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Abstract—Receding horizon control is a well established the terminal cost of the finite horizon problems and are not
approach for control of systems with constraints and non- gpplicable to problems with arbitrary or without terminal

linearities. Optimization over an infinite time-horizon, which cost and constraints. It is the goal of the present paper to
is often computationally intractable, is therin replaced by a close this gap '

sequence of finite horizon problems. This paper provides a . .
method to quantify the performance degradation that comes It Should be nOted tha.t aISO Stablllty resultS fOI’ reced|ng
with this approximation. Results are provided for problems horizon schemes without terminal costs and constraints are

both with and without terminal costs and constraints. Stabil-  quite recent [5], [6] and that our results imply stability via

ity proofs follow as special cases. . the infinite horizon suboptimality and thus also contribute
Keywords— Receding horizon control, model predictive to the stability of RHC schemes

control, dynamic programming

Il. SETUP

. INTRODUCTION We consider a nonlinear discrete time system given by
Receding horizon control (RHC), often also termed

model predictive control (MPC), is by now a well es- o(n+1) = f(@(n),u(n)),  2(0) = (21)
tablished method for the optimal control of linear andwith x(n) € X andu(n) € U for n € Ny. Here we denote
nonlinear systems [1], [3], [9]. On way of interpretingthe space of control sequences N, — U by ¢/ and the
this method in a discrete time setting is the following: Insolution trajectory for some € U by z,(n).

order to approximate the solution to a (computationally Our goal is to find a feedback control law = yu(z)
intractable) infinite horizon optimal control problem, aminimizing the infinite horizon cost

sequence of — often suitably constrained — finite horizon oo

optimal control problems is solved. Then in each time step Joo (20, 1) = Z Wz (n),u(n)), (2.2)
the first element of the resulting optimal control sequence =0

is used as a feedback control value for the current state.

. , _ n .
This interpretation immediately leads to the questioP{VIth running cost : X x U — R, . We denote the optimal

about the suboptimality of the resulting RHC feedback\:/alue function for this problem by

how good is the resulting RHC controller with respect to Voo(2o) = inf Joo(xo,u).
the original infinite horizon cost functional? Despite the ue
fact that this seems to be a very natural question, it i this optimal value function is known, it is easy to prove
hardly ever addressed in the RHC literature. In fact, thesing Bellman’s optimality pronciple that the optimal feed-
only paper we are aware of which deals with this questiohack law is given by
is [4], where, however, only a negative result about the o .
monotonicity of the infinite horizon performance of RHC plw) = arfg]m{vm(f(x’u)) iz, u))
controllers is shown.

A property which is related to our question is the invers%”
optimality of RHC controllers: it is well known that under
suitable conditions RHC controllers are infinite horizon in

Remark 2.1: We assume throughout this paper that in
relevant expressions the minimum with respect:tg
U is attained. Although it is possible to give modified

‘statements using approximate minimizers, we decided to

versely optimal, i.e., they are optimal for an infinite horizor}nake this assumption in order to simplify and streamline
optimal control problem with a suitably adjusted runningEhe presentation o

cost, see, e.g., [2], [3], [8]. However, this property does ;.o infinite horizon optimal control problems are often

not yield immediate estimates for the suboptimality W'thcomputationally infeasible, we use a receding horizon

respect to the original running cost. Furthermore, inversg

e . proach in order to compute a controller by considering
optimality statements usually make strong assumptions qﬁe finite horizon problem given by
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A variant of this approach often considered in the literaoptimal value functionV,,. In particular, the latter will
ture is obtained when we add a terminal cBst X — RY  give us estimates about the “degree of suboptimality” of
to the problem. In this case, (2.3) is changed to the controlleruy.

N—1 A result closely related to our problem is the inverse
Iy (20, 1) = I(zy(n),u(n)) + F(z.(N)). (2.5) optimality of receding horizon schemes, see [9, Section
(zo,u) Z (u(m), u(n)) (zu(N)) 3.5], [8] or [2]. This result states that the controljes is

Another common extension is the introduction of a ter2" INfinite horizon optimal controller for the cost

minal constraint setX; C X for the finite horizon lz,u) = lz,u)+ V_1(f(z, pn(2)))
optimization, which amounts to replacing (2.4) by — Vn(f(z, pn(2)))

n=0

Vi (zo) = ueu_wif(lfv)ex In (o, u). (2.6)  and thatVy is the corresponding infinite horizon optimal

o ) ! ) . . value function. The importance of this result lies in the

Here we assume that the sE} is forward invariant, i.., fact that it establishes infinite horizon optimality for the

for eachz € X there existsu € U with f(z,u) € X;.  resulting controller. However, its disadvantage is that it

When imposing such a terminal constraint, the domain Qﬁnly does so for the new running cdstThus, this result

points on whichVy is defined is restricted to the feasible yoas not tell us much about the performance:qf with

set X, which is the set of initial values which can berespect to theoriginal cost /, which is what we are

controlled toX; in at mostN steps, i.e., interested in.

Xy = {xy € X |there exista: € U with z,(N) € X;}. Note that. i|j (undisco_unted) infi_nite horizon optimal
control one is in general interested in nonnegative running

Note that (2.3) is a special case of (2.5), wkh= 0,  cost functions, in order to be able to conclude, e.g., stability
and that (2.4) is a special case of (2.6) wkh = X. Here  of the closed loop system. Thus, in this context the inverse
we have stated (2.3) and (2.4) explicitly because it is th@ptimality result is only useful iff(z,u) > 0, implying
simplest version of receding horizon control and a majothe conditionVy_1 (f(x, un(2))) — Va (f (2, pn () >

part of our results apply particularly to this case. —I(z,u). We will use a similar condition in the sequel.
Based on this finite horizon optimal value function we

define a feedback law:y by picking the first element
of the optimal control sequence for this problem. Since The approach we take in this paper relies on recently de-
Bellman’s optimality principle for the functiongy reads veloped results on relaxed dynamic programming [7], [10].

) Before we formulate these results, we need to introduce

Vn(2) = min{V—(f (2, w)) + l(z, w)}, (2.7) " some invariance concepts. These are necessary because
we will formulate our suboptimality estimates for general
subsetsX C X. Those subsets, however, must have certain
pn (z) = argmin{Vy_1(f(z,u)) +(z,u)}.  (2.8) invariance properties as defined next.

“ Definition 3.1: LetX C X be a subset of the state
Note that the feedback lawy is not the optimal controller gpace.
for the problem (2.4). However, the optimal trajectory (i) we call X optimally invariantfor Vy for some
for this problem can be expressed via the controllersy ¢ N, if for eachz € X there exists an optimal optimal

IIl. PRELIMINARY RESULTS

this amounts to defining

i, ..., 1y in the following inductive fashion trajectory z(n) with 2(0) = z satisfying
z(0) = o x(n)e)?foralln:(),...,]\ffl.
z(n+1) = f(z(n), pn—n(z(n))) (2.9) ) - _ _
for N=0,...,N —1. (ii) We call X invariant with respect to the feedbagk;

. . . for someN € N if for eachx € X the propert
The goal of the present paper is to give estimates about . property

the suboptimality of the feedbagky for the infinite hori- flz,pn(x)) € X
zon problem. More precisely, if,, denotes the solution holds

of the closed loop system -

Remark 3.2: Note that Definition 3.1 (i) and (ii) are
Tun (1) = f(@un (), pn(@uy (0)), 2,5 (0) = 20 indeed different concepts, becaysg is not the optimal

. o ] . feedback law for the problen2.4), cf. (2.9). However,
and we define the infinite horizon cost corresponding tEJz_g) immediately yields that (i) implies (ii), because the

fN by feedbacku  defines the first element of the optimal control
0 sequence fof2.4). Conversely(2.9)yields that if (ii) holds
VN (20) 1= Uy (n), v (g (n) for pu1,...,un, then (i) is implied for thisN. Condition

n=0 (i) for w1,...,un, however, is in general stronger than
then we are interested in upper bounds for this infinit). o

horizon value, either in terms of the finite horizon optimal Remark 3.3: We will frequently use the following con-
value functionVy or in terms of the infinite horizon sequence from Definition 3.1 (i) an@.9): If we assume



optimal invariance ofX for Vy_1 and inductively define holds for somex € [0,1] and all z € X. ThenV = Vi

the setsXy := X, Xy_1 := X and satisfies(3.1) on X and, in particular,
kal = {f(l’,uk(l')) | T € )A(:k} for k=N- L....1, avoléN(x) < VN(Z)
then the optimal invariance implies the inclusion holds for all z € X.

~ ~ Proof: Combining (2.7) and (2.8) and inserting (3.2) yields

X, C X.

Vn(z) = min{Vy_(f(z, ) +1(z,u)}
O
Note that the global cas& = X is always included = Vn-1(f (2, pn (2))) + (2, uy (@)

in our setting as a special case. In this global case, both > Vn(f(z,un(2))) — (1 = a)l(z, pn(z))
invariance conditions of Definition 3.1 are automatically + Uz, pun(x))
satisfied. = Vn(f(z, v (@) + al(z, pun (@),

Now we turn to the mentioned relaxed dynamic pro-
gramming results. Here we use slight variants of the resulwhich shows (3.1). Now Proposition 3.4 yields the asser-
in [7], [10] which are more adapted to our receding horizodion. U
setting.

Proposition 3.4: Consider asef C X, a feedback law
f: X — U satisfying f(w, ji(z)) € X for all z € X and The first observation is that without terminal cost the

IV. RESULTS WITHOUT TERMINAL COST

a functionV : X — R{ satisfying the inequality inequality
~ ~ ~ - V]\,{(.”L‘) S VN(LL') S Voo(l‘) (41)
V(z) 2 V(f(z, (@) + al(z, i(z)) (3.1) .
_ _always holds for allM, N € Ny with M < N.
for somea € [0,1] and all z € X. Then for allz € X The next assumption is crucial for our analysis.
the estimate Assumption 4.1: For a givetN € N there existsX C

X, optimally invariant forVy and Vy_1, and~y > 0 such

Vo (7) < aVE(x) < ‘7(36) that the inequality

holds.
Vi ) < 7l(z,
Proof. The proof is similar to that of [10, Proposition bl (@) < Az Mk(jc))
3]: Considerzo, € X, the trajectoryx(n) = wxz(n) holds forallk =1,...,N and all z € X, using the sets
generated by the closed loop system usjingand the X, from Remark 3.3. o

control sequence generated bfn) = fi(x(n)). Then the Two simple observations concerning this assumption are
trajectory lies inX for all n € Ny and from (3.1) we given in the next Lemma.

obtain Lemma 4.2: (i) If Assumption 4.1 holds, then the in-
~ ~ equality Vi.(x) < (v 4+ 1)l(x, ux(x)) holds for allz € X},
al(z(n), u(n)) < V(x(n)) = V(z(n+1)). andallk=1,...,N.
Thus, summing oven yields (i) If X is optimally invariant forVy and Vy_; and

Vi (f(x,u)) < ~l(z,u) holds for allz € X and all u €
~ ~ ~ U, then Assumption 4.1 holds.
o Z Wz(k),u(k)) < V(x(0)) = V(z(N)) < V(z(0)). Proof: (i) Using the optimality principle, (4.1) and As-
n=0 sumption 4.1 we obtain

Thus, V is an upper bound o/~ and we immediately Vie(z) Vi1 (f (2, o)) + 1z, 1 ()

obtain (@) < V(@) < T < Vi(f(x, p(2) + Uz, pr(x))

Our idea which is carried out in the remainder of this (i) Since X is optimally invariant for Vy_;, from
paper is to apply Proposition 3.4 o = V. Hence, Remark 3.3 we obtaitk;, C X and the assertion follows

we need to establish conditions under whick satisfies oM (4.1). U

(3.1). For this purpose, the following simple observation 1h€ Next proposition is a slight modification of [10,
is useful. Theorem 1].

Lemma 3.5: ConsidelN € N and a setX C X which Proposition 4.3: LetV € N and assume that Assump-

is invariant under the receding horizon feedback law. 0N 4.1 holds for thisN on a setX C X. Then the
Assume that inequality

Vie( (s i (2))) — Vives (f (. o (1)) (L= (497 V(@) < Vi (@)
< (1-a)l(z, un(z)) (3.2) holds forz € X.



Proof: We prove the assertion showing l
1-(1 “1y k1 v The condition in Assumption 4.1 is somewhat difficult
(1= +y7)7 Vi) < Vi (@) to check because it involves the RHC controllggs The

for z € X;_; by induction overk. Fork = 1, the assertion Simplified sufficient condition from Lemma 4.2(ii) avoids
is obvious becausél — (1+~~1)"#t1) =0 andV, = 0. this but at the cost of a condition for all € U which
The induction stef — k+1 for 2 € X, is obtained from May not be satisfied even for simple problems, cf. Example
4.13, below. Thus, we will now try to establish results
Vi(z) = Viea(f(z, pe(2))) + Uz, pr(2)) similar to Proposition 4.3 and Theorem 4.4 under a weaker
" condition. More precisely, we will use the inequality from

6)?k—1
N Lemma 4.2(i) as stated in the following assumption.
1 k+1 ~
z (- @A) ) Vilf (@, (@) Assumption 4.5: For a givetN € N there existsX C
= X, optimally invariant forVy and Vy_1, and~y > 0 such
+ Uz, pr(z)) that the inequality
1—
> GﬂHJWWMMW) V(@) < (v + D, (@)
l1-v holds for allk = 1,..., N and all z € X}, using the sets
1— l , B ) ) k g
* ( 77—# 1) (=, () X}, from Remark 3.3. m]
vy +1 Remark 4.6: IfX is optimally invariant forVy and
oy +1 Ve (f (@, (@) + U, pa()} V-1 and the inequalityVy (x) < vi(z,u) holds for all
vy+1 x € X and all w € U, then (4.1) immediately implies
2 7+ 1 Lnem{v’“( () + Uz, u)} Assumption 4.5. 0
vy +1 Proposition 4.7: LetN > 2 and assume that Assump-
Tyl Vier1 (@), tion 4.5 holds for thisN on a setX C X. Then the
where we have used the induction assumption in the ﬁrlsr%equallty
inequality and Assumption 4.1 together with (4.1) in the (y +1)N-2
second inequality. This implies the assertion, because (v + 1)N-2 f 4N—1 Vn(z) < Vv-i(z)
_ k+1 ~
v+l (L= () M)y +1 —1-(14+~~Y~k. holds forz € X.

y+1 v+1 Proof: We first show that Assumption 4.5 implies the
[] estimate

Theorem 4.4: Considety > 0 and let N € N be so
, < .
large that (y + 1)(1 +~~1)~¥*1 < 1 holds. Assume that Vi1 (F(, i (@) < A1, px () (4.2)
Assumption 4.1 holds for thi% on a setX C X. Then  forall k = 1,...,N and allz € Xj. In order to prove
1 (4.2), we use the optimality principle

< - oo ().
1= () DV V(@) = Vi1 (f (2, () + Uz, ().
In particular, for sufficiently largeN € N the inequality
VIS () = Vaolw) _(y+ D1+~ VH
V() ST+ DA+ 0N Vi1 (f (@, pe(2))

holds for the relative difference betwe&f:¥ and V.
Proof: From Proposition 4.3 we obtain the inequality

(1= 1+ NV (2) < Vi-a(2)

which implies . .
By induction overk = 2,..., N we prove
Viv(z) = Vvoi(z) < (L4471 V(@) (7 + 1)F-2
< (Y DA+, pn (@), (7 + 1)F—2 4 Ak—T Vie(z) < Vi (z) (4-3)
where we used Lemma 4.2(ii) for the last inequality

Hence, we obtain (3.2) with = 1—(y+1) (14~ 1)~ V+1
which implies

VHN( )

Now (4.1) and Assumption 4.5 imply

Vie(x) — (@, pe(2))

VN (z) — (2, px())

(v + Dz, pe(x)) = Uz, pue(z))
Y(z, pr(x)),

IN A

which shows (4.2).

for + € X, using the setsX;, C X from Remark
3.3 which under the optimal invariance assumption satisfy

X, C X.
VEN(z) < lVN(x) < lVoo(-x) For k = 2 (4.3) follows directly from Assumption 4.5
o o because

1
To1- (y+1)(1 +y~1)-N+1 Voo ().

Va(z) < (v + Dz, pa () = (v + 1)Va (=),



which is exactly (4.3). For the induction stép— k + 1
we abbreviate

(v+1)F2
(D2 T

Nk =

Then forz € X, we obtain

Vo) = Vie(fl (o) + (e ()
€Xk1

> (14 222 V(@)
(1) el

> o (14 22 ) Vi)
(1) et

= T R (o) + o ()

> e min{VA () + (o)

= 0 Jinlk Vit (2),

where we have used (4.2) in the first inequality and th
induction assumption in the second inequality. This implies

(4.3) because

O S b v+1
- = L S G V
¥+ Nk (’Y"’ ) + v+ T 21T

(y+ 1!

(’y+1)k_1+’yk = Nk+1-

Remark 4.8: Note that inequalify¢.2) used in this proof

is in general weaker than Assumption 4.1 used in the
proof of Proposition 4.3, because it imposes an upper

bound for the (in general smaller) functior, _; instead
of V4. In return, also the resulting estimate obtained from

Proposition 4.7 is weaker than the estimate obtained from

Proposition 4.3.

This is most easily seen by looking at the iterations us
in the proofs. The estimate, = (1—(1+~~1)~**1) from
Proposition 4.3 is obtained from the iteration

1 vy + 1
Vp = ——, U, =
277 o k+1 T+ 1
. . N (.Y_H)k*? .
while the estimate), = —5—=—— from Proposition

) : R e
4.7 is obtained from the iteration

1 Moy = Tk
Ly T

Note that both iterations converge tb Sincen, < 1

M2 =

however, that locally around both iterations are given
by

Y 2
1 = 2 (-1 1
M1 o (i — 1) + O((pg41 — 1)7)
1 = v _ 2
Mey1— 1 = poary 1(71k 1)+ O((mk+1 — 1)%),

thus asymptotically fork — oo they have the same

exponential rate of convergenc(%)k o
Analogous to Theorem 4.4 we can now obtain a subop-
timality estimate for the receding horizon controller from
Proposition 4.7.
Theorem 4.9: Considery > 0 and let N € N be
so large that(y + 1)¥=2 > ~ holds. Assume that
Assumption 4.5 holds for thi& on a setX C X. Then

(’Y"’l)N 2 +,YN 1
A
In particular, for sufficiently largeN € N the inequality

VAN (@) = Viola) _ N 4V
Vule) S GEDY T

holds for the relative difference betwe&i¥ and V.

Proof: Completely analogous to Theorem 4.4 using Propo-
aition 4.7 instead of Proposition 4.3.

Remark 4.10: From Remark 4.8 it follows that the esti-
mate from Theorem 4.4 convergesltdaster asN — cc.

On the other hand, since the corresponding Assumptions
are different, the Assumption 4.5 needed for Theorem
4.9 may be satisfied for smaller than the Assumption
4.1 needed for Theorem 4.4, in which case the former
may nevertheless yield a sharper estimate for moderate
values ofN. In particular, Assumption 4.1 might be more
difficult to check because it involves the dynamjcef

the system while Assumption 4.5 only involves the optimal
value function and the running cost. i
This fact is also reflected in the next proposition, where
we present two conditions on the running caésivhich
ensure Assumption 4.1 and Assumption 4.5, respectively.
Proposition 4.11: LetX C X.

(a) Assume that there exists a functitin : X — R7

VN () <

Voo ().

e?qd constantsy, 3, and A > 0 such that for allx € X the

ollowing condition holds:
() U(z,u) > aW(f(z,uw)) foral ueU
(i) for each @ € U there exists a control sequence
u* € U such that the corresponding solutiar(n)
with z(0) = f(z, ) satisfies

l(x(n),u"(n)) < PA"W (f(2,u)).

Then Assumption 4.1 holds oXi for each N € N with

_ B
7= aa—ne

(b) Assume that there exists a functitin : X — Ry
and constantsy, 3 > 0, and0 < A < 1 such that for all

and 1, < 1, from these iterations one easily verifies the? € X the following two conditions hold:

inequality v, > n, i.e., vx converges tol faster. Note,

() U(z,u) > aW(x)foral uelU



(i) there exists a control sequeneé € U/ such that the Here it is easy to solve the infinite horizon optimal control
corresponding solution:(n) with 2(0) = « satisfies  problem, because fop(z) = —2x the related optimal

value function
l(z(n),u"(n)) < BA"W ().

VE(z) = 22
Then Assumption 4.5 holds of with v = a(%x) —1. - o
Proof: (a) Condition (ii) implies satisfies the optimality principle, because
2 _ Iz — H
Vn(f(z,u) < Veol(f(z,u) zw = VE(z)= irelﬂg{l(x) + VE(f(z,u)}

= 52£{$2 + (2z(n) +u)?} = 22

< Zl(az(n),u*(n))

";0 Using the same argument one also sees that the finite time
< Z BNW (f(2,w)) optimal value functions are given by
n:g VN({p) = CCQ, N>1
- )\W(f(x’u))' with corresponding RHC feedback laws
Combining this with condition (i) yields un(r) = -2z, N>2.
Vn(f(z,u)) < %W(f(xau)) < a(lﬁ_)\)l(xﬂt)- Thus, forN > 2, the RHC controller is indeed optimal for
the infinite horizon problem.
(b) follows similarly. U This optimality property can be obtained from both

Remark 4.12: (i) In both (a) and (b) the conditions (ii) Theorem 4.4 and 4.9 using Assumptions 4.1 and 4.5,
are exponential controllability condition for the running respectively. For instance, in the case of Theorem 4.9, the
cost!l. Note that exponentially converging cost functionsorresponding Assumption 4.5 is satisfied for eatke N
can always be constructed from control Lyapunov funcwith v = 0 for X = X = R. Thus, for eachV > 2 we
tions, however, since such control Lyapunov functions am@btain the estimate
gzla_lr(é to find, this apprpach may n'o.t be fegslble. In an VAN () — Vi () AN f N1

context, exponential controllability conditions for the Voo (2) SHFDON 2N
running cost are discussed in [5, Section Ill], in particular ool® v v
for homogeneous systems. i.e., a sharp estimate. The application of Theorem 4.4

() The main difference between (a) and (b) is thatwvorks similarly.
condition (a)(i) requires information about the dynamics Note that for checking Assumptions 4.1 and 4.5 directly
of the next step to be taken into account in the runningee have used information about the RHC controllers,
cost!. More precisely, this condition demands that steps/hich we cannot expect to know in general. If this infor-
that lead into the “wrong” direction (in the sense that mation is not available, Theorem 4.4 is not applicable for
W is increasing) must be penalized inIn contrast to this example, because both the sufficient condition given in
this, in condition (b)(i) only the current state must beLemma 4.2(ii) and the sufficient condition from Proposition
appropriately penalized. o 4.11(a) fail, becausg(x, u) grows unbounded for varying

Note that for each of the two Theorems 4.4 and 4.9 € U = R which is not reflected in the running cokt
we have three types of assumptions and conditions, whi¢h contrast to this, the condition from Proposition 4.11(b)
differ in the type of information used: for Theorem 4.9 can be checked easily withz) = z?

« assumptions involving the optimal value functions and@nd the control sequencg’ = (-2z(0),0,0,...), yielding
the RHC controllers (Assumptions 4.1 and 4.5) @ =1, 3=1and\ =0 and thus againy = 0.

« sufficient conditions involving the optimal value func-  The situation changes when we alter the running cost,

tions (Lemma 4.2(ii) and Remark 4.6) e.g.to

« sufficient conditions involving an auxiliary function Nz, u) = 22 + u®.

W (Proposition 4.11) . .

The following simple example highlights the diﬁerenceNOW’ both condltlons_ (@) an_d (b) in Lemma 4'1.1 are
between these assumptions and the resulting Theorems %Ih _ckaple. More premsely,_ US'.W@) = one obta|r_15
and 4.9 ﬁ (i) with la =1/5and (b()(l) W(Itl’;a =1. A)pplylggﬂagam

- . . . the control sequence* = (—2x(0),0,0,...) yieldsg =5
Example 4.13: Consider the linear 1d control system and\ = 0 for both (a)(ii) and (b)(ii). This results iny = 25
z(n+1) = 2z(n) + u(n) =: f(z(n),u(n)) for (a) and~ = 4 for (b). Table 4.1 shows the minimal
~ horizon lengthN needed according to Theorems 4.4 and
with z(n) € X =R andu(n) € U = R. We first consider 4.9, respectively, in order to ensure the given values for
the running cost the relative accuracy. It is easily seen that for this example
I(x) = 22 Theorem 4.9 yields much better results.

:O7



needed horizon lengthV . . . .
refative accuracy| Theorem 4.4y — 25 | Theorem 4.95 — 4 the I!negr qugdrauc problem for a quadratic cost function
050 113 51 [ which is strictly smaller thari. Then, the closet and
0.10 146 27 [ are and the smaller the neighborhobigl is chosen, the
0.01 202 37 smallern becomes, see also the discussion after Lemma 3

TABLE 4.1 [6]

— 2 2 ) L. ) )
COMPARISON FOR RUNNING COST(z, u) = 27 + u In the following theorem we distinguish the case with

and without terminal constraint set.
Theorem 5.2: Assume that the terminal cost(#b5)
The situation changes again when we use the runnirgatisfies Assumption 5.1 on some neighborhBgf the
cost origin and letV € N.

lx,u) = 22 + f(2,u)?. (i) Consider the optimal receding horizon controlleg,
from (2.8) based onVy from (2.4), i.e., without terminal
constraint. LetYy C X be the set of initial values for
which the optimal solutionz(n) for the finite horizon
functional (2.5) satisfiesz(N) € Y,. Then the inequality

Now, usingW (x) = 2% as above, (a) is satisfied for = 1
while all other values remain unchanged, yielding= 5
for (a) and~ = 4 for (b). Table 4.2 shows the minimal
horizon lengthN for this case. Now Theorem 4.4 yields

the better estimates, at least for small¥t. VEN (2) < Vi (z) < Vo (z) + 1
needed horizon length/ holds for eachr € Yy.
relative accuracy| Theorem 4.4y =5 | Theorem 4.9y = 4 (ii) Consider the optimal receding horizon controllgg,
0.50 17 21 from (2.8) based orV from (2.6) with terminal constraint
0.10 24 27 ~ hen the i i
001 37 37 set Xy = Y. Then the inequality
TABLE 42

KN
COMPARISON FOR RUNNING COST(z,u) = x2 + f(x,u)? Ve (@) < V()

holds on the feasible séfy . Let, furthermoreYY ¢ Xy

Note that we do not claim that these estimates are tigrhe the set of initial values for which the optimal solution
or even optimal. In particular, the use of other sequence(n) for the infinite horizon functional(2.2) satisfies
u* might lead to smaller values of and hence tighter #(n) € Yo for all n > N. Then the inequality
estimates. We have chosen the given sequerickecause Viv(z) < Vo (x) + 1
they allow for particularly easy computations. m| -

holds for eachr € Y.

Proof: (i) For z € Yy abbreviatezx™ = f(x, un(z)).
. ~ Then, from the optimality principle we obtain™ <
Many RHC schemes make use of a suitable terminaty_,. Now consider an optimal control sequengg_; €
cost in order to ensure closed loop asymptotic stability gff for the problem (2.4) with horizon lengtiv — 1
the RHC controller. Often, in these settings the terminadnd the corresponding trajectosy, . , with initial value
costs are chosen as Lyapunov functions with respect {9, (0) = 2. Sincezt € Yy_; we obtainz :=
the running cost, see [9] and the references therein. In;, . (N — 1) € Y. Let @ denote the control value
this section we discuss the consequences on suboptimaliigm Assumption 5.1 forz and define a control sequence

V. RESULTS FOR TERMINAL COSTS BEINA.YAPUNOV
FUNCTIONS

of these choices. Here we make the following assumption = (uy_(0),...,uxy_1(N — 1),4,...). This sequence
on the terminal cosf'. yields

Assumption 5.1: For each € Y, there existsu € U
such that Vn(e™) < Jn(et,a) = Vyoa(e™) - F(z

flz,u) e Xo and F(f(z,u)) < F(x) —l(z,u).

IN
-
®

+

O

This condition is often imposed in receding horizon! NUS, (3.2) follows witha: = 1 which implies
schemes in order to ensure asymptotic stability of the VAN () < Vi ().
closed loop, see [9, Section 3.3 and the references therin]. o -
Note that Assumption 5.1 implies (3.1) f6f = F with  The inequalityVy (z) < V. (z) + 7 follows immediately
a = 1. Hence, Proposition 3.4 implie8(z) > V. (z) and from the definition of/y and J., and F' > V., which
we can define the positive differenge= max,cy, F'(z)— was observed in the discussion after Assumption 5.1.
Voo(z) > 0. (i) The inequality V£~ () < Vi (x) is concluded as in

A typical situation in whichF' meeting Assumption 5.1 (i). The second inequality again follows from the definition
can be found is if the linearization ¢fis controllable td)  of Jy andJ,, andF > V., observing that for € Y. the
and! is close to a quadratic function around the origin. Iroptimal control sequence for (2.2) satisfies the constraint
this case}' can be chosen as the optimal value function oin (2.6). U
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