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Abstract— We present a technique for computing stability
and performance bounds for unconstrained nonlinear MPC
schemes. The technique relies on controllability properties of
the system under consideration and the computation can be
formulated as an optimization problem whose complexity is
independent of the state space dimension.

I. INTRODUCTION

The stability and suboptimality analysis of model pre-
dictive control (MPC, often also termed receding horizon
control) schemes has been a topic of active research during
the last decades. While in the MPC literature in order to
prove stability and suboptimality of the resulting closed loop
often stabilizing terminal constraints or terminal costs are
used (see, e.g., [7],[1], [5] or the survey paper [9]), here
we consider the simplest class of MPC schemes, namely
those without terminal constraints and cost. These schemes
are attractive for their numerical simplicity, do not require
the consideration of feasible sets imposed by the stabilizing
constraints and are easily generalized to time varying track-
ing type problems and to the case where more complicated
sets than equilibria are to be stabilized. Essentially, these
unconstrained MPC schemes can be interpreted as a simple
truncation of the infinite optimization horizon to a finite
horizon N .

For unconstrained schemes without terminal cost, Jad-
babaie and Hauser [6] and Grimm et al. [2] show under
different types of controllability and detectability conditions
for nonlinear systems that stability of the closed loop can
be expected if the optimization horizon N is sufficiently
large, however, no explicit bounds for N are given. The
paper [3] (see also [4]) uses techniques from relaxed dynamic
programming [8], [11] in order to compute explicit estimates
for the degree of suboptimality, which in particular lead to
bounds on the stabilizing optimization horizon N . The con-
ditions used in this paper are satisfied under a controllability
condition, however, the resulting estimates for the stabilizing
horizon N are in general not optimal. Such optimal estimates
for the stabilizing horizon N have been obtained in [12], [10]
using the explicit knowledge of the finite horizon optimal
value functions, which could be computed numerically in
the (linear) examples considered in these papers.

Unfortunately, for high (or even infinite) dimensional or
nonlinear systems in general neither an analytical expres-
sion nor a sufficiently accurate numerical approximation of
optimal value functions is available. However, it may still
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be possible to analyze (open loop) controllability properties.
Hence in this paper we base our analysis on such properties,
more precisely on KL bounds of the chosen running cost
along (not necessarily optimal) trajectories. Such bounds
induce upper bounds on the optimal value functions and the
main feature we exploit is the fact that the controllability
properties do not only impose bounds on the optimal value
function at the initial value but — via Bellman’s optimality
principle — also along “tails” of optimal trajectories. As
in [3], the resulting condition gives a bound on the degree
of suboptimality of the MPC feedback which in particular
allows to determine a bound on the minimal stabilizing
horizon N . Furthermore, the condition can be expressed as
an optimization problem whose complexity is independent on
the dimension of the state space of the system and which is
actually a linear program if the KL function involved in the
controllability assumption is linear in its first argument. An
important feature of our approach is that the resulting bound
on the stabilizing optimization horizon N turns out to be
optimal — not necessarily with respect to a single system
but with respect to the whole class of systems satisfying the
assumed controllability property.

The paper is organized as follows: in Section II we
describe the setup and the relaxed dynamic programming
inequality our approach is based upon. In Section III we
describe the controllability condition we are going to use and
its consequences to the optimal value functions and trajecto-
ries. In Section IV we uses these results in order to obtain a
condition for suboptimality and in Section V we show how
this condition can be formulated as an optimization problem.
Section VI shows how our condition can be applied to the
stability analysis. In Section VII we discuss some numerical
results and Section VIII gives some brief conclusions and
outlook. A technical lemma is formulated and proved in the
Appendix.

II. SETUP AND PRELIMINARY RESULTS

We consider a nonlinear discrete time system given by

x(n + 1) = f(x(n), u(n)), x(0) = x0 (2.1)

with x(n) ∈ X and u(n) ∈ U for n ∈ N0. Here we denote
the space of control sequences u : N0 → U by U and the
solution trajectory for some u ∈ U by xu(n). Here the state
space X is an arbitrary metric space, i.e., it can range from
a finite set to an infinite dimensional space.

Our goal is to find a feedback control law minimizing the



infinite horizon cost

J∞(x0, u) =
∞∑

n=0

l(xu(n), u(n)), (2.2)

with running cost l : X × U → R+
0 . We denote the optimal

value function for this problem by

V∞(x0) = inf
u∈U

J∞(x0, u).

Here we use the term feedback control in the following
general sense.

Definition 2.1: For m ≥ 1, an m–step feedback law is a
map µ : X×{0, . . . ,m−1} → U which is applied according
to the rule

xµ(n+1) = f(xµ(n), µ(xµ([n]m), n−[n]m)), xµ(0) = x0

(2.3)
where [n]m denotes the largest product km, k ∈ Z, with
km ≤ n.
In other words, the feedback is evaluated at the times
0,m, 2m . . . and generates a sequence of m control values
which is applied in the m steps until the next evaluation.
Note that for m = 1 we obtain the usual static state feedback
concept in discrete time.

If the optimal value function V∞ is known, it is easy to
prove using Bellman’s optimality principle that the optimal
feedback law µ is given by

µ(x0, ·) := argmin
u∈Um

{
V∞(xu(m)) +

m−1∑
n=0

l(xu(n), u(n))

}
.

(2.4)
Remark 2.2: We assume throughout this paper that in

all relevant expressions the minimum with respect to u ∈
Um is attained. Although it is possible to give modified
statements using approximate minimizers, we decided to
make this assumption in order to simplify and streamline
the presentation.

Since infinite horizon optimal control problems are in gen-
eral computationally infeasible, we use a receding horizon
approach in order to compute an approximately optimal con-
troller, To this end we consider the finite horizon functional

JN (x0, u) =
N−1∑
n=0

l(xu(n), u(n)) (2.5)

for N ∈ N0 (using
∑−1

n=0 = 0) and the optimal value
function

VN (x0) = inf
u∈U

JN (x0, u). (2.6)

Note that this is the conceptually simplest receding horizon
approach in which neither terminal costs nor terminal con-
straints are imposed.

Based on this finite horizon optimal value function for
m ≤ N we define an m–step feedback law µN,m by picking
the first m elements of the optimal control sequence for this
problem according to the following definition.

Definition 2.3: Let u∗ be a minimizing control for (2.5)
and initial value x0. Then we define the m–step MPC
feedback law by

µN,m(x0, n) = u∗(n), n = 0, . . . ,m− 1.

Here the value N is called the optimization horizon while
we refer to m as the control horizon.

Note that we do not need uniqueness of u∗ for this
definition, however, for µN,m(x0, ·) being well defined we
suppose that for each x0 we select one specific u∗ from the
set of optimal controls.

The first goal of the present paper is to give estimates
about the suboptimality of the feedback µN,n for the infinite
horizon problem. More precisely, for an m–step feedback
law µ with corresponding solution trajectory xµ(n) from
(2.3) we define

V µ
∞(x0) :=

∞∑
n=0

l(xµ(n), µ(xµ([n]m), n− [n]m))

and are interested in upper bounds for the infinite horizon
value V

µN,m
∞ , i.e., in an estimate about the “degree of sub-

optimality” of the controller µN,m. Based on this estimate,
the second purpose of this paper is to derive results on the
asymptotic stability of the resulting closed loop system using
VN as a Lyapunov function.

The approach we take in this paper relies on results on
relaxed dynamic programming [8], [11] which were already
used in an MPC context in [4], [3]. Next we state the
basic relaxed dynamic programming inequality adapted to
our setting.

Proposition 2.4: Consider an m–step feedback law µ̃ :
X×{0, . . . ,m−1} → U , the corresponding solution xµ̃(k)
with xµ̃(0) = x0 and a function Ṽ : X → R+

0 satisfying the
inequality

Ṽ (x0) ≥ Ṽ (xµ̃(m)) + α

m−1∑
k=0

l(xµ̃(k), µ̃(x0, k)) (2.7)

for some α ∈ (0, 1] and all x0 ∈ X . Then for all x ∈ X the
estimate αV∞(x) ≤ αV µ̃

∞(x) ≤ Ṽ (x) holds.
Proof: The proof is similar to that of [11, Proposition 3]
and [3, Proposition 2.2]: Consider x0 ∈ X and the trajectory
xµ̃(n) generated by the closed loop system using µ̃. Then
from (2.7) for all n ∈ N0 we obtain

α

m−1∑
k=0

l(xµ̃(nm + k), µ̃(xµ̃(nm), k))

≤ Ṽ (xµ̃(mn))− Ṽ (xµ̃(m(n + 1))).

Summing over n yields

α

Km∑
n=0

l(xµ̃(n), µ̃(xµ̃(n), µ̃(xµ̃([n]m), n− [n]m))

= α

K∑
n=0

m−1∑
k=0

l(xµ̃(nm + k), µ̃(xµ̃(nm), k))

≤ Ṽ (x(0))− Ṽ (x(mK)) ≤ Ṽ (x(0)).



For K →∞ this yields that Ṽ is an upper bound for αV µ̃
∞

and hence αV∞(x) ≤ αV µ̃
∞(x) ≤ Ṽ (x).

Remark 2.5: The term “unconstrained” only refers to con-
straints which are introduced in order to ensure stability of
the closed loop. Other constraints are easily included in our
setup, e.g., the set U of admissible control values could be
subject to — possibly state dependent — constraints or X
could be the feasible set of a state constrained problem on a
larger state space.

III. ASYMPTOTIC CONTROLLABILITY AND OPTIMAL
VALUES

In this section we introduce an asymptotic controllability
assumption and deduce several consequences for our optimal
control problem. In order to facilitate this relation we will
formulate our basic controllability assumption, below, not in
terms of the trajectory but in terms of the running cost l
along a trajectory.

To this end we say that a continuous function ρ : R≥0 →
R≥0 is of class K∞ if it satisfies ρ(0) = 0, is strictly
increasing and unbounded. We say that a continuous function
β : R≥0×R≥0 → R≥0 is of class KL0 if for each r > 0 we
have limt→∞ β(r, t) = 0 and for each t ≥ 0 we either have
β(·, t) ∈ K∞ or β(·, t) ≡ 0. Note that in order to allow for
tighter bounds for the actual controllability behavior of the
system we use a larger class than the usual class KL. It is,
however, easy to see that each β ∈ KL0 can be overbounded
by a β̃ ∈ KL, e.g., by setting β̃(r, t) = maxτ≥t β(r, t) +
e−tr. Furthermore, we define l∗(x) := minu∈U l(x, u).

Assumption 3.1: Given a function β ∈ KL0, for each
x0 ∈ X there exists a control function ux0 ∈ U satisfying

l(x(n, ux0), ux0(n)) ≤ β(l∗(x0), n)

for all n ∈ N0.
Special cases for β ∈ KL0 are

β(r, n) = Cσnr (3.1)

for real constants C ≥ 1 and σ ∈ (0, 1), i.e., exponential
controllability, and

β(r, n) = cnr (3.2)

for some real sequence (cn)n∈N0 with cn ≥ 0 and cn = 0
for all n ≥ n0, i.e., finite time controllability (with linear
overshoot).

For certain results it will be useful to have the property

β(r, n + m) ≤ β(β(r, n),m) for all r ≥ 0, n,m ∈ N0.
(3.3)

Property (3.3) ensures that any sequence of the form λn =
β(r, n), r > 0, also fulfills λn+m ≤ β(λn,m). It is, for
instance, always satisfied in case (3.1) and satisfied in case
(3.2) if cn+m ≤ cncm. If needed, this property can be
assumed without loss of generality, because by Sontag’s KL-
Lemma [13] β in Assumption 3.1 can be written as β(r, t) =
α1(α2(r)e−t) for α1, α2 ∈ K∞. Then, (3.3) is easily verified
if α2◦α1(r) ≥ r which is equivalent to α1◦α2(r) ≥ r which

in turn is a necessary condition for Assumption 3.1 to hold
for n = 0 and β(r, t) = α1(α2(r)e−t).

Under Assumption 3.1, for any r ≥ 0 and any N ≥ 1 we
define the value

BN (r) :=
N−1∑
n=0

β(r, n). (3.4)

An immediate consequence of Assumption 3.1 is the
following lemma.

Lemma 3.2: For each N ≥ 1 the inequality

VN (x0) ≤ BN (l∗(x0)) (3.5)

holds.
Proof: Using ux0 from Assumption 3.1, the inequality fol-
lows immediately from

VN (x0) ≤
N−1∑
n=0

l(x(n, ux0), ux0(n)) ≤ BN (l∗(x0)).

In the special case (3.1) BN , N ≥ 1, evaluates to
BN (r) = C(1 − λN )/(1 − λ)r while for (3.2) we obtain
BN (r) = CNr with CN =

∑min{n0,N−1}
j=0 cn.

The following lemma gives bounds on the finite horizon
functional along optimal trajectories.

Lemma 3.3: Assume Assumption 3.1 and consider x0 ∈
X and an optimal control u∗ for the finite horizon optimal
control problem (2.6) with optimization horizon N ≥ 1.
Then for each k = 0, . . . , N − 1 the inequality

JN−k(xu∗(k), u∗(k + ·)) ≤ BN−k(l∗(xu∗(k))

holds for BN from (3.4).
Proof: Pick any k ∈ {0, . . . , N − 1}. Using ux0 from
Assumption 3.1 with x0 = xu∗(k), from (3.5) we obtain

JN−k(xu∗(k), ux0(·)) ≤ BN−k(l∗(xu∗(k))). (3.6)

Hence, for the control function defined by

ũ(n) =
{

u∗(n), n ≤ k − 1
ux0(n), n ≥ k

we obtain VN (x0) ≤ JN (x0, ũ) = Jk(x0, u
∗) +

JN−k(xu∗(k), ux0(·)). On the other hand we have VN (x0) =
JN (x0, u

∗) = Jk(x0, u
∗) + JN−k(xu∗(k), u∗(k + ·)). Sub-

tracting the latter from the former yields

0 ≤ JN−k(xu∗(k), ux0(·))− JN−k(xu∗(k), u∗(k + ·))

which using (3.6) implies

JN−k(xu∗(k), u∗(k + ·)) ≤ JN−k(xu∗(k), ux0(·))
≤ BN−k(l∗(xu∗(k)),

i.e., the assertion.
A similar inequality can be obtained for VN .
Lemma 3.4: Assume Assumption 3.1 and consider x0 ∈

X and an optimal control u∗ for the finite horizon optimal
control problem (2.6) with optimization horizon N . Then for



each m = 1, . . . , N − 1 and each j = 0, . . . , N −m− 1 the
inequality

VN (xu∗(m)) ≤ Jj(xu∗(m), u∗(m + ·))
+ BN−j(l∗(xu∗(m + j))

holds for BN from (3.4).
Proof: We define the control function

ũ(n) =
{

u∗(m + n), n ≤ j − 1
ux0(n), n ≥ j

for ux0 from Assumption 3.1 with x0 = xu∗(m + j). Then
we obtain

VN (xu∗(m)) ≤ J(xu∗(m), ũ)
= Jj(xu∗(m), u∗(m + ·)) + JN−j(xu∗(m + j), ux0)
≤ Jj(xu∗(m), u∗(m + ·)) + BN−j(l∗(xu∗(m + j)))

where we used (3.5) in the last step. This is the desired
inequality.

IV. NECESSARY OPTIMALITY CONDITIONS FOR
SEQUENCES

In this section we now consider arbitrary values
λ0, . . . , λN−1 > 0 and ν > 0 and derive necessary condi-
tions under which these values coincide with an optimal se-
quence l(xu∗(n), u∗(n)) and an optimal value VN (xu∗(m)),
respectively.

Proposition 4.1: Assume Assumption 3.1 and consider
N ≥ 1, m ∈ {1, . . . , N − 1}, a sequence λn > 0,
n = 0, . . . , N − 1 a value ν > 0. Consider x0 ∈ X and
assume that there exists an optimal control function u∗ ∈ U
for the finite horizon problem (2.6) with horizon length N ,
such that λn = l(xu∗(n), u∗(n)) holds for n = 0, . . . , N−1.
Then

N−1∑
n=k

λn ≤ BN−k(λk), k = 0, . . . , N − 2 (4.1)

holds. If, furthermore, ν = VN (xu∗(m)), then

ν ≤
j−1∑
n=0

λn+m + BN−j(λj+m), j = 0, . . . , N −m− 1

(4.2)
holds.
Proof: If the stated conditions hold, then λn and ν must
meet the inequalities given in Lemmas 3.3 and 3.4, which is
exactly (4.1) and (4.2).

Using this proposition we can give a sufficient condition
for suboptimality of the MPC feedback law µN,m.

Theorem 4.2: Consider β ∈ KL0, N ≥ 1, m ∈
{1, . . . , N − 1}, and assume that all sequences λn > 0,
n = 0, . . . , N − 1 and values ν > 0 fulfilling (4.1), (4.2)
satisfy the inequality

N−1∑
n=0

λn − ν ≥ α

m−1∑
n=0

λn (4.3)

for some α ∈ (0, 1].

Then for each optimal control problem (2.1), (2.6) sat-
isfying Assumption 3.1 the assumptions of Proposition 2.4
are satisfied for the m-step MPC feedback law µN,m and in
particular the inequality αV∞(x) ≤ αV

µN,m
∞ (x) ≤ VN (x)

holds for all x ∈ X .
Proof: Consider an initial value x0 ∈ X and the m-step
MPC-feedback law µN,m. Then there exists an optimal
control u∗ for x0 such that u∗(k) = µN,m(x0, k) for k =
0, . . . ,m− 1 and xµN,m

(k) = xu∗(k) for k = 0, . . . ,m.
Consequently we obtain

l(xµN,m
(k), µN,m(x0, k)) = l(xu∗(k), u∗(k))

holds for k = 0, . . . ,m− 1. These equalities imply

VN (xµN,m
(m)) + α

m−1∑
n=0

l(xµN,m
(n), µN,m(x0, n))

= VN (xu∗(m)) + α

m−1∑
n=0

l(xu∗(n), u∗(n)). (4.4)

for any α ∈ R.
Now by Proposition 4.1 the values λn = l(xu∗(k), u∗(k))

and ν = VN (xu∗(m)) satisfy (4.1) and (4.2), hence by
assumption also (4.3). Thus we obtain

VN (xu∗(m)) + α

m−1∑
n=0

l(xu∗(n), u∗(n))

= ν + α

m−1∑
n=0

λn ≤
N−1∑
n=0

λn

=
N−1∑
n=0

l(xu∗(n), u∗(n)) = VN (x0).

Together with (4.4) this yields (2.7) and thus the asser-
tion.

V. OPTIMIZING THE WORST CASE

The assumptions of Theorem 4.2 can be verified by an
optimization approach. To this end consider the following
optimization problem:

Problem 5.1: Given β ∈ KL0, N ≥ 1 and m ∈
{1, . . . , N − 1}, compute

α := inf
λ0,...,λN−1,ν

∑N−1
n=0 λn − ν∑m−1

n=0 λn

subject to the constraints (4.1) and (4.2) and

λ0, . . . , λN−1, ν > 0. (5.1)

The following is a straightforward corollary from Theorem
4.2.

Corollary 5.2: Consider β ∈ KL0, N ≥ 1, m ∈
{1, . . . , N − 1}, and assume that the optimization Problem
5.1 has an optimal value α ∈ (0, 1].

Then for each optimal control problem (2.1), (2.6) sat-
isfying Assumption 3.1 the assumptions of Proposition 2.4
are satisfied for the m-step MPC feedback law µN,m and in



particular the inequality αV∞(x) ≤ αV
µN,m
∞ (x) ≤ VN (x)

holds for all x ∈ X .
Proof: The proof follows immediately from Theorem 4.2
and the definition of Problem 5.1.

Lemma 5.3: If in Problem 5.1 we replace (5.1) by the
weaker constraints

λ0, . . . , λN−1, ν ≥ 0,

m−1∑
n=0

λn > 0, (5.2)

then the optimal value α remains unchanged.
Proof: Consider λn, ν satisfying (4.1), (4.2) and (5.1) and
assume equality in (4.2) for at least one j (which can always
be achieved by enlarging ν, if necessary). Then (4.2) and
(4.1) for k = j yield

ν =
j−1∑
n=m

λn + BN−j(λj) ≥
j−1∑
n=m

λn +
N−1∑
n=j

λn

=
N−1∑
n=0

λn −
m−1∑
n=0

λn

which shows α ≤ 1 in Problem 5.1.
On the other hand, consider values λn, ν satisfying (4.1),

(4.2) and (5.2) but not (5.1), i.e., we have λi = 0 for some
i ∈ {0, . . . , N − 1}. Then, since Bk(0) = 0, (4.1) yields
λi+1 = . . . = λN−1 = 0 and thus (4.2) for j = N −m− 1
yields

ν ≤
N−m−2∑

n=0

λn+m + Bm+1(λN−1)

=
N−1∑
n=m

λn =
N−1∑
n=0

λn −
m−1∑
n=0

λn,

implying ∑N−1
n=0 λn − ν∑m−1

n=0 λn

≥ 1.

Hence, the additional values satisfying (5.2) but not (5.1)
yield a value ≥ 1 and thus do not decrease the optimal value
α ≤ 1.

Problem 5.1 is an optimization problem of a much lower
complexity than the original MPC optimization problem.
Still, it is in general nonlinear. However, it becomes a linear
program if we assume that β(r, n) and thus Bk(r) are linear
in r.

Lemma 5.4: If β(r, t) is linear in r, then Problem 5.1
yields the same optimal value α as

α := min
λ0,λ1,...,λN−1,ν

N−1∑
n=1

λn − ν

subject to the (now linear) constraints (4.1) and (4.2) and

λ0, . . . , λN−1, ν ≥ 0,

m−1∑
n=0

λn = 1. (5.3)

Proof: Due to the linearity, all sequences λ̄0, . . . , λ̄N−1, ν̄
satisfying (4.1), (4.2) and (5.2) can be written as

γλ0, . . . , γλN−1, γν for λ0, . . . , λN−1, ν satisfying (4.1),
(4.2) and (5.3) and suitable γ > 0. Since the associated
value satisfies∑N−1

n=0 λ̄n − ν̄∑m−1
n=0 λ̄n

=
∑N−1

n=0 γλn − γν∑m−1
n=0 γλn

=
N−1∑
n=0

λn − ν,

the optimal value of the problem under the constraints (5.2)
and (5.3) coincide. Since by Lemma 5.3 the optimal value
α in Problem 5.1 does not change when relax (5.1) to (5.2),
the assertion follows.

MATLAB implementations for the linear program
described in Lemma 5.4 for (3.1) and (3.2) are available via
www.math.uni-bayreuth.de/∼lgruene/publ/
mpcbound.html.

VI. ASYMPTOTIC STABILITY

We now investigate the asymptotic stability of the zero set
of l∗. To this end we make the following assumption.

Assumption 6.1: There exists a compact set A ⊂ X
satisfying:
(i) For each x ∈ A there exists u ∈ U with f(x, u) ∈ A

and l(x, u) = 0, i.e., we can stay inside A forever at
zero cost.

(ii) There exist K∞–functions α1, α2 such that the inequal-
ity

α1(‖x‖A) ≤ l∗(x) ≤ α2(‖x‖A) (6.1)

holds for each x ∈ X where ‖x‖A := miny∈A ‖x−y‖.
This assumption assures global asymptotic stability of A
under the optimal feedback (2.4) for the infinite horizon
problem, provided β(r, n) is summable. We remark that
condition (ii) can be relaxed in various ways, e.g., it could
be replaced by a detectability condition similar to the one
used in [2]. However, in order to keep the presentation in
this paper technically simple we will work with Assumption
6.1(ii) here. Our main stability result is formulated in the
following theorem. As usual, we say that a feedback law µ
asymptotically stabilizes a set A if there exists β̃ ∈ KL
such that the closed loop system satisfies ‖xµ(n)‖A ≤
β̃(‖x0‖A, n).

Theorem 6.2: Consider β ∈ KL0, N ≥ 1, m ∈
{1, . . . , N − 1}, and assume that the optimization Problem
5.1 has an optimal value α ∈ (0, 1].

Then for each optimal control problem (2.1), (2.6) satisfy-
ing the Assumptions 3.1 and 6.1 the m-step MPC feedback
law µN,m asymptotically stabilizes the set A. Furthermore,
VN is a corresponding m-step Lyapunov function in the sense
that

VN (xµN,m
(m)) ≤ VN (x)− αVm(x). (6.2)

Proof: From (6.1) and Lemma 3.2 we immediately obtain
the inequality α1(‖x‖A) ≤ VN (x) ≤ BN (α2(‖x‖A)). Note
that BN ◦ α2 is again a K∞-function. The stated Lyapunov
inequality (6.2) follows immediately from (2.7) which holds
according to Corollary 5.2. Again using (6.1) we obtain
Vm(x) ≥ α1(‖x‖A) and the asymptotic stability follows



from a standard Lyapunov function argument using the fact
that for n = 1, . . . ,m − 1 the inequality VN (xµN,m

(n)) ≤
VN (x) + VN (xµN,m

(m)) ≤ 2VN (x) holds.
Of course, Theorem 6.2 gives a conservative criterion in

the sense that for a given system satisfying the Assumptions
3.1 and 6.1 asymptotic stability of the closed loop may well
hold for smaller optimization horizons N . A trivial example
for this is an asymptotically stable system (2.1) which does
not depend on u at all, which will of course be “stabilized”
regardless of N .

Hence, the best we can expect is that our condition is tight
under the information we use, i.e., that given β, N,m such
that the assumption of Theorem 6.2 is violated we can always
find a system satisfying Assumptions 3.1 and 6.1 which is not
stabilized by the MPC feedback law. The following Theorem
6.3 shows that this is indeed the case if β satisfies (3.3). Its
proof relies on the explicit construction of an optimal control
problem which is not stabilized. Although this is in principle
possible for all m ∈ {1, . . . , N − 1}, we restrict ourselves
to the classical feedback case, i.e., m = 1, in order to keep
the construction technically simple.

Theorem 6.3: Consider β ∈ KL0 satisfying (3.3), N ≥ 1,
m = 1 and assume that the optimization Problem 5.1 has an
optimal value α < 0.

Then there exists an optimal control problem (2.1), (2.6)
satisfying the Assumptions 3.1 and 6.1 which is not asymp-
totically stabilized by the MPC feedback law µN,1.
Proof: If α < 0 then there exists λn, ν > 0 meet-
ing the constraints of Problem 5.1 satisfying

∑N−1
n=0 λn −

ν/
(∑m−1

n=0 λn

)
=: α̃ < 0. By Lemma 9.1 we can without

loss of generality assume that the inequalities (4.1) are strict
for λn.

Now we construct an optimal control problem on the set
X = {0} ∪ {2−k|k ∈ N0} × {−N + 1, . . . , N} with control
values U = {−1, 0, 1} and dynamics given by

f((1, p),−1) = (1,max{−N + 1, p− 1})
f((1, p), 0) = (1/2, p)
f((1, p), 1) = (1,min{N, p + 1})
f(q, p), u) = (q/2, p), q ≤ 1/2, u ∈ U

The running cost is given by

l((1, p), 1) = λp, p ∈ {0, N − 1}
l((1, p), 1) = ν, p /∈ {0, N − 1}

l((1, p),−1) = l((1,−p + 1), 1)
l((1, p), 0) = β(min{l((1, n), 1), l((1, n),−1)}, 0)

l((2−k, p), u) = β(min{l((1, p), 1), l((1, p)},−1), k),
k ≥ 1, u ∈ U

We intend to show that the set A = {x ∈ X | l∗(x) = 0} is
not asymptotically stabilized. This set A satisfies Assumption
6.1(i) for u = 0 and (ii) for α̃1(r) = infx∈X,‖x‖A≥r l∗(x)
and α̃2(r) = supx∈X,‖x‖A≤r l∗(x). Due to the discrete
nature of the state space α̃1 and α̃2 are discontinuous but
they are easily under- and overbounded by continuous K∞
functions α1 and α2, respectively. Furthermore, by virtue of
(3.3) the optimal control problem satisfies Assumption 3.1
for ux ≡ 0.

Now we prove the existence of a trajectory which does
not converge to A, which shows that asymptotic stability
does not hold. To this end we abbreviate Λ =

∑N−1
n=0 λn

(note that α̃ < 0 implies ν > Λ) and investigate the values
JN ((1, 0), u) for different choices of u:

Case 1: u(0) = 0. In this case, regardless of the values
u(n), n ≥ 1, we obtain x(n, u) = (2−n, 0) and thus

JN ((1, 0), u) =
N−1∑
n=0

β(min{l((1, 0), 1), l((1, 0),−1)}, n)

= BN (min{l((1, 0), 1), l((1, 0),−1)})
= BN (min{λ0, λ1}).

In case that the minimum is attained in λ0 by the (strict)
inequality (4.1) for k = 0 we obtain JN ((1, 0), u) > Λ.
If the minimum is attained in λ1 then by (4.2) for j = 0
we obtain JN ((1, 0), u) ≥ ν > Λ. Thus, in both cases the
inequality JN ((1, 0), u) > Λ holds.

Case 2: u(n) = −1, n = 0, . . . , N−2. This choice yields
x(n, u) = (1,−n) for n = 0, . . . , N − 2 and thus

JN ((1, 0), u) =
N−2∑
n=0

λn+1 + l((1,−N + 1), u(N − 1))

≥ l((1,−N + 1), u(N − 1)) ≥ ν > Λ.

Case 3: u(n) = −1, n = 0, . . . , k−1, and u(k) = 1 for a
k ∈ {1, . . . , N−2}. In this case we obtain x(n, u) = (1,−n)
for n = 0, . . . , k implying

JN ((1, 0), u) =
k−1∑
n=0

λn+1 + l((1,−k), 1) ≥ l((1,−k), 1)

= ν > Λ.

Case 4: u(n) = −1, n = 0, . . . , k−1, and u(k) = 0 for a
k ∈ {1, . . . , N − 2}. This control sequence yields x(n, u) =
(1,−n) for n = 0, . . . , k and x(n, u) = (2−(n−k),−k) for
n = k + 1, . . . , N − 1 and thus

JN ((1, 0), u) =
k−1∑
n=0

λn+1

+
N−1∑
n=k

β(min{l((1,−k), 1), l((1,−k),−1)}, n− k)

=
k−1∑
n=0

λn+1 + BN−k(λk+1) ≥ ν > Λ

where we have used (4.2) for j = k in the second last
inequality.

Case 5: u(n) = 1, n = 0, . . . , N − 1. This yields
x(n, u) = (1, n) and thus

JN ((1, 0), u) =
N−1∑
n=0

λn = Λ.

Summarizing, we obtain that any optimal control u∗x for
x = (1, 0) must satisfy u∗x(0) = 1 because for u(0) = 1 we
can realize a value ≤ Λ while for u(0) 6= 1 we inevitably



obtain a value > Λ. Consequently, the MPC feedback law
will steer the system from x = (1, 0) to x+ := (1, 1).

Now we use that by construction f and l have the
symmetry properties f((q, p), u) = f((q,−p + 1),−u) and
l((q, p), u) = l((q,−p + 1),−u) for all (q, p) ∈ X which
implies J((q, p), u) = J(q,−p + 1),−u). Observe that
x+ = (1, 1) is exactly the symmetric counterpart of x =
(1, 0). Thus, any optimal control u∗x+ from x+ must satisfy
u∗x+(n) = −u∗x(n) for some optimal control u∗x for initial
value x. Hence, we obtain u∗x+(0) = −1 which means that
the MPC feedback steers x+ back to x. Thus, under the
MPC-Feedback law we obtain the closed loop trajectory
(x, x+, x, x+, . . .) which clearly does not converge to A.
This shows that the closed loop system is not asymptotically
stable.

VII. NUMERICAL FINDINGS AND EXAMPLES

In this section we illustrate some results obtained from our
approach. Note that this is but a small selection of possible
scenarios and more will be addressed in future papers.

We first investigate numerically how our estimated mini-
mal stabilizing horizon N depends on β. A first observation
is that if N is large enough in order to stabilize each system
satisfying Assumption 3.1 with

β(r, 0) = γr, β(r, n) = 0, n ≥ 1, (7.1)

then N is also large enough to stabilize each system satis-
fying Assumption (3.1) with β satisfying

∞∑
n=0

β(r, n) ≤ γr. (7.2)

In particular, this applies to β(r, n) = Cσnr with C/(1 −
σ) ≤ γ. The reason for this is that the inequalities (4.1),
(4.2) for (7.1) form weaker constraints than the respective
inequalities for (7.2), hence the minimal value α for (7.1)
must be less or equal than α for (7.2).

In what follows we investigate the “worst case” (7.1)
numerically and compute how the minimal stabilizing N
depends on γ. To this end we solved Problem 5.1 for γ =
1, 2, . . . , 50, m = 1 and different N in order to determine
α = α(N, γ) and from this

N(γ) := min{N ∈ N |α(N, γ) > 0}.

Note that even without sophisticated algorithms for finding
the minimum in this expression this computation needs just a
few minutes using our MATLAB code. The resulting values
N(γ) are shown in Figure 7.1.

It is interesting to observe that the resulting values almost
exactly satisfy N(γ) ≈ γ log γ, which leads to the conjec-
ture that this expression describes the analytical “stability
margin”.

In order to see the influence of the control horizon m we
have repeated this computation for m = [N/2] + 1, which
numerically appears to be the optimal choice of m. The
results are shown in Figure 7.2.

Here, one numerically observes that N(γ) ≈ 1.4γ, i.e.,
we obtain a linear dependence between γ and N(γ).
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Fig. 7.1. Minimal stabilizing horizon N(γ) for m = 1
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Fig. 7.2. Minimal stabilizing horizon N(γ) for m = [N/2] + 1

If we consider the running cost l as a design parameter
which we are free to choose in order to guarantee stability
with N as small as possible, then these numerical results
have an immediate and very natural consequence: the running
cost l should be chosen such that the accumulated overshoot∑∞

n=0 β(r, n) for β from Assumption 3.1 is as small as
possible.

In order to illustrate this for a concrete example we apply
our approach to the two dimensional example from [12]
given by

x(n + 1) =
(

1 1.1
−1.1 1

)
x(n) +

(
0
1

)
u(n)

with running cost l(x, u) = max{‖x‖∞, |u|} =
max{|x1|, |x2|, |u|}.

Since this example is low dimensional and linear, VN can
be computed numerically. This fact was used in [12] in order
to compute the minimal optimization horizon for a stabilizing
MPC feedback law with m = 1, which turns out to be N = 5
(note that the numbering in [12] differs from ours).

In order to apply our approach we need to find β meeting
Assumption 3.1. Because the system is finite time control-
lable to 0 this is quite easy to accomplish: using the control

ux(0) =
21
110

x1 − 2x2, ux(1) =
221
110

x1 +
221
100

x2,

ux(n) = 0, n ≥ 2



for x(0) = (x1, x2)T one obtains the trajectory

xux
(1) =

(
x1 + 1.1x2

− 10
11x1 − x2

)
, xux(n) =

(
0
0

)
, n ≥ 2.

Since l∗(x) = ‖x‖∞ we can estimate

‖xux(0)‖∞ = l∗(x), ‖xux(1)‖∞ ≤ 2.1l∗(x)

|ux(0)| ≤ 2.2l∗(x), |ux(1)| ≤ 4.22l∗(x)
(7.3)

implying l(xux
(0), ux(0)) ≤ 2.2l∗(x), l(xux

(1), ux(1)) ≤
4.22l∗(x) and l(xux(n), ux(n)) = 0 for n ≥ 2 and thus
Assumption 3.1 with

β(r, 0) = 2.2 r, β(r, 1) = 4.22 r, β(r, n) = 0, n ≥ 2.

Solving Problem 5.1 for this β we obtain a minimal stabiliz-
ing horizon N = 12, which is clearly conservative compared
to the value N = 5 computed in [12]. Note, however, that
instead of using the full information about the functions
VN , which are in general difficult to compute, we only use
controllability information on the system.

Now we demonstrate how a modified design of the running
cost l can considerably improve our estimate of N . Recall
that the estimate becomes the better, the smaller the accumu-
lated overshoot induced by β is. A look at (7.3) reveals that
in this example a reduction of the overshoot can be achieved
by reducing the weight of u in l. For instance, if we modify
l to l(x, u) = max{‖x‖∞, |u|/2} then (7.3) leads to

β(r, 0) = 1.1 r, β(r, 1) = 2.11 r, β(r, n) = 0, n ≥ 2.

Solving Problem 5.1 for this β leads to a minimal stabilizing
horizon N = 5, which demonstrates that a good design of l
can indeed considerably reduce our estimate for N .

VIII. CONCLUSIONS AND OUTLOOK

We have presented a sufficient condition which guarantees
performance bounds for an unconstrained MPC feedback
applied to a control system satisfying a controllability con-
dition. The condition can be formulated as an optimization
problem and the stability criterion derived from it turns out to
be tight with respect to the whole class of systems satisfying
the assumed controllability condition. Examples show how
our method can be used in order to determine the dependence
between overshoot and stabilizing horizon and how different
choices of the running cost l influence the stability criterion.

Future research will include the generalization of the
approach to situations where VN can not be expected to be a
Lyapunov function, the application to unconstrained schemes
with terminal cost and the relaxation of Assumption 6.1(ii)
to more general observability and detectability assumptions.

IX. APPENDIX: A TECHNICAL LEMMA

Lemma 9.1: Consider β ∈ KL0, N ≥ 1, m ∈
{1, . . . , N − 1}, a sequence λn > 0, n = 0, . . . , N − 1
and ν > 0 fulfilling (4.1), (4.2) and

N−1∑
n=0

λn − ν ≤ α

m−1∑
n=0

λn (9.1)

for some α < 0. Then there exist λ̄n > 0, ν̄ > 0 and ᾱ < 0
satisfying (4.1), (4.2) and (9.1) for which the inequalities
(4.1) are strict.
Proof: We label the inequalities for λ̄n, ν̄ and ᾱ by (4.1),
(4.2) and (9.1), respectively, and set λ̄n = λn, n =
0, . . . , N − 2 and λ̄N−1 = λN−1 − ε where ε ∈ (0, λN−1)
is specified below. Since this implies λ̄N−1 < λN−1 the
inequalities (4.1) are strict. Furthermore (9.1) holds for all
ᾱ ≥ α and (4.2) holds for j = 1, . . . , N −m− 2.

It thus remains to choose ε, ν̄ and ᾱ such that (4.2) holds
for j = N −m−1 while (9.1) and (4.2) for j = 1, . . . , N −
m − 2 remain valid. In case the inequality (4.2) for j =
N − m − 1 is strict, we choose ν̄ = ν, ᾱ = α and ε > 0
sufficiently small such that (4.2) holds for j = N −m− 1,
which is possible since Bk is continuous.

In case that (4.2) for j = N − m − 1 is an equality,
we set ν̄ (depending on ε) such that equality in (4.2) for
j = N−m−1 holds, as well. This implies ν̄ ≤ ν and thus all
other inequalities in (4.2) remain valid for all ε ∈ (0, λN−1).
Now by continuity of Bk the value ν̄ depends continuously
on ε, hence for ε > 0 sufficiently small we obtain (9.1) for
ᾱ = α/2 < 0.
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[4] L. GRÜNE AND A. RANTZER, Suboptimality estimates for receding
horizon controllers, in Proceedings of the 17th International Sympo-
sium on Mathematical Theory of Networks and Systems MTNS2006,
Kyoto, Japan, 2006, pp. 120–127.

[5] B. HU AND A. LINNEMANN, Toward infinite-horizon optimality in
nonlinear model predictive control, IEEE Trans. Automat. Control, 47
(2002), pp. 679–682.

[6] A. JADBABAIE AND J. HAUSER, On the stability of receding horizon
control with a general terminal cost, IEEE Trans. Automat. Control,
50 (2005), pp. 674–678.

[7] S. S. KEERTHY AND E. G. GILBERT, Optimal infinite horizon feed-
back laws for a general class of constrained discrete-time systems:
stability and moving horizon approximations, J. Optimiz. Theory
Appl., 57 (1988), pp. 265–293.

[8] B. LINCOLN AND A. RANTZER, Relaxing dynamic programming,
IEEE Trans. Autom. Control, 51 (2006), pp. 1249–1260.

[9] D. Q. MAYNE, J. B. RAWLINGS, C. V. RAO, AND P. O. M.
SCOKAERT, Constrained model predictive control: stability and opti-
mality, Automatica, 36 (2000), pp. 789–814.

[10] J. A. PRIMBS AND V. NEVISTIĆ, Feasibility and stability of con-
strained finite receding horizon control, Automatica, 36 (2000),
pp. 965–971.

[11] A. RANTZER, Relaxed dynamic programming in switching systems,
IEE Proceedings — Control Theory and Applications, 153 (2006),
pp. 567–574.

[12] J. S. SHAMMA AND D. XIONG, Linear nonquadratic optimal control,
IEEE Trans. Autom. Control, 42 (1997), pp. 875–879.

[13] E. D. SONTAG, Comments on integral variants of ISS, Syst. Control
Lett., 34 (1998), pp. 93–100.


