP(x) = inf
x′∈ρ(x)

V(F,G)(x
′).

Proof: First note that both functions are nonnegative. From the previ-
ous considerations it follows that the functions satisfy the optimality prin-
ciples

V(F,G)(x) = inf
u∈U

sup
w∈W

inf
x1∈F (x,u,w)

{
g(x, u) + V(F,G)(x1)

}
(21)

and
VP(x) = inf

x′∈ρ(x)
inf
u∈U

sup
w∈W

inf
x1∈F (x′,u,w)

{
g(x′, u) + VP(x1)

}
. (22)

In order to show
inf

x′∈ρ(x)
V(F,G)(x

′) ≤ VP(x), (23)

we number the elements Pi of P such that i2 > i1 implies VP |Pi2
≥ VP |Pi1

.
We first consider those elements Pi, i = 1, . . . , j, for which we have VP |Pi ≡ 0
which by our assumptions on VP and g(x, u) is equivalent to π−1(Pi)∩O 6= ∅.

In case that π−1(Pi) ∩O 6= ∅, we can find x0 ∈ π−1(Pi) ∩O and u0 ∈ U
such that F (x0, u0, w) ⊂ O for all w ∈ W . In particular, for any fixed w we
find x1 ∈ F (x0, u0, w) ∩O for which we proceed the same way, which yields
F (x1, u1, w) ⊂ O for all w ∈ W . Hence, given a perturbation strategy β(u)
we find a control sequence u such that XF (x0,u, β(u)) ⊂ O implying

J(F,G)(x0,u, β(u)) = inf
(xk)k∈XF (x,u,β(u))

∞∑
k=0

G(xk, xk+1, uk, β(u)k) = 0

and thus
inf

x′∈ρ(x0)
V(F,G)(x

′) ≤ V(F,G)(x0) = 0 ≤ VP(x0),

which shows (23) for ρ(x) = Pi with π−1(Pi) ∩ O 6= ∅. In fact, what we
showed is that V(F,G)(x) = 0 for x ∈ O. Since we assumed that V(F,G) is
continuous on ∂O, we also get

inf
x′∈Pi

V(F,G)(x
′) = 0

for Pi with π−1(Pi) ∩O 6= ∅, but π−1(Pi) ∩O = ∅.
Now we proceed by induction over i ≥ j + 1. We pick some i ≥ j + 1

and assume that the desired inequality (23) holds for ρ(x) = P1, . . . , Pi−1.
We fix x ∈ X with ρ(x) = Pi and an arbitrary ε > 0. Then we pick x′′ ∈ Pi
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such that the infimum over x′ in (22) is attained up to ε. Thus we obtain

VP(x) = inf
x′∈ρ(x)

inf
u∈U

sup
w∈W

inf
x1∈F (x′,u,w)

{
g(x′, u) + VP(x1)

}
≥ inf

u∈U
sup
w∈W

inf
x1∈F (x′′,u,w)

{
g(x′′, u) + VP(x1)

}
− ε

= inf
u∈U

sup
w∈W

inf
x1∈F (x′′,u,w)

{
g(x′′, u) + V(F,G)(x1)

}
− ε

= V(F,G)(x
′′)− ε ≥ inf

x′∈Pi

V(F,G)(x
′)− ε,

where we have used the induction assumption in the third step as follows:
the inequality g(x, u) > 0 implies VP(x1) < VP(x) = VP |Pi , furthermore we
have x1 ∈ F (x′′, u, w) = Pi′ for some i′ ∈ N, i.e., VP(x1) = VP |Pi′ . This
implies VP |Pi > VP |Pi′ and consequently i > i′. Hence by the induction
assumption we have

inf
x1∈F (x′′,u,w)

VP(x1) = VP |Pi′ = inf
x1∈F (x′′,u,w)

V(F,G)(x1).

Now, since ε > 0 was arbitrary, we obtain (23).
The converse inequality VP(x) ≤ infx′∈ρ(x) V(F,G)(x) follows by a similar

induction argument using the fact that (21) always yields a larger value than
(22) due to the additional minimization over x′ in (22).

Remark 3. Note that in order to obtain the assertion from the preceeding
proposition, it is sufficient that the union of those partition elements that
have nonempty intersection with O form a neighborhood of O. If this is true,
one can actually drop the assumption on the continuity of V(F,G) on ∂O.

We now consider a sequence of increasingly finer partitions of X and
ask under which conditions the corresponding approximate optimal value
functions converge to the value function of the game (f, g). In a nested
sequence of partitions, each element of a partition is contained in an element
of the preceding partition.

The following theorem states our main convergence result. It shows that
we obtain L∞ convergence on compact sets on which V(f,g) is continuous
and — under a mild regularity condition on the set of discontinuities — L1

convergence on every compact set on which V(f,g) is bounded. We first con-
sider problems without state space constraints and address the constrained
case in Remark 4, below.

Theorem 1. Let (Pi)i∈N be a nested sequence of partitions of X such that

sup
x∈X

H(ρi(x), {x}) → 0 as i →∞.

Assume that g(x, u) is continuous, that g(x, u) > 0 for x 6∈ O and that V(f,g)

is continuous on ∂O. Then

‖VPi |Ki − V(f,g)|Ki‖∞ → 0 as i →∞
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for every compact set K ⊆ X on which V(f,g) is continuous and

Ki =
⋃

P∈Pi, π−1(P )⊂K

π−1(P )

being the largest subset of K which is a union of partition elements P ∈ Pi.
If we assume furthermore that the set of discontinuities of V(f,g) has zero

Lebesgue measure, then

‖VPi |K − V(f,g)|K‖L1 → 0 as i →∞

on every compact set K ⊆ X with supx∈K V(f,g)(x) < ∞.

Proof. We use Proposition 2 with (F,G) = (f, g) (f interpreted as a set
valued map) and Proposition 4.

Note that since Fi(x, u, w) = ρi(f(x, u, w)) and Gi(x, u, w) = g(x, u),
the games (Fi, Gi) are enclosures of (f, g) (in fact, since the sequence of
partitions is nested, for every i, (Fi, Gi) is an enclosure of (Fi+1, Gi+1)).
Under the assumptions of the theorem, all assumptions of Proposition 2 are
satisfied. In particular, by the assumptions on g and since X and U are
compact, we know that there exists a function α ∈ K∞ such that

Gi(x, x1, u, w) = g(x, u) ≥ α(d(x,O) + d(x1, O))

for all i. Thus, V(Fi,Gi) converges uniformly to V(f,g) on K. In order to show
the L∞ convergence on Ki observe that if V(f,g) is continuous on K then it
is also uniformly continuous on K which implies

sup
P∈Pi, π−1(P )⊂K

| inf
x∈P

V(f,g)(x)− sup
x∈P

V(f,g)(x)| → 0

as i →∞. Thus we can use Proposition 4 in order to conclude

‖VPi |Ki − V(f,g)|Ki‖∞ ≤ sup
P∈Pi, π−1(P )⊂K

|VPi |P − sup
x∈P

V(f,g)(x)|

= sup
P∈Pi, π−1(P )⊂K

| inf
y∈P

V(Fi,Gi)(y)− sup
x∈P

V(f,g)(x)|

≤ sup
P∈Pi, π−1(P )⊂K

{
| inf
y∈P

V(Fi,Gi)(y)− inf
x∈P

V(f,g)(x)|

+ | inf
x∈P

V(f,g)(x)− sup
x∈P

V(f,g)(x)|
}
→ 0

as i →∞.
In order to show the L1 convergence, observe that the uniform conver-

gence V(Fi,Gi) → V(f,g) on K implies

‖V(Fi,Gi)|K − V(f,g)|K‖L1 → 0 as i →∞.
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It thus remains to show that V(Fi,Gi)|K −VPi |K → 0 in L1. Let D be the set
of discontinuities of V(f,g) and Di = {P ∈ Pi, P ∩D 6= ∅}. We write∫

K
V(Fi,Gi) − VPi dm = Ii,1 + Ii,2

with

Ii,1 =
∑

P∈Di

∫
P∩K

V(Fi,Gi) − VPi dm, (24)

Ii,2 =
∑

P∈Pi\Di

∫
P∩K

V(Fi,Gi) − VPi dm. (25)

Because of V(f,g) ≥ V(Fi,Gi), the assumption that D has zero Lebesgue mea-
sure and H(ρi(x), {x}) → 0, we have that Ii,1 → 0 for i → ∞. Using
Proposition 4, the compactness of K, and the fact that V(Fi,Gi)|K → V(f,g)|K
uniformly, we also obtain that Ii,2 → 0 as i →∞, i.e. V(Fi,Gi)|K−VPi |K → 0
in L1 and thus the assertion of the theorem.

Corollary 1. Under the assumptions of Theorem 1 we have

VPi(x) → V(f,g)(x) as i →∞

for Lebesgue-almost all x ∈ K, where K is any compact subset of the domain
of V(f,g).

Proof. By standard arguments, there exists a subsequence (i(j))j such that
VPi(j)

(x) → V(f,g)(x) as j → ∞ for Lebesgue-almost all x ∈ K. Since
(VPi(x))i is monotone, we obtain the assertion.

Remark 4. Using Proposition 3 instead of Proposition 2 it is easily seen
that our convergence results remain valid in case of state space constraints
if we assume condition (10) for F̃ (x, u, w) = {f(x, u, w)}. In this case, the
first assertion of Theorem 1 will hold for the p–norm from (10) instead of
the ∞–norm.

8 Feedback Construction

As usual, we use the approximate optimal value function VP and the opti-
mality principle (4) in order to construct an approximate optimal feedback.
More precisely, for any point x ∈ S0, S0 := {x ∈ X : V(f,g)(x) < ∞}, we
define

uP(x) = argminu∈U max
w∈W

{g(x, u) + VP(f(x, u, w))}.

We can immediately adapt Theorem 3 from [2] in order to obtain a statement
about the performance of this feedback. The following result in particular
shows that the feedback is robust with respect to arbitrary perturbations of
the system.
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Theorem 2. Let the assumptions of Theorem 1 be satisfied. Let D ⊂ S0

be an open set with compact closure, such that D ⊂ S0, O ⊂ D and on
which V(f,g) is continuous. Let c > 0 be such that the inclusion Dc(i0) :=
V −1
Pi0

([0, c]) ⊂ D holds for some i0 ∈ N. Then there exists a function δ : R →
R with limα→0 δ(α) = 0 such that for all sufficiently small ε, all sufficiently
large i, all η ∈ (0, 1), all x0 ∈ Dc(i) and all perturbation sequences (wk)k ∈
W N, the trajectory generated by

xk+1 = f(xk, uPi(xk), wk)

satisfies

V (xk) ≤ max

V (x0)− (1− η)
k−1∑
j=0

g(xj , uPi(xj)), δ(ε/η) + ε

 .

Proof. We only point out how to suitably modify the proof of Theorem 3
in [2]. First note that according to Theorem 1, VPi converges uniformly to
V(f,g) on D. The second observation is that if we choose i1 ∈ N, i1 > i0 such
that V(f,g) − VPi(x) ≤ ε/2 for i ≥ i1 and all x ∈ Dc(i1), then

VPi(x) + ε/2 ≥ V (x) = inf
u∈U

sup
w∈W

{g(x, u) + V (f(x, u, w))}

≥ min
u∈U

max
w∈W

{g(x, u) + VPi(f(x, u, w))}

= g(x, uPi(x)) + max
w∈W

VPi(f(x, uPi(x), w)),

i.e.
VPi(xk+1) ≤ VPi(xk)− g(x, uPi(x)) + ε/2

for all xk+1 ∈ f(xk, uPi(x),W ). The rest of the proof of Theorem 3 in [2]
remains the same.

Remark 5. A particular application of our result is to robustify the feed-
back construction from [2] with respect to small perturbations which may be
due, e.g., to discretization errors resulting from the numerical computation
of the discrete time system from an ordinary differential equation. For this
purpose, a particularly convenient way is to consider an “ε-inflated” system
related to the original unperturbed system. More precisely, given an unper-
turbed control system f : X × U → X, one considers the perturbed system

xk+1 = f(xk, uk) + εwk, k = 0, 1, . . . ,

with wk ∈ [−1, 1]d for some (small) ε > 0. In the numerical realization, the
sets F (x, u, W ) = f(x, u) + ε[−1, 1]d are easy to construct using ideas from
rigorous discretization, see [13, 14].
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A Dijkstra’s Method

Let (P, E) be a finite directed graph with edge weights g : E → [0,∞). Let
D ∈ P be the destination node. The following algorithm [10] computes the
length V (P ) ∈ [0,∞) of the shortest path from P to D for all nodes P ∈ P.

Algorithm 2. Dijkstra((P, E), g, D)

1 for each P ∈ P set V (P ) := ∞
2 V (D) := 0
3 Q := P
4 while Q 6= ∅
5 P := argminP ′∈Q V (P ′)
6 Q := Q\{P}
7 for each Q ∈ P with (Q,P ) ∈ E
8 if V (Q) > g(Q,P ) + V (P ) then
9 V (Q) := g(Q,P ) + V (P )

An important feature of this algorithm is given by the following proposi-
tion, which follows immediately from the construction of the algorithm and
the fact that the edge weights are nonnegative.

Proposition 5. During the while-loop in lines 4-9 of Algorithm 2 it holds
that

V (P ) ≥ V (P ′) for all P ′ ∈ P\Q.
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