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Abstract

Following the lead of Merton (1974), recent research has focused on the
relationship of credit risk to �rm value. Although this has usually been
done for a single �rm, the growth of structured �nance, which necessarily
involves the correlation between included securities, has spurred interest
in the connection between credit-default risk and the dependencies and
cross-correlations arising in families of �rms. Previous work by Grüne
and Semmler (2005), focusing on a single �rm, has shown that �rm-value
models, incorporating company-speci�c endogenous risk premia, imply
that exposure to risk does impact asset value. In this paper, we extend
these results to study the e¤ects of random shocks to diversi�ed capital
assets wherein the shocks are correlated to varying degrees. Thus, we
construct a framework within which the e¤ects of correlated shocks to
capital assets can be related to the probability of default for the company.
The dynamic decision problem of maximizing the present value of a �rm
faced with stochastic shocks is solved using numerical techniques. Further,
the impact of varying dependency structures on the over-all default rate
is also explored.
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1 Introduction

There is a long tradition of deriving security prices, e.g., stocks and bonds, from
the value of a company�s assets. The general background literature goes back
to Modigliani and Miller (1958), Black and Scholes (1973), and Merton (1974)
where it is presumed that the asset value of the company is exogenously given
by a Brownian motion at the time the company�s debt is priced. This is usually
done by using the classic balance sheet equivalency: V = S +B where V is the
asset value, S is the value of stocks, and B is the value of bonds. Furthermore,
when short-term interest rates are given, one can derive the risk structure of
interest rates.1

Recent advances in the development of �nancial instruments have led to
the recognition that the mechanisms by which companies borrow and, thus,
generate credit risk, are quite complex. When combined together, a completely
new set of phenomena is created, e.g., default frequency. The rise of CDOs and
other structured �nancial products, as well as recent credit market events, have
greatly increased the interest in the correlation between default events occurring
beneath a single umbrella. On the one hand, the grouping together of a number
of entities creates an even more complex entity, on the other, it also allows for
the use of macroscopic analysis, e.g., macro-factors underlying probabilities.2 It
is largely this observation that has given rise to modern risk management, which
is concerned with the evaluation and control of credit risk. However, we feel
that there is still reason to examine some of the fundamental processes which
must lie beneath the global phenomena.
In this paper, we focus on evaluating a company�s capital assets and credit

risk in the context of a production oriented asset pricing model.3 In our paper,
we consider the evaluation of the default risk of a company by solving a debt
control problem treated as a dynamic decision problem. Using this construc-
tion, the solution of the dynamic decision problem gives us the company�s asset
value. We then extend this method to include multiple capital assets which
are subject to random shocks. In this way, we examine how the default prob-
ability might be related to the correlation of shocks to the di¤erent fractions
of a company�s capital assets. Much as volatility has come to be the quoted
variable in derivatives analysis, so correlation is becoming the quoted variable
in structured �nance.
Following the aforementioned tradition in asset pricing, in our �rst step, we

show how the asset value of a company depends upon the default risk of the
company. This will, in turn, be de�ned by the creditworthiness of the company.

1For details see Merton (1974).
2This is similar to the way in which the properties of temperature and pressure allow one

to deal with the fundamentally chaotic movement of individual atoms; so too, certain broad
statistical measures may allow for a systematic treatment of collections of risky securities
without a complete understanding of the underlying processes.

3Some preliminary thoughts on the relationship of credit and a �rms�capital assets can be
found in Keynes (1967, ch. 12).
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We presume that companies pursue dynamic investment decisions and will
show that the key to the impact of debt �nance on the company�s asset value
is its impact on credit cost. Speci�cally, we will demonstrate that default risk
varies with the internal decisions made with respect to the use of capital assets.
Company behavior under external �nancial constraints has been studied in many
papers.4 In this paper we study how external �nance, e.g., default premia paid
on bonds, impact investment and company value, in particular, the probability
of default for a �rm possessing diverse capital assets.
The above mentioned literature on asset pricing has not su¢ ciently consid-

ered the impact of default premia on the value of companies� assets. It also
tends to disregard the attempts that managers may make to internally hedge
their company�s investments. Usually it is assumed that a company can un-
dertake investment by borrowing from the capital markets at an ex-ante capital
cost up to the point where the discounted pay-o¤ is equal to the present value
of the company. Taking this as a benchmark case, we consider the pricing of a
company�s assets in the cases where the company faces borrowing constraints
or when the company faces an external �nance premium due to collateralized
borrowing. The external �nance premium is, in this literature, often interpreted
as a default premium re�ecting company-speci�c default risk. It is the company
speci�c default risk that will give rise to a risk-caused endogenous credit cost
and thus an endogenously determined risk structure of interest rates in the sense
of Merton (1974).

In the second step, we argue that the problem of managing a company�s
risk pro�le, as de�ned in the company�s bond pricing, is essentially a problem
of the optimal control of company debt, the dynamics and correlation between
the diversi�ed elements of its capital stock, and its asset value. Here too,
default risk and default premia, in contrast to many other recent models, will
be endogenized and made state dependent, thus allowing us to treat the overall
default rate of the company�s bonds from the input side, i.e., that arising from
the diversi�ed capital assets.
Here, our second step is undertaken in a stochastic environment. In par-

ticular, we are interested in the relationship between the diversi�cation present
in a company�s capital assets and the resulting probability of default. In the
�nance literature, it is already well recognized that the value of stocks may
not be independent of the valuation of the �rm�s debt; for example see Hanke
(2003, ch. 2). An important issue in computing the asset value of a company
is the optimization problem of that company. Consumption-based asset pricing
theory would argue that the objective of the company is to deliver a stream
of dividends for the equity holder. The optimization problem of the company
would then be to maximize the present value of dividends to the share hold-
ers. We show that with respect to debt-�nanced investment, one should be
interested in the asset value of the company and not solely in the equity value
of the company relevant for the share holders. The work on pricing corporate

4See Gaskins (1971), Judd and Petersen (1986), Gertler and Gilchrist (1994), and other
literature cited.
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liability has largely taken this tone since Merton (1974) and numerous empirical
approaches have been pursued to infer, from time series data on equity values,
the asset value of a company.5

We also note that if we take the maximization of the equity value for the
share holders as the optimization problem, it is obvious � since endogenous
credit costs reduce the net income of the company before dividends are paid �
that the equity value of the company will be a¤ected by state-dependent default
premia.
What is important in our formulation of the optimization problem is that

the asset value of the company and the default risk will be a¤ected not only by
the sequence of optimal investment decisions (size of investment and allocation
of resources) of a company, but that the default premia are impacted by the
correlation of shocks to the diversi�ed capital assets. We are dealing with a
complicated constrained optimization problem in a stochastic environment; its
solution will require advanced numerical methods.
As to our solution method, we note that these rather complex models cannot

be solved analytically. We will make use of numerical dynamic programming
for the deterministic case and a set-oriented algorithm to solve the di¤erent
model variants in the stochastic case. These methods are well suited to the
study of problems wherein companies face imperfect capital markets, where the
risk premia are endogenized, and where there might be correlated risk to the
company�s capital assets.6

The remainder of the paper is organized as follows: Section 2 discusses the
literature, while Section 3 treats some issues of default premia and asset pricing.
Section 4 introduces the basic dynamic asset pricing model and sets forth the
stochastic version for diversi�ed capital assets. Section 5 discusses the numerical
procedures.7 Section 6 reports the detailed results from our numerical study on
the di¤erent variants of the model. Section 7 concludes the paper.

2 Related Literature

Clearly, default risk is of great interest not only to bond holders, but to owners
of equity as well. As residual claimants, they are strongly in�uenced by bond
defaults. However, though simple to state, it is not immediately obvious either
how to measure default risk or how to model it. On the one hand, the causes of
default risk, from loss of competitiveness, to a weak economy, to misperceptions
of risk and return, to corporate mismanagement, are many and often hidden
within the company. As outlined in Crouhy, Galai, and Mark (2000) credit
risk may also become manifest in a multitude of ways. From downgrades,

5See, for example, Duan, Gauthier, Simonato and Zaanoun (2002). There, a survey of
empirical methods is given on how to estimate the asset value of the �rm using a time series
analysis of its equity value.

6A stochastic version of such a dynamic programming algorithm is used in Grüne and
Semmler (2004, 2007) where a consumption based asset pricing model is solved.

7More details on the numerical methods can be found in the papers by Grüne and Grüne
& Semmler listed in the references.
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actual defaults, and other company-speci�c factors to changes in market indices,
general economic factors, and interest, exchange, and unemployment rates, both
the causes and the manifestations of changes in credit conditions are complex.
Nonetheless, ultimately, the issue of default risk boils down to the question of:
"Is there su¢ cient asset value in the company to pay the obligations due?"
The problem of how to measure and manage default risk, in particular that

associated with corporations is as old as the concept of the company itself.
Prior to the 1950s, most techniques focused on traditional accounting and �-
nancial statement-analysis methods. Franco Modigliani was the �rst to place
the problem within the theoretical context now recognizable as modern �nance.
Along with coauthor Merton Miller, Franco Modigliani (1958) rigorously pro-
posed sca¤olding for the exploration of the relationship between a company�s
market value and its debt and equity �nancing. An explicit equivalency linking
the value of a company to its �nancial structure, expressed in terms of bonds,
equity, and derivative securities based on these was established.
The 1960s and 1970s saw an explosive growth in the use of equity options

culminating with the founding of the Chicago Board Options Exchange, CBOE,
in 1973. The ready existence of a liquid market for derivative securities allowed
for new types of analysis. Black and Scholes (1973) realized that what market
makers actually do is to take risk-neutral positions in the contracts they deal
with and make their money o¤ the bid-ask spread.8 Therefore, the price of an
option is determined by the costs involved in creating a risk-neutral portfolio.
Under this paradigm, it becomes clear that it is stock-price volatility that de-
termines the prices for both puts and calls. In fact, for this reason, traders are
just as likely to quote volatility as they are to quote price.
Merton (1974), one year later, utilized this same methodology, treating the

value of corporate debt, from the perspective of derivative pricing, in order to
study the risk structure of corporate bonds. The Modigliani-Miller (1958) and
Merton (1974) results follow from the proposition that the capital structure
does not a¤ect the company�s asset value. Although, as shown in recent papers,
applying Black-Scholes and option pricing, the stock price of the company can
be impacted by the capital structure, yet the asset value, which is split up into
stocks and bonds, is independent of the capital structure.9 Those results are,
however, obtained by assuming an exogenous stochastic process, a Brownian
motion, for the asset value, which does not originate, as we will argue later,
from the solution of a dynamic decision problem of a company acting under
constraints. In other words, because of the complexity of the underlying com-
pany�s value-debt dynamics, it is tempting to build models that do not depend
upon them, i.e., to make no attempt to o¤er a causal explanation for the phe-
nomena.

Credit spread models, for example, treat the problem by considering the

8 In other words, they guarantee a liquid market by maintaining fully hedged positions
which they continually adjust to re�ect market movements and sales of both sides of their
portfolios.

9See Hanke (2003).
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spread between the interest rate on defaultable debt and that of similar maturity
risk-free debt. The idea here is that the reason for the spread is that bond
purchasers need to be compensated for the risk present in the former and that
this will yield information about the probability of default. Jonkhurt�s (1979)
paper is one of the �rst to discuss the credit spread approach, while Hull and
White (2000) have a more recent treatment. Another popular approach is
the intensity model. Whereas the company-value method attempts to link
default frequency to fundamental processes related to the �nancial structure of a
company, an intensity model only seeks to describe the statistical characteristics
of these events. Thus, like the credit spread approach, it o¤ers little explanation
of the fundamental default process. Madan and Unal (1998) use intensity-based
methods in their paper and Du¢ e and Singleton (1997) develop the topic within
the context of factor models.
The rise of structured �nancial products, e.g., CDOs, wherein collections of

risky products are grouped together, has greatly increased the interest in default
correlation models. Through the use of copula functions and other methods, it
is possible to relate the default dependency internal to complex products to a
generalized correlation variable. This framework also allows for the discussion
of correlated defaults within the context of both intensity and company value
models. Douglas Lucas�(1995) paper is one of the �rst to explicitly discuss the
topic, whereas Schönbucher (2001) and Embrechts, Lindskog, and McNeil (2003)
present more contemporary treatments. Das and Du¢ e (2005) present evidence
on how default events de�nitely correlate to a greater degree than had been
thought. In contrast, our study is interested in correlations between "input"
variables, i.e., stochastic shocks to di¤erent elements of a company�s capital
assets and how those shocks ultimately in�uence the probability of default.
For our study, we preferred to continue along the company-value approach

suggested by the early work, mentioned above, numerically analyzed by two
of ourselves, e.g., in Grüne and Semmler (2005), and made practical, through
the widespread acceptance of Moody�s KMV model. Crouhy, Galai, and Mark
(2000) provide an excellent overview of the many approaches that have been
found e¤ective by practitioners. In particular, they analyze the implementa-
tion of the company-value approach in the commercial sphere. Moody�s KMV
(named for Kealhover, McQuown, and Vasicek, cofounders of the KMV Corpo-
ration) model calculates the Expected Default Frequency (EDF) based on the
company�s capital structure, the volatility of the assets returns and the current
asset value. The model speci�es the �nancial structure of the company in terms
of assets, current debt, long-term debt, and preferred shares. Next, the default
point (DPT), the asset value where the company defaults, is computed. It is
assumed that this point is above the size of its short-term debt.
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Figure 1: Distance-to-Default model

The distance-to-default, DD, is the number of standard deviations between
the mean of the distribution of the assets value and the default point, where
E[Vgrowth ] = Expected[asset value in 1 year], Default Point = (short-term
debt)+ 1

2 (long-term debt), and � = (volatility of asset returns). The last
stage in this procedure is to construct a large list of companies, calculate their
respective DDs, and note the expected default frequency, EDF , as a function
of DD. Thus an estimate of the EDF; based on valuation, capital structure,
and the market as a whole is achieved. Thus, this model combines structural
elements and historical data to estimate probability of default.
In our model, we will not use any actual data points, but will compute

company value and the probability of default using a numerical approximation
of the corresponding Hamilton-Jacobi-Bellman equation. The details of this
are discussed, in general in section 5, and are found, in detail in Camilli and
Falcone (1995), Camilli, et. al. (2006).

3 Default Premia and Asset Pricing

We are now in a position to discuss the background of the present project.
De�ning the value of the company�s assets by V and debt by B, we have B =
F (V; t). On the maturity date T , one needs to have V � �B > 0 with �B being the
promised payment, otherwise the company will default. Thus, the debt payment
at maturity date T is
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F (V; T ) = min(V; �B)

In terms of a Brownian motion one can write a change of the value of debt
as

dB = (�BB � CB)dt+ �BBtdz

with �B , �B and CB constants. Presuming B = F (V; t) and a Brownian
motion for the value of the underlying asset, V , by

dV = (�V V � CV )dt+ �V V dz:

A solution of the stochastic equation for the debt, B, depending on the
stochastic process for V , can then be obtained by using Ito�s lemma (see Merton,
1974).
Below in the context of a deterministic dynamic model, it will be shown that

if there are no risk premia and the company issues debt at a risk free interest
rate the debt value of the company is equal to its creditworthiness which will be
proxied by the company�s asset value. Thus we have as maximum debt capacity
B� = V . This will, however be di¤erent for an endogenous risk premium where
the risk premia may depend on the extent to which the company is levered.
Then, as shown below, we will have B� = F (V (B�)), which is a more di¢ cult
problem to solve.
On the other hand, as noted above, recently, in economic theory, there has

been much work on imperfect capital markets and companies� investments.
Many dynamic models have been proposed where a company operates in an
environment of imperfect capital markets and faces credit constraints. Here we,
mainly, keep the focus on companies that may face an idiosyncratic default risk
and default premia that may e¤ect a company�s optimal investment strategy.10

In the latter context, it is frequently posited that borrowers face a risk
dependent-interest rate which is assumed to be comprised of a market interest
rate, e.g., the risk-free interest rate, and an idiosyncratic component determined
by the individual riskiness of the borrower.11 This gives rise to risk premia that
companies have to pay contingent on their net worth. In this paper, the impact
of both the credit constraint as well as endogenous risk premia on the company�s
optimal investment and asset value will be explored.
As to the justi�cation of the default premium, we draw on the literature

10 Investment models with credit market borrowing from imperfect capital markets can be
found in Townsend (1979), Kiyotaki and Moore (1997), Bernanke, Gertler and Gilchrist (1999)
and Miller and Stiglitz (1999). In these models, the impact of imperfect credit market bor-
rowing and debt dynamics on economic activity is studied.
11Recently, the theory of asymmetric information and costly state veri�cation has been

employed, e.g., Bernanke, et al. (1999), where a risk premium is taken as endogenous by
making the default risk dependent on net worth of the borrower.
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of asymmetric information and costly state veri�cation.12 Such a premium13

drives a wedge between the expected return of the borrower and the risk-free
interest rate. A simple assumption is that the premium is positively related to
the default cost and inversely related to the borrowers net worth. Net worth is
de�ned as the company�s collateral value of the capital stock less the agent�s out-
standing obligations.14 We can then measure the inverse relationship between
the risk premium (default premium) and net worth as follows:

H (k(t); B(t)) =
�1�

�2 +
N(t)
k(t)

�� �B(t) (1)

with H (k(t); B(t)) the credit cost depending on net worth, N(t) = k(t) �
B(t); with k((t) as capital assets and B(t) as debt. The parameters are �1; �2; �
> 0 and � is the risk-free interest rate. In the analytical and numerical study of
the model below we presume that the risk premium will be zero for N(t) = k(t)
and thus, in the limit, for B(t) = 0, the borrowing rate is the risk-free rate.
Borrowing at a risk-free rate will be considered here as a benchmark case.15

In Figure 2 eq. (1) is shown with the external �nance premium which arises
if N(t) < k(t), yet note that di¤erent companies could face a di¤erent slope of
such a default premium cost function.16

12This literature originates in the seminal work by Townsend (1979), in which lenders must
pay a cost in order to observe the borrower�s realized returns. This motivates the use of
collateral in credit market models. Uncollateralized borrowing is assumed to pay a larger
premium than collateralized borrowing or self-�nancing. The premium arises from the threat
of bankruptcy, i.e., the costs of auditing, accounting, and legal, as well as the loss of assets
arising from asset liquidation. In terms of observable variables, the premium the company
has to pay is considered premium as arising from default risk.
13As Gomes, et. al. (2002) show for a large class of models, one can expect the external

�nance premium, indeed, to be equal to the premium necesssary to compensate lenders for
the default risk. Gomes, et. al. (2002) measure the default risk by the spread of corporate
bonds and T-bills. Another proxy is the relative size of external �nance to capital, see Gomes,
et. al. (2002).
14See Bernanke, Gertler and Gilchrist (1999)
15Another way to state the risk premium, and thus the risk structure of interest rates is as

follows: assume there is debt with di¤erent maturity and that R(�) � � is the risk premium
with R(�) the yield to maturity � and � the risk-free rate - see Merton (1974). Thus, R(�) is,

thus, implicitly de�ned by e�R(�)� = F (V;�)
�B

.
16Note also that for each �rm, bonds with di¤erent maturity could have di¤erent risk premia

which we will, however, disregard here.
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Figure 2: Endogenous Credit Cost

Herein, default premia are endogenized as shown above in �gure 2. The default
risk implied by endogenous credit costs, as well as upper constraints on borrow-
ing, can a¤ect the value of the company. In both cases, the net worth becomes
an endogenous variable. We examine this using a modi�ed HJB-equation and
our numerical methods - as introduced in section 5. Moreover, we want to note
that the risk-free rate does not need to be a constant; it could vary over time.17

4 A Model with Endogenized Default Premia

We will present our model in two steps. In the �rst, we have a deterministic
version with a single productive asset, while the second step allows for a sto-
chastic environment and diversi�cation of the company�s assets. In the latter
case, depending upon which form of productive activity is being utilized, the
productive assets are subject to random shocks. We thus imagine a company
that is able to shift its resources across productive assets.
First, for the deterministic case, we specify the dynamic decision problem of

a company that faces a default premia on its bonds as described in the previous
section. In our model, as in Cochrane�s (1991, 1996), asset pricing can be studied
without reference to utility theory or a discount factor obtained from the growth
rate of marginal utilities.18

17For details of such a model see Grüne, Semmler and Sieveking (2004).
18 In Grüne, Semmler and Sieveking (2004), an analytical treatment is given of why and

under what conditions the subsequent dynamic decision problem of a �rm can be separated
from the consumption problem.
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In step one, the company accumulates a productive asset through an optimal
investment where debt can be continuously issued and retired. In each period
the company does not have to pay attention to the maturity structure of its
debt and it does not face one-period borrowing constraints. Yet, there can be
intertemporal debt constraints that a¤ect the present value of the activity of
the company.
Using the risk premia formulated in eq. (1), we examine the following dy-

namic decision problem of a �rm accumulating a productive asset.19

V (k) =Max
j

Z 1

0

e��tf (k(t); j(t)) dt (2)

_k(t) = j(t)� �k(t); k(0) = k: (3)

:
_B(t) = H (k(t); B(t))� f (k(t); j(t)) ; B(0) = B0 (4)

The company�s net income

f(k; j) = ak� � j � j�k� = ak� � j �
�
j

k

�2
; when � =  = 2 (5)

arises from the productive assets, i.e., capital stock, through a production func-
tion, ak� ; investment, j; is undertaken so as to maximize the present value
of net income given the adjustment cost of capital '(k; j) = j�k� : Note that
� > 0; � > 0; � > 1;  > 0; are constants, eq. (3) represents the equation for the
company�s productive assets, and eq. (4), the evolution of debt for the company,
represented by outstanding bonds. Since net income in (5) can be negative, the
temporary budget constraint requires the further issuance of bonds (further bor-
rowing from credit markets) and, if there is positive net income, debt can be
retired.20

As shown above, we may assume that the risk premium in our credit cost
function H (k;B) is state-dependent, depending on the productive asset, k; and
the level of debt B with Hk < 0 and HB > 0: Note, however, that if we assume
that the default risk depends inversely on net worth, as in eq. (1), we recover
a special case of our model where the credit cost is determined only by the

19Note that in order to recover the usual optimization problem for linear credit cost, we
state our optimization problem in such a way so as to include the limiting case where there
is a linear credit cost. However, our numerical procedure can solve the more di¢ cult problem
where there are state dependent default premia.
20The productive activity of the company can also be interpreted as written in e¢ ciency

labor, therefore � can represent the sum of the capital depreciation rate, and rate of exogenous
technical change. Note that in (3) a consumption stream could be included. In the study by
Grüne, Semmler and Sieveking (2004) such a consumption stream is treated.
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risk-free interest rate. We then have a linear model with constant credit cost,
�, and a state equation for the evolution of debt:

_B(t) = �B(t)� f(k;B); B(0) = B0 (6)

We consider this our benchmark case and we only have to consider the transver-
sality condition lim

t!1
e��tB(t) = 0, as the non-explosiveness condition for debt,

to close the model and eq. (2) would give us the company�s asset value.
Unfortunately, Pontryagin�s maximum principle is not suitable for solving

this problem with endogenous default premium and endogenous net worth.
Thus, we use numerical methods to solve for the present value and investment
strategy of a levered company.
Ignoring time subscripts, for constant interest rates (no time-varying risk

premia) the HJB equation for eqs. (2)-(4), where B� = V , may be written

�V = max
j

�
f(k; j) +

dV (k)

dk
(j � �k)

�
(7)

In the general case of eq. (2)-(4), with company-speci�c default risk and
the default premium as stated in eq. (1) and shown in Figure 1, we have the
following modi�ed HJB-equation instead:

H(k;B�(k)) = max
j

�
f(k; j) +

dB�(k)

dk
(j � �k)

�
(8)

Note that in the limiting case, where there is no borrowing, N = k, and we
have a constant discount rate �; we obtain the HJB-equation (7). The HJB-
equation (8) can be written as

B�(k) = max
j
H�1

�
f(k; j) +

dB�(k)

dk
(j � �k)

�
(9)

which is a standard dynamic form of a HJB-equation. Next, for example, let us
specify H(k;B) = B�� where, with � > 1 the interest payment is solely convex
in B. We then get

B�(k) = max
j

�
f(k; j) +

dB�

dk
(j � �k)

� 1
�

��
1
� (10)

As can be shown for eq (10), with � > 1; the same equilibrium emerges as
for (7). The algorithm used to study the more general problem of eq. (9) is
described in section 5.
Note that in the case of � > 1; B�(k); eq. (8), will be smaller than V (k);

eq. (7). There is an additional default cost to be paid which is not present in
eq. (6), the integral of which will drive a wedge between the present value V (k)
and B�(k). Thus, B�(k) < V (k) will hold.
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Employing our general form for default premium21 H(k;B) � �B; the debt
capacity, B�(k); relates to the asset value of the company for B(t) � B�(k(t))
as follows.

V (k) = B�(k) + VH(k;B
�(k)):

For the case H(k;B) = �B we have V (k) = B�(k); for the case of an endoge-
nous default premium H(k;B), where we have H(k;B�(k)); the debt capacity
will be less than V (k). Yet, whenever B < B� the value of the company�s assets
can be represented by stocks and bonds, thus permitting a consumption stream
for the owner of the stocks. Yet, as we have pointed out above, the company�s
asset value may also be a¤ected by the default premium.
The second step in our model expands upon the above to include a stochastic

environment and thus move closer to real-world situations. Let us assume a
simple case where the company�s total assets may be diversi�ed into two di¤erent
types of productive assets which may, in turn, be subject to correlated shocks.
Thus, as concerns total assets and potential earnings, the weight, w, devoted to
one line of productive assets will be valued di¤erently than that, 1�w, devoted
to the other. The following equation states that the total cash income to the
company is generated by the respective portions in each productive asset minus
the adjustment costs and reinvestment.

f(k; j) = a1(wk)
�1�(wj)�1(wk)�1+a2((1�w)k)�2�((1�w)j)�2((1�w)k)�2�j

(11)

For example, we might imagine that the company allocates its productive
assets at the beginning of each year and a decision is made as to which major
productive activities should be undertaken. We presume that the company is
able to shift its resources around in a fairly �uid manner, thus, it may change the
percentage of its resources, w, that are devoted to one activity or the other, 1-w,
at will. Each productive activity is subject to random shocks. Prior knowledge
of the markets yields information about the expected correlations between the
di¤erent productive activities. Thus, a choice as to what to produce is made at
the beginning of the year with respect to, among other things, correlation.
The company directors have two decisions to make:
1) What percentage of the company�s assets need to be channeled into

product-A production, w, and what percentage into product-B, 1-w?
2) What amount of revenues should be reinvested, j, in the company as a

whole?
Both decisions are undertaken in such a way as to maximize the present

value of the company as seen from a discounted future income perspective. We
assume that the amount of revenue thus generated will be dependant upon

21For more details of the subsequent derivations, see Grüne, Semmler and Sieveking (2004).
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the relative weight of the overall resources that are devoted to the respective
productive assets and to parameters speci�cally related to them.
Thus, there are two control variables, w and j. The total assets, k, will

be in�uenced by the natural depreciation rate and by additional investment.
Following the logic of our model, we further presume that equity is increased by
retiring debt as quickly as possible. Thus, while positive cash �ow may be used
to pay o¤ bonds or to reinvest in the company, negative cash �ow will require
the issuance of new bonds. Because of the complex way in which the random
shocks e¤ect the value of the company�s assets, depending also on whether it
has been shunted into one or the other line of production, and because of the
nonlinear way in which revenues are generated, the optimal decision path is not
obvious.
We are interested in discovering how di¤erences in the correlation between

the shock processes e¤ect the probability of default. Thus, our objective equa-
tion remains22

V (k) =Max
j

Z 1

0

e��tf (k(t); j(t)) dt (12)

Small changes in capital are now the sum of the di¤erences between mean
reinvestment of cash in�ows and depreciation (for each line of production) plus
stochastic shocks, proportional to weight, to the productive assets invested in
each line of production. So, the evolution of total productive assets can be
described by

dk(t) = (j(t)� k(t)(�1w + �2(1� w))dt+ kt(w�1dX1(t) + (1� w)�Y dY�(t))

and23

dB(t) = H (k(t); B(t))� f (k(t); j(t)) dt (13)

where Yp is a process correlated, with coe¢ cient �; with the random process
X1 We can imagine that the company�s total assets have been invested in
diversi�ed capital assets that are subject to shocks in di¤erent ways.24 It is
22Some readers may remark at the "missing" Expected Value notation. These are, indeed,

missing in eqs. (2) and (12). However, formally, this is no problem as we only use the
optimization criteria, (2) and (12), for the deterministic and linear versions of the model; as
described in Section 5: in the nonlinear deterministic and the stochastic version we do not
maximize V from eqs. (2) and (12), but rather we maximize B* or the default probability,
respectively.
23We note that this equation combines the evolution of two productive assets subject to

correlated random shocks. Thus, there are two random, but correlated, processes that are

both contributary:
�

dkw(t) = k(t)wt(�wdt+ �1dX1)
dkw�1(t) = k(t)(1� wt)(�w�1dt+ �Y dY�)

�
24We might assume that the shock to the diversi�ed capital assets comes through shocks

to the market performance of those assets and are translated into shocks to the accumulated
capital stock. Tobin�s (1969) q theory of investment could help us to explain why external
shocks are transmitted to the captial assets.
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easy to generate two random variables with a speci�ed correlation using the
relation:

Y� = �X1 +
p
1� �2X2

where X1 and X2 are uncorrelated random numbers and � is the desired
correlation. Thus X1 and Y� are random variable with correlation coe¢ cient
�:
Thus, in this second step, we are able to study the e¤ect of di¤erent types

of correlation between the disturbances, those to the fractions of the company�s
assets devoted to one or the other productive activity, on the probability of
default. As will be shown, this version reduces to base cases for appropriate
choices for �.

5 Numerical Solution Methods

In this section, we present the numerical procedures with which we have nu-
merically solved for the maximal debt capacity and default probabilities. We
introduce numerical methods for the deterministic as well for the stochastic
cases.

5.1 Computation with Risk-Free Rate

The following dynamic programming (DP) algorithm25 can be applied to solve
discounted in�nite horizon optimal control problems of the type found in (2)�
(4). This is applicable because there is no default premium and no restrictions
on the dynamics are present. In our model, this applies when the model is
linear, i.e., H(k;B) = �B as in (9) and if, in addition, the constraint on B is
given by infj supt�0B(t) <1, since, in this case, it follows that B�(k) is easily
obtained from V (k) in (2), namely from

V (k) =Max
j

Z 1

0

e��tf (k(t); j(t)) dt

The algorithm was originally developed over twenty years ago by I. Capuzzo
Dolcetta (1983), and has been subsequently re�ned, Falcone (1987) and Grüne
(1997). For details and for a mathematically rigorous convergence analysis we
refer to the work by Bardi and Capuzzo Dolcetta (1997) and to Grüne, Metscher
and Ohlberger (1999).

25For a further discussion of the dynamic programming algorithm and more detailed appli-
cations in economics, see Grüne and Semmler (2004, 2007).
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In the �rst step, the continuous time optimal control problem is replaced by
a �rst order discrete time approximation given by

Vh(k) =Max
j
Jh(k; j); Jh(k; j) = h

1X
i=0

(1� �h)if(kh(i); ji) (14)

where kh is de�ned by the discrete dynamics

kh(0) = k; kh(i+ 1) = kh(i) + h(ji � �kh(i)) (15)

and h > 0 is the discretization time step. Note that j = (ji)i2N0 here denotes a
discrete control sequence.
The optimal value function is the unique solution of the discrete Hamilton�

Jacobi�Bellman equation

Vh(k) =Max
j
fhf(k; j0) + (1� �h)Vh(kh(1))g ; (16)

where kh(1) denotes the discrete solution corresponding to the control j and
initial value k after one time step h. Abbreviating

Th(Vh)(k) =Max
j
fhf(k; j0) + (1� �h)Vh(kh(1))g (17)

The second step of the algorithm now approximates the solution on a grid, �,
covering a compact subset of the state space, i.e., a compact interval [0;K] in
our setup. Denoting the nodes of � by ki, i = 1; : : : ; P , we are now looking for
an approximation V �h satisfying

V �h (k
i) = Th(V

�
h )(k

i) (18)

for each node ki of the grid, where the value of V �h for points k which are not
grid points (these are needed for the evaluation of Th) is determined by linear
interpolation. We refer to the work cited above for the description of iterative
methods. Note that an approximately optimal control law (in feedback form for
the discrete dynamics) can be obtained from this approximation by taking the
value j�(k) = j for j realizing the maximum in (18), where Vh is replaced by
V �h . This procedure yields the numerical computation of approximately optimal
trajectories.
In order to distribute the nodes of the grid e¢ ciently, we make use of an a

posteriori error estimation. For each cell Cl of the grid � we compute

�l :=Max
k2Cl

jTh(V �h )(k)� V �h (k)j

(In other words, we approximate this value by evaluating the right hand side
in a number of test points). It can be shown that the error estimators �l give
upper and lower bounds for the real error (i.e., the di¤erence between Vh and
V �h ) and hence serve as an indicator for a possible local re�nement of the grid �.
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It should be noted that this adaptive re�nement of the grid is very e¤ective26

for detecting thresholds, because the optimal value function typically fails to be
di¤erentiable in these points, resulting in large local errors and consequently in
a �ne grid.

5.2 Computation with Default Premium
In the more general model, i.e., where there is a default premium de�ned by
H(k;B) in (1) and/or restrictions of the type B=k � c, the above DP-algorithm,
regrettably, is not applicable. It is true that, in certain cases, a HJB-equation
for a discrete time version of the problem is available. However, it is not clear
whether the full discretization procedure described above leads to a valid and
convergent approximation of the asset price and the present value borrowing
constraint.
Hence, we employ a di¤erent approach for the solution of this problem. This

is a set oriented method for the computation of domains of attraction.27 The
method relies on the following observation: For a given compact interval 28

[0;K] for the capital stock k one sees that there exists a constant c� > 0 such
that B�(k) � c� for all k 2 [0;K]. Here, we denote B�(k) as the borrowing
constraint of the �rm. Hence, for k 2 [0;K] the condition supt�0B(t) <1 can
be replaced by

sup
t�0

B(t) < c�:

Hence both this constraint and the constraint B(t) � ck(t) can be expressed as

B(t) � d(k(t)) for all t � 0

for some suitable function d. In other words, the set of all initial values (k0; B0)
for which this constraint is violated is given by

D =

�
(k0; B0)

���� there exists T > 0 such that B(t(j)) � d(k(t(j)))for all j and some t(j) 2 [0; T ]

�
and the curve B�(k) is exactly the lower boundary of D. For details of how the
domains of attraction are computed, see Grüne and Semmler (2005). Equipped
with the above two algorithms the �rm�s asset value and thus the maximum
debt capacity B� can be computed.

26Actually, for the one�dimensional problem at hand it is possible to compute rather ac-
curate approximations v�h also with equidistributed grid points. In higher dimensions the
computational advantage of adaptive gridding is much more obvious, see, e.g., the examples
in Grüne (1997) or Grüne et al. (1999).
27For a more detailed description of the algorithm, see Grüne and Semmler (2005)
28 In any numerical method we must restrict ourselves to a compact computational domain,

hence this restriction is natural in this context.

17



5.3 Computation of Default Probabilities

In order to explain the numerical algorithm for the computation of the proba-
bility of default in the stochastic case, let us write the model in a general form,
using the brief notation�

dX(t) = b(X(t); u(t)) dt+ �(X(t); u(t)) dW (t)
X(0) = x0;

(19)

with X(t) = (k(t); B(t)) 2 R2. Then, de�ning K = f(k;B) 2 R2 jB � 0g
determining the minimal default probability amounts to computing the function

p(x0) := 1� inf
u
PfXt(x0; u)! K as t!1g:

In order to compute this function p, consider the Hamilton�Jacobi�Bellman
equation, called the stochastic Zubov equation,

sup
u2U

f�L(x; u)v(x)� �g(x)(1� v(x))g = 0 (20)

for x = (k;B) 2 R2. Here g is a continuous function with g(x) = 0 for x 2 K
and g(x) > 0 for x 6= K (we use g(x) = B2 for B > 0 in our computations),
� > 0 is a real valued parameter and

L(x; u)� := 1

2

2X
i;j=1

ai j(x; u)
@2�

@xi@xj
+

2X
i=1

bi(x; a)
@�
@xi

denotes the generator of the Markov process associated to (19) where ai;j are
the entries of the matrix ��T .
It was proved in Camilli, Cesaroni, and Grüne (2002) that (20) possesses a

unique viscosity solution v� depending on the parameter � > 0 which satis�es

v�(x)! p(x) as � ! 0

In order to approximate p(x) we compute v�(x) for � = 10�4 and perform
a regularization and semi�discretization of (20) following Camilli, Grüne, and
Wirth (2000) and Camilli and Falcone (1995)29 .
For regularization parameter " > 0 and time step h > 0 (in our computations

we used " = 10�4 and h = 1=20) this yields the equation

v(x) = min
u2U

Efh�g(x) + (1� h�g"(x))v('h(x; u))g: (21)

with

g"(x) = maxf"; g(x)g and 'h(x; u) = x+ hb(x; u) + z�(x; u);

29See Grüne (2005) for details.
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where z is a two�point distributed random variable which assumes the values
�
p
h with probability 1=2 (' is the discretization of (19) using the simpli�ed

weak Euler scheme, cf. Kloeden and Platen (1999)).
Finally, using the techniques from Grüne (2005)30 , we can use a dynamic

programming algorithm in order to solve (21) on a grid with adaptive state
space re�nements.

30Also see Grüne and Semmler (2004).

19



6 Results of the Numerical Study

Before discussing the results of the numerical analysis, we note that the de-
terministic case may actually be considered a special case of our more general
model (second step), i.e., one in which w is �xed at 0:5 and � = �1: In this case,
the random shocks to di¤erent productive assets exactly balance each other, on
average, thus returning us to the deterministic case. Additionally, for � = 1,
we get the equivalent special case of a single random shock process. For all
cases we specify the company�s technology parameters to be the same namely
� = 0:15, A = 0:29, � = 0:7, � = 2,  = 0:3 and � = 0:1, so that results do not
di¤er because of di¤erent technology parameters.31 The results that we obtain,
therefore, are solely attributable to the issuance of the company�s risky debt.
The remaining parameters are speci�ed below.32

All examples were computed for di¤erent k0s in the compact interval [0; 2],
using the set-oriented method described in section 5, with control range j 2
[0; 0:25].33 The dynamic programming algorithm uses the numerical time step
h = 0:05 and an initial grid with 39 nodes. The �nal adapted grid consisted
of 130 nodes. The range of control values was discretized using 101 equidis-
tributed values.34 In order to generate the discrete time model 	 we used an
extrapolation method. For this, the range of control values was discretized using
51 equidistributed values. The domain covered by the grid was chosen to be
[0; 2]� [0; 3] where the upper value B = 3 coincides with the value c� = 3; used
in order to implement the restriction supt�0B(t) < 1. The initial grid was
chosen with 1024 cells, while the �nal adapted grids consisted of about 100000
to 500000 cells, depending on the example. For this algorithm, the �gures be-
low always show the set E� which approximates the present value curve V (k).
Recall that the width of this set gives an estimate for the spatial discretization
error.

6.1 Deterministic Version

First, we consider our deterministic formulation. In our benchmark case, debt
is issued, but with no default premium. Thus, the credit cost is given by
H(k;B) = �B. In this case, we can use the DP algorithm in order to solve the
discounted in�nite horizon problem (2)�(4). Figure 3 shows the corresponding
optimal value function representing the present value curve, V (k). The present
value curve represents the asset value of the company for initial conditions k(0).

31For details regarding this parameter choice, see Grüne and Semmler (2005).
32Note that we, of course, could choose another source of heterogeneity of company�s capital

assets, namely by assuming di¤erent technology parameters for the company�s productive
assets. This might be another line of research which we will not pursue here.
33 In all our experiments larger control ranges did not yield di¤erent results.
34Grüne and Semmler (2005) describes the set-oriented method in more detail.
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Figure 3: Present Value of Company�s Capital Assets

We may consider that the debt control problem is solved whenever debt is
bounded by the �rm�s asset value, so that we have V � B � 0. The optimal
investment strategy is not constrained and thus the asset value which represents
the maximum debt capacity B�, is obtained by a solution for an unconstrained
optimal investment strategy, represented by the present value curve in Figure 3.
For initial values of the capital assets above or below k�, the optimal trajectories
tend to the domain of attraction k� = 0:996. For all of those di¤erent initial
conditions, the debt dynamics remain bounded as long V �B � 0, thus allowing
the company�s equity holders to exercise the option of retiring the debt. Any
initial debt above the present value curve will render the company unable to
pay its obligations
Where a default premium is to be paid, the more general case, we used the

following function to represent risk premia:

H (k(t); B(t))) =
�1�

�2 +
N(t)
k(t)

�� �B(t)
For the model described in (2)-(4), with a risk premium included in the

company�s borrowing cost, it is not possible to transform the model into a
standard in�nite horizon optimal control problem. This follows because debt is
now an additional constraint on the optimization problem. Hence, we will use
the set-oriented method (as described in sect. 5) for the computation of domains

21



of attractions and undertake experiments for di¤erent shapes of the credit cost
function representing di¤erent alternative functions for the risk premium. An
important class of functions for risk premia is de�ned by the steepness of the
slope de�ned by the parameter �2.
In the above risk premium function we specify � = 2. Taking into account

that we want � to be the risk�free interest rate, we obtain the condition �1=(�2+
1)2 = 1 and thus �1 = (�2 + 1)

2. Note that for �2 ! 1 and 0 � B � k one
obtains H(k;B) = �B, i.e., the model depicted in �gure 3.
Figure 4 shows the respective present value curves V (k) for �2 = 100, 10, 1

,
p
2� 1 (from top to bottom) and the corresponding �1 = (�2 + 1)2.

Figure 4: Present value curve V (k) for di¤erent �2

For �2 = 100 �rm�s asset value and the trajectories on the curve V (k) show
almost the same behavior as those in the previous section: There exists a value
of �2 where the company�s asset value converges towards 0. The trajectory for
�2 = 10, as well as the other trajectories, show how the value function, and thus
the company�s asset value, is smaller the larger the default risk resulting from
low net worth. Thus, a state dependent default risk has the same e¤ect on �rm
value as a higher discount rate in standard q-theory of investment. The debt
capacity curve, B�, moves down due to higher credit cost (higher default risk)
and if the debt rises such that the debt constraint curve, B�(k); is reached, the
net assets of the company shrink to zero; thus, V �B = 0 and no equity value
claim on the net income stream of the �rm can be supported.
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7 The Stochastic Case

Next, we consider a stochastic version of our model:

_k(t) = (j(t)� �k(t))dt+ �k(t)dX(t) (22)
_B(t) = (H(k(t); B(t)))� f(k(t); j(t))dt (23)

with H(k(t); B(t)) as de�ned as eq. (1), � the standard deviation and dX(t) the
Brownian motion. With � = 0 we recover the deterministic dynamics (3)-(4).
The problem of asset and debt valuation as well as the controllability problem
then becomes to steer the system to the set B � 0, i.e. to debt bounded in the
long run. Again, we use our standard parameters from section 5, �2 = 100,
�1 = (�2 + 1)

2 and � = 2. Details of the numerical procedure are given in
Section 5. With this graph, we have taken the k�B plane of the previous two
illustrations and added Pr(Default), p, as a third.

Figure 5: Numerically determined probabilities for � = 0; 110 ;
1
2

Figure 5 shows the numerical results for � = 0, 1
10 and

1
2 The case � = 0

corresponds to our deterministic version, where the probability of no controlla-
bility and thus bankruptcy is just 0 or 1, and the line in the [3;�0:5] � [0; 2]
plane is just our maximum debt capacity B� = V . As can be observed from the
stochastic cases � = 1

10 and � =
1
2 the line of critical debt B

� = V moves down;
thus, in a stochastic environment, the likelihood of bankruptcy is rising due to
unexpected income shocks and the credit worthiness is shrinking.
However we will see interesting di¤erences in the stochastic case where we

have diversi�able capital assets. We recall the equations of evolution for both
debt and capital:

dk(t) = (j(t)� k(t)(�1w + �2(1� w))dt+ �1dX1(t) + �2dY�(t) (24)

_B(t) = �B � f(k(t); j(t)� c(t)); B(0) = B0 (25)

We �rst examine the case where w = 1
2 , � = �1
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Figure 6: 50:50 Diversi�cation, � = �1

Here, as anticipated, we recover the �rst case shown in �gure 6. In this
case, the two stochastic processes cancel each other out and we are left with a
deterministic situation. In the next case, we consider � = 1:
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Figure 7: 50:50 Diversi�cation, � = 1

Now we recover a case similar to the last case of �gure 5. Since the two
processes are exactly correlated, it is the same as having a single process.

In order to understand the next few graphs, we consider what happens if
we let w be a control variable. Considering the �rst diagram (�gure 7) for
B < B�, the deterministic system yields default probability p = 0 for w = 1

2 .
Thus, the company managers will choose w = 1

2 here. However, for B > B
�,

the choice w = 1
2 yields p = 1, thus deviating from w = 1

2 can only decrease p;
in other words, choosing w 6= 1

2 introduces stochasticity to the system which
increases the chances of surviving when B > B�. We now consider a sequence
with di¤erent correlation, �, between the productive assets and w as a control
variable.
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Figure 8: Full Freedom to Diversify, � = 1
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Figure 9: Full Freedom to Diversify, � = 0
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Figure 10: Full Freedom to Diversify, � = �1

Although the changes from �gure 8 to �gure 9 are subtle, we may note a
slight "�attening" of the default-risk surface. More distinctly, in �gure 10, we
see that allowing the company�s managers the freedom to shift the weights of
the productive assets enables them to not only maintain a large region of safety
when B < B�, but to also have only a gradual escalation of risk when B > B�.
Further, even at the extreme range of (B = 3; k = 2), there is still a positive
probability of solvency! This is because although the company may be close to
insolvency in the deterministic case, the probability of a positive shock implies
a possibility for survival.

8 Conclusions

In this paper we have examined a company�s default risk in the context of a dy-
namic decision problem where companies can borrow from the credit market for
investment, where there is a risk premium which may be state dependent, and
the company is free to diversify its capital assets. The basis for the evaluation of
credit risk and, thus, bond pricing is a �rm-value approach, originally proposed
in Merton (1974). Building on a production oriented asset pricing model we
show that diversifying the capital assets enhances the borrowing ability of the
company by decreasing its default risk. If risk premia, debt capacity (creditwor-
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thiness)35 and asset value are endogenous, then the asset value of companies
cannot be taken as exogenous when securities such as stocks and bonds are
priced.
We also showed that the default probabilities and, thus, credit risk depends

on the diversi�cation of capital assets. This can happen in various ways de-
pending on how the shocks to the diversi�ed capital assets are correlated.
Using modern computational methods, we solved the intertemporal decision

problem and computed the asset value for �rms with endogenous risk premia. In
the stochastic version with diversi�ed capital assets, we allowed for correlated
shocks to those capital assets and considered their impact on the company�s
value and default probability. We also explored the impact of di¤erent diversi-
�cation and investment strategies.
Recent credit market events have underscored the fact that purely statistical

models have an underlying weakness. That is that they may rely on parameters
which are simply reported by �rms and/or computed from reported data. Our
model shows that it is possible to relate some aspects of default risk to funda-
mental structures within a �rm. In this way, it is possible to highlight how the
correlation of shocks to a �rm�s capital assets correlate with some aspects of a
�rm�s credit risk and how to control it.
Obviously, our method is dependent upon adjustment costs, i.e., the ease

with which a �rm can shift its strategy from one productive asset to another. We
are currently developing simulations to test the sensitivity of the model. Proxies
for the internal "�exibility" of a �rm also need to be established. These may
di¤er by industry. For example, in the pharmaceutical industry, the "time-to-
approval" may be such a proxy. In this case, the drug approval process involves
so many aspects of a company�s internal operations, the "time-to-approval," as
compared to other similar companies, may prove to be suitable. We are also
trying to develop empirical tests of the basic structure of our model. We also
want to note that our study suggests the possibility of reconsidering the issue of
the equity premium from the perspective of the default premium and internal
hedging techniques.
Finally, we want to mention that besides the idiosyncratic causes of credit

risk, there are also common causes for corporate default. These include economy-
wide interest rate changes, relevant spreads, and general tightening of credit
constraints. Thus, at best, the total picture will remain complex.
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