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Abstract— Receding horizon control is a well established
approach for control of systems with constraints and non-
linearities. Optimization over an infinite time-horizon, which
is often computationally intractable, is therin replaced by a
sequence of finite horizon problems. This paper provides a
method to quantify the performance degradation that comes
with this approximation. Results are provided for problems
both with and without terminal costs and constraints. Stabil-
ity proofs follow as special cases.
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I. I NTRODUCTION

Receding horizon control (RHC), often also termed
model predictive control (MPC), is by now a well es-
tablished method for the optimal control of linear and
nonlinear systems [1], [3], [9]. On way of interpreting
this method in a discrete time setting is the following: In
order to approximate the solution to a (computationally
intractable) infinite horizon optimal control problem, a
sequence of — often suitably constrained — finite horizon
optimal control problems is solved. Then in each time step
the first element of the resulting optimal control sequence
is used as a feedback control value for the current state.

This interpretation immediately leads to the question
about the suboptimality of the resulting RHC feedback:
how good is the resulting RHC controller with respect to
the original infinite horizon cost functional? Despite the
fact that this seems to be a very natural question, it is
hardly ever addressed in the RHC literature. In fact, the
only paper we are aware of which deals with this question
is [4], where, however, only a negative result about the
monotonicity of the infinite horizon performance of RHC
controllers is shown.

A property which is related to our question is the inverse
optimality of RHC controllers: it is well known that under
suitable conditions RHC controllers are infinite horizon in-
versely optimal, i.e., they are optimal for an infinite horizon
optimal control problem with a suitably adjusted running
cost, see, e.g., [2], [9], [8]. However, this property does
not yield immediate estimates for the suboptimality with
respect to the original running cost. Furthermore, inverse
optimality statements usually make strong assumptions on
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the terminal cost of the finite horizon problems and are not
applicable to problems with arbitrary or without terminal
cost and constraints. It is the goal of the present paper to
close this gap.

It should be noted that also stability results for receding
horizon schemes without terminal costs and constraints are
quite recent [5], [6] and that our results imply stability via
the infinite horizon suboptimality and thus also contribute
to the stability of RHC schemes.

II. SETUP

We consider a nonlinear discrete time system given by

x(n + 1) = f(x(n), u(n)), x(0) = x0 (2.1)

with x(n) ∈ X andu(n) ∈ U for n ∈ N0. Here we denote
the space of control sequencesu : N0 → U by U and the
solution trajectory for someu ∈ U by xu(n).

Our goal is to find a feedback control lawu = µ(x)
minimizing the infinite horizon cost

J∞(x0, u) =
∞∑

n=0

l(xu(n), u(n)), (2.2)

with running costl : X×U → R+
0 . We denote the optimal

value function for this problem by

V∞(x0) = inf
u∈U

J∞(x0, u).

If this optimal value function is known, it is easy to prove
using Bellman’s optimality pronciple that the optimal feed-
back lawµ is given by

µ(x) := argmin
u∈U

{V∞(f(x, u)) + l(x, u)}.

Remark 2.1: We assume throughout this paper that in
all relevant expressions the minimum with respect tou ∈
U is attained. Although it is possible to give modified
statements using approximate minimizers, we decided to
make this assumption in order to simplify and streamline
the presentation.

Since infinite horizon optimal control problems are often
computationally infeasible, we use a receding horizon
approach in order to compute a controller by considering
the finite horizon problem given by

JN (x0, u) =
N−1∑
n=0

l(xu(n), u(n)) (2.3)

for N ∈ N0 (using
∑−1

n=0 = 0) with optimal value function

VN (x0) = inf
u∈U

JN (x0, u). (2.4)



A variant of this approach often considered in the litera-
ture is obtained when we add a terminal costF : X → R+

0

to the problem. In this case, (2.3) is changed to

JN (x0, u) =
N−1∑
n=0

l(xu(n), u(n)) + F (xu(N)). (2.5)

Another common extension is the introduction of a ter-
minal constraint setXf ⊂ X for the finite horizon
optimization, which amounts to replacing (2.4) by

VN (x0) = inf
u∈U :xu(N)∈Xf

JN (x0, u). (2.6)

Here we assume that the setXf is forward invariant, i.e.,
for eachx ∈ Xf there existsu ∈ U with f(x, u) ∈ Xf .
When imposing such a terminal constraint, the domain of
points on whichVN is defined is restricted to the feasible
set XN , which is the set of initial values which can be
controlled toXf in at mostN steps, i.e.,

XN := {x0 ∈ X | there existsu ∈ U with xu(N) ∈ Xf}.

Note that (2.3) is a special case of (2.5), withF ≡ 0,
and that (2.4) is a special case of (2.6) withXf = X. Here
we have stated (2.3) and (2.4) explicitly because it is the
simplest version of receding horizon control and a major
part of our results apply particularly to this case.

Based on this finite horizon optimal value function we
define a feedback lawµN by picking the first element
of the optimal control sequence for this problem. Since
Bellman’s optimality principle for the functionsVN reads

VN (x) = min
u
{VN−1(f(x, u)) + l(x, u)}, (2.7)

this amounts to defining

µN (x) := argmin
u

{VN−1(f(x, u)) + l(x, u)}. (2.8)

Note that the feedback lawµN is not the optimal controller
for the problem (2.4). However, the optimal trajectory
for this problem can be expressed via the controllers
µ1, . . . , µN in the following inductive fashion

x(0) = x0

x(n + 1) = f(x(n), µN−n(x(n)))
for N = 0, . . . , N − 1.

(2.9)

The goal of the present paper is to give estimates about
the suboptimality of the feedbackµN for the infinite hori-
zon problem. More precisely, ifxµN

denotes the solution
of the closed loop system

xµN
(n + 1) = f(xµN

(n), µN (xµN
(n))), xµN

(0) = x0

and we define the infinite horizon cost corresponding to
µN by

V µN
∞ (x0) :=

∞∑
n=0

l(xµN
(n), µN (xµN

(n))

then we are interested in upper bounds for this infinite
horizon value, either in terms of the finite horizon optimal
value function VN or in terms of the infinite horizon

optimal value functionV∞. In particular, the latter will
give us estimates about the “degree of suboptimality” of
the controllerµN .

A result closely related to our problem is the inverse
optimality of receding horizon schemes, see [9, Section
3.5], [8] or [2]. This result states that the controllerµN is
an infinite horizon optimal controller for the cost

l̄(x, u) := l(x, u) + VN−1(f(x, µN (x)))
− VN (f(x, µN (x)))

and thatVN is the corresponding infinite horizon optimal
value function. The importance of this result lies in the
fact that it establishes infinite horizon optimality for the
resulting controller. However, its disadvantage is that it
only does so for the new running costl̄. Thus, this result
does not tell us much about the performance ofµN with
respect to theoriginal cost l, which is what we are
interested in.

Note that in (undiscounted) infinite horizon optimal
control one is in general interested in nonnegative running
cost functions, in order to be able to conclude, e.g., stability
of the closed loop system. Thus, in this context the inverse
optimality result is only useful if̄l(x, u) ≥ 0, implying
the conditionVN−1(f(x, µN (x))) − VN (f(x, µN (x))) ≥
−l(x, u). We will use a similar condition in the sequel.

III. PRELIMINARY RESULTS

The approach we take in this paper relies on recently de-
veloped results on relaxed dynamic programming [7], [10].
Before we formulate these results, we need to introduce
some invariance concepts. These are necessary because
we will formulate our suboptimality estimates for general
subsetsX̃ ⊆ X. Those subsets, however, must have certain
invariance properties as defined next.

Definition 3.1: Let X̃ ⊆ X be a subset of the state
space.

(i) We call X̃ optimally invariant for VN for some
N ∈ N, if for eachx ∈ X̃ there exists an optimal optimal
trajectory x(n) with x(0) = x satisfying

x(n) ∈ X̃ for all n = 0, . . . , N − 1.

(ii) We call X̃ invariant with respect to the feedbackµN

for someN ∈ N if for eachx ∈ X̃ the property

f(x, µN (x)) ∈ X̃

holds.
Remark 3.2: Note that Definition 3.1 (i) and (ii) are

indeed different concepts, becauseµN is not the optimal
feedback law for the problem(2.4), cf. (2.9). However,
(2.9) immediately yields that (i) implies (ii), because the
feedbackµN defines the first element of the optimal control
sequence for(2.4). Conversely,(2.9)yields that if (ii) holds
for µ1, . . . , µN , then (i) is implied for thisN . Condition
(ii) for µ1, . . . , µN , however, is in general stronger than
(i).

Remark 3.3: We will frequently use the following con-
sequence from Definition 3.1 (i) and(2.9): If we assume



optimal invariance ofX̃ for VN−1 and inductively define
the setsX̃N := X̃, X̃N−1 := X̃ and

X̃k−1 := {f(x, µk(x)) |x ∈ X̃k} for k = N −1, . . . , 1,

then the optimal invariance implies the inclusion

X̃k ⊆ X̃.

Note that the global casẽX = X is always included
in our setting as a special case. In this global case, both
invariance conditions of Definition 3.1 are automatically
satisfied.

Now we turn to the mentioned relaxed dynamic pro-
gramming results. Here we use slight variants of the results
in [7], [10] which are more adapted to our receding horizon
setting.

Proposition 3.4: Consider a set̃X ⊆ X, a feedback law
µ̃ : X̃ → U satisfyingf(x, µ̃(x)) ∈ X̃ for all x ∈ X̃ and
a functionṼ : X̃ → R+

0 satisfying the inequality

Ṽ (x) ≥ Ṽ (f(x, µ̃(x))) + αl(x, µ̃(x)) (3.1)

for someα ∈ [0, 1] and all x ∈ X̃. Then for allx ∈ X̃
the estimate

αV∞(x) ≤ αV µ̃
∞(x) ≤ Ṽ (x)

holds.
Proof: The proof is similar to that of [10, Proposition
3]: Consider x0 ∈ X̃, the trajectoryx(n) = xµ̃(n)
generated by the closed loop system usingµ̃, and the
control sequence generated byu(n) = µ̃(x(n)). Then the
trajectory lies inX̃ for all n ∈ N0 and from (3.1) we
obtain

αl(x(n), u(n)) ≤ Ṽ (x(n))− Ṽ (x(n + 1)).

Thus, summing overn yields

α
N−1∑
n=0

l(x(k), u(k)) ≤ Ṽ (x(0))− Ṽ (x(N)) ≤ Ṽ (x(0)).

Thus, Ṽ is an upper bound onV µ̃
∞ and we immediately

obtain
αV∞(x) ≤ αV µ̃

∞(x) ≤ Ṽ (x).

Our idea which is carried out in the remainder of this
paper is to apply Proposition 3.4 tõV = VN . Hence,
we need to establish conditions under whichVN satisfies
(3.1). For this purpose, the following simple observation
is useful.

Lemma 3.5: ConsiderN ∈ N and a setX̃ ⊆ X which
is invariant under the receding horizon feedback lawµN .
Assume that

VN (f(x, µN (x)))− VN−1(f(x, µN (x)))
≤ (1− α)l(x, µN (x)) (3.2)

holds for someα ∈ [0, 1] and all x ∈ X̃. ThenṼ = VN

satisfies(3.1) on X̃ and, in particular,

αV µN
∞ (x) ≤ VN (x)

holds for all x ∈ X̃.
Proof: Combining (2.7) and (2.8) and inserting (3.2) yields

VN (x) = min
u
{VN−1(f(x, u)) + l(x, u)}

= VN−1(f(x, µN (x))) + l(x, µN (x))
≥ VN (f(x, µN (x)))− (1− α)l(x, µN (x))

+ l(x, µN (x))
= VN (f(x, µN (x))) + αl(x, µN (x)),

which shows (3.1). Now Proposition 3.4 yields the asser-
tion.

IV. RESULTS WITHOUT TERMINAL COST

The first observation is that without terminal cost the
inequality

VM (x) ≤ VN (x) ≤ V∞(x) (4.1)

always holds for allM,N ∈ N0 with M ≤ N .
The next assumption is crucial for our analysis.
Assumption 4.1: For a givenN ∈ N there existsX̃ ⊆

X, optimally invariant forVN andVN−1, andγ > 0 such
that the inequality

Vk(f(x, µk(x))) ≤ γl(x, µk(x))

holds for all k = 1, . . . , N and all x ∈ X̃k using the sets
X̃k from Remark 3.3.

Two simple observations concerning this assumption are
given in the next Lemma.

Lemma 4.2: (i) If Assumption 4.1 holds, then the in-
equalityVk(x) ≤ (γ + 1)l(x, µk(x)) holds for all x ∈ X̃k

and all k = 1, . . . , N .
(ii) If X̃ is optimally invariant forVN and VN−1 and

VN (f(x, u)) ≤ γl(x, u) holds for all x ∈ X̃ and all u ∈
U , then Assumption 4.1 holds.
Proof: (i) Using the optimality principle, (4.1) and As-
sumption 4.1 we obtain

Vk(x) = Vk−1(f(x, µk(x))) + l(x, µk(x))
≤ Vk(f(x, µk(x)) + l(x, µk(x))
≤ (1 + γ)l(x, µk(x)).

(ii) Since X̃ is optimally invariant for VN−1, from
Remark 3.3 we obtaiñXk ⊂ X̃ and the assertion follows
from (4.1).

The next proposition is a slight modification of [10,
Theorem 1].

Proposition 4.3: LetN ∈ N and assume that Assump-
tion 4.1 holds for thisN on a setX̃ ⊆ X. Then the
inequality

(1− (1 + γ−1)−N+1)VN (x) ≤ VN−1(x)

holds forx ∈ X̃.



Proof: We prove the assertion showing

(1− (1 + γ−1)−k+1)Vk(x) ≤ Vk−1(x)

for x ∈ X̃k−1 by induction overk. Fork = 1, the assertion
is obvious because(1− (1 + γ−1)−k+1) = 0 andV0 ≡ 0.
The induction stepk → k+1 for x ∈ X̃k is obtained from

Vk(x) = Vk−1(f(x, µk(x))︸ ︷︷ ︸
∈X̃k−1

) + l(x, µk(x))

≥ (1− (1 + γ−1)−k+1)︸ ︷︷ ︸
=:ν

Vk(f(x, µk(x))

+ l(x, µk(x))

≥
(

ν +
1− ν

γ + 1

)
Vk(f(x, µk(x)))

+
(

1− γ
1− ν

γ + 1

)
l(x, µk(x))

=
νγ + 1
γ + 1

{Vk(f(x, µk(x))) + l(x, µk(x))}

≥ νγ + 1
γ + 1

min
u∈U

{Vk(f(x, u)) + l(x, u)}

=
νγ + 1
γ + 1

Vk+1(x),

where we have used the induction assumption in the first
inequality and Assumption 4.1 together with (4.1) in the
second inequality. This implies the assertion, because

νγ + 1
γ + 1

=
(1− (1 + γ−1)−k+1)γ + 1

γ + 1
= 1−(1+γ−1)−k.

Theorem 4.4: Considerγ > 0 and let N ∈ N be so
large that (γ + 1)(1 + γ−1)−N+1 < 1 holds. Assume that
Assumption 4.1 holds for thisN on a setX̃ ⊆ X. Then

V µN
∞ (x) ≤ 1

1− (γ + 1)(1 + γ−1)−N+1
V∞(x).

In particular, for sufficiently largeN ∈ N the inequality

V µN
∞ (x)− V∞(x)

V∞(x)
≤ (γ + 1)(1 + γ−1)−N+1

1− (γ + 1)(1 + γ−1)−N+1

holds for the relative difference betweenV µN
∞ and V∞.

Proof: From Proposition 4.3 we obtain the inequality

(1− (1 + γ−1)−N+1)VN (x) ≤ VN−1(x)

which implies

VN (x)− VN−1(x) ≤ (1 + γ−1)−N+1VN (x)
≤ (γ + 1)(1 + γ−1)−N+1l(x, µN (x)),

where we used Lemma 4.2(ii) for the last inequality.
Hence, we obtain (3.2) withα = 1−(γ+1)(1+γ−1)−N+1

which implies

V µN
∞ (x) ≤ 1

α
VN (x) ≤ 1

α
V∞(x)

=
1

1− (γ + 1)(1 + γ−1)−N+1
V∞(x).

The condition in Assumption 4.1 is somewhat difficult
to check because it involves the RHC controllersµk. The
simplified sufficient condition from Lemma 4.2(ii) avoids
this but at the cost of a condition for allu ∈ U which
may not be satisfied even for simple problems, cf. Example
4.13, below. Thus, we will now try to establish results
similar to Proposition 4.3 and Theorem 4.4 under a weaker
condition. More precisely, we will use the inequality from
Lemma 4.2(i) as stated in the following assumption.

Assumption 4.5: For a givenN ∈ N there existsX̃ ⊆
X, optimally invariant forVN andVN−1, andγ > 0 such
that the inequality

Vk(x) ≤ (γ + 1)l(x, µk(x))

holds for all k = 1, . . . , N and all x ∈ X̃k using the sets
X̃k from Remark 3.3.

Remark 4.6: IfX̃ is optimally invariant for VN and
VN−1 and the inequalityVN (x) ≤ γl(x, u) holds for all
x ∈ X̃ and all u ∈ U , then (4.1) immediately implies
Assumption 4.5.

Proposition 4.7: LetN ≥ 2 and assume that Assump-
tion 4.5 holds for thisN on a setX̃ ⊆ X. Then the
inequality

(γ + 1)N−2

(γ + 1)N−2 + γN−1
VN (x) ≤ VN−1(x)

holds forx ∈ X̃.
Proof: We first show that Assumption 4.5 implies the
estimate

Vk−1(f(x, µk(x)) ≤ γl(x, µk(x)) (4.2)

for all k = 1, . . . , N and all x ∈ X̃k. In order to prove
(4.2), we use the optimality principle

Vk(x) = Vk−1(f(x, µk(x)) + l(x, µk(x)).

Now (4.1) and Assumption 4.5 imply

Vk−1(f(x, µk(x)) = Vk(x)− l(x, µk(x))
≤ VN (x)− l(x, µk(x))
≤ (γ + 1)l(x, µk(x))− l(x, µk(x))
= γl(x, µk(x)),

which shows (4.2).
By induction overk = 2, . . . , N we prove

(γ + 1)k−2

(γ + 1)k−2 + γk−1
Vk(x) ≤ Vk−1(x) (4.3)

for x ∈ X̃k, using the setsX̃k ⊆ X from Remark
3.3 which under the optimal invariance assumption satisfy
X̃k ⊂ X̃.

For k = 2 (4.3) follows directly from Assumption 4.5
because

V2(x) ≤ (γ + 1)l(x, µ1(x)) = (γ + 1)V1(x),



which is exactly (4.3). For the induction stepk → k + 1
we abbreviate

ηk =
(γ + 1)k−2

(γ + 1)k−2 + γk−1
.

Then forx ∈ X̃k we obtain

Vk(x) = Vk−1(f(x, µk(x))︸ ︷︷ ︸
∈X̃k−1

) + l(x, µk(x))

≥
(

1 +
1− ηk

γ + ηk

)
Vk−1(f(x, µk(x)))

+
(

1− γ
1− ηk

γ + ηk

)
l(x, µk(x))

≥ ηk

(
1 +

1− ηk

γ + ηk

)
Vk(f(x, µk(x)))

+
(

1− γ
1− ηk

γ + ηk

)
l(x, µk(x))

= ηk
γ + 1
γ + ηk

{Vk(f(x, µk(x))) + l(x, µk(x))}

≥ ηk
γ + 1
γ + ηk

min
u∈U

{Vk(f(x, u)) + l(x, u)}

= ηk
γ + 1
γ + ηk

Vk+1(x),

where we have used (4.2) in the first inequality and the
induction assumption in the second inequality. This implies
(4.3) because

ηk
γ + 1
γ + ηk

=
(γ + 1)k−2

(γ + 1)k−2 + γk−1

γ + 1

γ + (γ+1)k−2

(γ+1)k−2+γk−1

=
(γ + 1)k−1

(γ + 1)k−1 + γk
= ηk+1.

Remark 4.8: Note that inequality(4.2)used in this proof
is in general weaker than Assumption 4.1 used in the
proof of Proposition 4.3, because it imposes an upper
bound for the (in general smaller) functionVk−1 instead
of Vk. In return, also the resulting estimate obtained from
Proposition 4.7 is weaker than the estimate obtained from
Proposition 4.3.

This is most easily seen by looking at the iterations used
in the proofs. The estimateνk = (1−(1+γ−1)−k+1) from
Proposition 4.3 is obtained from the iteration

ν2 =
1

1 + γ
, νk+1 =

νkγ + 1
γ + 1

while the estimateηk = (γ+1)k−2

(γ+1)k−2+γk−1 from Proposition
4.7 is obtained from the iteration

η2 =
1

1 + γ
, ηk+1 =

ηkγ + ηk

γ + ηk
.

Note that both iterations converge to1. Sinceη2 < 1
and ν2 < 1, from these iterations one easily verifies the
inequality νk ≥ ηk, i.e., νk converges to1 faster. Note,

however, that locally around1 both iterations are given
by

µk+1 − 1 =
γ

γ + 1
(µk − 1) + O((µk+1 − 1)2)

ηk+1 − 1 =
γ

γ + 1
(ηk − 1) + O((ηk+1 − 1)2),

thus asymptotically fork → ∞ they have the same

exponential rate of convergence
(

γ
γ+1

)k

Analogous to Theorem 4.4 we can now obtain a subop-
timality estimate for the receding horizon controller from
Proposition 4.7.

Theorem 4.9: Considerγ > 0 and let N ∈ N be
so large that (γ + 1)N−2 > γN holds. Assume that
Assumption 4.5 holds for thisN on a setX̃ ⊆ X. Then

V µN
∞ (x) ≤ (γ + 1)N−2 + γN−1

(γ + 1)N−2 − γN
V∞(x).

In particular, for sufficiently largeN ∈ N the inequality

V µN
∞ (x)− V∞(x)

V∞(x)
≤ γN + γN−1

(γ + 1)N−2 − γN

holds for the relative difference betweenV µN
∞ and V∞.

Proof: Completely analogous to Theorem 4.4 using Propo-
sition 4.7 instead of Proposition 4.3.

Remark 4.10: From Remark 4.8 it follows that the esti-
mate from Theorem 4.4 converges to1 faster asN →∞.
On the other hand, since the corresponding Assumptions
are different, the Assumption 4.5 needed for Theorem
4.9 may be satisfied for smallerγ than the Assumption
4.1 needed for Theorem 4.4, in which case the former
may nevertheless yield a sharper estimate for moderate
values ofN . In particular, Assumption 4.1 might be more
difficult to check because it involves the dynamicsf of
the system while Assumption 4.5 only involves the optimal
value function and the running cost.

This fact is also reflected in the next proposition, where
we present two conditions on the running costl which
ensure Assumption 4.1 and Assumption 4.5, respectively.

Proposition 4.11: LetX̃ ⊆ X.
(a) Assume that there exists a functionW : X → R+

0

and constantsα, β, andλ > 0 such that for allx ∈ X̃ the
following condition holds:

(i) l(x, u) ≥ αW (f(x, u)) for all u ∈ U
(ii) for each ũ ∈ U there exists a control sequence

u∗ ∈ U such that the corresponding solutionx(n)
with x(0) = f(x, ũ) satisfies

l(x(n), u∗(n)) ≤ βλnW (f(x, ũ)).

Then Assumption 4.1 holds oñX for eachN ∈ N with
γ = β

α(1−λ) .

(b) Assume that there exists a functionW : X → R+
0

and constantsα, β > 0, and 0 ≤ λ < 1 such that for all
x ∈ X̃ the following two conditions hold:

(i) l(x, u) ≥ αW (x) for all u ∈ U



(ii) there exists a control sequenceu∗ ∈ U such that the
corresponding solutionx(n) with x(0) = x satisfies

l(x(n), u∗(n)) ≤ βλnW (x).

Then Assumption 4.5 holds oñX with γ = β
α(1−λ) − 1.

Proof: (a) Condition (ii) implies

VN (f(x, u)) ≤ V∞(f(x, u))

≤
∞∑

n=0

l(x(n), u∗(n))

≤
∞∑

n=0

βλkW (f(x, u))

=
β

1− λ
W (f(x, u)).

Combining this with condition (i) yields

VN (f(x, u)) ≤ β

1− λ
W (f(x, u)) ≤ β

α(1− λ)
l(x, u).

(b) follows similarly.
Remark 4.12: (i) In both (a) and (b) the conditions (ii)

are exponential controllability condition for the running
cost l. Note that exponentially converging cost functions
can always be constructed from control Lyapunov func-
tions, however, since such control Lyapunov functions are
hard to find, this approach may not be feasible. In an
RHC context, exponential controllability conditions for the
running cost are discussed in [5, Section III], in particular
for homogeneous systems.

(i) The main difference between (a) and (b) is that
condition (a)(i) requires information about the dynamics
of the next step to be taken into account in the running
cost l. More precisely, this condition demands that steps
that lead into the “wrong” direction (in the sense that
W is increasing) must be penalized inl. In contrast to
this, in condition (b)(i) only the current state must be
appropriately penalized.

Note that for each of the two Theorems 4.4 and 4.9
we have three types of assumptions and conditions, which
differ in the type of information used:

• assumptions involving the optimal value functions and
the RHC controllers (Assumptions 4.1 and 4.5)

• sufficient conditions involving the optimal value func-
tions (Lemma 4.2(ii) and Remark 4.6)

• sufficient conditions involving an auxiliary function
W (Proposition 4.11)

The following simple example highlights the difference
between these assumptions and the resulting Theorems 4.4
and 4.9.

Example 4.13: Consider the linear 1d control system

x(n + 1) = 2x(n) + u(n) =: f(x(n), u(n))

with x(n) ∈ X̃ = R and u(n) ∈ U = R. We first consider
the running cost

l(x) = x2.

Here it is easy to solve the infinite horizon optimal control
problem, because forµ(x) = −2x the related optimal
value function

V µ
∞(x) = x2

satisfies the optimality principle, because

x2 = V µ
∞(x) = inf

u∈R
{l(x) + V µ

∞(f(x, u))}

= inf
u∈R

{x2 + (2x(n) + u)2} = x2.

Using the same argument one also sees that the finite time
optimal value functions are given by

VN (x) = x2, N ≥ 1

with corresponding RHC feedback laws

µN (x) = −2x, N ≥ 2.

Thus, forN ≥ 2, the RHC controller is indeed optimal for
the infinite horizon problem.

This optimality property can be obtained from both
Theorem 4.4 and 4.9 using Assumptions 4.1 and 4.5,
respectively. For instance, in the case of Theorem 4.9, the
corresponding Assumption 4.5 is satisfied for eachN ∈ N
with γ = 0 for X̃ = X = R. Thus, for eachN ≥ 2 we
obtain the estimate

V µN
∞ (x)− V∞(x)

V∞(x)
≤ γN + γN−1

(γ + 1)N−2 − γN
= 0,

i.e., a sharp estimate. The application of Theorem 4.4
works similarly.

Note that for checking Assumptions 4.1 and 4.5 directly
we have used information about the RHC controllers,
which we cannot expect to know in general. If this infor-
mation is not available, Theorem 4.4 is not applicable for
this example, because both the sufficient condition given in
Lemma 4.2(ii) and the sufficient condition from Proposition
4.11(a) fail, becausef(x, u) grows unbounded for varying
u ∈ U = R which is not reflected in the running costl.
In contrast to this, the condition from Proposition 4.11(b)
for Theorem 4.9 can be checked easily withW (x) = x2

and the control sequenceu∗ = (−2x(0), 0, 0, . . .), yielding
α = 1, β = 1 and λ = 0 and thus againγ = 0.

The situation changes when we alter the running cost,
e.g. to

l(x, u) = x2 + u2.

Now, both conditions (a) and (b) in Lemma 4.11 are
checkable. More precisely, usingW (x) = x2 one obtains
(a)(i) with α = 1/5 and (b)(i) withα = 1. Applying again
the control sequenceu∗ = (−2x(0), 0, 0, . . .) yieldsβ = 5
andλ = 0 for both (a)(ii) and (b)(ii). This results inγ = 25
for (a) and γ = 4 for (b). Table 4.1 shows the minimal
horizon lengthN needed according to Theorems 4.4 and
4.9, respectively, in order to ensure the given values for
the relative accuracy. It is easily seen that for this example
Theorem 4.9 yields much better results.



needed horizon lengthN
relative accuracy Theorem 4.4,γ = 25 Theorem 4.9,γ = 4

0.50 113 21
0.10 146 27
0.01 202 37

TABLE 4.1

COMPARISON FOR RUNNING COSTl(x, u) = x2 + u2

The situation changes again when we use the running
cost

l(x, u) = x2 + f(x, u)2.

Now, usingW (x) = x2 as above, (a) is satisfied forα = 1
while all other values remain unchanged, yieldingγ = 5
for (a) and γ = 4 for (b). Table 4.2 shows the minimal
horizon lengthN for this case. Now Theorem 4.4 yields
the better estimates, at least for smallerN .

needed horizon lengthN
relative accuracy Theorem 4.4,γ = 5 Theorem 4.9,γ = 4

0.50 17 21
0.10 24 27
0.01 37 37

TABLE 4.2

COMPARISON FOR RUNNING COSTl(x, u) = x2 + f(x, u)2

Note that we do not claim that these estimates are tight
or even optimal. In particular, the use of other sequences
u∗ might lead to smaller values ofγ and hence tighter
estimates. We have chosen the given sequencesu∗ because
they allow for particularly easy computations.

V. RESULTS FOR TERMINAL COSTS BEINGLYAPUNOV

FUNCTIONS

Many RHC schemes make use of a suitable terminal
cost in order to ensure closed loop asymptotic stability of
the RHC controller. Often, in these settings the terminal
costs are chosen as Lyapunov functions with respect to
the running costl, see [9] and the references therein. In
this section we discuss the consequences on suboptimality
of these choices. Here we make the following assumption
on the terminal costF .

Assumption 5.1: For eachx ∈ Y0 there existsu ∈ U
such that

f(x, u) ∈ X0 and F (f(x, u)) ≤ F (x)− l(x, u).

This condition is often imposed in receding horizon
schemes in order to ensure asymptotic stability of the
closed loop, see [9, Section 3.3 and the references therin].
Note that Assumption 5.1 implies (3.1) for̃V = F with
α = 1. Hence, Proposition 3.4 impliesF (x) ≥ V∞(x) and
we can define the positive differenceη := maxx∈Y0 F (x)−
V∞(x) ≥ 0.

A typical situation in whichF meeting Assumption 5.1
can be found is if the linearization off is controllable to0
and l is close to a quadratic function around the origin. In
this case,F can be chosen as the optimal value function of

the linear quadratic problem for a quadratic cost function
l̃ which is strictly smaller thanl. Then, the closerl and
l̃ are and the smaller the neighborhoodY0 is chosen, the
smallerη becomes, see also the discussion after Lemma 3
[6].

In the following theorem we distinguish the case with
and without terminal constraint set.

Theorem 5.2: Assume that the terminal cost in(2.5)
satisfies Assumption 5.1 on some neighborhoodY0 of the
origin and letN ∈ N.

(i) Consider the optimal receding horizon controllerµN

from (2.8) based onVN from (2.4), i.e., without terminal
constraint. LetYN ⊂ X be the set of initial values for
which the optimal solutionx(n) for the finite horizon
functional (2.5) satisfiesx(N) ∈ Y0. Then the inequality

V µN
∞ (x) ≤ VN (x) ≤ V∞(x) + η

holds for eachx ∈ YN .
(ii) Consider the optimal receding horizon controllerµN

from (2.8)based onVN from (2.6)with terminal constraint
setXf = Y0. Then the inequality

V µN
∞ (x) ≤ VN (x)

holds on the feasible setXN . Let, furthermore,Y N
∞ ⊂ XN

be the set of initial values for which the optimal solution
x(n) for the infinite horizon functional(2.2) satisfies
x(n) ∈ Y0 for all n ≥ N . Then the inequality

VN (x) ≤ V∞(x) + η

holds for eachx ∈ Y N
∞ .

Proof: (i) For x ∈ YN abbreviatex+ = f(x, µN (x)).
Then, from the optimality principle we obtainx+ ∈
YN−1. Now consider an optimal control sequenceuN−1 ∈
U for the problem (2.4) with horizon lengthN − 1
and the corresponding trajectoryxuN−1 with initial value
xuN−1(0) = x+. Since x+ ∈ YN−1 we obtain x̄ :=
xuN−1(N − 1) ∈ Y0. Let ū denote the control value
from Assumption 5.1 for̄x and define a control sequence
ũ = (uN−1(0), . . . , uN−1(N − 1), ū, . . .). This sequence
yields

VN (x+) ≤ JN (x+, ũ) = VN−1(x+)− F (x̄)
+ l(x̄, ū) + F (f(x̄, ū))

≤ VN−1(x+).

Thus, (3.2) follows withα = 1 which implies

V µN
∞ (x) ≤ VN (x).

The inequalityVN (x) ≤ V∞(x) + η follows immediately
from the definition ofJN and J∞ and F ≥ V∞, which
was observed in the discussion after Assumption 5.1.

(ii) The inequalityV µN
∞ (x) ≤ VN (x) is concluded as in

(i). The second inequality again follows from the definition
of JN andJ∞ andF ≥ V∞, observing that forx ∈ Y N

∞ the
optimal control sequenceu for (2.2) satisfies the constraint
in (2.6).



VI. CONCLUSIONS

We have derived rigorous suboptimality estimates for
the infinite horizon performance of RHC controllers. In
particular, we have shown that suitable exponential con-
trollability assumptions for the running cost allow for
obtaining suboptimality estimates for RHC schemes with-
out terminal cost and constraints, a setting which to the
best of our knowledge is not covered by the existing
inverse optimality results. These results are complemented
by novel estimates for the case where the RHC terminal
cost is a Lyapunov functions, which is the classical setting
for inverse optimality results. In both cases, techniques
from relaxed dynamic programming are the main tool for
establishing our results.
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