
STABILITY AND CONVERGENCE
OF EULER’S METHOD

FOR STATE-CONSTRAINED DIFFERENTIAL INCLUSIONS
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:

1. Introduction and Preliminaries. Differential inclusions appear in various
fields of applications, e.g. in the study of (deterministic) perturbations of differential
equations, in dynamical systems with discontinuous system equations, optimal control
problems, viability theory, especially climate impact research, cf. e.g. [2, 3, 14, 10, 1, 6].

An important subclass consists of differential inclusions with additional mono-
tonicity properties which, in general, guarantee uniqueness of the solution of the
initial value problem (cf. e.g. [2, 3, 4, 5, 20, 21]). Differential inclusions with Lipschitz
right-hand sides (with respect to Hausdorff distance) in the usual sense form another
important subclass. The latter class is the principal focus of this paper which deals
with stability and convergence properties of set-valued Euler’s method for differential
inclusions with state constraints.

The main result of this paper is the proof of a discrete stability theorem for a
difference inclusion with state constraints in Section 3, which serves as a basis for
the convergence analysis for set-valued Euler’s method in Section 4. Intrinsically, this
result is a variant of Gronwall-Filippov-Wazewski’s theorem and in fact an existence
theorem as well. Whereas the proofs for explicit difference inclusions with appropriate
Lipschitz properties offer no difficulties, additional state constraints cause essential
problems.

Fortunately, since some years there are remarkable stability results for state-
constrained differential inclusions available in the literature, cf. [22, 15, 17, 18, 7, 8,
23]. But discrete analogues for the approximation of all feasible trajectories under
comparably weak conditions are still missing. Therefore, we concentrate on the so-
called smooth case where the state constraint is described by a single scalar inequality
resp. by a smooth signed distance function. This case has already been treated in [6],
but contrary to [6] we allow time-dependent state constraints and improve the final
error estimate.

In Section 3 we give a rather complete analysis of the discrete situation which
heavily relies on the proof strategy in [15, Theorem 4.1] for the continuous problem.
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In some respects, the discrete analysis is rather technical, and some additional dif-
ficulties have to be overcome. Especially, a discrete solution might not hit exactly
the boundary of the state constraints, neighboring continuous solutions of feasible
discrete solutions could violate the state contraints outside the grid, and additional
error terms appear in Taylor expansions.

But, we want to emphasize urgently the fact, that only both stability results, the
continuous and the discrete one together, will give us convergence results for discrete
approximations of state-constrained differential inclusions. This is the essential sub-
ject of Section 4, where order of convergence O(h) with respect to the step-size h is
proven for set-valued Euler’s method in the presence of state constraints.

In Section 5, the results are applied to a differential inclusion resulting from a
state-constrained bilinear control problem which originally served as an academic test
example for unconstrained problems and was communicated by Petar Kenderov. The
order of convergence of the reachable sets of Euler’s difference inclusion with state
constraints to the corresponding reachable sets of the differential inclusion is visualized
by computer tests. For a more detailed discussion and applications to climate impact
research cf. [6].

Hence, the main objective of this paper is the discrete approximation of the whole
solution set of state-constrained differential inclusions, especially the whole feasible
set of state-constrained optimal control problems. But, in addition, the authors are
convinced that this methodology, if combined with sufficient optimality conditions,
could turn out to be another conceptual approach to order of convergence proofs for
numerical methods for the direct computation of optimal solutions, cf. e.g. [13, 12].

Naturally, convergence of the whole set of discrete solutions to the solution set
of the continuous differential inclusion, implies the convergence of the corresponding
reachable sets. Hence, at least for set-valued Euler’s method we need not distinguish
between these two aspects, but cf. in this connection the papers [24, 25] which extends
the results in [11] for set-valued Euler’s method to Runge-Kutta methods of order at
least equal to 2 for problems without state constraints.

We denote by AC(I) the set of all absolutely continuous functions y : I → Rn

and by Θ : I ⇒ Rn a set-valued map with nonempty subsets of Rn as images.
Problem 1.1. Given an interval I = [t0, T ], a nonempty set Y0 ⊂ Rn, set-valued

maps F : I × Rn ⇒ Rn and Θ : I ⇒ Rn with nonempty images.
Find all absolutely continuous solutions y(·) of the state-constrained differential

inclusion (DIC)

y′(t) ∈ F (t, y(t)) (a.e. t ∈ I), (1.1)
y(t) ∈ Θ(t) (t ∈ I), (1.2)
y(t0) = y0 ∈ Y0. (1.3)

Clearly, y0 ∈ Θ(t0) must be demanded as well.
The unconstrained problem (DI) is given by (1.1),(1.3). The set of solutions of

(DI) and (DIC) is denoted by Y[T, t0, Y0] resp. YΘ[T, t0, Y0].
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Algorithm 1.2. Euler’s method for (DIC) in Problem 1.1 with N ∈ N as number
of subintervals and step-size h = T−t0

N is given by

YΘ
N [t0, t0, Y0] := Y0 ∩Θ(t0), (1.4)

YΘ
N [tj+1, t0, Y0] :=

⋃
ηj∈YΘ

N [tj ,t0,Y0]

(
ηj + hF (tj , ηj)

)
∩Θ(tj+1) (1.5)

for j = 0, ..., N − 1.
Problem (DDIC) describes the solution of (1.4)–(1.5), its set of solutions is de-

noted by YΘ
N [T, t0, Y0]. In the absence of state constraints, the problem is called (DDI)

and YN [T, t0, Y0] denotes the corresponding set of solutions.
To measure distances, we define for η = (ηj)j=0,...,N ∈ YΘ

N [T, t0, Y0]

dist∞(y(·),YΘ
N [T, t0, Y0]) := inf{ sup

j=0,...,N
‖y(tj)− ηj‖ : η ∈ YΘ

N [T, t0, Y0]},

dist∞(η,YΘ[T, t0, Y0]) := inf{ sup
j=0,...,N

‖ηj − y(tj)‖ : y(·) ∈ YΘ[T, t0, Y0]},

dH,∞(YΘ[T, t0, Y0],YΘ
N [T, t0, Y0]) := max

{
sup

y(·)∈YΘ[T,t0,Y0]

dist∞(y(·),YΘ
N [T, t0, Y0]),

sup
η∈YΘ

N [T,t0,Y0]

dist∞(η,YΘ[T, t0, Y0])
}
.

Here, the Euclidean vector norm on Rn is denoted by ‖ · ‖. For a subset U ⊂ Rn,
we denote by dist(x,U) the infimum of all Euclidean distances of the point x ∈ Rn to
the points in U . d(U, V ) = supu∈U dist(u, V ) is the one-sided Hausdorff distance from
a subset U ⊂ Rn to another subset V ⊂ Rn, and dH(U, V ) is the Hausdorff-distance
defined as

dH(U, V ) = max{d(U, V ),d(V,U)}.

We pose some of the following basic assumptions on the right-hand side:
(H1) F satisfies a linear growth condition, i.e. there exists C ≥ 0 with

‖F (t, x)‖ := sup
y∈F (t,x)

‖y‖ ≤ C(‖x‖+ 1) (t ∈ I, x ∈ Rn).

(H2) F has nonempty, compact, convex images in Rn.
(H3) F is Lipschitz in (t, x) for all t ∈ I, x ∈ Rn with constant L ≥ 0, i.e.

dH(F (s, x), F (t, y)) ≤ L · (|s− t|+ ‖x− y‖) (s, t ∈ I, x, y ∈ Rn).

The linear growth condition (H1) gives locally a boundedness of the images F (t, x).
A sufficient condition for (H1) is (H3) together with one bounded set F (t̂, x̂) (or
(H2)). Condition (H2) is needed, since we want to apply the results from [11] for the
unconstrained case. For practical applications, e.g. the Lipschitz condition could be
restricted onto a compact set in which all values of all trajectories stay.
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The following assumptions are required for the state constraints:
(C1) Θ : I ⇒ Rn has nonempty images explicitely given as

Θ(t) := {x ∈ Rn : g(t, x) ≤ 0}

by a single scalar function g : I ×Rn → R which fulfills g(·, ·) ∈ C1,L(I ×Rn), i.e. the
derivative ∇g(·, ·) is Lipschitz on I × Rn.
Furthermore, points x ∈ ∂Θ(t) with t ∈ I are characterized by g(t, x) = 0.

(C2) The boundary of Θ(·) fulfills the “strict inwardness condition” (cf. [15, 17,
18, 7]), i.e. there exists α, µ > 0 such that for all (t, x) ∈ Bµ(graph ∂Θ(·)) ∩ (I × Rn)
it follows that

min
v∈F (t,x)

〈∇g(t, x),
(
1
v

)
〉 ≤ −α,

where

Bµ(graph ∂Θ(·)) =
{(

t
x

)
∈ R1+n : dist(

(
t
x

)
, graph ∂Θ(·)) ≤ µ

}
.

From (C1) it follows that the images of Θ(·) are closed. Existence of viable
solutions could be proven under weaker assumptions, cf. in this respect e.g. [16]. But
since we are interested mainly in stability results, which require stronger assumptions
anyway and imply existence as well, we will not discuss weaker existence results for
the continuous and the discrete case in this paper.

For the discrete situation in Section 2, it is sufficient to pose weaker assumptions
on F (·, ·):

(H1’) F satisfies a linear growth condition in integrable form, i.e. there exists a
non-negative function C(·) ∈ L1(I,R) with

‖F (t, x)‖ := sup
y∈F (t,x)

‖y‖ ≤ C(t) · (‖x‖+ 1) (t ∈ I, x ∈ Rn).

(H2’) F has nonempty, closed images in Rn.
(H3’) F is L(t)-Lipschitz in x for all t ∈ I with L(·) ∈ L1(I,R), i.e.

dH(F (t, x), F (t, y)) ≤ L(t) · ‖x− y‖ (x, y ∈ Rn).

Usually, uniform boundedness of C(·) is assumed in (H1’), i.e. (H1). The same remark
applies to L(·) in (H3’).

2. Stability for the Unconstrained Case. The essential stability result for
differential inclusions without state constraints is given by (for a complete proof cf.
[9, Lemma 8.3])

Theorem 2.1 (Gronwall-Filippov-Wazewski’s Theorem). Let F (·, ·) have closed
images in Rn, and let Y0 ⊂ Rn be nonempty, closed. For a given η(·) ∈ AC(I) with

dist(η(t0), Y0) ≤ δ0,

dist(η′(t), F (t, η(t))) ≤ δ(t) (a.e. t ∈ I)

with δ0 ≥ 0 and non-negative δ(·) ∈ L1(I,R), assume that

S := {(t, x) ∈ I × Rn : ‖x− η(t)‖ ≤ γ} ⊂ dom(F )
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for some γ > δ0. Let F (·, x) be measurable in t for all x ∈ S and fulfill (H3’) on S.
Let z(·) be the solution of

z′(t) = L(t)z(t) + δ(t) (a.e. t ∈ I),
z(t0) = δ0.

Then for all T̃ ∈ I with z(T̃ ) ≤ γ there exists a solution y(·) on [t0, T̃ ] ⊂ I with

y′(t) ∈ F (t, y(t)) (a.e. t ∈ [t0, T̃ ]),
y(t0) = y0 ∈ Y0,

fulfilling the estimates

‖y(t)− η(t)‖ ≤ z(t) (t ∈ [t0, T̃ ]),

‖y′(t)− η′(t)‖ ≤ L(t)z(t) + δ(t) (a.e. t ∈ [t0, T̃ ]),

where

z(t) = e
R t

t0
L(σ) dσ · δ0 +

∫ t

t0

e
R t

τ
L(σ) dσ · δ(τ) dτ .

It will turn out in Section 3 that Theorem 2.1 together with the following dis-
crete analogue is essential for the proof of stability for state-constrained differential
inclusions.

Theorem 2.2 (Discrete Gronwall-Filippov-Wazewski’s Theorem).
Let F : [t0, T ] ×Rn ⇒ Rn fulfill (H2’) and (H3’).

Consider the discrete difference inclusion

yk+1 − yk

h
∈ F (tk, yk) (k = 0, . . . , N − 1), (2.1)

y0 ∈ Y0 (2.2)

for a given N ∈ N, the step-size h = T−t0
N and a closed, nonempty starting set

Y0 ⊂ Rn.
Let (ηk)k=0,...,N be a grid function with values in Rn and

dist(η0, Y0) ≤ δ0,

dist(
ηk+1 − ηk

h
, F (tk, ηk)) ≤ δk+1 (k = 0, . . . , N − 1).

Abbreviate Lk = L(tk), k = 0, . . . , N , and let (zk)k=0,...,N ⊂ R be the solution of

zk+1 − zk

h
= Lkzk + δk+1 (k = 0, . . . , N − 1), (2.3)

z0 = δ0.

Then there exists a solution (yk)k=0,...,N of the discrete problem (2.1)–(2.2) with

‖ηk − yk‖ ≤ zk (k = 0, . . . , N),∥∥∥ηk+1 − ηk

h
− yk+1 − yk

h

∥∥∥ ≤ Lkzk + δk+1 (k = 0, . . . , N − 1).
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Proof. Since Y0 ⊂ Rn is nonempty, there exists y ∈ Y0 with dist(η0, Y0) ≤
‖η0 − y‖ =: r. Hence, the best approximation y0 of η0 in Y0 coincides with that in
the compact set Y0 ∩Br(η0), i.e.

‖η0 − y0‖ = dist(η0, Y0) ≤ δ0 = z0.

Assume that the assertion is true for j = 0, . . . , k, k ∈ {0, . . . , N − 1}. Arguing
as in the case k = 0, there exists ξy

k ∈ F (tk, yk) for ξη
k = 1

h (ηk+1 − ηk) with

‖ξη
k − ξy

k‖ = dist(ξη
k , F (tk, yk)),

‖ξη
k − ξy

k‖ ≤ dist(ξη
k , F (tk, ηk)) + dH(F (tk, ηk), F (tk, yk)) ≤ Lk‖ηk − yk‖+ δk+1.

Setting yk+1 := yk + hξy
k yields

‖ηk+1 − yk+1‖ = ‖(ηk + hξη
k)− (yk + hξy

k)‖ ≤ ‖ηk − yk‖+ h‖ξη
k − ξy

k‖
≤ (1 + hLk)‖ηk − yk‖+ hδk+1 ≤ (1 + hLk)zk + hδk+1 = zk+1.

The explicit solution formula for the linear difference equation (2.3) yields im-
mediately the following more specific estimates of the growth of the error bounds zk

(k = 0, . . . , N).
Corollary 2.3. With the assumptions as in Theorem 2.2 and for a Riemann

integrable L(·) in (H3’), we can estimate the error bounds zk for k = 0, . . . , N as

zk = δ0 ·
k−1∏
µ=0

(1 + hLµ) + h

k∑
j=1

δj ·
k−1∏
µ=j

(1 + hLµ),

k−1∏
µ=j

(1 + hLµ) ≤
k−1∏
µ=j

ehLµ = e
h

k−1P
µ=j

Lµ

≤ eCL (j = 0, . . . , k), (2.4)

where CL is an upper bound for the Riemann sums of the integral
∫ T

t0
L(t) dt.

If furthermore Lk = L for k = 0, . . . , N , then (1 + hL)k ≤ eLkh and for L > 0

zk ≤ eLkhδ0 +


1
L (eLkh − 1) · max

j=1,...,k
δj ,

eL(k−1)h · h
k∑

j=1

δj .
(2.5)

The following lemmas are simple consequences of the growth condition and well-
known in the literature (cf. e.g., [11, 19, 6]). They exhibit interesting connections
between the continuous situation and the discrete situation in case N →∞.

Lemma 2.4. Let F (·, ·) satisfy (H1’). Then all solutions y(·) of (DI) in Problem
1.1 with bounded starting set Y0 ⊂ Rn are uniformly bounded by M := (‖Y0‖+ CL) ·
(1 + CLe

CL) with CL := ‖C(·)‖L1(I) and stay in a compactum S ⊂ Rn.
Lemma 2.5. Let F (·, ·) satisfy (H1). Then all solutions y(·) of (DI) in Problem

1.1 with bounded starting set Y0 ⊂ Rn have a uniform Lipschitz constant.
Lemma 2.6. Let F (·, ·) satisfy (H1’) with Riemann integrable C(·), and let CR

denote an upper bound for the Riemann sums. Then all solutions (ηk)k=0,...,N of
(DDI) in Euler’s method 1.2 with bounded starting set Y0 ⊂ Rn are bounded uniformly
in N ∈ N by M := (‖Y0‖+ CR) · (1 + CRe

CR) and stay in a compactum S ⊂ Rn.
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Choosing CR = ‖C(·)‖L1(I) + ε for all N ≥ N0(ε), emphasizes the similarity to
Lemma 2.4.

Lemma 2.7. Let F (·, ·) satisfy (H1). Then all solutions (ηk)k=0,...,N of (DDI)
in Euler’s method 1.2 with bounded starting set Y0 ⊂ Rn have a Lipschitz constant
uniformly in N ∈ N.

Proof. Let M be the bound for all discrete solutions (ηk)k=0,...,N according to
Lemma 2.6. Then it follows for N ∈ N and j, k ∈ {0, 1, . . . , N} with j ≤ k

‖ηk − ηj‖ = ‖
k−1∑
µ=j

(ηµ+1 − ηµ)‖ ≤ h

k−1∑
µ=j

‖ 1
h

(ηµ+1 − ηµ)‖ ≤ h

k−1∑
µ=j

‖F (tµ, ηµ)‖

≤ h

k−1∑
µ=j

C(‖ηµ‖+ 1) ≤ C(M + 1)(k − j)h = C(M + 1)(tk − tj).

3. Stability Analysis for the State-Constrained Case. There are several
variants of the Gronwall-Filippov-Wazewski’s Theorem for the continuous state-con-
strained case in the literature (cf. [15, Theorems 4.1 and 4.2], [17, Lemmata 3.3 and
4.4], [18, Theorem 3.1], as well as [7, Lemma 3.9], [8], [23, Lemma 2.2(b)] based on
Soner’s work in [22]). They were also denoted as theorems on the ”existence of feasible
neighboring trajectories” or as ”tracking lemma”. Exemplarily, we treat here the so-
called “smooth” case, where the function g(t, x) determines the state constraints Θ(t)
and g(·, ·) ∈ C1,L(I × Rn).

A typical result for the continuous situation is given in the following
Theorem 3.1. Consider Problem 1.1 with time-dependent state constraint Θ(·).

Assume the conditions (H2)–(H3) on the right-hand side F (·, ·) and conditions (C1),
(C2) on the state constraints.

Then for every y0 ∈ Θ(t0) there exists a positive constant C such that for every
η(·) ∈ Y[T, t0, y0] there exists y(·) ∈ YΘ[T, t0, y0] with

sup
t∈[t0,T ]

‖η(t)− y(t)‖ ≤ C sup
t∈[t0,T ]

dist(η(t),Θ(t)).

We will omit the proof of this theorem, since it exploits a similar strategy as [15,
Theorem 4.1], using in addition a result from [6, Theorem 3.2.4].

The reader should be aware that under considerably weaker assumptions, e.g.
no convexity is needed, Lipschitz with respect to both variables can be weakened,
analoguous results for the continuous situation hold. But, the proof of the discrete
analogue presented here could be given only under stronger assumptions until now.
Contrary to the assumptions (HC1)–(HC4) in [6], we allow time-dependent state con-
straints even in the discrete situation and simplify the conditions for the error esti-
mate.

In any case, we want to emphasize the fact that both stability results for the
continuous and the discrete case are needed for convergence of discrete approximations
of state-constrained differential inclusions, described in Section 4.

We now present a rather detailed analysis of the discrete analogue of Theorem
3.1 following partly [6], but admitting time-dependent state constraints. We want
to stress that this discrete analysis is in some respects rather technical, but never-
theless essential for the convergence analysis in the following Section 4. It would be
very desirable to have available the discrete analogues of all those refined results [15,
Theorem 4.2], [17, Lemma 3.3], [18, Theorem 3.1] (smooth case) resp. [15, Theorem
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4.1], [17, Lemma 4.4] (non-smooth case), for the continuous situation. Cf. [17] for a
detailed discussion of the smooth and non-smooth case.

Theorem 3.2. Consider Problem (DDIC) in (1.4)–(1.5) with time-dependent
state constraint Θ(·). Assume the conditions (H2)–(H3) on the right-hand side F (·, ·)
and conditions (C1), (C2) on the state constraints.

Then for every y0 ∈ Θ(t0) there exist N0 ∈ N and a positive constant C such that
for all N ≥ N0 and for all discrete solutions (ηk)k=0,...,N ∈ YN [T, t0, y0] there exists
a discrete solution (yk)k=0,...,N ∈ YΘ

N [T, t0, y0] with

max
k=0,...,N

‖ηk − yk‖ ≤ C(h+ max
k=0,...,N

dist(ηk,Θ(tk))).

Proof. Consider an arbitrary, in general non-feasible solution (ηk)k=0,...,N and set

δN := max
k=0,...,N

dist(ηk,Θ(tk)).

Case A: solution ηk is feasible for k ∈ I = {0, . . . , N}
Clearly, δN = 0 and the assertion is valid for yk := ηk, k ∈ I.
Case B: solution ηk is not feasible for some k ∈ I
In this case, δN > 0. On a small index set I0 = {0, . . . , k1} with k1 independent

from (ηk)k∈I the result will be proven as a first step.
Denote by Lη the uniform Lipschitz constant for all discrete solutions according

to Lemma 2.7, by L resp. L∇g the Lipschitz constant of F (·, ·) resp. ∇g(·, ·), and
choose the constants µ and α as in (C2). Without loss of generality, L > 0. Let M2

be the maximum of ‖∇g(t, x)‖ for (t, x) ∈ I × S, S being the compactum according
to Lemma 2.6.

Define

τ1 := max
{
t ∈ [t0, T ] : t ≤ t0 +

µ

2(Lη + 1)
, (3.1)

L∇g(t− t0) ≤
M2

2(Lη + 1)
, (3.2)

max{M2(Lη + 1), (Lη + 1)2 · L∇g

L
} · (eL(t−t0) − 1) ≤ α

12

}
(3.3)

which is independent of all discrete solutions and all N ∈ N. 1

For the discrete case additional assumptions on the step-size are necessary to
construct a viable solution.

Choose N0 ∈ N with

hN0 =
T − t0
N0

≤ τ1 − t0, (3.4)

hN0 ≤
µ

2(Lη + 1)
, (3.5)

hN0L∇g ≤
α

2(Lη + 1)2
, (3.6)

hN0L∇g ≤
M2

Lη + 1
, (3.7)

1inequalities (3.1)–(3.3) are used in (3.14), (3.27) resp. in (3.25), (3.26)
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determining the maximal allowed step-size hN0 .
2

(3.4) is needed to guarantee that at least one step of Euler’s method can be
performed to reach a time not exceeding τ1. (3.5) follows from (3.1) and (3.4). It
ensures that a discrete solution, before violating the state constraints at the next
index, will be sufficiently near to the boundary such that there exists a direction which
steers the solution into the interior. (3.6)–(3.7) are needed to show the viability of
the solution in this phase and control the error of Taylor expansions.

From now on, let N ≥ N0, h = T−t0
N , and define in view of (3.4)

k1 := bτ1 − t0
h

c ≥ 1, (3.8)

k̂1 := min{k ∈ I : ηk+1 /∈ Θ(tk+1)} < N,

where k1 is the biggest natural number not exceeding τ1−t0
h .

It is clear that tk1 ≤ τ1 also satisfies the requirements in (3.1)–(3.3).

Case B, (i): k1 ≤ k̂1, i.e. the solution ηk is feasible for k ∈ Ĩ0 := {0, . . . , k̂1} ⊃ I0

Define

yk := ηk (k ∈ I0)

which fulfills the assertion on I0.
Case B, (ii): k1 > k̂1, i.e. the solution ηk is feasible for k ∈ Ĩ0 ⊂

6=
I0

In the first phase, set

yk := ηk (k ∈ Ĩ0). (3.9)

Since ηk̂1
∈ ∂Θ(tk̂1

) cannot be guaranteed in the discrete case (only ηk̂1
∈ Θ(tk̂1

)),
the distance to the boundary must be estimated and should not exceed µ

2 to guarantee

an inward steering direction. The function ϕ(s) = g(tk̂1
+ s, ηk̂1

+ s
ηk̂1+1−ηk̂1

h ) is
continuous on [0, h] with

ϕ(0) = g(tk̂1
, ηk̂1

) ≤ 0, ϕ(h) = g(tk̂1+1, ηk̂1+1) > 0.

Therefore, there exists a zero s̄ ∈ [0, h] of the function ϕ(·). Now, use (3.5) and
(C1) to show

dist(
(

tk̂1
ηk̂1

)
, graph ∂Θ(·)) ≤ ‖

(
tk̂1
ηk̂1

)
−

(
tk̂1

+s̄

ηk̂1
+s̄

η
k̂1+1

−η
k̂1

h

)
‖

≤ s̄(1 +
1
h
· ‖ηk̂1+1 − ηk̂1

‖) ≤ (1 + Lη)h ≤ µ

2
. (3.10)

Define (without loss of generality, the Lipschitz constant Lg of g(·) is greater 0)

κ1 := min{k1 − k̂1

1 + δN

h

,
3
α

(Lg + 3M2(Lη + 1))}, (3.11)

δ̄1 := bκ1(1 +
δN
h

) + 1c ≥ 1, (3.12)

k̄1 := k̂1 + δ̄1

2inequalities (3.4)–(3.7) are used in (3.8), (3.10), (3.16) resp. (3.24)
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which determines the length of the inward steering phase Î0 := {k̂1, k̂1 + 1, . . . , k̄1} ⊂
I0. 3 κ1 controls that the corresponding time interval either reaches tk1 or guarantees
the feasibility on the second time interval, δ̄1 is the number of steps in the second
phase in Case (ii.1) resp. (ii.2). Notice that κ1 and k̄1 depend on the individual
solution.

Consider the solution (ŷk)k∈bI0
of the discrete inclusion

1
h

(xk+1 − xk) ∈ Y (tk, xk) (k ∈ Î0 \ {k̄1}),

xk̂1
= yk̂1

on the second index set Î0. Here, Y (t, x) is defined as follows:

ϕ(t, x) = min
v∈F (t,x)

〈∇g(t, x),
(
1
v

)
〉, (3.13)

Y (t, x) = {v ∈ F (t, x) : 〈∇g(x),
(
1
v

)
〉 = ϕ(t, x)},

where ϕ(·, ·) is continuous on graph Θ(·) by [3, Theorem 1.4.16] and Y (t, x) has com-
pact, nonempty images and is upper semi-continuous by [2, §1.2, Theorem 6].

k̂1 is chosen so that inward steering is possible. We show that this is the case for
all k ∈ Î0 as well. From the Lipschitz continuity of all discrete solutions by Lemma
2.7 and (3.10) we get for k ∈ Î0:

‖ŷk − ŷk̂1
‖ ≤ Lη(k − k̂1)h,

dist(
(

tkbyk

)
, graph ∂Θ(·)) ≤ ‖

(
tkbyk

)
−

(tk̂1byk̂1

)
‖+ dist(

(tk̂1byk̂1

)
, graph ∂Θ(·))

≤ |tk − tk̂1
|+ ‖ŷk − ŷk̂1

‖+
µ

2
.

Estimate (k − k̂1)h by tk1 − t0 and use (3.1) to show

dist(
(

tkbyk

)
, graph ∂Θ(·)) ≤ (Lη + 1)(k − k̂1)h+

µ

2
≤ µ. (3.14)

The proof of the feasibility of (ŷk)k∈bI0
is not as simple as in the continuous case.

Since ŷk̂1
∈ Θ(tk̂1

) per definition, we have g(tk̂1
, ŷk̂1

) ≤ 0, and with the telescopic sum

g(tk, ŷk) ≤ g(tk, ŷk)− g(tk̂1
, ŷk̂1

) =
k−1∑
j=k̂1

(g(tj+1, ŷj+1)− g(tj , ŷj)).

Set ψ(s) = g(tj + sh, ŷj + s(ŷj+1− ŷj)) for s ∈ [0, 1] and some j ∈ Î0, then Taylor
expansion up to terms of order 1 yields by the Lipschitz continuity of ∇g(·, ·)

g(tj+1, ŷj+1) ≤ g(tj , ŷj) + 〈∇g(tj , ŷj),
(

hbyj+1−byj

)
〉+ L∇g(Lη + 1)2h2. (3.15)

3The first term in (3.11) is used in (3.19), the second one in (3.29), while (3.12) is used in (3.28)
and (3.33).
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Hence, due to (3.6) it follows

g(tk, ŷk) ≤
k−1∑
j=k̂1

h〈∇g(tj , ŷj),
( 1byj+1−byj

h

)
〉+ (L∇g(Lη + 1)2h) · (k − k̂1)h

≤
k−1∑
j=k̂1

h〈∇g(tj , ŷj),
( 1byj+1−byj

h

)
〉+

α

2
· (k − k̂1)h. (3.16)

Using (C2) due to (3.14) and byj+1−byj

h ∈ Y (tj , ŷj) together with (3.13) we progress
to the inequalities

g(tk, ŷk) ≤ h

k−1∑
j=k̂1

ϕ(tj , ŷj) +
α

2
· (k − k̂1)h ≤ −α

2
· (k − k̂1)h. (3.17)

Therefore, we have finally proven that ŷk ∈ Θ(tk) and

‖ŷk − ηk‖ ≤ ‖ŷk − yk̂1
‖+ ‖ηk̂1

− ηk‖ ≤ 2Lη(k − k̂1)h ≤ 2Lη δ̄1h (k ∈ Î0). (3.18)

Case B, (ii.1): inward steering phase reaches end of index set I0

If k̄1 = k̂1 + δ̄1 = k1, then the definition of the constructed solution is continued
to Î0 as

yk := ŷk (k ∈ Î0 \ {k̂1}),

so that the claim is verified on Î0 and therefore also on I0.
Case B, (ii.2): Filippov solution follows time-delayed solution for the rest of

indices in I0 \ Î0

Now k̄1 = k̂1 + δ̄1 < k1, set Ī0 := {k̄1, k̄1 + 1, . . . , k1}. From κ1(1 + δN

h ) < δ̄1
follows that κ1 = 3

α (Lg + 3M2(Lη + 1)), since

κ1 <
k1 − k̂1

1 + δN

h

. (3.19)

Consider the Filippov solution (ȳk)k∈Ī0
of

1
h

(xk+1 − xk) ∈ F (tk, xk) (k ∈ Ī0 \ {k1}),

xk̄1
= yk̄1

following the solution (ηk−δ̄1
)k∈Ī0

. Since the discrete version of Filippov’s Theorem
2.2 will be applied, we study the following error terms:

‖ȳk̄1
− ηk̄1−δ̄1

‖ = ‖yk̄1
− ηk̂1

‖ = ‖yk̄1
− yk̂1

‖ ≤ Lη δ̄1h, (3.20)

dist(
1
h

(ηk+1−δ̄1
− ηk−δ̄1

)︸ ︷︷ ︸
∈F (tk−δ̄1

,ηk−δ̄1
)

, F (tk, ηk−δ̄1
)) ≤ Lδ̄1h
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The time delay δ̄1 does not only help in (3.20), since ηk̄1−δ̄1
coincides with yk̂1

,
but also allows to reuse the estimates on the second index set Î0 (namely (3.18)) for
the starting values on the third index set. For the distance to the right-hand side of
the difference inclusion, the Lipschitz continuity of F (·, ·) with respect to t was used.
The discrete Filippov’s Theorem 2.2 together with Corollary 2.3 finally establishes
the estimates

‖ȳk − ηk−δ̄1
‖ ≤ (1 + hL)k−k̄1Lη δ̄1h+ ((1 + hL)k−k̄1 − 1)δ̄1h

= ((Lη + 1)(1 + hL)k−k̄1 − 1)δ̄1h, (3.21)

‖ 1
h

(ηk+1−δ̄1
− ηk−δ̄1

)− 1
h

(ȳk+1 − ȳk)‖

≤ L(Lη + 1)(1 + hL)k−k̄1 δ̄1h (3.22)

on Ī0. They are used twice, first to estimate the deviation of the feasible solution to
the given one in

‖ȳk − ηk‖ ≤ ‖ȳk − ηk−δ̄1
‖+ ‖ηk−δ̄1

− ηk‖

≤
(

(Lη + 1)eL(k−k̄1)h + Lη − 1
)
δ̄1h (3.23)

and secondly, to show feasibility. To this purpose, the state constraint is splitted into
four terms for each k ∈ Ī0. Hereby, the Taylor expansion as in (3.15) will be used:

g(tk, ȳk) = g(tk̄1
, ȳk̄1

)︸ ︷︷ ︸
=TA

+ g(tk−δ̄1
, ηk−δ̄1

)− g(tk̄1−δ̄1
, ηk̄1−δ̄1

)︸ ︷︷ ︸
=TB

+
k−1∑
j=k̄1

(
g(tj+1, ȳj+1)− g(tj , ȳj)

)
−

k−1∑
j=k̄1

(
g(tj+1−δ̄1

, ηj+1−δ̄1
)− g(tj−δ̄1

, ηj−δ̄1
)
)

≤ TA + TB + h

k−1∑
j=k̄1

〈∇g(tj , ȳj),
( 1

ȳj+1−ȳj
h

)
〉+ L∇g(Lη + 1)2(k − k̄1)h2

− h

k−1∑
j=k̄1

〈∇g(tj−δ̄1
, ηj−δ̄1

),
( 1

η
j+1−δ̄1

−η
j−δ̄1

h

)
〉+ L∇g(Lη + 1)2(k − k̄1)h2

= TA + TB + h

k−1∑
j=k̄1

〈∇g(tj , ȳj),
( 1

ȳj+1−ȳj
h

)
−

( 1
ηj+1−δ̄1

−ηj−δ̄1
h

)
〉

︸ ︷︷ ︸
=TC

+ h

k−1∑
j=k̄1

〈∇g(tj , ȳj)−∇g(tj−δ̄1
, ηj−δ̄1

),
( 1

η
j+1−δ̄1

−η
j−δ̄1

h

)
〉

︸ ︷︷ ︸
=TD

+ 2L∇g(Lη + 1)2(k − k̄1)h2︸ ︷︷ ︸
=TE

= TA + TB + TC + TD + TE .
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The next task will be to estimate each term separately. We estimate

TA = g(tk̄1
, ŷk̄1

) ≤ −α
2
δ̄1h

by (3.17), the corresponding inequality on the second index set.
The treatment of the second term is slightly more complicated as in the continuous

case, since we can not assume that g(tk̂1
, ηk̂1

) = 0. Nevertheless, we know that at
index k̂1 we are close to the boundary and at the next index k̂1 +1 the iterate violates
the state constraints so that

TB = g(tk−δ̄1
, ηk−δ̄1

)− g(tk̂1
, ηk̂1

) < g(tk−δ̄1
, ηk−δ̄1

) + g(tk̂1+1, ηk̂1+1)︸ ︷︷ ︸
>0

−g(tk̂1
, ηk̂1

).

The difference of the last two terms could be estimated as in (3.15):

g(tk̂1+1, ηk̂1+1)− g(tk̂1
, ηk̂1

) ≤ h‖∇g(tk̂1
, ηk̂1

)‖ · (1 + ‖
ηk̂1+1 − ηk̂1

h
‖)

+L∇g(Lη + 1)2h2 ≤ max
(t,x)∈I×S

‖∇g(t, x)‖︸ ︷︷ ︸
=M2

·(1 + Lη)h+ L∇g(Lη + 1)2h2,

where we used again that all discrete solutions are contained within a compactum S
by Lemma 2.6 and that all discrete solutions have a uniform Lipschitz constant Lη

by Lemma 2.7. Mimicing the proof in the continuous case, we distinguish two cases
to treat the first term in TB .

If ηk−δ̄1
∈ Θ(tk−δ̄1

), then g(tk−δ̄1
, ηk−δ̄1

) ≤ 0 so that this first term has an
advantageous sign. Otherwise, we introduce the projection ηπ

k−δ̄1
∈ ∂Θ(tk−δ̄1

) and
estimate by using the definition of δN :

|g(tk−δ̄1
, ηk−δ̄1

)− g(tk−δ̄1
, ηπ

k−δ̄1
)| ≤ Lg‖ηk−δ̄1

− ηπ
k−δ̄1

‖
= Lg dist(ηk−δ̄1

,Θ(tk−δ̄1
)) ≤ LgδN .

In both cases, due to (3.7)

TB ≤ LgδN +M2 · (1 + Lη)h+ L∇g(Lη + 1)2h2 ≤ LgδN + 2M2 · (1 + Lη)h (3.24)

In term TC , the difference quotient of both solutions is compared, which was
estimated in (3.22) by the discrete Filippov Theorem. Moreover, the boundedness of
the discrete solutions and the continuity of ∇g(·, ·) are used, yielding

TC ≤ h

k−1∑
j=k̄1

‖∇g(tj , ȳj)‖ · ‖
ȳj+1 − ȳj

h
−
ηj+1−δ̄1

− ηj−δ̄1

h
‖

≤M2h

k−1∑
j=k̄1

(
L(Lη + 1)(1 + hL)j−k̄1 δ̄1h

)
= M2(Lη + 1)((1 + hL)k−k̄1 − 1)δ̄1h.

Since (1 + hL)k−k̄1 can be estimated by Corollary 2.3 as eL(k−k̄1)h ≤ eLk1h ≤
eL(τ1−t0), we can exploit that τ1 was suitably chosen by (3.3), and we get

TC ≤ α

12
δ̄1h. (3.25)
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The same estimate will be reached for the term TD. The main keys are the
Lipschitz continuity of∇g(·, ·), the uniform Lipschitz constant for all discrete solutions
and the estimates (3.21) from the discrete Filippov Theorem together with the one in
(2.5):

TD ≤ h

k−1∑
j=k̄1

‖∇g(tj , ȳj)−∇g(tj−δ̄1
, ηj−δ̄1

)‖ · (1 + ‖
ηj+1−δ̄1

− ηj−δ̄1

h
‖)

≤ h

k−1∑
j=k̄1

L∇g(|tj − tj−δ̄1
|+ ‖ȳj − ηj−δ̄1

‖) · (1 + Lη)

≤ (Lη + 1)L∇gh

k−1∑
j=k̄1

(1 + (Lη + 1)(1 + hL)j−k̄1 − 1) · δ̄1h

≤ (Lη + 1)L∇g
Lη + 1
L

hL

k−1∑
j=k̄1

(1 + hL)j−k̄1 · δ̄1h

≤ (Lη + 1)2
L∇g

L
((1 + hL)k−k̄1 − 1) · δ̄1h.

Now, the reasoning is the same as for the term TC , hence

TD ≤ α

12
δ̄1h. (3.26)

For the estimation of TE we need (3.2):

TE = 2L∇g(Lη + 1)2(k − k̂1)h2 ≤ 2L∇g(Lη + 1)2(tk − tk̂1
)h

≤ 2L∇g(Lη + 1)2(τ1 − t0)h ≤M2(Lη + 1)h. (3.27)

Now, we put all estimates together to show the feasibility. We have

g(tk, ȳk) ≤ TA + TC + TD + TB + TE ≤ −α
2
δ̄1h+ 2 · α

12
δ̄1h+ TB + TE

≤ −α
3
δ̄1h+ TB + TE .

The definition (3.12) for δ̄1 and κ1 = 3
α (Lg + 3M2(Lη + 1)) yield

α

3
δ̄1h ≥

α

3
κ1(1 +

δN
h

)h (3.28)

= (Lg + 3M2(Lη + 1))(h+ δN ) ≥ LgδN + 3M2(Lη + 1)h (3.29)

and hence, the problematic term LgδN could be eliminated by

g(tk, ȳk) ≤ −LgδN − 3M2(Lη + 1)h+ LgδN + 2M2(Lη + 1)h
+M2(Lη + 1)h ≤ 0. (3.30)

Extend the feasible solution in the third phase to I0 by

yk := ȳk (k ∈ Ī0 \ {k̄1}). (3.31)
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For all k ∈ I0, (3.9) and the estimates (3.18),(3.23) yield altogether

‖yk − ηk‖ ≤ max{2Lη, (Lη + 1)eL(τ1−t0) + Lη − 1︸ ︷︷ ︸
=:M3≥2Lη

} · δ̄1h. (3.32)

In the last inequality, (k1 − k̄1)h was estimated by k1h ≤ τ1 − t0. Moreover,

δ̄1h = bκ1(1 +
δN
h

) + 1c · h ≤ (κ1(1 +
δN
h

) + 1)h

≤ (
3
α

(Lg + 3M2(Lη + 1))(h+ δN ) + h = O(h+ δN ), (3.33)

‖yk − ηk‖ ≤M3δ̄1h ≤M3(1 +
3
α

(Lg + 3M2(Lη + 1)))︸ ︷︷ ︸
=:fM

(h+ δN ) = O(h+ δN ).

Extension to the whole index set I:
This process is well explained in the proof of [6, Theorem 3.2.6]: Divide the index

set in J subsets with k1 elements and set Ij := {kj , kj + 1, . . . , kj+1} ∩ {0, . . . , N}
with kj = jk1, j = 0, . . . , J .

(i) first index set
For j = 0 the solution yk is already constructed for I0. Set C̃0 := 1 + δN

h and
∆0 = bκ1C̃0 + 1c.

(ii) recursive approach
For j > 0 start the process by taking the end value of the feasible solution yj·k1 on

Ij−1 as starting value for the next iteration. Now, apply again the discrete Filippov
Theorem to construct the (in general, non-feasible) solution (z(j)

k )k∈Ij of

1
h

(xk+1 − xk) ∈ F (tk, xk) (k ∈ Ij),

xkj
= ykj

,

that follows the non-feasible one (ηk)k∈Ij
. The error term is governed by the difference

of the starting values. Now, construct a feasible solution (yk)k∈Ij from (z(j)
k )k∈Ij .

Then show that the deviation from (yk)k∈Ij to (ηk)k∈Ij could be estimated by

‖yk − ηk‖ ≤ M̃

j∑
ν=0

e(j−ν)Lk1h∆νh (k ∈ Ij),

where for j = 1, . . . , J

C̃j = C̃0 + M̃

j−1∑
ν=0

e(j−ν)Lk1h, ∆j = bκ1C̃j + 1c.

Estimate J uniformly for all N ∈ N by b T−t0
τ1−hN0

+1c so that finally we have proven
the overall order O(h+ δN ).
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Remark 3.3. Assume that Θ : I ⇒ Rn with images in C(Rn) has a C1,L-signed
distance function

d̃(t, x) :=

{
dist(x, ∂Θ(t)), if x ∈ Θ(t),

−dist(x, ∂Θ(t)) = −dist(x,Θ(t)), if x ∈ Rn \Θ(t).

Then Θ(t) = {x ∈ Rn : −d̃(t, x) ≤ 0} fulfills the assumptions of Theorem 3.2.

4. Convergence Analysis. Combining the stability results from Section 3 for
the continuous and discrete situation, we are now in a position to prove order of
convergence results for the discrete approximation of the set of all viable solutions of
the differential inclusion by all viable discrete solutions.

An essential tool is the following result for differential inclusions without state con-
straints, cf. [11, 1. Theorem] which we formulate under stronger assumptions, needed
later on anyway. The convexity is an important assumption for the convergence of
Euler’s method.

Proposition 4.1. Choose a compactum S ⊂ Rn containing all solutions of (1.1),
(1.3). Let F (·, ·) fulfill (H2)–(H3) on S and let Y0 = {y0}.

Then there exists a positive constant C such that for all N ∈ N

dH,∞(Y[T, t0, y0],YN [T, t0, y0]) ≤ Ch.

The stability results from Section 3 (Theorem 3.1 for the continuous case and
Theorem 3.2 for the discrete case) are essential for the convergence proof of Euler’s
discretization of differential inclusions with state constraints.

Theorem 4.2. Assume hypotheses (H2)–(H3) together with (C1)–(C2) and let
Y0 = {y0} with y0 ∈ Θ(t0).

Then there exist a positive constant C and N0 ∈ N such that for all N ≥ N0

dH,∞(YΘ[T, t0, y0],YΘ
N [T, t0, y0]) ≤ Ch.

Proof. This proof will use the notation of some constants from the proof of Theorem
3.2. Choose N0 ∈ N from this theorem and N ≥ N0 so that additionally hN0 ≤ µ and
(C(M +1)+1)2L∇ghN0 ≤ α

2 , where M is the bound in Lemma 2.6 and α, µ originate
from (C2).

Let us first construct a close discrete solution to a given y(.) ∈ YΘ[T, t0, y0] to esti-
mate the one-sided distance. According to Proposition 4.1, there exists (η̃k)k=0,...,N ∈
YN [T, t0, y0] with

max
k=0,...,N

‖y(tk)− η̃k‖ ≤ C̃1h.

Since

dist(η̃k,Θ(tk)) ≤ ‖η̃k − y(tk)‖+ dist(y(tk),Θ(tk)) ≤ C̃1h,

a solution (ηk)k=0,...,N ∈ YΘ
N [T, t0, y0] can be constructed by Theorem 3.2 with

max
k=0,...,N

‖ηk − η̃k‖ ≤ C̃2h.
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Hence, the grid function yN := (y(tk))k=0,...,N fulfills

‖ηk − y(tk)‖ ≤ ‖ηk − η̃k‖+ ‖η̃k − y(tk)‖ ≤ (C̃1 + C̃2)h,

dist∞(yN ,YΘ
N [T, t0, y0]) ≤ (C̃1 + C̃2)h.

On the other hand, for a given discrete solution η := (ηk)k=0,...,N ∈ YΘ
N [T, t0, y0]

one has to estimate the other one-sided distance. Proposition 4.1 shows the existence
of ỹ(·) ∈ Y[T, t0, y0] with

max
k=0,...,N

‖ηk − ỹ(tk)‖ ≤ C̃1h.

The reasoning is now more complicated, since we need to estimate the following
distance for all t ∈ [tk, tk+1] and all k ∈ {0, . . . , N − 1},

dist(ỹ(t),Θ(t)) ≤ ‖ỹ(t)− ỹ(tk)‖+ ‖ỹ(tk)− ηk‖+ dist(ηk,Θ(t)). (4.1)

Since ηk ∈ Θ(tk), the inequality g(tk, ηk) ≤ 0 holds.
(i) If

(
tk

ηk

)
∈ Bµ(graph ∂Θ(·)), then there exists vk ∈ F (tk, ηk) by (C2) with

〈∇g(tk, ηk),
(

1
vk

)
〉 ≤ −α.

For t ∈ [tk, tk+1], we set η(t) := ηk + (t− tk)vk and consider

g(t, η(t)) = g(tk, ηk) +
∫ t

tk

d
ds
g(s, η(s)) ds ≤

∫ t

tk

〈∇g(s, η(s)),
(

1
vk

)
〉 ds

=
∫ t

tk

〈∇g(tk, ηk),
(

1
vk

)
〉 ds+

∫ t

tk

〈∇g(s, η(s))−∇g(tk, ηk),
(

1
vk

)
〉 ds

≤ −α(t− tk) +
∫ t

tk

‖∇g(s, η(s))−∇g(tk, ηk)‖ · (1 + ‖vk‖) ds.

Let us estimate both terms using (H1) and Lemma 2.6 by

1 + ‖vk‖ ≤ 1 + ‖F (tk, ηk)‖ ≤ 1 + C(‖ηk‖+ 1) ≤ C(M + 1) + 1,
‖∇g(s, η(s))−∇g(tk, ηk)‖ ≤ L∇g(|s− tk|+ ‖η(s)− ηk‖)

≤ L∇g(1 + ‖vk‖)(s− tk) ≤ (C(M + 1) + 1)L∇gh

and continue the inequality with

g(t, η(t)) ≤ −α(t− tk) + (C(M + 1) + 1)2L∇gh(t− tk) ≤ −α
2

(t− tk) ≤ 0.

Therefore, η(t) ∈ Θ(t) is close to ηk with

dist(ηk,Θ(t)) ≤ ‖ηk − η(t)‖ = (t− tk)‖vk‖ ≤ C(M + 1)(t− tk).

(ii) If
(

tk

ηk

)
/∈ Bµ(graph ∂Θ(·)), then

(
tk

ηk

)
/∈ graph ∂Bµ(Θ(·)) and dist(ηk, ∂Θ(tk)) is

greater than µ. Let us assume that g(t, ηk) > 0. With the continuous function ϕ(s) :=
g(s, ηk) on [tk, tk+1], we will soon arrive at a contradiction. Since the inequalities

ϕ(tk) = g(tk, ηk) < 0,
ϕ(t) = g(t, ηk) > 0
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hold, there exists t̄ ∈ (tk, t) ⊂ (tk, tk+1] with ϕ(t̄) = 0. Then g(t̄, ηk) = 0 and ηk ∈
∂Θ(t̄) such that

(
t̄

ηk

)
∈ graph ∂Θ(·). The following inequality shows the contradiction

dist(
(

tk

ηk

)
, graph ∂Θ(·)) ≤ ‖

(
tk

ηk

)
−

(
t̄

ηk

)
‖ = |t̄− tk| ≤ h ≤ µ.

Hence, the assumption was wrong which yields now g(t, ηk) ≤ 0 so that ηk ∈ Θ(t).
In both cases (i)–(ii), dist(ηk,Θ(t)) ≤ C(M + 1)(t− tk). Using (4.1), we get

dist(ỹ(t),Θ(t)) ≤ Ly|t− tk|+ C̃1h+ C(M + 1)(t− tk) ≤ (C(M + 1) + C̃1 + Ly)h,

where Ly is the uniform Lipschitz constant from Lemma 2.5. Therefore, a solution
y(·) ∈ YΘ[T, t0, y0] exists by Theorem 3.1 with

sup
t∈I

‖y(t)− ỹ(t)‖ ≤ C̃3h.

Hence,

‖ηk − y(tk)‖ ≤ ‖ηk − ỹ(tk)‖+ ‖ỹ(tk)− y(tk)‖ ≤ (C̃1 + C̃3)h,

dist∞(η,YΘ[T, t0, y0]) ≤ (C̃1 + C̃3)h.

5. Example. The dynamical sytem, underlying the following two test examples,
is due to P. Kenderov. It serves as a model problem for the illustration of first order
convergence. We restrict ourselves to the visualization of the convergence of reachable
sets. The visualization of the convergence of the whole discrete solution sets would
require much more space and the choice of more appropriate data structures.

Naturally, the realization of set-valued Euler’s method (1.4)–(1.5) on a computer
amounts to an additional perturbation of the set-valued right-hand side of order 1 and
an evaluation of the set union with a local error of order 2 (with respect to Hausdorff
distance, uniformly in t ∈ I), for computational details cf. [6].

Example 5.1. Consider the following differential inclusion

y′(t) ∈ F (t, y(t)) = {Ay(t) + uBy(t) ∈ R2 : 0 ≤ u ≤ 1} (a.e. t ∈ [0, 8]),

y(t) ∈ Θ := {y ∈ R2 : g(y) ≤ 0},
y(0) = y0 =

(
2
2

)
,

where

A =
(

σ2 − 1 σ
√

1− σ2

−σ
√

1− σ2 σ2 − 1

)
, B =

(
0 −2σ

√
1− σ2

2σ
√

1− σ2 0

)
,

g(y) := −1
2
(y1 − 2)2 + 2− y2, y =

(
y1
y2

)
and σ ∈ (0, 1) is a fixed parameter.

The reachable set for the unconstrained case can be expressed by representing its
points with polar coordinates,

R(t, t0, r0
(
cos(φ0)
sin(φ0)

)
) = {r(t)

(
cos(φ(t))
sin(φ(t))

)
: r(t) = r0e

(σ2−1)t,

φ(t) = φ0 + σ
√

1− σ2(2u− 1)t, 0 ≤ u ≤ 1},

where the initial point y0 has polar coordinates (r0, φ0) = (2
√

2, π
4 ). Further on, we

fix σ = 9
10 .
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Figure 5.1. Reachable sets for different end times t (without resp. with state constraints)
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In Figure 5.1 (left picture), the exact reachable sets for the unconstrained problem
with varying end time ti = i· 12 , i = 0, . . . , 16, and the boundary of the (quadratic) state
constraint (dotted line) are illustrated. For t = 0, the starting set is just the upper
right point in this figure (marked by the cross), for increasing time t the reachable
set moves to the lower left of the figure and the two ends of the arcs approach each
other. Approximately for t ≥ 8, the two end points of the arc will overlap and the
reachable sets form the boundary of a circle. In the right picture of Figure 5.1, the
reachable sets for the state-constrained problem are visualized for the same times. In
contrast to [6, Example 5.2.2] with a linear constraint, the reachable set cannot be
gained by the intersection R(t, t0, Y0) ∩Θ, as the comparison of both pictures shows.
For t ≥ 7.2, the small part of the circle that moves out of the interior of Θ (everything
below the quadratic function) originates from points that were already cut off by the
quadratic state constraint at an earlier time.

Figure 5.2 shows the integral funnel with state constraints.

Figure 5.2. Integral funnel of Euler’s method with N = 240 and state constraints
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This second figure was calculated with set-valued Euler’s method for N = 240 on
the interval [0, 8] (cf. [6, §4] for details on the implementation of Euler’s method for
the approximation of nonlinear differential inclusions).

Let us check, whether Theorem 4.2 for state-constrained Euler’s method can be
applied. Observe that F (t, y) = {f(t, y, u) : u ∈ [0, 1]} with f(t, y, u) = Ay + uBy is
Lipschitz with respect to (t, y) and has nonempty, compact, convex images. Clearly,
(H1) and (C1) are also fulfilled. Furthermore,

〈∇g(y)>, v〉 = −(σ2 − 1) · 1
2
y2
1 + σ

√
1− σ2 · (1− 2u) · 1

2
y1 · (y2

1 − 6y1 + 10)

for all y ∈ ∂Θ and v = f(t, y, u).
For y1 < 0, the choice of u = 0 yields

〈∇g(y)>, v〉 =
1
2
y1 · σ

√
1− σ2 · (y2

1 − (6− 1
σ

√
1− σ2)y1 + 10︸ ︷︷ ︸

=:h(y1)

).

A discussion of the function h shows h(y1) ≥ (y1 − 4)2 − 6 ≥ 10 so that the scalar
product is less than zero.

For y1 ∈ (0, 5
2 ], u = 1 is chosen such that

〈∇g(y)>, v〉 = −1
2
y1 · σ

√
1− σ2 · (y2

1 − (6 +
1
σ

√
1− σ2)y1 + 10).

The quadratic function in this term could be strictly estimated from below by the
function h̃(y1) = y2

1 − 13
2 y1 + 10 which is strictly decreasing and is not less than

h̃( 5
2 ) = 0. Hence, the scalar product is also negative.

Let us note that the final reachable set is a circle avoiding the origin, cf. Figure
5.1. Therefore, all discrete reachable sets for small step-sizes have a positive distance
to the origin so that on a compactum containing all Euler solutions and near to the
boundary of Θ we have a positive distance to the origin. A compactness argument
yields therefore the validity of (C2). Hence, order of convergence 1 with respect to
the step-size h holds by Theorem 4.2.

For the state-constrained case, Tables 5.1 and 5.2 visualize the order of conver-
gence for the approximation of the reachable set R(0.5, 0,

(
2
2

)
) resp. R(7.5, 0,

(
2
2

)
). The

tables are calculated by using the theoretical reachable set as reference set.

Table 5.1
Estimated order of convergence for T = 0.5 (state-constrained problem)

estimated Hausdorff distance difference
N from the reference set to Chp

16 0.0897488 -1.1E-02
32 0.0280925 9.2E-03
64 0.0182812 -6.6E-04

128 0.0104471 -2.1E-03
256 0.0036226 3.2E-04
512 0.0018178 4.8E-05
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Table 5.2
Estimated order of convergence for T = 7.5 (state-constrained problem)

estimated Hausdorff distance difference
N from the reference set to Chp

16 0.3275207 1.1E-02
32 0.1842108 -7.3E-03
64 0.0923952 -1.2E-04

128 0.0483326 -2.0E-04
256 0.0250892 2.0E-05
512 0.0129622 1.4E-04

Based on these data, a least squares problem with the function log(Chp) with un-
knowns C, p ≥ 0 yields the values p = 1.0800 and C = 1.1812 resp. p = 0.9388 and
C = 1.9156. The estimated order of convergence for T = 7.5 is slightly worse than
for T = 0.5 due to possible increasing rounding errors.

Figure 5.3. Discrete reachable sets for T = 7.5 and various step-sizes N = 16, 32, 64, 128
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In Figure 5.3 the difference between the discrete reachable set generated by Eu-
ler’s method (gray shaded set) and the theoretical one (arc with black solid line,
almost included in the gray set) is depicted. The pictures show the approximations
of the reachable set with state constraints at time t = 7.5 for several numbers N of
subintervals: N = 16 (left upper picture), 32 (right upper one), 64 (left lower one)
and 128 (right lower one).

Example 5.2. Consider the modified Example 5.1 in which the state constraint
is now time-dependent, i.e.

y(t) ∈ Θ(t) := {y ∈ R2 : g(t, y) ≤ 0},

g(t, y) := −1
4
· (2− t2

64
) · (y1 − 2)2 + (2− t2

64
)− y2, y =

(
y1
y2

)
Observe that g(0, y) equals the time-independent state constraint in Example 5.1.
From Figure 5.4, it is clear that in the case of time-dependent constraints (right
picture), the reachable sets are bigger than in the time-independent case (left picture).
This figure shows the discrete reachable sets for the constrained problem at the times
t ∈ {0, 1

2 , 1,
3
2 , 2, 3, 4, 6, 8}. For these times, the boundary of the state constraints

g(t, ·) = 0 are depicted in the right picture with dotted lines.

Figure 5.4. Discrete reachable sets from Euler’s method with N = 128 for both examples
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With considerable more effort, it is even possible to show the validity of (C2) by
choosing the same values u depending on the sign of y1 as in Example 5.1.

Table 5.3 is created for the time T = 7.5 similarly to the tables for the previous
example, but include the data for the time-dependent state constraint. A least squares
approximation with log(Chp) yields the values p = 0.9431 and C = 1.9387.

Figure 5.5 visualizes how the discrete reachable sets generated by Euler’s method
(gray shaded sets) approximate the theoretical reachable sets.
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Table 5.3
Estimated order of convergence for T = 7.5 (time-dep. state-constrained problem)

estimated Hausdorff distance difference
N from the reference set to Chp

16 0.3371631 7.2E-03
32 0.1842111 -5.1E-03
64 0.0931844 -4.1E-05

128 0.0483323 1.1E-04
256 0.0250866 1.1E-04
512 0.0130925 1.2E-05

Figure 5.5. Discrete reachable sets for T = 7.5 and various step-sizes N = 16, 32, 64, 128
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