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Abstract

The accuracy of the solution of dynamic general equilibrium models has become
a major issue. Recent papers, in which second order approximations have been sub-
stituted for first order, indicate that this change may yield a significant improvement
in accuracy. Second order approximations have been used with considerable suc-
cess when solving for the decision variables in both small and large-scale models.
Additionally, the issue of accuracy is relevant for the approximate solution of value
functions. In numerous dynamic decision problems, welfare is usually computed via
this same approximation procedure. However, Kim and Kim (2003) have found a
reversal of welfare ordering when they moved from first to second order approxi-
mations. Other researchers, studying the impact of monetary and fiscal policy on
welfare, have faced similar challenges with respect to the accuracy of approximations
of the value function. Employing a base-line stochastic growth model, this paper
compares the accuracy of second order approximations and dynamic programming
solutions for both the decision variable and the value function as well. We find
that, in a neighborhood of the equilibrium, the second order approximation method
performs satisfactorily; however, on larger regions, dynamic programming performs
significantly better with respect to both the decision variable and the value function.
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1 Introduction

Much effort has been expended studying the accuracy of solutions to dynamic general
equilibrium models. There are already many papers that focus on the policy function
while comparing different solution methods. Such studies can be found, for example, in
Taylor and Uhlig (1990), Den Haan and Marcet (1994), Christiano and Fisher (2000), and
Aruoba, et al (2004). The current paper can be seen as an extension of this earlier work.
However, within the context of a dynamic programming approach, we study not only the
accuracy of the policy function, but the accuracy of the value function as well.

Recent work on the solving of dynamic general equilibrium models and on the accuracy of
estimates of the policy function has generally followed the perturbation method suggested
in Judd (1996, 1998) and Jin and Judd (2005). Researchers such as Collard and Juillard
(2001) and Schmitt-Grohe and Uribe (2004a, 2005a, 2005b) have had much success using
this technique by substituting second order for first order Taylor approximations in the
decision rule. As a consequence, second order approximations are now widely applied to
small and large-scale models.1

Despite all of this research, the extent to which a second order approximation can be used
to proxy the value function is still under-explored. The importance of the value function
is revealed in, for example, the context of asset-pricing models.2 The computation of the
value function is also essential in welfare analysis, particularly whenever one wishes to
undertake a welfare comparison of policy rules in dynamic macro models. Kim and Kim
(2003) have presented an important result in which a reversal of welfare ordering appears
as a consequence of the approximation method. Specifically, for a first order approximation
of the value function, the welfare of a closed economy is higher than for an open economy
with complete markets. However, when a second order approximation is used, the ordering
is completely reversed.

Researchers who study the impact of fiscal policy on welfare also have to deal not only
with the accuracy of the decision variable, but with the accuracy of the value function as
well.3 These accuracy issues are particularly important in the study of monetary policy
models, which also use the dynamic stochastic general equilibrium framework, and have
been employed in the analysis of welfare implications for economies with market friction.4

Benigno and Woodford (2006b) have addressed the issue of accuracy more generally in
their study of policy models. They examine linear-quadratic (LQ) models, their variants,
and investigate the degree to which LQ-models approximate the exact objectives and
constraints of the corresponding dynamic macro-model.

Numerical work on second order approximations of policy functions, e.g., the decision rule,
has already been done. Collard and Juillard (2001) investigate the problem by exploring
the impact of the curvature of the value function along with other parameters, e.g., the
discount rate, on the decision rule. They also derive a rough bound on the size of the errors

1For examples, see Schmidt-Grohe and Uribe (2004b) and Smets and Wouters (2004).
2 Collard and Juillard (2001) for an illustration.
3Benigno and Woodford (2006a,b).
4Smets and Wouters (2004)
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generated in second order approximations of the value function. Additionally, Schmitt-
Grohe and Uribe (2004a) have put forward MATLAB-implemented routines for computing
second order approximations of the decision variable. They do not concern themselves with
the welfare function; thus, they do not investigate the approximation error in the value
function itself.

As aforementioned, the accuracy issue was brought to our attention by the work of Kim
and Kim (2004, 2006), wherein the accuracy of linear and second order approximations
of the value function are explored in a simplified variant of a dynamic equilibrium model.
The accuracy of the value function was addressed in the work of Benigno and Woodford
(2006a,b). As in Judd (1998, ch. 13), they pursue the problem as to how a “naive”
linear quadratic approximation, one that uses quadratic objective functions and linear
state equations, can be misleading. They show that it is more accurate to use a proper
second order approximation using the first order optimality conditions as a starting point.
Further, they show that using the second order approximation of the first order conditions
and the state equation gives a more accurate solution of both the decision variable as
well as the welfare function. While Benigno and Woodford (2006a,b) use the second
order information in order to obtain an approximative linear quadratic problem, which in
particular yields an approximately optimal policy in linear feedback form, Schmidt-Grohe
and Uribe (2004a, 2005a, 2005b) use a quadratic approximation of the optimal policy.
However, the main finding remains the same in both methods, i.e., that second order
approximations are satisfactory and appear to be superior “in the case of small enough
disturbances” of the steady state.5

Our paper goes a step further by arguing that second order approximations may not, in
general, deliver sufficiently accurate results. By employing a base-line stochastic growth
model, we compare the second order approximation with the dynamic programming so-
lution for the decision variable and for the value function. We pay less attention to the
impact of the parameters on the accuracy of the solution, but rather on the size of the
shocks; specifically, when measured by the distance of the state variable from its steady
state, we investigate the impact of shocks on the accuracy of both the decision variable
and the value function. We find that, in a neighborhood of the equilibrium, the second
order approximation method performs satisfactorily; however, on larger regions, dynamic
programming performs significantly better with respect to both the decision variable and
the value function.

The paper is organized as follows: Section 2 introduces a base-line stochastic growth model
and tests the accuracy of the second order approximation. Here, we also discuss the extent
to which the stochastic dynamics affect the accuracy of the solution. Section 3 solves the
base-line model with dynamic programming and also studies the accuracy of the solution
with respect to the size of the shocks. Section 4 concludes the paper. The appendix gives
a summary of the MATLAB files and the dynamic programming method.

5Benigno and Woodford (2006b)
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2 Second Order Approximation

This section deals with the application of the second order approximation to solve the
stochastic version of the Ramsey growth model. Section 2.1 lays out the problem and
adapts and applies the optimality conditions. The model is also solved for its equilibrium.
Section 2.2 presents and discusses the approximation results. In section 2.3 we present an
extension of the simple model where the stochastic dynamics is now more pronounced. We
show of how a change in the objective function affects the approximation coefficients.

2.1 The Base Line Model

The Ramsey model is an economic growth model, which is taken in its presented, stochastic
setup from Santos and Vigo-Aguiar (1998) and Grüne and Semmler (2004).The model6 is
two dimensional in its state variables, x, and one dimensional in its control variable, u.
The functional form of the objective function is:

max
ut

E

[
∞∑

t=0

βt log ut

]
(1)

with the control system xt+1 = ϕ(xt, ut, zt) where ϕ is given by:

ϕ(x, u, z) =

(
A ex2 xα

1 − u
ρx2 + z

)
. (2)

Here xt,1 > 0, x2,t ∈ R and zt being i.i.d. random variables which are Gauss-normal
distributed with mean 0 and standard deviation σ = 0.008.

This problem is well suited to test both the second order approximation and the dynamic
programming method, because

(i) The solution is sufficiently smooth for x1 6= 0.

(ii) The exact solution for the value function is known and defined by:

V (x) = B + C ln x1 + D x2 (3)

with

B =
ln((1− βα) A) + βα

1−βα
ln(βαA)

(1− β)

C =
α

1− αβ

D =
1

(1− αβ)(1− ρβ)
.

6Variations of the baseline model are solved and estimated in Gong and Semmler (2006).
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The exact solution for u is defined by

u(x) = (1− αβ) A ex2 xα
1 . (4)

In our computations we use A = 5, α = 0.34, β = 0.95 and ρ = 0.9. For convenience, the
Gauss-normal distributed random variable z can be normalized with the variance σ2 such
that z

σ ∼ N(0, 1). This yields z = σ ·ε, where ε is an N(0, 1)-random variable independent
of x.7

This transformation provides us with the form of the model as proposed of Schmitt-Grohe
and Uribe (2004). The variable x1 follows a deterministic dynamic and the variable x2 a
stochastic dynamic. Note that variables of period (t + 1) are denoted by a′ and variables
of period t have no time index:

x′1 = A ex2xα
1 − u

x′2 = ρx2 + σε.

The exact calculations of the value function and the optimal control also allow us to
determine the accuracy of the procedures, see figure 1.
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Figure 1: The exact optimal value function V (x) and optimal control u(x)

The idea of the second order approximation, which is based on the perturbation method,8

and which we apply here consists in assuming that the optimal decisions and the optimal
dynamics can be expressed as

u(x) = g(x, σ) and x′ = h(x, σ)

for smooth functions g and h. Then, these functions are approximated via their second
order Taylor approximation in x = x̄ and σ = 0, where x̄ is an optimal equilibrium point
of the unperturbed system, i.e., for σ = 0. This parameter σ is called the perturbation
parameter.

7See Aström, (1970) for a detailed discussion of such a transformation.
8see Judd (1996) and (1998, ch. 13)
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In order to apply the method, we need to determine the necessary optimality conditions
derived from the Hamiltonian function and the optimal equilibrium (x̄, ū) for the unper-
turbed system, which can be computed from these conditions. These conditions are given
by9:

Et [xt+1] =

(
∂H t

∂λt+1

)T

optimality condition for the state variable

λt =

(
∂H t

∂xt

)T

optimality condition for the co-state variable

0 =

(
∂H t

∂ut

)T

maximum condition

where the Hamiltonian reads:

H t(xt, ut, λt) = Et

[
βt+1 log ut + λt+1,1 · (A ext,2xα

t,1 − ut) + λt+1,2 · (ρxt,2 + σεt)
]
.

This yields the following conditions:

• optimality condition for the state variable:

Et [xt+1,1] = Et

[
A ext,2 xα

t,1 − ut

]
=⇒ 0 = Et

[
xt+1,1 − A ext,2 xα

t,1 + ut

]
(5)

and

Et [xt+1,2] = Et [ρxt,2 − σεt]

=⇒ 0 = Et [xt+1,2 − ρxt,2 + σεt] (6)

• optimality condition for the co-state variable:

λt,1 = Et

[
λt+1,1αA ext,2 xα−1

t,1

]
(7)

λt,2 = Et

[
λt+1,2ρ + λt+1,1(Aext,2xα

t,1)
]

(8)

• maximum condition:

Et

[
βt+1 1

ut

− λt+1,1

]
= 0

=⇒ βt+1

ut

= Et [λt+1,1] (9)

We can simplify the conditions as follows: Substituting the maximum condition (9) in
the co-state equation (7) (noting that in the expectation Et the variable λt+1,1 is the only
random variable in (7)) yields

λt,1 =
βt+1

ut

αA ext,2 xα−1
t,1 .

9For details see Becker (2005).
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Using this equation for t + 1 instead of t, taking expectations Et and substituting (9) on
the left hand side yields the condition:

0 = Et

[
β

ut+1

α A ext+1,2 x
(α−1)
t+1,1 −

1

ut

]
(10)

Written in a compact way (using again x = xt and x′ = xt+1 etc.), the optimality conditions
are thus:

Et(f(x, x′, u, u′)) = 0 for f(x, x′, u, u′) :=

 x′1 − A ex2 xα
1 + u

x′2 − ρ x2
β
u′

α A ex′2 x′1
(α−1) − 1

u

 (11)

Remark 2.1 The function f , defined in equ. (11), does not include the second co-state op-
timality condition (8) because this equation does not add any information to the equilibrium
conditions since λt,2 is not contained in the maximum condition (9).

Note that (11) is already in the form needed for the second order approach, because the
matlab–programs from Schmitt-Grohe, S. and M. Uribe (2005b) compute the second
order approximation of g and h directly from f . Hence, we do not need to solve for the
steady state of (11) for the general model.

We do, however, need to solve for the optimal equilibrium (x̄, ū) of (11) for perturbation
parameter σ = 0, because (x̄, σ) is the point the second order Taylor approximation ex-
panded around and ū is needed as the zero order term in g. This is much easier than the
general case because for σ = 0 the model becomes deterministic, i.e., in the steady state
we have:

x′1 = x1,

x′2 = x2,

u′ = u

Now, from the second row of equ. (11)

x′2 − ρ x2 = 0

the equilibrium value for x̄2 is

x̄2 = 0.

This result in combination with the first row of (11) yields

u = A · 1 · xα
1 − x1. (12)
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Using this in the third row of (11) one is able to express x1 in known variables:

β α A x
(α−1)
1

1

A xα
1 − x1

=
1

A xα
1 − x1

⇐⇒ β α A x
(α−1)
1 = 1

⇐⇒ β α A = x
(1−α)
1

⇐⇒
(

β α A
) 1

1−α = x1

Using the preset parameter values, x1 equals(
0.95 · 0.34 · 5

) 1
0.66 = x1

x1 ≈ 2.067344815

¿From equ. (12) we know:

5 · (2.067344815)0.34 − 2.067344815 = u

u ≈ 4.333103529

which yields the equilibrium values

x̄ = (2.067344815, 0), ū = 4.333103529

These values serve as the starting point for testing the second order approximation as a
solution procedure. In the Ramsey model the control variable, u, denotes consumption,
the first state variable, x1, the capital stock and the transformed second state variable, ex2 ,
the technology shock. This means that with our parameter specifications an equilibrium
exists for the consumption at 4.33, for the capital stock at 2.07 and for the technology
shock at 1.

2.2 Numerical Results

We employ the numerical procedure and the numerical subroutines of Appendix A, respec-
tively, to obtain the second order approximations. We present the numerical results of our
computations and compare those to the exact solution.

In order to compute the second order Taylor approximations of g and h about the equilib-
rium [

x̄; ū
]

=
[

(2.067344815, 0); 4.333103529
]
,

we need the first and second order derivatives of these functions with respect to x and σ.
The matlab programs, as reported in Appendix A, compute for the approximation the
following coefficients:
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- Coefficients of the linear terms:

gx1 = 0.7126, gx2 = 4.3331

hx1 =

(
0.3400

0

)
, hx2 =

(
2.0673

0.9

)
.

- Coefficients of the quadratic terms for x:

gx1x1 = −0.2275, gx1x2 = gx2x1 = 0.7126, gx2x2 = 4.3331

hx1x1 =

(
−0.1085

0

)
, hx1x2 = hx2x1 =

(
0.3400

0

)
, hx2x2 =

(
2.0673

0

)
.

- Coefficients of the quadratic terms for σ:

gσσ = 1.5677 · 10−10, hσσ =

(
−0.1568 · 10−9

0

)
.

Note: since the last two terms are approximately zero, the stochastic part plays a negligible
role in the approximation. This is also immediately clear from the expressions for the exact
solution in equs. (3) and (4), because these formulae reveal that neither the optimal control
policy nor the optimal value function depend on σ.

The above values yield for the approximations of the decision variable u = g(x, σ) and the
state variables x1 and x2, following Appendix A, the following:

û = 4.333103529 + 0.7126 · (x1 − 2.067344815) + 4.3331 · (x2 − 0)

+
1

2
· (−0.2275) · (x1 − 2.067344815) · (x1 − 2.067344815)

+
1

2
· 0.7126 · (x2 − 0) · (x1 − 2.067344815)

+
1

2
· 0.7126 · (x1 − 2.067344815) · (x2 − 0)

+
1

2
· 4.3331 · (x2 − 0) · (x2 − 0)

+
1

2
· 0 · 0.008 · 0.008.
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x̂
′

1 = 2.067344815 + 0.3400 · (x1 − 2.067344815) + 2.0673 · (x2 − 0)

+
1

2
· (−0.1085) · (x1 − 2.067344815) · (x1 − 2.067344815)

+
1

2
· 0.34 · (x2 − 0) · (x1 − 2.067344815)

+
1

2
· 0.34 · (x1 − 2.067344815) · (x2 − 0)

+
1

2
· 2.0673 · (x2 − 0) · (x2 − 0)

+
1

2
· 0 · 0.008 · 0.008,

x̂
′

2 = 0 + 0 · (x1 − 2.067344815) + 0.9 · (x2 − 0)

+
1

2
· 0 · (x1 − 2.067344815) · (x1 − 2.067344815)

+
1

2
· 0 · (x2 − 0) · (x1 − 2.067344815)

+
1

2
· 0 · (x1 − 2.067344815) · (x2 − 0)

+
1

2
· 0 · (x2 − 0) · (x2 − 0)

+
1

2
· 0 · 0.008 · 0.008

+σε
′
.

In order to discuss the result of the approximation, we want to compare both the approx-
imated optimal policy û and the approximated optimal value function V̂ . Knowing the
approximated optimal control û(x) and the approximate optimal dynamic ĥ(x) = (x̂′1, x̂

′
2)

from the approximation above, we have two ways of approximating V .

The first method we use is a second order approximation to V : Similar to the procedure
described in Collard and Juillard (2001), we use second order Taylor approximations of
both sides of the dynamic programming principle

V (x) = E
[
log û(x) + βV (ĥ(x))

]
(13)

in order to obtain a linear system of equations for the coefficients of the second order
Taylor approximation of V , which can be solved using an appropriate MAPLE procedure
(cf. Appendix A). For the values given above we obtain the coefficients

V0 = 29.32566, Vx1 = 0.24291, Vx2 = 10.18671
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Vx1x1 = −0.11749, Vx1x2 = Vx2x1 = 0.14047 · 10−4, Vx2x2 = 0.47826 · 10−3, Vσσ = 0.

The resulting second order approximation for the optimal value function is denoted by Ṽ .
Note that using a second order approximation of the optimal value function is analogous
to Kim and Kim (2003) and Benigno and Woodford (2006b).

An alternative way of computing an approximation to V is obtained by evaluating the
functional (1) using the approximately optimal control û, i.e., by computing

Vbu(x) = E

[
∞∑

t=0

βt log û(xt)

]
(14)

with x0 = x and xt+1 = ϕ(xt, û(xt), zt) and ϕ from (2). A simple calculation yields

Vbu(x) = E [log û(x) + βVbu(ϕ(x, û(x), z))] (15)

We evaluate the expectation using a numerical quadrature rule. We use the rectangle rule
with 11 subintervals for z ∈ [−0.032, 0.032]) approximating Vbu by a piecewise multilinear

function V̂ on a rectangular grid. We employ equidistant grids with 51 × 51 nodes. The
computational domain is given below. Equ. (15) becomes a system of linear equations

which can be solved by standard solvers; we used a Jacobi–iteration starting from Ṽ
which is reasonably fast and easy to implement in matlab. Note that the system of
equations which needs to be solved for computing V̂ contains 51 · 51 = 2601 unknowns
while the system of equations to be solved for Ṽ contains just 7 unknowns. In particular,
the computation of V̂ , which essentially employs a dynamic programming technique, is
subject to the curse of dimensionality while the computation of Ṽ is not.

Next we provide a graphical analysis of the errors. The figures have been created with the
matlab file comparison.m which is described in Appendix A. Numerical values for the
errors can be found in Table 1, below. For the graphical analysis of the error we consider
three domains.

2.2.1 The domain [2.0, 2.1]× [−0.025, 0.025]

At first, the estimates are analyzed in a rather small region around the equilibrium x̂ ≈
(2.067, 0). Figure 2 depicts the approximation errors |V − Ṽ |, |V − V̂ | and |u− û| on this
domain.

All errors are very small around the equilibrium and increase slightly the larger the devi-
ation. Note that for the computation of the coefficients of Ṽ , the coefficients of û and ĥ
were truncated to five digits, thus the obtained accuracy in the order of 10−5 is the best
one can expect.

The approximated value function V̂ in Figure 2 approximation were computed on [1, 4]×
[−0.32, 0.32] with 51×51 nodes; for simplicity, the same grid was used in the evaluation of

V̂ and û. Note that we can only solve (15) on an invariant domain Ω for ϕ(x, û(x), z) (i.e.,
we need ϕ(x, û(x), z) ∈ Ω for all x ∈ Ω and all values of the random variable z used in the
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Figure 2: Approximation error |V − Ṽ | (top left), |V − V̂ | (top right) and |u− û| (bottom)
on [2.0, 2.1]× [−0.025, 0.025]

numerical quadrature for evaluating the expectation). Thus, only a few nodes of the grid
lie in our small domain [2.0, 2.1]× [−0.025, 0.025], which explains the “ragged” appearance
of the figures. Nevertheless, even with this rather coarse interpolation the approximation
error is below 7 · 10−4.

2.2.2 The domain [1, 4]× [−0.32, 0.32]

Using the same numerical approximation as before we now show the error on the domain
[1, 4]× [−0.32, 0.32].

Figure 3 depicts the approximation errors |V − Ṽ |, |V − V̂ | and |u− û|.

Here one can observe that the approximation error in both û and Ṽ considerably increases
away from the equilibrium. On this domain, however, this error in û still has only a
small effect on V̂ , because the regions where |u − û| is large are visited only with small
probabilities in (14) for x in this domain. This situation changes if we further increase the
domain.
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Figure 3: Approximation error |V − Ṽ | (top left), |V − V̂ | (top right) and |u− û| (bottom)
on [1, 4]× [−0.32, 0.32]

2.2.3 The domain [0.1, 10]× [−0.32, 0.32]

For the following pictures we have evaluated (15) on [0.1, 10] × [−0.32, 0.32], again with
51× 51 grid nodes.

Figure 4 depicts the approximation errors |V − Ṽ |, |V − V̂ | and |u− û|. In addition, Figure
5 shows a comparison between the approximated and exact optimal value functions and
control.

Now the error is very pronounced not only in the optimal control variable û and the second
order approximation Ṽ but also in the optimal value function V̂ obtained from evaluating
û according to (14), increasing up to a value of 6 for x = (10,−0.32).

Note that the error does not evolve symmetrically in all directions. Also, while there is
an obvious correlation between the errors in û and Ṽ , the relation between the errors in
û and V̂ is not as direct as one might expect. Rather, a large error in V̂ is caused only
if the trajectory in (14) stays, with high probability and for a long time, in a region with
a large error in û. Thus, the dynamics of the control system in (14) (which are, in turn,
influenced by û) play a prominent role here.

In conclusion, the approximation error for the value functions Ṽ , V̂ and the control variable
û increases with the distance to the equilibrium. Hence, for this procedure the neighbor-
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Figure 4: Approximation error |V − Ṽ | (top left), |V − V̂ | (top right) and |u− û| (bottom)
on [0.1, 10]× [−0.32, 0.32]

hood to the equilibrium is a necessary condition for accuracy. As shown above, both the
approximation for û and for V̂ generate very small errors around the equilibrium, but
they are increasing away from it. Thus, the computation of the optimal value function
based on second order approximations, as done in Kim and Kim (2003), Benigno and
Woodford (2006a,b) and Collard and Juillard (2001), is justified only in a small enough
neighborhood of the equilibrium. Furthermore, the more involved dynamic programming
type computation of V̂ from û, according to (15), shows considerably better results than

the straightforward second order approximation Ṽ . On the other hand, one should note
that while the loss in precision as the system deviates from the equilibrium is an obvious
disadvantage of the second order approximation, its big advantage is the high speed of
calculation for û and Ṽ .

2.3 The Extended Model

Since the size of the stochastic influence σ does not affect the exact solution (3), (4) of
our base line model discussed in Section 2.1, the values gss and hss of the approximation
are almost identical to 0. To increase the role of stochastic dynamics in the model, in this
section we investigate an extended model where the objective function will be extended
by an additional term including x2.
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In the extended model setup the objective function is defined as:

max
ut

E

[
∞∑

t=0

βt log ut · eκ·x2

]
(16)

and the dynamics remain unchanged:

ϕ(x, u, z) =

(
A ex2 xα

1 − u
ρx2 + z

)
. (17)

The parametric specification stays the same as in the simple case, that is: A = 5, α = 0.34,
β = 0.95, ρ = 0.9. Figure 6 shows the optimal value functions, depending on κ, computed
by the dynamic programming algorithm as presented in Appendix B.

In what follows we specify the new parameter to κ = 2. To find the equilibrium condition,
again, the optimality conditions have to be defined and solved. Proceeding as in Section
2.1 yields

Et(f(x, x′, u, u′)) = 0

for f(x, x′, u, u′) :=

 x′1 − A ex2 xα
1 + u

x′2 − ρ x2
β
u′
· eκx′2 · α · A · ex′2 · x′1

(α−1) − 1
u
· eκx2

 .
(18)
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Although the extension of the objective function affects the last row in equ. (18), the
equilibrium values for x1, x2 and u for perturbation parameter σ = 0 stay the same. The
reason is for this is that in steady state still x̄2 = 0 needs to hold and thus the additional
eκx2-terms vanish. Substituting this in the first row of the equilibrium equ. (18) yields the
same as equ. (12):

u = A · 1 · xα
1 − x1. (19)

Like in the previous case, the expression for u can be used to solve for x1:

β α A x
(α−1)
1

eκx2

A xα
1 − x1

=
eκx2

A xα
1 − x1

⇐⇒ β α A x
(α−1)
1 = 1.

This yields the following equilibrium values:

x̄ = (2.067344815, 0), ū = 4.333103529

Setting κ = 2, the perturbation methods yields the following coefficients:

- Coefficients of the linear terms:

gx1 = 0.7126, gx2 = 4.7277

hx1 =

(
0.3400

0

)
, hx2 =

(
1.6727
0.9000

)
- Coefficients of the quadratic x-terms:

gx1x1 = −0.2275, gx1x2 = gx2x1 = 0.7775, gx2x2 = 5.0563

hx1x1 =

(
−0.1085

0

)
, hx1x2 = hx2x1 =

(
0.2751

0

)
, hx2x2 =

(
1.3441

0

)
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- Coefficients of the quadratic σ-terms:

gσσ = −7.5821, hσσ =

(
7.5821

0

)
.

Note that the terms gσσ and hσσ increased considerably compared to the base line model.
As expected, this implies that the stochastic dynamics are now more important.

The coefficients for the second order approximation Ṽ of the optimal value function eval-
uate to

V0 = 29.32566, Vx1 = 0.24291, Vx2 = 28.38888

Vx1x1 = −0.11749, Vx1x2 = Vx2x1 = 0.41735, V x2x2 = 42.71896, Vσσ = −0.15508 · 10−2.

Figure 7 depicts the approximations Ṽ , V̂ and û of the optimal value function and the
optimal control on the domain [1, 4]× [−0.32, 0.32].

1
2

3
4

−0.5

0

0.5
20

30

40

50

x
1

second order V, extended model

x
2

1
2

3
4

−0.5

0

0.5
20

30

40

50

x
1

V from 2nd order control, extended model

x
2

1
2

3
4

−0.5

0

0.5
2

4

6

8

x
1

U from perturbation method, extended model

x
2

Figure 7: Approximations Ṽ (top left), V̂ (top right) and û (bottom) on [1, 4]×[−0.32, 0.32]

Due to the complexity of the extended model, it is not possible to solve the model ana-
lytically. Hence, it is not possible to check for the accuracy of the approximation results.
From the previous analysis it can, however, be inferred that the approximation is close to
the exact values in a neighborhood of the equilibrium. This is confirmed by the comparison
with a dynamic programming method which we will perform in the following section.
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3 Comparison with Dynamic Programming

Next we evaluate the results of the previous section by comparing them with the Bellman
or Dynamic Programming method. Here we use a dynamic programming method with
adaptive grid generation10, a brief description of the algorithm is given in Appendix B.

3.1 The Base Line Model

Here we will compare the results of the second order approximation with the results using
the dynamic programming algorithm. The numerical approximations from the dynamic
programming method will be denoted by Ṽ ′ and ũ′.

The following Figures 8–10 are the counterparts to the Figures 2–4 for the second order
approximation method.
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Figure 9: Approximation error |V − V̂ ′| (left) and |u− û′| (right) on [1, 4]× [−0.32, 0.32]

10See Grüne (2004a,b,c) for a detailed discussion of the algorithm and Grüne and Semmler (2004) for
economic applications.
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Being a global method, one would expect the quality of the solution does not vary much
with the distance from the equilibrium. On all domains (even on the smallest one), the
approximation accuracy for the optimal value function is better than for the second order
approximation method. The error in u is considerably larger in a neighborhood of the
equilibrium but considerably smaller far away from it.

In order to illustrate the differences between the two approximation methods more ac-
curately, in the following Table 1 the maximum errors of V and u for all methods are
compared on different regions. Here the computations for both V̂ and V̂ ′ were performed
on [1, 4] × [−0.32, 0.32], except for the last line of the table, for which the computations
were performed on [0.1, 10] × [−0.32, 0.32]. The error was evaluated on the grid points

used for the computation of V̂ by (15), the values for V̂ ′, which were computed on an
adaptive grid, were interpolated onto this grid for the evaluation of the error. In order to
remove scaling effects from the results, the table shows the relative errors, i.e., |(V −Ṽ )/V |,
|(V − V̂ )/V |, |(u− û)/u| etc.

The evolution of the maximum approximation error for these ranges confirms the above
discussed trends for the approximations: Using the second order perturbation method,
the approximation error in Ṽ , V̂ and û increases with the domain range. About the
equilibrium, the error is almost zero, which can be explained by construction of the method:
the equilibrium point (x̄, ū) is given ex ante and serves as the development point. The
further away from the equilibrium, however, the higher the approximation error. On the
intermediate domains our method of computing the value function V̂ from û produces
better results than the second order approximation Ṽ while on the two largest domains Ṽ
gives better results. On the larger domains both Ṽ and V̂ exhibit errors which are two to
three orders of magnitude lower that those in û, which in turn reach a maximum relative
error > 1 on the largest domain.
Using dynamic programming, the approximation also grows with the domain, however, it
starts from a larger value that the perturbation method and increases much more slowly.
In particular, it always stays on the order of 10−6 for V̂ ′ and 10−3 for û′ except for the
largest region, this is due to the fact that for this region the solution was computed on a
larger computational domain.

19



relative second order dynamic
errors perturbation programming

Domain Error of Ṽ Error of V̂ Error of û Error of V̂ ′ Error of û′

in equilibrium 5.56 · 10−7 1.19 · 10−4 6.53 · 10−11 5.46 · 10−6 1.14 · 10−3

[2, 2.1]× [−0.01, 0.01] 5.61 · 10−7 2.11 · 10−5 1.11 · 10−6 4.25 · 10−6 2.40 · 10−3

[1.8, 2.5]× [−0.05, 0.05] 4.61 · 10−5 2.28 · 10−5 6.93 · 10−4 4.87 · 10−6 2.63 · 10−3

[1.5, 3.5]× [−0.1, 0.1] 1.20 · 10−3 3.63 · 10−5 1.58 · 10−2 7.63 · 10−6 4.20 · 10−3

[1.5, 3.5]× [−0.3, 0.3] 1.29 · 10−3 9.40 · 10−5 3.15 · 10−2 9.09 · 10−6 4.35 · 10−3

[1, 4]× [−0.32, 0.32] 3.08 · 10−3 2.82 · 10−4 6.55 · 10−2 9.09 · 10−6 4.54 · 10−3

[0.1, 10]× [−0.32, 0.32] 9.54 · 10−2 2.18 · 10−1 1.03 1.01 · 10−4 1.55 · 10−2

Table 1: Comparison of the approximation errors of both methods on increasing domains

Interestingly, except for very small neighborhoods of the origin, we obtain

error in V̂ ′

error in û′
≈ error in V̂

error in û

Note: the order of computation is different, because in the dynamic programming method
û′ is computed from the approximation V̂ ′, while in the perturbation method using (14),

V̂ is computed from û. Hence, one might expect the latter ratio to be larger due to accu-
mulation of errors. The reason this does not happen lies in the dynamics of the system:
those regions where û carries large errors do not contribute much in the formula (14) for

V̂ because they are visited with low probability.
Table 1 suggests that the approximation of û using the second order perturbation method
is suitable for values in small enough vicinity of the equilibrium, but loses accuracy the
further away it departs from the equilibrium. The situation for the optimal value functions
Ṽ and V̂ is better but qualitatively the same. In contrast to this, the dynamic program-
ming method yields rather uniformly distributed errors. This method outperforms the
perturbation method for the value function on all domains but the smallest and for the
control variable on all domains except the two smallest.

3.2 The Extended Model

The model presented in section 2.3 was not analytically solvable. Hence, the results of the
perturbation method were not comparable with the true values. In this section the results
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of the perturbation and the dynamic programming method will be evaluated.

Figures 11 and 12 compare the respective solutions on two different domains.

Figures 13 and 14 show the respective differences.

Qualitatively, we observe almost the same effect as in the base line model: the difference
between the two methods increases as the domain gets larger, which is most likely due to a
loss in accuracy in the perturbation method. Quantitatively, the differences in û and û′ are
comparable to the errors in u in the base line model. The differences in the value functions,
however, are larger on the smaller domain and smaller on the larger domain, at least for
V̂ . A possible explanation for the former could be that the perturbation method is less
accurate for the extended model also close to the equilibrium because the solution does
now depend on σ, thus an additional approximation error in σ appears. The latter effect
might again be due to the fact that the regions where û carries a large error are visited
with low probability by the trajectory in (14) and hence do not significantly contribute to

the value of V̂ .

In sum, the extended model strengthens the finding of the simple case, which is that the
perturbation method is rather accurate near the equilibrium but less so on larger domains.
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Figure 11: Comparison between V and Ṽ (top left), V and V̂ (top right) and u and û
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0

5

10

−0.5

0

0.5
10

20

30

40

50

x
1

second order V and DP, extended model

x
2

2nd order

dynamic
programming

0

5

10

−0.5

0

0.5
10

20

30

40

50

x
1

V from 2nd order control and DP, extended model

x
2

V from 2nd 
order control

dynamic
programming

0

5

10

−0.5

0

0.5
−5

0

5

10

15

x
1

U from perturbation and DP method, extended model

x
2

dynamic
programming

perturbation
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Figure 13: Difference |Ṽ − V̂ ′| (top left), |V̂ − V̂ ′| (top right) and |û − û′| (bottom) on
[1, 4]× [−0.32, 0.32]

0

5

10

−0.5

0

0.5
0

1

2

3

4

x
1

difference between second order V and DP, extended model

x
2

0

5

10

−0.5

0

0.5
0

1

2

3

4

x
1

difference between V from 2nd order control and DP, extended model

x
2

0

5

10

−0.5

0

0.5
0

2

4

6

x
1

difference between u from perturbation and DP method, extended model

x
2

Figure 14: Difference |Ṽ − V̂ ′| (top left), |V̂ − V̂ ′| (top right) and |û − û′| (bottom) on
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4 Conclusion

The evaluation of the second order approximation-based perturbation method in sections
2 and 3 showed that the errors in the approximated value functions Ṽ and V̂ and the
approximated control variable û increase with the distance to the equilibrium. This can
be explained by the truncation error resulting from the Taylor approximation of û, or, in
other words, by the fact that the approximation û of u is a quadratic function which can
only provide a faithful approximation in a region which is small enough such that u itself is
approximately quadratic. Thus, as concerning computing welfare through the computation
of the optimal value function based on second order approximations as in equ. (13), as
done in Kim and Kim (2003), Benigno and Woodford (2006b) and Collard and Juillard
(2001), appears to be reasonable only in a small enough neighborhood of the equilibrium.

On the other hand, calculating V̂ from û by (14), our examples reveal that on medium

sized domains one can expect a significantly smaller error in V̂ than in the second order
approximation Ṽ which only yields useful results in rather small neighborhoods of the
origin, however, at the cost that V̂ has to be computed by a dynamic programming type
iteration which shares the computational and memory requirements of this method. Thus,
from a computational complexity point of view, the computation of V̂ via formula (15)
using the second order approximation of the optimal control provides little advantage over
the full dynamic programming method which we applied to our problem in Section 3.

A comparison of the two methods in Section 3 showed that the full dynamic programming
method inheres a constant approximation error of V̂ which is independent of the equilib-
rium distance. Although the calculation time of this method is higher, the perturbation
method involves — at times complicated — symbolic calculations of the equilibrium equa-
tion. These calculations show a potential for improvement. An automatization of this step
with programs like maple or matlab’s symbolic toolbox — which are already success-
fully used in computing the coefficients from the equilibrium equation — would decrease
the time necessary to solve the problem. Yet, the requirement of a solvable equilibrium
is a necessary condition and, hence, a further disadvantage of the perturbation method.
While the examples presented here were chosen suitably, in general however, solving for
the equilibrium might be more complicated or simply impossible.

In summary, for low order problems on large domains, dynamic programming yields, as
concerning errors, more stable results for the approximation of the value function V (x)
and the control variable u with the errors staying below a certain threshold on the whole
domain. While the procedure cannot be applied to higher dimensional problems due to
the increasing complexity of the grid of points, it is flexible and well suited for problems
of moderate dimension.

The perturbation method does not require the dynamic programming’s long computation
time. Conditional on the knowledge of the equilibrium conditions, the method yields
very accurate values for the approximated control variable û near the equilibrium. The
question of what “near the equilibrium” and thus ”small enough disturbances” exactly
mean in economic terms should be addressed in future research.

24



Appendices

A matlab and maple files

In order to compute the coefficients for the second order approximations û, ĥ and Ṽ as well
as for the computation of the optimal value function Ṽ based on û we have used matlab
and maple files which are described in what follows. All files described in the sequel are
available from the web page www.math.uni-bayreuth.de/∼lgruene/secondorder.html.
The computation of the coefficients for û and ĥ was done using the matlab files baseline.m
and extended.m, which are based on the routines from Schmitt-Grohe and M. Uribe
(2005b). The computation of the coefficients for Ṽ were done in maple using the work-
sheet compute Vcoeff.mw. All these files do not need any parameters as they only compute
the coefficients for the two examples.

All figures as well as the error values in Table 1 were computed with the matlab file
comparison.m. This file computes the exact values u and V from the formulas (4) and

(3), the approximations û and Ṽ from the coefficients and the approximation V̂ from û

solving (15) by a Jacobi–iteration. The values for V̂ ′ and û′ from the DP method are
automatically read from the files kappa*.asc where ’*’ is a file name depending on the
domain and model.

The call of this routine is comparison(kappa,domain,idelta,plotdomain). A descrip-
tion of the meaning of the parameters can be found in the comments in the file.

For the figures in this paper we have used the following parameters:

Figure 1: comparison(0,1,1e-6,0)

Figure 2: comparison(0,0,1e-6,1)

Figure 3: comparison(0,0,1e-6,0)

Figure 4: comparison(0,1,1e-6,0)

Figure 5: comparison(0,1,1e-6,0)

Figure 7: comparison(2,0,1e-6,0)

Figure 8: comparison(0,0,1e-6,1)

Figure 9: comparison(0,0,1e-6,0)

Figure 10: comparison(0,1,1e-6,0)

Figure 11: comparison(2,0,1e-6,0)

Figure 12: comparison(2,1,1e-6,0)

Figure 13: comparison(2,0,1e-6,0)

Figure 14: comparison(2,1,1e-6,0)

B Dynamic Programming

In this section we describe a dynamic programming algorithm that has been used in sect.
3 to compute the control variable as well as value function. The basic discretization
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procedure has been worked out in Grüne (2004a,b,c) and applied to economic models in
Grüne and Semmler (2004). We consider discounted optimal control problems in discrete
time t ∈ N0 given by

V (x) = max
u∈U

∞∑
t=0

βtg(x(t), u(t)) (20)

where

xt+1 = f(x(t), u(t)), x(0) = x0 ∈ Rn

For the discretization in space we consider a grid Γ covering the computational domain of
interest. Denoting the nodes of the grid Γ by xi, i = 1, . . . , P , we are now looking for an
approximation V Γ

h satisfying

V Γ
h (xi) = Th(V

Γ
h )(xi) (21)

for all nodes xi of the grid, where the value of V Γ
h for points x which are not grid points

(these are needed for the evaluation of Th) is determined by linear interpolation. For a
description of several iterative methods for the solution of (21) we refer the reader to Grüne
and Semmler (2004).

For the estimation of the gridding error we estimate the residual of the operator Th with
respect to V Γ

h , i.e., the difference between V Γ
h (x) and Th(V

Γ
h )(x) for points x which are not

nodes of the grid. Thus, for each cell Cl of the grid Γ we compute

ηl := max
x∈Cl

∣∣Th(V
Γ
h )(x)− V Γ

h (x)
∣∣

Using these estimates we can iteratively construct adaptive grids as follows:

(0) Pick an initial grid Γ0 and set i = 0. Fix a refinement parameter θ ∈ (0, 1) and a
tolerance tol > 0.

(1) Compute the solution V Γi
h on Γi

(2) Evaluate the error estimates ηl. If ηl < tol for all l then stop

(3) Refine all cells Cj with ηj ≥ θ maxl ηl, set i = i + 1 and go to (1).

For more information about this adaptive gridding procedure and a comparison with other
adaptive dynamic programming approaches we refer to Grüne and Semmler (2004) and
Bauer, Grüne and Semmler (2006).

In order to determine equilibria and approximately optimal trajectories we need an ap-
proximately optimal policy, which in our discretization can be obtained in feedback form
u∗(x) for the discrete time approximation using the following procedure:
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For each x in the grid-domain we choose u∗(x) such that the equality

max
u∈U

{hg(x, u) + βVh(xh(1))} = {hg(x, u∗(x)) + βVh(x
∗
h(1))}

holds, where x∗h(1) = x + hf(x, u∗(x)). Then the resulting sequence u∗i = u∗(xh(i)) is
an approximately optimal policy and the related piecewise constant control function is
approximately optimal.
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Bauer,F. L. Grüne and W. Semmler (2006) ”Adaptive Spline Interpolations
for Hamilton-Jacobi-Bellman Equations”, Applied Numerical Method, 56:1196-1210.
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