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Summary. The topic of this paper is a new model predictive control (MPC) ap-
proach for the sampled–data implementation of continuous–time stabilizing feedback
laws. The given continuous–time feedback controller is used to generate a reference
trajectory which we track numerically using a sampled-data controller via an MPC
strategy. Here our goal is to minimize the mismatch between the reference solution
and the trajectory under control. We summarize the necessary theoretical results,
discuss several aspects of the numerical implemenation and illustrate the algorithm
by an example.
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1 Introduction
Instead of designing a static state feedback with sampling and zero order
hold by designing a continuous–time controller which is stabilizing an equi-
librium and discretizing this controller ignoring sampling errors which leads
to drawbacks in stability, see [5, 8], our approach is to use a continuous–time
feedback and to anticipate and minimize the sampling errors by model pre-
dictive control (MPC) with the goal of allowing for large sampling periods
without loosing performance and stability of the sampled–data closed loop.
Therefore we consider two systems, the first to be controlled by the given
continuous–time feedback which will give us a reference trajectory, and a sec-
ond one which we are going to control using piecewise constant functions
to construct an optimal control problem by introducing a cost functional to
measure and minimize the mismatch between both solutions within a time
interval.
In order to calculate a feedback instead of a time dependent control function
and to avoid the difficulties of solving a Hamilton-Jacobi-Bellman equation
for an infinite horizon problem we reduce the infinite time interval to a finite
one by introducing a positive semidefinite function as cost–to–go. To re–gain
the infinite control sequence we make use of a receding horizon technique.
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For this approach we will show stability and (sub-)optimality of the solution
under certain standard assumptions.
We will also show how to implement an algorithm to solve this process of
iteratively generating and solving optimal control problems. The latter one
is done using a direct approach and full discretization that will give us one
optimization problem per optimal control problem which can be solved using
an SQP method.
Therefore in Section 2 the problem, the necessary assumptions and our control
scheme will be presented. In Section 3 we review the theoretical background
results about stability and inverse optimality from [13]. Having done this the
numerical implementation will be presented and discussed in Section 4 and its
performance will be demonstrated by solving an example in Section 5. Finally
conclusions will be given in Section 6.

2 Problem formulation
The set of real numbers is denoted as R. A function γ : R≥0 → R≥0 is called
class G if it is continuous, zero at zero and non-decreasing. It is of class K if
it is continuous, zero at zero and strictly increasing. It is of class K∞ if it is
also unbounded. It is of class L if it is strictly positive and it is decreasing to
zero as its argument tends to infinity. A function β : R≥0 × R≥0 → R≥0 is of
class KL if for every fixed t ≥ 0 the function β(·, t) is of class K and for each
fixed s > 0 the function β(s, ·) is of class L. Given vectors ξ, x ∈ Rn we often
use the notation (ξ, x) := (ξT , xT )T .
We consider a nonlinear feedback controlled plant model

ẋ(t) = f(x(t), u(x(t))) (1)
with vector field f : Rn × U → Rn and state x(t) ∈ Rn, where u : Rn → U ⊂
Rm denotes a known continuous–time static state feedback which (globally)
asymptotically stabilizes the system. We want to implement the closed loop
system using a digital computer with sampling and zero order hold at the
sampling time instants tk = k · T , k ∈ N, T ∈ R>0. Then for a feedback law
uT (x) the sampled-data closed loop system becomes

ẋ(t) = f(x(t), uT (x(tk))), t ∈ [tk, tk+1). (2)
Our goal is now to design uT (x) such that the corresponding sampled–data
solution of (2) reproduces the continuous–time solution x(t) of (1) as close as
possible.
The solution of the system (1) at time t emanating from the initial state
x(0) = x0 will be denoted by x(t, x0). Also we will assume f(x, u(x)) to be
locally Lipschitz in x, hence a unique solution of the continuous–time closed
loop system to exist for any x(0) = x0 in a given compact set Γ ⊂ Rn

containing the origin.
Remark 2.1 The simplest approach to this problem is the emulation design
in which one simply sets uT (x) := u(x). This method can be used for this
purpose but one can only prove practical stability of the sampled–data closed
loop system if the sampling time T is sufficiently small, see [8].
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In order to determine the desired sampled–data feedback uT we first search
for a piecewise constant control function v whose corresponding solution ap-
proximates the solution of the continuous–time closed loop system. Therefore
the mismatch between the solutions of

ẋ(t) = f(x(t), u(x(t))), x(t0) = x0 (3)
ξ̇(t) = f(ξ(t), v[0,∞]), ξ(t0) = ξ0 (4)

can be measured. Here ξ(t, ξ0) denotes the solution of the system under control
and v[0,∞] is a piecewise constant function with discontinuities only at the
sampling instants tk := k · T , k ∈ N. In order to measure and minimize the
difference between both trajectories a cost functional of the form

J(ξ(t), x(t), v[0,∞)) :=
∞∑

j=0

T∫
0

l(ξ(t)− x(t), vj)dt (5)

is needed where l : Rn×U → R≥0. This results in an optimal control problem
with infinite horizon which involves solving a Hamilton-Jacobi-Bellman type
equation. In the linear case solutions to different H2 and H∞ control designs
are known but the nonlinear case is typically too hard to be solved.
In order to avoid this computational burden we consider a reduced problem
in a first step by limiting the horizon to a finite length. This will give us
a suboptimal MPC controller whose numerical computation is manageable.
Since T is fixed due to the problem formulation the length of the horizon H
can be given by M ∈ N via H = M · T . Hence the cost functional can be
written as

JM (ξ(t), x(t), v[0,M−1]) :=
M−1∑
j=0

T∫
0

l(ξ(t)− x(t), vj)dt + F (ξ(tM ), x(tM )) (6)

using the function F to measure the cost-to-go
∞∑

j=M

T∫
0

l(ξ(t)− x(t), vj)dt.

Remark 2.2 It is not necessary for F to be a control-Lyapunov-function
of (3), (4) to prove semiglobal practical stability of the closed loop system.
Moreover terminal costs of the form F (ξ(tM ), x(tM )) instead of F (ξ(tM ) −
x(tM )) are considered since the infinite horizon value function V∞(ξ, x) :=
inf

v[0,∞)
J(ξ, x, v[0,∞)) does not have in general the form V∞(ξ − x).

Using this approach an optimal control problem with finite horizon has to be
solved which will return a finite control sequence û[0,M−1]. In order to deter-
mine the sampled–data feedback law uT an infinite sequence of optimal control
problems can be generated and solved using a receding horizon approach. To
this end in a second step only the first control

u = uM (ξ, x) := û0(ξ, x) (7)
is implemented and the horizon is shifted forward in time by T . Hence a new
optimal control problem is given and the process can be iterated. Accord-
ing to this procedure the receding horizon control law uT = uM is a static
state feedback for the coupled system that is implemented in a sampled-data
fashion. Then the overall closed loop system is given by



4 L.Grüne et al.

ξ̇(t) = f(ξ(t), uM (ξ(tk), x(tk))), ξ(0) = ξ0, t ∈ [tk, tk+1), (8)
ẋ(t) = f(x(t), u(x(t))), x(0) = x0. (9)

Remark 2.3 We like to emphasize that it is not only our goal to obtain
asymptotical stability of (8), (9) which implies tracking since we have that

|(ξ(t), x(t))| ≤ β(|(ξ0, x0)|, t) ∀t ≥ 0, (10)
but also that we achieve this in an appropriate sub–optimal manner.

3 Stability and Inverse Optimality
Since most of the time one can only work with approximated discrete-time
models consistency with the exact discrete-time model as described in [11]
is needed. Under the consistency condition given by Definition 1 in [10] and
suitable mild additional assumptions one can conclude that asymptotic stabil-
ity of the approximate model carries over to semiglobal practical asymptotic
stability for the exact model, see [11] for a general framework and [3] for cor-
responding results for MPC algorithms. This justifies the use of numerical
approximations, cf. also Remark 4.1, below. To conclude semiglobal asymp-
totical stability of the closed loop system using the proposed MPC controller
we present the following theorem, which relies on Theorem 1 in [1].
Theorem 3.1 (Stability)
Suppose the following conditions hold:
1. l and F are continuous;
2. U is bounded;
3a. The continuous–time system (1) is globally asymptotically stable;
3b. There exists a constant r0 > 0 and a function γ ∈ K∞ with

l(y, u) ≥ max
{

max
|x|≤2|y|

|f(x, u)|, γ(|y|)
}

, ∀|y| ≥ r0;

3c. f(·, ·) and u(·) are locally Lipschitz in their arguments;
4. The value function is such that for some ᾱ ∈ K∞ we have that Vi(ξ, x) ≤

ᾱ(|(ξ, x)|) for all i ≥ 0 and all (ξ, x) ∈ R2n.
Then there exists a function β ∈ KL such that for each pair of strictly positive
real numbers (∆, δ) there exists a constant M∗

1 ∈ Z≥1 such that for all (ξ, x) ∈
B∆ and M ≥ M∗

1 the solutions of the continuous–time system (8), (9) satisfy

|(ξ(t), x(t))| ≤ max{β(|(ξ0, x0)|, t), δ} ∀t ≥ 0. (11)
Proof. Make use of the underlying discrete-time system via Theorem 1 in [1]
and Theorem 1 in [10], see [13] for details.
Therefore one can apply the calculated MPC control coming out of an ap-
proximated model in reality without loss of stability.
Remark 3.2 If F is a control Lyapunov function for the exact discrete-time
model of the uncontrolled sampled-data system

ξ+ = G(ξ, u) := ξ(T, ξ, u), ξ(0) = ξ0, (12)
x+ = H(x) := x(T, x), x(0) = x0 (13)

then it follows from [1] that the theoretical bound M∗
1 for the necessary pre-

diction horizon decreases which was confirmed in our numerical simulations.
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Remark 3.3 Explicit bounds to guarantee the stability properties of the un-
derlying discrete-time system can be found in [1].
In order to show inverse optimality of our approach we suppose that F is such
that there exists a closed set Xf ⊂ R2n and a control law u = uf (ξ, x) with
1. uf (ξ, x) ∈ U ∀(ξ, x) ∈ Xf

2. If (ξ, x) is ∈ Xf then also (G(ξ, uf (ξ, x)),H(X)) is ∈ Xf .
3. For all (ξ, x) ∈ Xf we have that

F (G(ξ, uf (ξ, x)),H(x))− F (ξ, x) ≤ −
T∫

0

l(ξ(s, ξ, uf )− x(s, x), uf )ds.

Theorem 3.4 (Inverse (Sub-)Optimality)
Consider the discrete-time model (12), (13) and suppose that the previous
assumptions are valid. Then there exists a set XM ⊂ R2n and a function
Q : Rn × Rn × U → R with

Q(ξ, x, uM ) ≥ Q(ξ, x, uM ) :=

T∫
0

l(ξ(s, ξ, uf )− x(s, x), uf )ds (14)

∀(ξ, x) ∈ XM , u ∈ U such that for all (ξ, x) ∈ XM we have that the controller
(7) minimizes the cost functional

J (ξ, x, u[0,∞)) :=
∞∑

i=0

Q(ξi, xi, ui). (15)

Proof. The principle of optimality and the stated assumptions are utilised to
show Q(ξ, x, uM ) ≥ Q(ξ, x, uM ), see [13] for details.

4 Numerical Solution
For the solution of the optimal control problem we use a direct approach
and therefore replace the problem to minimize (6) with dynamics (3), (4)
by numerical approximations ξ̃(t, ξ0, u) of ξ(t, ξ0, u) and x̃(t, x0, u) of x(t, x0),
respectively. For this approach convergence has been investigated in [7] and
under suitable conditions one can guarantee that the order of convergence is
O(T ).
From this formulation one obtains an optimization problem by introducing
the variable z = (ξ0, . . . , ξM , x0, . . . , xM , u0, . . . , uM ) and rewriting the ap-
proximated optimal control problem as

Minimize F (z) :=
M−1∑
j=0

T∫
0

l(ξ̃(s, ξj , vj)− x̃(s, xj), vj)ds + F (ξM , xM )

s.t. G(z) :=

[−ξj+1 + ξ̃(h, ξj , vj)]j=0,...,M−1

[−xj+1 + x̃(h, xj)]j=0,...,M−1

(ξ0, x0)− (ξ0, x0)

 = 0

with the constraints coming along with the approximation. This is a well
known problem that can be solved using the KKT conditions by SQP methods
if the cost functional and the constraints are sufficiently often differentiable in
a sufficiently large neighborhood N(z∗) of the local minima z∗. These methods
are known to be stable and efficient even for large scale systems.
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The used algorithm computes a sequence (z[k]) via z[k+1] = z[k] + α[k]p[k].
Within this iteration the search direction p[k] is calculated by generating and
solving quadratic subproblems of the form

min
p∈RNz

∇zF (z[k])p +
1
2
pT B[k]p

s.t. G(z[k]) +∇zG(z[k])p = 0.

The algorithm computes the derivatives by forward difference schemes if they
are not given by the user and the matrix B[k] is an approximation of the
Hesse matrix where a BFGS-Rank 2 update is implemented so that the Hesse
matrix has to be calculated only once. Therefore the usual quadratic order of
convergence of the Newton method is reduced but superlinear convergence can
still be shown. The step size α[k] is obtained by minimizing a merit function

L̃(z, η, ρ) = L(z, η) + 1
2

Nz∑
j=1

ρjG
2
j (z) such that the natural step size α[k] = 1

of the Newton method is reduced but one can expect it to be close to 1 in a
small neighborhood of z∗.
Remark 4.1 Since our aim is to allow for large sampling periods T an adap-
tive step size control algorithm such as DoPri5, see [4], is necessary within
each interval [kT, (k + 1)T ), k ∈ N, in order to avoid errors in the state tra-
jectories and the cost functional which therefore has to be transformed. Note
that the local accuracy guaranteed by the step size control here plays the role
of the accuracy parameter δ in the consistency Definition 1 in [10].
Remark 4.2 The case of an integration step size h that is different from the
sampling period T has been analysed theoretically for MPC schemes in [3]. An
important aspect of this analysis is that h, or — more generally — the nu-
merical accuracy parameter, can be assigned arbitrarily and independently of
T (where of course one has to ensure that the sampling instants are included
in the set of gridpoints used for integration in order to match the discontinu-
ities of the control function). It should be noted that our algorithm fulfils this
requirement. In fact, when we remove the x–subsystem (3) from our scheme
and use a local Lyapunov function as a terminal cost we obtain exactly the
direct MPC algorithm discussed theoretically in [3].
Compared to this standard MPC approach the main difference of our scheme
lies in the fact that we can directly enforce a desired transient behavior in-
duced by the continuous–time feedback, while in standard MPC schemes the
transient behavior can only be influenced indirectly through the choice of the
cost functional. Clearly, the design of a suitable continuous–time controller
requires a considerable amount of a priori work, but this may be rewarded by
a better performance of the resulting sampled–data closed loop.
Remark 4.3 An important problem is the choice of a good initial guess
v[0,M−1] for the optimization, keeping in mind that we deal with a nonlin-
ear optimization problem. Even though suboptimal solutions to this problem
may be sufficient to ensure stability, see [6], here we also aim at good per-
formance. Convergence to the global optimum, however, can only be expected
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when the initial solution is already close to it. When passing from tk to tk+1

the shifted optimal control sequence from the previous step typically yields such
a good initial guess, which is confirmed by our numerical experience that the
computational costs for the optimization are decreasing monotonically during
the iteration process.
A more severe problem is the choice of the initial guess at t0 when no previous
optimal control is known. In this case, in our approach the known continuous–
time feedback can be exploited for this purpose when the emulated feedback from
Remark 2.1 yields solutions which do not deviate too far from the continuous–
time reference. However, this method fails when the emulated feedback leads
to unstable solutions and the time horizon H = M · T is rather large. Such
situations can sometimes be handled by reducing the length of the horizon
H = M ·T but proceeding this way one has to keep in mind that there exists a
lower bound for H from the stability proof. Also, simulations have shown that
while on one hand computational costs grow with the length of the horizon,
on the other hand better performance can be achieved using longer horizons.
Therefore, at the moment it is up to simulations to find a good set of param-
eters and a good initial guess of v[0,M−1].
A promising alternative approach and topic of future research is whether some
of the methods developed in [9, 12] can be used in order to construct the initial
guess, an approach that would lead to a predictor–corrector type algorithm in
which the MPC strategy plays the role of the corrector.

5 Example
Here we present a model of a synchronous generator taken from [2]

ẋ1 = x2, ẋ2 = −b1x3 sinx1−b2x2 +P, ẋ3 = b3 cos x1−b4x3 +E+u. (16)
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Fig. 1. Improvement by MPC control over emulation for a1 = 0.45, T = 0.1 (left),
T = 0.5 (middle) and reference solution using continuous–time feedback (right)

We use the parameter b1 = 34.29, b2 = 0.0, b3 = 0.149, b4 = 0.3341, P =
28.22 and E = 0.2405, as well as the continuous–time feedback law u(x) =
a1((x1−x∗1)b4+x2) with feedback gain a1 > 0, whose purpose is to enlarge the
domain of attraction of the locally stable equilibrium x∗ ≈ (1.12, 0.0, 0.914)
(note that this equilibrium is locally asymptotically stable also for u ≡ 0). As
initial value we used the vector x0 = (0.5, 0.0, 2.0) and generated results for
T = 0.1, T = 0.5 and a1 = 0.45.
One can see that the fast dynamics of the problem require small sampling
periods to maintain stability using the emulated feedback law. The MPC
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control on the other hand not only stabilizes the equilibrium even for rather
large T but also keeps the sampled–data solution close to the reference.

6 Conclusion
We proposed an unconstrained model predictive algorithm for the sampled–
data implementation of continuous–time stabilizing feedback laws. Stability
and inverse optimality results were briefly revisited and numerical issues were
discussed. Compared to direct MPC approaches without using continuous–
time feedbacks, advantages of our method are that the sampled–data solutions
inherit the performance properties of the continuous–time controller and that
the knowledge of the continuous–time controller helps to reduce the com-
putational cost of the numerical optimization. Future research will include
a systematic study about how this knowledge can be used in a numerically
efficient way and an extension of our approach to dynamic continuous–time
controllers.
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