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Abstract

A numerical method for the approximation of reachable sets of linear
control systems is discussed. The method is based on the formulation of
suitable optimal control problems with varying objective function, whose
discretization by Runge-Kutta methods lead to finite dimensional convex
optimization problems. It turns out that the order of approximation for the
reachable set depends on the particular choice of the Runge-Kutta method
in combination with the selection strategy used for control approximation.
For an inappropriate combination the expected order of convergence can
not be achieved in general. The method is illustrated by two examples
using different Runge-Kutta methods and selection strategies and allows
to estimate the order of convergence numerically.

Keywords: optimal control, approximation of reachable sets, direct solution
methods, order of convergence

*Department of Mathematics, University of Bayreuth, 95440 Bayreuth, Germany,
Robert.Baier@uni-bayreuth.de

tDepartment of Mathematics, University of Bremen, 28344 Bremen, Germany

!Cetelem Bank GmbH, Schwanthalerstrasse 31, 80336 Miinchen, Germany,
a.chahma@cetelembank.de

SDepartment of Mathematics, University of Bayreuth, 95440 Bayreuth, Germany,
Matthias.Gerdts@uni-bayreuth.de



1 Introduction

The subject of this paper is the description of an algorithm for the approximation
of reachable sets of linear control problems. The problem of determining convex
reachable sets can be equivalently described by infinitely many optimal control
problems, where the objective function is adapted. By choosing only finitely
many directions approximations of reachable sets can be obtained. The occuring
optimal control problems are not solved theoretically by use of the Pontryagin’s
maximum principle as in [38] but numerically by suitable discretization methods.
This allows to treat also time dependent linear problems and even nonlinear
ones. Non-polyhedral control regions can be treated as nonlinear inequalities
and equalities. Results concerning the convergence of discretized optimal control
problems can be found in [30], [10] and the references stated therein.

In this context, the particular choice of the selection strategy used for control
approximation turns out to be crucial for the order of convergence and depends on
the choice of the Runge-Kutta scheme used for the discretization of the underlying
differential equations. In order to illustrate this dependency several Runge-Kutta
methods with different selection strategies (piecewise constant, piecewise linear,
independent selection) are discussed in more detail for two illustrative examples.

By this approach cumbersome set operations (like Minkowski sums, unions
of sets, ...) can be avoided and lead to known optimization methods, which
in addition yield not only the endpoints of optimal trajectories, but the entire
trajectory including the corresponding optimal control. Furthermore, this ap-
proach is useful for linear control problems with control regions formulated with
nonlinear restrictions (see (7)) and in nonlinear control problems yielding convex
reachable sets, too. However, the close connection between set-valued analysis
and optimal control is shown in Section 3. A comparison with set-valued methods
as in [12, 4, 3, 41, 8] is beyond the scope of this paper.

Methods for linear differential inclusions based on set-valued quadrature meth-
ods or set-valued Runge-Kutta methods are mentioned in [3] as well as other
methods, e.g. estimation methods for reachable sets (cf. [15]) and ellipsoidal
methods (cf. [23] for an overview). Newer developments of these methods achieve
inner approximations ([24], [26]) and outer approximations [25] of the reachable
set (see also [4]).

The problem of the approximation of reachable sets appears in several disci-
plines: control theory, ordinary differential equations with uncertainties or with
discontinuities in the state, necessary conditions for a minimum in nonsmooth
analysis, differential games and viability theory, cf. [5], [1], [33], [14]. The con-
vexity of these reachable sets can be guaranteed for linear differential inclusions,
but may also appear for nonlinear problems.

The paper is organized as follows. In Section 2 basic notations and proper-
ties of reachable sets are summarized. Basic facts on the description of convex
sets and arithmetic set operations are introduced and form the basis for the re-



sults of Section 3. In particular, the Hausdorff and the Demyanov distances are
defined, which are used to measure the speed of convergence w.r.t. the opti-
mal value and the optimal trajectory, respectively. In Section 3 the problem of
calculating the boundary of the reachable set is reformulated as infinitely many
optimal control problems which differ only in the objective function. These opti-
mal control problems are discretized by use of explicit Runge-Kutta methods and
suitable control approximations resulting in finite dimensional (linear/nonlinear)
optimization problems. Herein, several approximation classes for the control lead
to different selection strategies in the discretization. The section ends with a
formulation of the proposed method for the approximation of reachable sets and
its implementation. Several combinations of Runge-Kutta methods and selec-
tion strategies are discussed in Section 4 with illustrative examples. Tables with
convergence results and visualizations of reachable sets are included. Finally, an
outline for further research concludes the paper.

2 Notation

In this section, some introductory definitions and results are collected.
The basic underlying problem is the following control problem:

Problem 2.1 Let A(-) : R* — R and B(-) : R™ — R™*" be two L;-integrable
matrix functions.

Let U C R™ be a nonempty, convex compact set and I := [to, ts] be a real interval.
For a given control function u : I — R™ with u(-) € Loo(I,R™) we are looking
for a solution x(-) € W>°(I,R") of the differential equation

(t) = A(t)z(t) + B(t)u(t) (a.e.tel), (1a)
l‘(tg) = Xy, (1b)
u(t) e U (a.e. t €1). (1c)

Definition 2.2 Let us study Problem 2.1 and let t € I. Then,

R(t, to, x0) := {y € R" | Ju(-) control function and 3x(-) corresponding
solution of Problem 2.1 with x(t) =y}

is called the reachable set of the corresponding control problem for the time t.

In 1965, Aumann discovered the convexity of the set-valued integral in [2]
which easily leads to the convexity of the reachable set for linear control problems.

Proposition 2.3 In Problem 2.1, the reachable set R(t,tq,xo) is conver, com-
pact and nonempty for every t € 1.



Proof: see e.g. [37, Theorem 1] |
Some notations from Convex Analysis are recalled which are necessary for the
explanation of the algorithm described later.

Definition 2.4 Denote by C(R™) the set of all nonempty convex compact sets in
R™ and let C € C(R") and | € R™.
Then,

§*(1,C) == max! ¢

ceC

15 the support function of C in direction | and
Y(1,C):={ceC|l"c=6(,0)}
is the set of supporting points of C' in direction [.
We need the following property of support functions:

Lemma 2.5 Let C = C, x Cy € C(R") with convex sets C; C R, n; €
{1,...,n}, i = 1,2, and ny +ny = n. Then, for given | = (I{,l1])T € R
with l; € R", i =1,2, we have:

§*(1,C) = 0*(l1, Cy) + 6*(I2, Cy).

Proof: see e.g. [19, §V, Discussion after Remark 3.3.6] |
Support functions resp. supporting points describe fully a convex compact
set.

Proposition 2.6 Let C € C(R"). Then,

C= () {zerR [z <6(,0)}, oC= ] Y(.0),
[lL]]2=1 ltl]2=1
C' = co U {y(l,C)}) with arbitrary y(I,C) € Y(I,C),

lltf2=1
where OC' denotes the boundary of C' and co(-) denotes the convex hull of a set.

Proof: see e.g. [19, §V., Theorem 2.2.2] and [19, §V., Proposition 3.1.5].

The last equation follows easily, if one estimates the support function of the

right-hand side in direction n by n"y(n, C) = §*(n, C) from below. [
A common arithmetic operations on sets is the scalar multiplication and the

Minkowski sum which are recalled here.



Definition 2.7 Let C,D € C(R"), A € R and A € R™*". Then,
AC :={)Xc|ceC}

defines the scalar multiplication,
AC :={Ac|ce C}

the image of C' under the linear map x — Ax and

C+D:={c+d|ceC,de D}
the Minkowski sum.

We need the following theoretical result which states convexity and compact-
ness of the set operations defined above.

Lemma 2.8 Let C,D € C(R*), A € R and A € R™*™. Then, A\C and C + D
are elements of C(R") and AC is an element of C(R™). Furthermore,

5 (1, AC) = \6*(1, ), Y (1,\C0) = AY (1, O) (if A>0),
0*(n, AC) = 6*(ATn, 0), Y(n, AC) = AY (ATn,C),
5*(1,C' + D) = 6*(1,C) + 6*(I, D), Y(I,C+D)=Y(l,C)+Y(l,D)

foralll e R*, n e R™.

Proof: To guarantee that the operations give results in C(R") and the equations
on the support functions see [19, §V, Theorem 3.3.3(i) and Proposition 3.3.4].
The equations on the supporting set follow immediately from calculus rules on
the subdifferential in [19, §VI, Theorem 4.1.1 and equation (3.1)] and [32, The-
orem 23.9], since [19, §VI, Proposition 2.1.5 and equation (3.1)] connects the
subdifferential of the support function and the supporting set. [ |

Definition 2.9 Let C,D € C(R"). Then,

d(C, D) := maxmin [lc — d|j,,

dy(C, D) := max{d(C, D),d(D, C)}

are defining the one-sided Hausdorff distance resp. the Hausdorff distance of the
two sets.
The Demyanov distance between two sets is defined as

dp(C, D) := sup |ly(l,C) —y(l, D)ll2,

1eTcNTp

where Te is defined as set of all normed directions in R™ for which the supporting
set Y(I,C) consists of only one point y(I,C) (Tp is defined analogously for the
set D). T and Tp are subsets of the unit sphere of full measure.
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Well-known properties of the support function make it easy to prove the
following result for the Hausdorff-distance:

Proposition 2.10 Let C, D € C(R"). Then,

dp(C, D) = max |5"(1,C) — 6*(1, D)| < dp(C, D).

l2=1

Proof: see e.g. [19, §V, Theorem 3.3.8] and [9, Lemma 4.1] |

3 New Method for the Approximation of Reach-
able Sets

3.1 Computation of the Reachable Set by Optimal Con-
trol

Since we know from Proposition 2.3 that the reachable set for problem 2.1 is
convex, it is sufficient to calculate merely the boundary of the reachable set.

Proposition 2.6 gives a motivation to calculate at least one support point
(which lies automatically at the boundary) of the reachable set in direction I € R"
with [|l]ls = 1. Note that even in the case that the reachable set is not strictly
convex and the set of supporting points is a (n — 1)-dimensional face, for a fixed
direction [, one supporting point in this direction is sufficient to reconstruct the
reachable set.

Thus, to calculate a supporting point z(¢;) on the boundary of the reach-
able set R(tf,to, 7o) in a fixed direction I we have to find an admissible control
function u(t) € U that maximizes the functional y — [Ty (resulting in the sup-
port function 6*(I, R(ts, to, zo)) as optimal value). This constitutes the following
special optimal control problem of Mayer type:

Maximize [Tx(t;)
(OCPy) w.r.t. u € L®([to, ts], R™), xz € Wh>([to, 7], R")
z(-) corresponding solution to u(-) for (1a)—(1c).

We denote the optimal solution of (OCP,) by z*(t;1) and u*(t;1), where the
argument [ indicates the dependency of the direction /.

As already mentioned in Proposition 2.6, the convexity and compactness of the
reachable set guaranteed by Proposition 2.3 leads to the equivalent representation
by considering supporting points in all directions [ € R", ||{||; = 1:

R(tf,to,l“o) = CO{Q?*(tf; l) | [ € R", ||l||2 = 1}.



3.2 Approximation of Reachable Sets by Discretized Op-
timal Control Problems

In general, for complex problems neither we can compute a solution of (OCP))
analytically nor for all directions [. Hence, we suggest to approximate (OCF))
numerically and consider only a finite number of directions [;, it = 1,..., M := N,.
This yields an approximation

7-\)/M(tf: th xU) ~ R(tfa tUa xU)

of the reachable set which will be specified hereafter.
For the moment let [ be fixed with [|I]|y = 1.
For N, € IN, N; > 2 we introduce a grid with grid points

tr—1
ti =t +1ih € [to,ts),i =0,1,...,N := N,,h = fN 0. (2)
t

The control function u(t) is discretized on each subinterval [t;,¢;11] by the ap-
proximation

g,;zp(t ll) te [ti’ti-l-l]a
where @t = (ug,u1,...,up_y)’ € UF is a finite dimensional vector parametriz-

ing the selection strategy for the control in the following explicit Runge-Kutta
scheme.

Let us first define explicit Runge-Kutta schemes before we will discuss partic-
ular strategies for the approximation of the control in more details. Each explicit
Runge-Kutta scheme can be characterized by its Butcher array:

Yo |1 O T 0
Vs | Os1 =+ Qg 51 0
51 e 55—1 ﬁs

For a given control approximation u,(f,zp(t; i) on [t;,t;41] a state approximation

Tapp(t; @) is obtained via an explicit s-step Runge-Kutta discretization scheme:

Tapp(tiz1;0) = Tapp(ti; @) + h®(xgpp(t;; @), 4, h), i=0,1,..., N, —1,

(3)

Tapp(to; @) = g
and
D (app(ti; ) Zﬁy ( (ti + )771‘(1)1 + B(ti +v;h)u Ez;gp(t + hi )) )
771(1)1 = xapp(tiQ ) +h Z Ok (A(tz' + vkh)m@l + B(t; + yh)u Ez;gp(t + Yl ))
k=1



Suitable values for the coefficients «j;, 8; and 7;, 1 < j,k < s can be found in
[7].
Let us now consider examples for selection strategies used in Section 4.

(i) Continuous and piecewise linear approximation:

t—1;
—Z(U’i+l_ui) for t € [tiat’i+1]7i:071:"':N_1a

uld) (t; ) = u; + .

app
with P = N + 1.
(ii) Piecewise constant approximation:
uld (t:41) == u; fort € [ty tiy],i=0,1,...,N —1,
with P = N.
(iii) Independent selections at intermediate grid points #; + v;h:

wl (b + Q) = wispy1, i=0,1,...,N—1,j=1,...s (4
with P = s - N. Here, each grid point creates a new independent selection
for each subinterval. For modified Euler’s method (see Section 4 and Figure

4 in Example 4.2) 71 = 0, 72 = 1 so that two independent selections us;

and ug; 1 are chosen from U for tflis method in each subinterval [t;,t;4].

For Heun’s method (see Section 4 and Figure 3 in Example 4.2) 7, = 0,
72 = 1 so that two independent selections uy; and us; 4 are also chosen from
U for this method in each subinterval [t;, t; 1], although t;+~2h = t; 11 +71h

fori=0,...,N — 1.

Please notice, that further selection strategies are possible, e.g. independent se-
lections with additional continuity constraints at the inner grid points ¢;, ¢ =
1,..., N — 1, or additional equality constraints at those intermediate grid points
t; + v;h where different indices j produce the same intermediate grid point (i.e.,
points where y; = v with j # k).

Thus, by this discretization the infinite dimensional optimal control problem
(OCP) is approximated by the finite dimensional convezr programming problem

( Maximize [ Zap(ty,; Q)
w.r.t. aeU”?
Pl ) IO (i 8) =y (1) D (aay (15), . )
! i=0,1,...,N,— 1
xapp(to;ﬁ) = Xy,
{ a e U (%)

Notice, that @ implicitly defines a control approximation u,(f,z (-; 1) on each subin-
terval [t;,t;11], compare the examples (i)-(iii).

8



We denote the optimal solution of (CP!) by a*.

If the conditions (x) can be written with a finite number of affine inequalities,
(CP}) is a linear programming problem and called (LP}), otherwise a nonlinear
(convex) programming problem.

In the sequel, we investigate the simplest case, the Euler’s method In the se-
quel, we investigate the simplest case, the Euler’s method with piecewise constant
control approximation, since it is then easier possible to derive explicit solutions
for the finite dimensional problems (C'P'). Nevertheless, every explicit Runge-
Kutta methods with the selection strategies (i)—(iii) will give a similar (more
complicated) representation. The explicit formulae for the solution stress the
strong connection to set-valued methods e.g. in [12, 4, 41] via support functions
resp. supporting points.

In the case of Euler, (3) reduces to

(I)(l“app(ti; ﬁ), ﬁ, h) = A(ti):capp(ti; ﬁ) + B(tl)ul
The recursive evaluation in (3) for Euler’s method yields
N¢—1 N¢—1 N¢—1
l“app tNt: <H Q) X + h Z ( H Ql> Bkuk (5)
k=0 \i=k+1

with Q; := I + hA(t;), By := B(tx) and the n x n-identity matrix /. The matrix
product [] is defined as

J
HQz‘ =Qj-Qj—1- Q.
ik

Introducing this expression for z,,(t7;0) in (LP') yields the linear program

Ny—1 [/ Ni—1
(LPlz) Maximize lT (Z ( H QZ) Bkuk>

k=0 \i=k+1
subject to u, € U, k=0,1,...,N;,— 1.

Note that this linear program has the same solution @ as (LP'), whereas the
optimal objective function values are different, since we neglected constant terms.

To compute the objective function in (LP?) very efficiently we introduce ad-
ditional artificial variables

Ay, = 1T,
)\z—r = z+1Q’L - )\z—l—l + h’)‘z—i—lA

These artificial variables are calculated backward in time and correspond to the
discretized adjoint variable of the optimal control problem (OCP).
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Then, (LP?) can be replaced by
Ni-1
Maximize Z )\kTHBkuk

k=0
subject to u, € U, k=0,1,...,N;, — 1.

(LPY)

Lemma 2.8 gives us

Ni—1 N¢—1

> 5 ke, BU) = > 6 (B{ M. U)
k=0 k=0
as optimal value of (LP?) and hence, (ug,uy,...,uy, 1) with the supporting

points uy, € Y(B, M\r41,U) as one solution.
In the special of box constraints, that is U = {u € R™ | u < u < ua}, we
define S := (S},...,S") := A1 Br € R™. Since the objective function

N¢—1 Ni—1 m
S Son = 33501
k=0 k=0 j=1
is maximized, if each term S} - u] is maximized, the solution of (LP?) is given by
ul, if S <0,
ul = ¢ W, if S >0,

arbitrary, else.

foryj=1,....m, k=0,...,N, — 1.

3.3 Discrete reachable sets

Discrete reachable sets are the reachable sets of the discretized equations and

could be defined as endpoints of discrete solutions of the following problem.
Given the data in Problem 2.1, the discretized problem depends on the choice

of the set U,pp, of all discretized control functions and on the Runge-Kutta scheme.

Problem 3.1 For a time discretization (2) with step-size h = % and a given
discretized control function ugp,(-, @) we are looking for a solution x.,,(-,0) at

the grid-points t;, 1 = 0,1,..., N;, with

Tapp (b 13 W) = Tapp(ti; @) + h®(zapp(ti; 0), G, h) (6a)
fori=0,1,...,N; — 1,

Tapp(to; ) = o, (6b)

w; €U, 1=0,1,..., Ny, (6¢)

uapp('a o) € Uapp-

10



Definition 3.2 Consider Problem 3.1 with a time discretization (2) and let i €
{0,1,..., N;}. Then,

R (ti, to, x0) := {y € R" | Jugy,(+; 1) discretized control function and
3% app (-3 0) corresponding solution of Problem 3.1

With T 4,(t;; 0) = y}

is called the discrete reachable set of the corresponding discretized control problem
for the time t;.

The definition above shows that each optimizer of problem (C'P!) (resp. the refor-
mulation (LP?)) is a supporting point of the discrete reachable set Ry (¢, to, 7o)
in direction /. The optimal value of problem (C'P!) coincides with the support
function 6*(1, Rn(ty, to, x9)). Proposition 2.6 shows that

Ru(tr to. o) = () {z € R [1Ta < 1 aapy (0%},

[Ull2=1
R (tssto, 20) = co | {wapp(ts; @)}).
[Ull2=1
In practice, only a finite number of different normed directions I, i = 1,..., M,

are chosen.

Proposition 3.3 Consider Problem 3.1 with a time discretization (2) and let i €
{0,1,..., N;}. Then, the corresponding discrete reachable set is convez, compact
and nonempty.

Proof: For a chosen discretized control function wu,p,,(+, ), the discrete solution
is defined by (5). The discrete reachable set coincides with the union of all such
discrete solutions for all feasible discretized control functions. In the case of Euler
and linear approximation of the controls, this corresponds to the union over all
vectors @t € R™N+1) | Definition 2.7 shows that the discrete reachable set

Ni—1 Ni=1 [ Ni—1
R (ts,to, z0) = (H Qi) xo + h Z(( H Qi) By)U
i=0 k=0

1=k+1

is a scaled Minkowski sum of linearly transformed convex sets U. Lemma 2.8
proves the wanted properties of the discrete reachable set. [ |

3.4 Implementation

In the sequel, we briefly discuss some numerical methods, which are suitable for
solving the discretized optimal control problem (C'P!). Of course, the choice

11



of an appropriate method depends on the explicit representation of the control
region U. Hence, we restrict the discussion to convex control regions U defined
by

U={ue X |gu<0,i=1,...,r} (7)
where X := {u € R™ | Au = b, u > 0} with a matrix A € RP*™ and the
functions ¢;(+), i = 1,...,r, could be either linear or nonlinear.

Remark 3.4 In the case, that the support function or the supporting points of
the convex control set U are known, general control regions U can be approximated
in another way. Proposition 2.6 suggests to use the approximation

U=~ m {z e R" \nﬂx < §*(n',U)}

i=1,..,.M

resp.

U = co( U {y(n', U)}) with arbitrary y(n',U) € Y (n',U).

i=1,...M

Herein, the M different normed directions n° € R™ should be chosen in an appro-
priate way in order to approximate the unit sphere. One method is to parametrize
them by spherical coordinates and use equidistant partitions on the parameter in-
tervals for the angles (see [3, Subsection 3.1.2]).

If the functions g; in (7) are affine linear, then problem (C'P!) is a linear
optimization problem and can be solved by the well-known simplex method or
some interior point method, cf. [42], suitable for linear programs. In the special
case of an Euler approximation and U defined by box constraints only, a very
efficient method is described in Section 3.2.

If the functions g; are convex and smooth, i.e. at least continuously differen-
tiable, then the resulting problem (C'P}') is a convex but nonlinear programming
problem and the sequential quadratic programming (SQP) method is appropri-
ate provided the functions g; are defined for infeasible points, cf. [34], [35], [18].
Alternatively, the method of feasible directions is applicable, especially, if the
functions g; are only defined for admissible points, cf. [43].

If the functions g; are convex but nonsmooth, the bundle method respectively
the bundle trust region method (BT-method) is suitable, cf. [28], [31], [21], [22],
[36]. In addition, Kelly’s cutting plane method is also applicable, cf. [20]. Notice,
that the BT-method and the cutting plane method are closely related, cf. [21],
[36].

12



4 Examples

In the sequel we refer to the optimal control problem (OCP), the differential
equation (1a)-(1b), the control constraint (1c), and the control approximations
discussed in (i)-(iii) in Section 3.2.

The following Runge-Kutta methods are used for the numerical computation
of reachable sets:

0ol 0 0 00 o0
0]0 1|1 0 1/2(1/2 0
1 172 1/2 0 1

Euler’s method Heun’s method Modified Euler’s method

For all numerical experiments the number of directions M in Remark 3.4 is
chosen as 1200777. For simplicity, the methods with different selection strategies
are tested for time-independent two-dimensional problems (in which one could
even calculate a theoretical solution for reference purposes). Nevertheless, the
framework presented before is still valid and the methods could be used also
in more complicated problems (time dependent and higher dimensional) met in
practice.

From Definition 2.9 of the Hausdorff distance, it is clear that the approxi-
mation of the reachable set corresponds to a uniform convergence of the optimal
value functions, whereas the approximation of trajectories corresponds to the
uniform convergence of the maximizers and the Demyanov distance.

Example 4.1 (see [39, Example in section 4]) Let us consider the following
ezample withn =2, m =1, zo = (0,0)7, I =[0,1], U = [0, 1], and

A(t):<8 é) B(t):(?).

In Figure 1 approzimations to the reachable set R(1,0,z0) are shown, in the
left picture approzimations with Fuler’s method with piecewise constant selections
are shown (first order of convergence), in the right one the corresponding ones
for Heun’s method with continuous and piecewise linear control approximation
(second order of convergence) are depicted. In both cases the set with the solid line
shows the reference set (calculated with the corresponding method for N = 1280).
The dashed lines show the approximations for N = 10, 20,40 for Fuler’s method
on the left picture (please note the halfening of the distance of the upper right
corner of the sets when the number of subintervals is doubled). At the right one,
the dashed lines show the approzimations for N = 1,2,4 for Heun’s method (a
smaller number of subintervals are chosen so that one could still see in Figure 1
a difference of the corresponding approzimations). Please notice the more rapid
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convergence even for these small numbers of subintervals in comparision with

Euler’s method.

12 12
1t 1t
08} 08l
06 06
04t 04l
02t 02t
0f ol
R —— G
0 01 02 03 04 05 0 01 02 03 04 05

Figure 1: First order contra second order approximations to the reachable set
(left: Euler’s method with error O(h), right: Heun’s method with error O(h?))

As Veliov explains in [39], the convergence of the trajectory could not be bet-
ter than O(h) in this ezample. In Figure 2 the first order approzimations to the
control and to the state components (coordinates x1 and x3) are shown for Heun’s
method with continuous, piecewise linear selections. Again, the reference is com-
puted by the method itself with N = 1280 (solid line) and in dashed lines the
approximations for N = 10,20, 40. As it is clearly seen, the order of convergence
15 only 1.

05

08
| 03 04

0.6
03

04 015 02

02 0.1
0.1

Figure 2: First order approximations to the control (left) and the state compo-
nents (middle, right) by Heun’s method

Here, the combination method of set-valued iterated trapezoidal rule together
with Heun’s method introduced in [3, 4] with N = 1000000 serves as the reference
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set ﬁref([],xo,). By comparing the different values based on the optimal value
function resp. the mazximizers, the order of convergence is estimated. The angle
@ for the direction | € R?, in which the mazimum in (8) resp. (9) is attained, is
shown in the most right column.

Hausdorff | estim. Demyanov | estim.
N distance order angle N distance order angle
10 | 0.05000000 | NaN 0.00500 10 | 0.13702925 | NaN 5.55500
20 | 0.02500000 | 1.00000 | 0.00500 20 | 0.06806368 | 1.00953 | 5.55500
40 | 0.01250000 | 1.00000 | 0.00500 40 | 0.03392323 | 1.00461 | 5.51500
80 | 0.00625000 | 1.00000 | 0.00500 80 | 0.01731662 | 0.97012 | 5.53500
160 | 0.00312500 | 1.00000 | 0.00500 160 | 0.00861479 | 1.00727 | 5.53500
320 | 0.00156250 | 1.00000 | 0.00500 320 | 0.00426388 | 1.01465 | 5.53500
640 | 0.00078125 | 1.00000 | 0.00500 640 | 0.00209303 | 1.02657 | 5.62500

Table I: order of convergence for Euler’s method (left table: approximation of
the reachable set, right table: approximation of the trajectories).

Table I shows the expected order of convergence 1 for reachable set and the
trajectories. As remarked above the Hausdorff distance is attained at the upper
right corner. This table shows the approrimated values

i_I{laXM|6* (lz, R(l, 0, ZEO)) - 6*(12, R,«ef((), Zo, ))‘ (8)
resp.
Jmas [V(1,R(1,0,70)) ~ V(I Ruugl0. 30,)) (9
at the chosen directions l;, 1 = 1,..., M, for the two distances
dH(R(l,O,on),RN(].,O,l'o)) resp. dD(R(]-aOaxO)aRN(]ﬂOal‘O))-
Hausdorff | estim. Demyanov | estim.
N distance order angle N distance order angle
10 | 0.00124700 | NaN 3.09500 10 | 0.06636590 | NaN 5.55500
20 | 0.00031111 | 2.00295 | 3.12000 20 | 0.03273184 | 1.01975 | 5.55500
40 | 0.00007788 | 1.99805 | 6.27500 40 | 0.01668369 | 0.97226 | 2.40000
80 | 0.00001947 | 1.99990 | 3.14000 80 | 0.00848003 | 0.97630 | 5.53500
160 | 0.00000488 | 1.99688 | 6.26000 160 | 0.00419649 | 1.01488 | 5.53500
320 | 0.00000122 | 1.99929 | 3.14500 320 | 0.00205473 | 1.03024 | 5.53500
640 | 0.00000030 | 2.00266 | 6.22500 640 | 0.00099208 | 1.05042 | 5.62500

Table II: order of convergence for Heun’s method (left table: approximation of
the reachable set, right table: approximation of the trajectories)

For Heun’s method with continuous, piecewise linear control approrimation,
Table II shows order of convergence 2 for the reachable set and only order 1 for
the trajectories.
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Example 4.2 (see [4, Example 4.4]) Let us consider the following example
withn =2, m =2, 2o = (0,0)7, I =10,2], U = {z € R?* | ||z]|; < 1}, and

A(t):<_02 _13> B(t)z(é ?)

This example introduces the nonlinear constraint
ui +ui <1

for the control variable u = (uy,us) .

The second order approximations to the reachable set R(2,0,zq) calculated
by Heun’s method with piecewise constant controls resp. with independent control
selection in t; and t;y, (see (4)) are shown in Figure 3.

1
08 r
0.6 r
041
021

0k
021
04
06
081

1 -
15 -1 -0.5 0 0.5 1 15 150 -1 -0.5 0 0.5 1 15

Figure 3: second order approximations to the reachable set for Heun’s method
with piecewise constant control approximation (left) resp. independent control
selection (right).

The set with the solid line shows the reference set (calculated with the corre-
sponding method for N = 160) and the dashed lines represent the approzimations
for N =5,10,20. At the left picture the convergence order O(h*) can be seen by
studying the boundary of the sets near by y = 1.

Both selection strategies seems to converge with order 2 which is assured by
Tables III and IV.

Nevertheless, Figure 4 shows that the choice of the selection strategies for the
control should depend on the Runge-Kutta method. In Figure j the piecewise
constant selection strateqy is compared with the independent control selections in
t; and t; + & for modified Euler’s method (see (4)). The latter selection strategy
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N | Hausdorff Order angle N | Demyanov Order angle
distance distance | trajectory

5 | 0.10328935 NaN | 1.37000 5 | 0.37223126 NaN | 0.90500
10 | 0.02307167 | 2.16250 | 1.53000 10 | 0.07159599 2.37825 | 0.88500
20 | 0.00521186 | 2.14625 | 1.57500 20 | 0.01535558 2.22112 | 4.02500
40 | 0.00123195 | 2.08086 | 4.73500 40 | 0.00355544 2.11066 | 4.02500
80 | 0.00029922 | 2.04164 | 1.60000 80 | 0.00085565 2.05493 | 4.02500
160 | 0.00007372 | 2.02105 | 4.74500 160 | 0.00020992 2.02719 | 4.02500

Table III: Order of Convergence for Heun’s method with piecewise constant con-
trol approximation.

N | Hausdorff Order angle N | Demyanov Order angle
distance distance | trajectory
5| 0.04517018 NaN | 1.72000 5 0.16781544 NaN | 1.18500
10 | 0.00772443 | 2.54787 | 4.23500 10 | 0.04611042 1.86371 | 0.87500
20 | 0.00203009 | 1.92789 | 4.30000 20 | 0.01077148 2.09788 | 4.01500
40 | 0.00051385 | 1.98211 | 4.33500 40 | 0.00257389 2.06520 | 0.87500
80 | 0.00012897 | 1.99429 | 1.21000 80 | 0.00062808 2.03492 | 0.87500
160 | 0.00003229 | 1.99784 | 1.22000 160 | 0.00015506 2.01802 | 4.01500

Table TV: Order of Convergence for Heun’s method with independent selection
strategy (iii).

destroys order of convergence 2 of the Runge-Kutta method. This is verified in
the Tables V (order O(h?*)) and VI (only order O(h)) for the convergence to the
reachable set and the trajectories.

N | Hausdorff Order angle N | Demyanov Order angle
distance distance | trajectory

5 | 0.10328935 NaN | 1.37000 5| 0.37223121 NaN | 0.90500

10 | 0.02307167 | 2.16250 | 1.53000 10 | 0.07159599 2.37825 | 0.88500

20 | 0.00521186 | 2.14625 | 1.57500 20 | 0.01535559 2.22112 | 4.02500

40 | 0.00123195 | 2.08086 | 4.73500 40 | 0.00355571 2.11056 | 4.02500

80 | 0.00029922 | 2.04164 | 1.60000 80 | 0.00085566 2.05503 | 0.88500

Table V: Order of Convergence for the modified Euler’s method with piecewise
constant control approximation.
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N | Hausdorff Order angle N | Demyanov Order angle
distance distance | trajectory

5 | 0.83583108 NaN | 4.03000 5 | 1.03202096 NaN | 0.73000

10 | 0.33319435 | 1.32685 | 0.85500 10 | 0.36562913 1.49702 | 3.85000

20 | 0.15333206 | 1.11970 | 5.34000 20 | 0.16060144 1.18690 | 3.76000

40 | 0.07575471 | 1.01725 | 5.36000 40 | 0.07933801 1.01740 | 4.72000

80 | 0.03762644 | 1.00959 | 2.22500 80 | 0.03952243 1.00534 | 4.72000

Table VI: Order of Convergence for the modified Euler’s method with free selec-
tion.
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Figure 4: approximations to the reachable set for N = 160 (solid) and N =
5,10, 20 (dashed) computed by modified Euler’s method with piecewise constant
(left) resp. independent selection strategy (iii) (right).
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5 Outline of Further Research

It is known that set valued quadrature methods in [4] could lead to a order of
convergence greater than two, if the problem satisfies additional smoothness con-
ditions, cf. [3]. In this case, selection strategies with piecewise constant controls
are no longer appropriate. Preliminary computer experiments with the classical
Runge-Kutta method show that order of convergence greater than two is attain-
able. But for these Runge-Kutta methods suitable selection strategies have to
be studied in more detail. In this context, additional difficulties arise if state
constraints are present, because these constraints should be fulfilled also at the
intermediate stages of the Runge-Kutta scheme (as in [8]).

Further research can be conducted towards the study of Runge-Kutta schemes
as in [29], [13], [27], where the selection strategy is motivated by multiple control
integrals. In the special case of two selections per Runge-Kutta step this leads to
alternative selection sets of type (uffgp(ti + y1h; ), uffgp(ti + Y9h; ﬁ)) elUcUx
U, where U x U corresponds to case (iii) of independent selections in Section 3.2.
This set U can be described by finitely many nonlinear inequalities and equalities,
which can be easily imposed as additional constraints in the discretized optimal
control problems.

The proposed method itself can be easily adapted to the calculation of convex
reachable sets for nonlinear differential inclusions. For the numerical solution of
discretized optimal control problems efficient algorithms are available, cf., e.g.,
[6], [16, 17]. In the more general case of nonconvex reachable sets suitable modi-
fications of our approach have to be studied. Theoretical results in this direction
can be found in [12], [41], [40] for Runge-Kutta methods of order one and two.
A survey of other methods is given in [11] and [8].

However, those Runge-Kutta methods with appropriate selection strategies,
which show higher order of convergence in the linear case, are worth being in-
vestigated also in the nonlinear case. In addition, these methods have to be
compared with set-valued Runge-Kutta methods based on set arithmetics, cf. [8],

which work also on the general nonlinear case. First steps in this direction can
be found in [8, Example 5.3.1].
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