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Abstract. We consider a controlled stochastic system which is expo-
nentially stabilizable in probability near an attractor. Our aim is to
characterize the set of points which can be driven by a suitable con-
trol to the attractor with either positive probability or with probability
one. This will be done by associating to the stochastic system a suitable
control problem and the corresponding Zubov equation. We then show
that this approach can be used as a basis for numerical computations of
these sets.

1. Introduction

Lyapunov’s theory supplies necessary and sufficient conditions for the sta-
bility of attractors of dynamical systems. This theory, originally developed
for deterministic systems, has been extended to stochastic ones using differ-
ent notions of stability ([14], [16], [18]).

In recent years, an increasing interest has been devoted to stability prop-
erties of stochastic processes with control inputs. In this case, the basic
problem is the existence of an (open loop) control law steering the system
to a desired target. This property, which is called controllability in the
deterministic jargon, is called stabilizability in the stochastic context. Suit-
able Lyapunov characterizations of this property have been obtained and
a corresponding theory of control Lyapunov functions (CLFs) has been de-
veloped, see e.g. ([9], [1], [6]). One of the main features and advantages
of Lyapunov theory is that stability may be checked in terms of infinites-
imal decrease conditions along a suitable positive definite function. Note,
however, that even for uncontrolled diffusions, the analogue of the converse
Lyapunov theorem by Kurzweil and Massera only yields a continuous Lya-
punov function (this is a result by Kushner, see [17]), and it is not known if
smooth Lyapunov functions exist in general, unless the diffusion is strictly
non-degenerate away from the equilibrium (see [14], [16]). Hence it is not
reasonable to assume too much regularity for the Lyapunov function and it
is therefore important to reformulate infinitesimal decrease conditions in an
appropriate weak sense ([1], [6]).
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A central problem in this context is the construction of a Lyapunov func-
tion in the domain of attraction of the equilibrium. In this paper we address
this problem for controlled stochastic systems. Since, unless that the system
has a particular structure, a CLF is not explicitly known, it is important
to provide constructive techniques yielding such a function. In general, the
approaches available in literature, see e.g. [10], rely heavily on regularity
properties of the CLF. In this paper we present methods based on the the-
ory of viscosity solutions of suitable PDEs, which will in general provide
nonsmooth CLFs.

In the deterministic case, a characterization of Lyapunov functions as a
solution of a first order PDE goes back to the work of Zubov [22]. Re-
cently this idea has been reinterpreted in the framework of Crandall-Lions
viscosity solution theory (see [2]). In [5], [3], a Lyapunov function for an (un-
controlled) system locally almost surely (a.s.) exponentially stable near an
attractor has been characterized as the unique viscosity solution of a second
order PDE satisfying a Dirichlet boundary condition on the attractor. This
equation is a generalization of the classical Zubov equation to the stochastic
case. Moreover, it can be used as the basis for the numerical approximation
of the Lyapunov function ([3]).

In this paper we improve the results in [5], [3] in two directions:
(i) we consider a controlled stochastic differential equation and we obtain

a characterization of a CLF as unique solution of a second order Hamilton-
Jacobi-Bellman equation;

(ii) we assume a stability condition in probability near the attractor,
assuring that the trajectories of the stochastic systems are exponentially
stable with a probability decreasing to zero. This condition is weaker than
a.s. exponential stability which is assumed in [5]. The latter implies that
almost surely for each fixed sample path the system is exponentially stable
in the usual sense.

In particular, we characterize two different types of stabilizability do-
mains: the set D of points stabilizable to the attractor with a positive
probability and the set of points Dp stabilizable with a given probability p,
for any p ∈ [0, 1] (which includes as a special case the set of points which
can be steered to the attractor a.s.). A characterization of D is obtained by
introducing a suitable optimal control problem associated to the stochastic
system. The corresponding value function is a CLF on D for the stochastic
system and D may be characterized as a suitable sublevel set of this CLF.

To characterize the set Dp we introduce a discount factor δ in the optimal
control problem and the corresponding value function vδ. Passing to the
limit for δ → 0, the value functions vδ converge monotonically to a lower
semicontinuous function v0 and Dp is the set of points where v0 has the value
1−p. Moreover, it is shown that the previous characterizations can be effec-
tively used to construct approximate CLF on the corresponding domain of
attraction. The paper is organized as follows. Section 2 introduces the sto-
chastic control problem and recalls the definitions and the basic properties
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of the controls which are used. Sections 3 and 4 are devoted respectively
to the characterization of the sets D and Dp. Finally, Section 5 discusses a
numerical example based on a financial model.

2. Assumptions and Preliminaries

We consider the autonomous stochastic differential equation in RN

(2.1)
{

dX(t) = b(X(t), α(t)) dt + σ(X(t), α(t)) dW (t)
X(0) = x,

where W is a standard M -dimensional Brownian motion and α(t), the con-
trol applied to the system, is a progressively measurable process taking val-
ues in a compact set A ⊂ RL. We assume that b, σ are continuous functions
defined in RN × A, taking values, respectively, in RN and in the space of
N ×M matrices, and satisfying for all x, y ∈ RN and all α ∈ A

(2.2) |b(x, α)− b(y, α)|+ |σ(x, α)− σ(y, α)| ≤ C|x− y|

and

(2.3) |b(x, α)|+ |σ(x, α)| ≤ C(1 + |x|).

These assumptions guarantee the existence and uniqueness of a strong solu-
tion to (2.1) for any t > 0. We denote by A the set of the admissible control
laws α(t), see Remark 2.1. Solutions corresponding to an initial value x
and a control law α ∈ A will be denoted by Xt(x, α) (or Xt if there is no
ambiguity).

Throughout we denote the distance of x ∈ RN to a set M ⊂ RN by

d(x, M) := inf{ ‖x− y‖ | y ∈ M} .

For system (2.1) we study the problem of characterizing the domains
of stabilizability of a viable, compact set K, which is locally exponentially
stabilizable in probability for (2.1). A set K is called viable if for any x ∈ K,
there exists a control α such that Xt(x, α) ∈ K a.s. for any t > 0. The
property of local exponential stabilizability in probability is defined by the
requirement that there exist positive constants r, λ such that for every ε > 0,
there exists a C > 0 such that for every x ∈ Kr := {x ∈ RN : d(x,K) ≤ r}
there is a control α for which

(2.4) P
(

sup
t≥0

d(Xt(x, α),K)eλt ≥ C

)
≤ ε .

Our aim is to study properties and to find characterizations of the follow-
ing sets which describe the stabilizability properties of the process

D :=
{

x ∈ RN : ∃α ∈ A s.t. P
(

lim
t→+∞

d(Xt(x, α),K) = 0
)

> 0
}

=
{

x ∈ RN : sup
α∈A

P
(

lim
t→+∞

d(Xt(x, α),K) = 0
)

> 0
}

,
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and for p ∈ [0, 1]

(2.5) Dp :=
{

x ∈ RN : sup
α∈A

P
(

lim
t→+∞

d(Xt(x, α),K) = 0
)

= p
}

.

Remark 2.1. We assume that the class of admissible control laws A satisfies
the properties of stability under concatenation and stability under measurable
selection.

The condition for stability under concatenation is the following. For a
stopping time T , we define the T -concatenation of two control processes by
setting

α1 ⊕T α2(ω, t) =
{

α1(ω, t) if t ≤ T (ω)
α2(ω, t) else.

Stability under concatenation holds if α1 ⊕T α2 is an admissible control
for all admissible controls α1, α2 and all stopping times T . For the more
technical condition of stability under measurable selection we require that
for all stopping times T and all maps Φ : Ω → A, measurable with respect
to the corresponding σ-algebras, there exists a ν ∈ A such that

Φ(ω)(t) = ν(t) for Leb× P -almost all (ω, t) such that t ≥ T (ω) .

In the following we need both these properties for our class of controls, to
ensure a controllability property. We assume for every x in Kr the existence
of a control αx such that the stability property (2.4) holds. Thus when we
steer the process to the set Kr we want to switch to the process αx. This
can be done as follows. Given an initial condition x0 and a process α we
define the stopping time

T (ω) := inf{t ≥ 0 | Xt(x0, α) ∈ Kr} .

Then the set V := {ω ∈ Ω | T (ω) < ∞} is F(T ) measurable and the map

Φ : ω 7→
{

αXT (x0,α)(·) if ω ∈ V
α else

is measurable from (Ω,F(T )) to (A,BA). So, if stability under measurable
selection holds, there exists ν ∈ A such that

Φ(ω)(t) = ν(t) for Leb× P -almost all (ω, t) such that t ≥ T (ω) .

Then, if stability under concatenation holds, the T -concatenated control
α⊕T ν, for any α ∈ A, is an adapted admissible process. The reader should
keep in mind the preceding construction in the following.

Observe that the property of stability under concatenation and stability
under measurable selection also guarantee the validity of the Dynamic Pro-
gramming Principle, see (3.7), under standard regularity assumptions on the
coefficients of the problem (see [15] and [20]).

An explicit construction of a class of controls laws satisfying the properties
of stability under concatenation and stability under measurable selection can
be performed under the convexity condition{

(σ(x, α)σT (x, α), f(x, α)) : α ∈ A
}

is convex for all x ∈ RN .
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Then, fixed a priori a probability space (Ω,F ,Ft, P) with a right continuous
increasing filtration, the class of the progressively measurable processes with
values in the compact set A satisfies the desired properties.

If this convexity condition is not satisfied we need to consider relaxed
controls and we refer to [7], [15] and [20] for the construction of a canonical
probability space associated to the control problem and the corresponding
class of admissible controls satisfying the previous properties. �

Remark 2.2. Assumption (2.4) implies that, for every x ∈ Kr,

sup
α∈A

P
(

lim
t→+∞

d(Xt(x, α),K) = 0
)

= 1.

Indeed for every ε > 0, by (2.4) we find α and C for which

P
(

lim
t→+∞

d(Xt(x, α),K) = 0
)
≥

P
(
sup
t≥0

d(Xt(x, α),K)eλt ≤ C
)
≥ 1− ε.

Remark 2.3. In [3, 5], the problem of stability is studied (i.e. no control in
(2.1)) and the equilibrium is assumed to be almost surely locally exponen-
tially stable. This is to say that there exist positive constants r, λ and a
finite random variable β such that for any x ∈ Kr, we have

(2.6) d(Xt(x),K)eλt ≤ β a.s. for any t ≥ 0.

This assumption implies local exponential stability in probability: for every
ε > 0 it is sufficient to choose C such that

P (β ≥ C) ≤ ε.

3. The domain of null controllability

In this section, we study the properties of the set D, i.e. the set of points
which can be steered to the set K with positive probability. Throughout
this section all assumptions discussed in Section 2 are assumed to hold. In
the following the stopping time τ(x, α), defined as the hitting-time of Kr,
will play a vital role. It is defined by

(3.1) τ(x, α) = inf{t > 0 : Xt(x, α) ∈ Kr}.

Proposition 3.1. Consider system (2.1). We have that
i) D = {x ∈ RN : supα∈A P (τ(x, α) < +∞) > 0}.
ii) D is open, connected and contains Kr as a proper subset.

Proof. i) It is easy to show that for any α

P
(

lim
t→+∞

d(Xt(x, α),K) = 0
)
≤ P (τ(x, α) < +∞) .

So if x ∈ D then there exists α such that P (τ(x, α) < +∞) > 0.
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Conversely, we assume that supα∈A P(τ(x, α) < ∞) > 0. Then there
exists T > 0 such that supα∈A P(τ(x, α) < T ) > 0. By (2.4) and Remark
2.1, we obtain for every ε > 0

sup
α∈A

P( lim
t→+∞

d(Xt(x, α),K) = 0, τ(x, α) < T ) =(3.2)

sup
α∈A

∫ T

0

∫
d(y,K)=r

P(τ(x, α) = ds, Xτ(x,α) = dy, τ(x, α) < T )

·P( lim
t→+∞

d(Yt(y, α(·+ s)),K) = 0 | y = Xs) ≥

sup
α∈A

P (τ(x, α) < T ) ,

where Yt(y, α(· + s)) denotes the solution of (2.1) with initial condition y
driven by the control α shifted by s. This shows i).

ii) In order to prove that D is a open, observe that if x ∈ D, then there
exist α and T > 0 such that P(d(XT (x, α),K) ≤ r/2) > 0. For δ sufficiently
small and y ∈ B(x, δ), this implies P(d(YT (y, α),K) ≤ r) > 0 and therefore
supα∈A P(τ(y, α) ≤ T ) > 0. Hence

sup
α∈A

P
(

lim
t→+∞

d(Yt(y, α),K) = 0
)
≥

sup
α∈A

P
(

lim
t→+∞

d(Yt(y, α),K) = 0, τ(y, α) ≤ T

)
=

sup
α∈A

∫ T

0

∫
d(z,K)=r

P(τ(y, α) = ds, Yτ(y,α) = dz, τ(y, α) ≤ T )(3.3)

·P
(

lim
t→+∞

d(Zt(z, α(·+ s)),K) = 0 | z = Ys

)
=

sup
α∈A

P (τ(y, α) < T ) > 0.

Since D is open and Kr is closed we obtain that Kr is a proper subset of D.
Finally D is connected since for any x ∈ D there exists at least a control α
and a continuous path Xt(x, α) connecting x to Kr. �

To construct a CLF for the stochastic system (2.1), we introduce v : Rn →
R+ as a value function of an optimal control problem. Define

v(x) := inf
α∈A

E
[∫ +∞

0
g(Xt(x, α), αt)e−

∫ t
0 g(Xs(x,α),αs)dsdt

]
(3.4)

= inf
α∈A

{
1− E

[
e−

∫ +∞
0 g(Xt(x,α),αt)dt

]}
,

where g : RN×A → R is a nonnegative bounded function such that g(x, a) =
0 if and only if x ∈ K. Furthermore, we assume that there exist Lg, g0 > 0
such that

(3.5) |g(x, a)− g(y, a)| ≤ Lg|x− y| x, y ∈ RN , a ∈ A
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and

(3.6) g(x, a) ≥ g0 x ∈ RN \Kr, a ∈ A.

Note that these assumptions imply infd(y,K)≥δ,a∈A g(y, a) > 0 for each δ > 0.
By definition 0 ≤ v ≤ 1 and, since K is viable, v(x) = 0 for x ∈ K. We

recall the Dynamic Programming Principle for the value function v.

Proposition 3.2. The value function v defined in (3.4) satisfies the Dy-
namic Programming Principle. That is, for every stopping time T ,

v(x) = inf
α∈A

E
[
1 + (v(XT (x, α))− 1)e−

∫ T
0 g(Xs(x,α),αs)ds

]
= inf

α∈A
E

[
v(XT (x, α))e−

∫ T
0 g(Xs(x,α),αs)ds(3.7)

+
∫ T

0
g(Xt(x, α), αt)e−

∫ t
0 g(Xs(x,α),αs)dsdt

]
.

The proof of this principle relies on standard arguments from the theory
of optimal control and on the stability properties of the class of admissible
controls A, see Remark 2.1. For details we refer to [20] and [8].

Remark 3.3. A control Lyapunov function for the controlled stochastic pro-
cess Xt in D is a continuous, positive definite function V with V (x) = 0 for
x ∈ K satisfying the following properties

V ≡ const on RN \ D ,(3.8)
V (x) < V|RN\D , for x ∈ D ,(3.9)

V is proper on D ,(3.10)
inf
α∈A

sup
t≥0

E[V (Xt(x, α))− V (x)] < 0 for x ∈ D \K .(3.11)

We note that (3.8) is assumed, in order to avoid a situation in which V
decreases along solutions in RN \ D, although stabilization to K is not
possible. Similarly, the conditions (3.9),(3.10) ensure that decrease in V
is only possible within the set D by approaching K (in terms of the sublevel
sets of V , which are compact in D by (3.10)).

The notion of Lyapunov function for uncontrolled stochastic systems was
introduced by Has’minskii in [14] and Kushner in [16]. They considered twice
continuously differentiable Lyapunov functions for which, by the Dynkin for-
mula, condition (3.11) is equivalent to the infinitesimal decrease condition:

1
2

N∑
i,j=1

ai j(x)
∂2v

∂xi∂xj
+

N∑
i=1

bi(x)
∂v

∂xi
< 0.

In [9] Florchinger used twice continuously differentiable control Lyapunov
functions in the context of feedback stabilization. Recently, in [6] Cesa-
roni considered only continuous control Lyapunov functions for stochastic
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systems. In this case condition (3.11) is equivalent to v being a viscosity
supersolution of

sup
a∈A

{−L(x, a)V (x)} = 0 x ∈ D \K

where

L(x, a)· := 1
2

N∑
i,j=1

ai j(x, a)
∂2·

∂xi∂xj
+

N∑
i=1

bi(x, a)
∂·
∂xi

denotes the generator of the Markov process associated to (2.1).

The next theorem provides a characterization of the set D by means of v.

Theorem 3.4. Consider system (2.1). The function v defined in (3.4) is a
control Lyapunov function for the process Xt on D. Moreover

(3.12) D = {x ∈ Rn : v(x) < 1} and v|RN\D ≡ 1.

Proof. Note first, that v(x) = 0 for x ∈ K, as by assumption K is viable and
g(x, a) = 0 for x ∈ K. The properties v(x) > 0 for x /∈ K and conditions
(3.8), (3.9) all follow, if we show the characterization (3.12).

To prove (3.12), let x ∈ RN \D, then for any α ∈ A, τ(x, α) = +∞ almost
surely by Proposition 3.1. This implies by (3.6)

1− E
[
e−

∫ +∞
0 g(Xt,αt)dt

]
≥ 1−

∫
{τ(x,α)=+∞}

e−
∫ τ(x,α)
0 g0dtdP = 1

and therefore v(x) = 1. Conversely let x ∈ D. Then there exists a control
α such that τ(x, α) < +∞ with positive probability. So there exists T > 0
such that

δ := sup
α∈A

P (τ(x, α) < T )

is positive. We compute, using (3.5) and (3.6),

v(x) ≤ 1− sup
α∈A

∫
{τ(x,α)<T}

e
−

∫ τ(x,α)
0 g0dt−

∫ +∞
τ(x,α) g(Xt,αt)dt

dP

≤ 1− e−g0T sup
α∈A

∫ T

0

∫
y∈Kr

E
[
e−

∫ +∞
0 g(Yt(y,α(·+s)),αt+s)dt |y = Xα

s

]
·

·P
(
τ(x, α) = ds, Xτ(x,α) = dy, τ(x, α) < T

)
≤ 1− e−g0T sup

α∈A

∫ T

0

∫
y∈Kr

E
[
e−Lg

∫ +∞
0 d(Yt(y,α(·+s)),K)dt |y = Xα

s

]
·

·P(τ(x, α) = ds, Xτ(x,α) = dy, τ(x, α) < T ).

Now assumption (2.4) implies that there exists C > 0 such that

sup
α∈A

P(By,α) := sup
α∈A

P
(

sup
t≥0

d(Yt(y, α),K)eλt ≤ C

)
≥ 1− δ/2
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for every y ∈ Kr. By the argument in Remark 2.1, we can find C such that
supα∈A P(BXτ (x,α),α ∩ {τ(x, α) < T}) is positive. Therefore the previous
inequality yields

v(x)≤1− e−g0Tsup
α∈A

∫ T

0

∫
y∈Kr

E
[
χBy,α(·+s)

e−Lg
∫ +∞
0 d(Yt(y,α(·+s)),K)dt |y = Xα

s

]
·

·P(τ(x, α) = ds, Xτ(x,α) = dy, τ(x, α) < T )

≤ 1− e−g0T eLgC/λ sup
α∈A

P({τ(x, α) < T} ∩BXτ (x,α),α) < 1 ,

as desired.
We now show that v is proper on D and that it is a continuous function.

Towards the first end we are going to show that

v(xn) → 1 for xn ∈ D, xn → x0 ∈ ∂D ,(3.13)
v(xn) → 1 for xn ∈ D, ‖xn‖ → ∞ .(3.14)

The continuity of v is then shown by proving

v is continuous in D ,(3.15)

by which the continuity of v on RN follows using that v ≡ 1 in RN \ D.
To prove (3.13), we argue by contradiction. Assume that there exists a

sequence of points xn ∈ D converging to x0 ∈ ∂D such that limn→∞ v(xn) ≤
1− η for some η > 0. Then for any xn we can find a control αn such that

E
[
e−

∫ τ(xn,αn)
0 g0dt

]
≥ E

[
e−

∫ +∞
0 g(Xt(xn,αn),αn,t)dt

]
≥ η/2 ,

and therefore there exist ε > 0 and T such that P(τ(xn, αn) ≤ T ) ≥ ε. For
n sufficiently large, we have

P(sup
[0,T ]

|Xt(xn, α)−Xt(x0, α)| ≥ r/2) ≤ ε/4

for any α ∈ A. This is possible because of (2.2), (2.3), see e.g. [19, p. 49].
For such a fixed n, arguing as in (3.3) with xn and x0 in place of x and,
respectively, y, we obtain that

P
(

lim
t→+∞

d(Xt(x0, αn),K) = 0
)

> 0 .

This is a contradiction to x0 ∈ RN \ D.
To prove (3.14) note that because of linear growth condition (2.3) for

every x /∈ Kr there is a time T (x) such that P(τ(x, α) < T (x)) = 0 for all
controls α. Furthermore, T (x) →∞ as ‖x‖ → ∞. Thus

v(xn) ≥ inf
α∈A

{
1− E[e−

∫ T (xn)
0 g(Xt(xn,α),αt)dt]

}
≥ 1− exp(−g0T (xn)) .

As T (xn) → ∞, the right hand side tends to 1 as n → ∞. This shows the
assertion.
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We now prove claim (3.15). First of all, we prove that v is continuous at
K (recall that v|K ≡ 0). Fix x0 ∈ K and ε > 0. By (2.6) there exists a
C > 0 such that for all x ∈ Kr there is an αx such that

P(sup
t

d(Xt(x, αx),K)eλt ≥ C) ≤ ε .

Define

Bx := {ω | sup
t

d(Xt(x, αx),K)eλt ≥ C} ,

so that P(Bx) ≤ ε for all x ∈ Kr. Fix T > 0 in such a way that Ce−λT ≤ ε
and let δ > 0 be such that

sup
[0,T ]

E|Xt(x0, αx)−Xt(x, αx)| ≤ ε/T

for x ∈ B(x0, δ). Recalling that g(x, a) = 0 if (x, a) ∈ K × A and (3.5), we
have for x ∈ B(x0, δ) ∩Kr

v(x) ≤ E
∫ +∞

0
g(Xt(x, α), αt)e−

∫ t
0 g(Xs(x,α),as)dsdt ≤

P(Bx) +
∫

BC
x

[ ∫ T

0
g(Xt(x, α), αt)dt +

∫ ∞

T
g(Xt(x, α), αt)dt]

≤ (1 + Lgε + Lg/λ)ε.

This shows continuity of v in x0.
Now, let ε > 0 and x ∈ D \ K. Fix δ0 > 0 such that, if d(y, K) ≤ 2δ0,

then v(y) ≤ ε and define g∗ := infd(y,K)≥δ0/2,a∈A g(y, a) > 0. Finally, choose
T > 0 such that

e−Tg∗ ≤ ε.

Let δ > 0 be such that if y ∈ B(x, δ), α ∈ A, then P(Eα) ≤ ε holds for

Eα :=

{
ω | sup

[0,T ]
|Xt(x, α)− Yt(y, α)| ≥ min{δ0/2, ε/T}

}
.

Let α be an ε–optimal control for x and define the set

(3.16) Bx := {ω | d(Xt(x, α),K) > δ0 for all t ∈ [0, T ]} .

For all paths we define by η = η(ω) the minimal time for which
d(Xη(x, α),K) ≤ δ0 holds with the convention η(ω) = T for paths in Bx.
Then, recalling the Dynamic Programming Principle (3.7) we obtain for
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y ∈ B(x, δ) that

v(y)− v(x) ≤ E
[
e−

∫ η
0 g(Yt(y,α),αt)dt − e−

∫ η
0 g(Xt(x,α),αt)dt+

e−
∫ η
0 g(Yt(y,α),αt)dtv(Yη(y, α))− e−

∫ η
0 g(Xt(x,α),αt)dtv(Xη(x, α))

]
+ ε

=
∫

Bx∩Ec
α

e−
∫ T
0 g(Yt(y,α),αt)dt − e−

∫ T
0 g(Xt(x,α),αt)dt+

e−
∫ T
0 g(Yt(y,α),αt)dt︸ ︷︷ ︸

≤ε

v(YT (y, α))︸ ︷︷ ︸
≤1

− e−
∫ T
0 g(Xt(x,α),αt)dtv(XT (x, α))︸ ︷︷ ︸

≥0

dP

+
∫

Bc
x∩Ec

α

e−
∫ η
0 g(Yt(y,α),αt)dt − e−

∫ η
0 g(Xt(x,α),αt)dt+

e−
∫ η
0 g(Yt(y,α),αt)dt︸ ︷︷ ︸

≤1

v(Yη(y, α))︸ ︷︷ ︸
≤ε

− e−
∫ η
0 g(Xt(x,α),αt)dtv(Xη(x, α))︸ ︷︷ ︸

≥0

dP + 2ε

≤
∫

Ec

e−
∫ η
0 g(Yt(y,α),αt)dt − e−

∫ η
0 g(Xt(x,α),αt)dt + 4ε

≤
∫

Ec

[
Lg

∫ T

0
|Yt(y, α)−Xt(x, α)|︸ ︷︷ ︸

≤ε/T

dt
]
dP + 4ε ≤ (4 + Lg)ε.

To show a bound for v(x)− v(y) for y ∈ B(x, δ), note that we can argue in
the same way, if we choose an ε–optimal control α∗ for y and define the set
By analogously to (3.16) considering Xt(y, α∗)). Then similar estimates to
the above yield v(x)− v(y) ≤ (4 + Lg)ε. This shows (3.15).

Finally, using the Dynamic Programming Principle (3.7), if α is an ε-
optimal control for x ∈ D \K we have

E[v(Xt(x, α))− v(x)] ≤ E
[
(1− e−

∫ t
0 g(Xs(x,α),αs)ds)(v(Xt(x, α))− 1)

]
+ ε

and as ε > 0 is arbitrary we obtain the decrease condition (3.11). �

Interestingly, the function v can be characterized as the unique viscosity
solution of an Hamilton-Jacobi-Bellman equation (see [8] and [21] for the
definition of viscosity solutions).

Proposition 3.5. The function v defined in (3.4) is the unique bounded
continuous viscosity solution in RN \K of

(3.17) sup
a∈A

{−L(x, a)v(x)− g(x)(1− v(x))} = 0

with v(x) = 0 for x ∈ K.

Proof. In proof we use the notations t∧s := min{t, s} and t∨s := max{t, s}
and use the standard sub- and superoptimality principles for viscosity sub-
and supersolutions, see [8] or [6].

First we show that if u is an upper semicontinuous bounded subsolution in
RN \K of (3.17) with u(x) = 0 for x ∈ K then u(x) ≤ v(x). Assuming that
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u is upper semicontinuous, for every ε > 0 there exists a δ > 0 (without loss
of generality, δ ≤ r) such that u(x) ≤ ε for every x such that d(x,K) ≤ δ.
Denote g∗ := infd(y,K)≥δ,a∈A g(y, a) > 0 and let u∗ > 0 be an upper bound
for u on RN .

Now fix x ∈ RN and ε > 0 and choose δ as prescribed above. We denote
τδ(x, α) := inf{t | d(Xt(x, α),K) ≤ δ)} and we choose a control ᾱ such that

v(x) + ε ≥ E
[
1− e−

∫ +∞
0 g(Xt,ᾱt)dt

]
.

For each t > 0 we define the set

Bt := {ω | τδ(x, α) ≤ t}.

Then by the suboptimality principle we have

u(x) ≤ inf
α

inf
t≥0

E
[
u(Xt∧τδ(x,α))e

−
∫ t∧τδ(x,α)
0 g(Xs,αs)ds+1− e−

∫ t∧τδ(x,α)
0 g(Xs,αs)ds

]
≤ inf

t≥0
E

[
u(Xt∧τδ(x,ᾱ))e

−
∫ t∧τδ(x,ᾱ)
0 g(Xs,ᾱs)ds

]
+ E

[
1− e−

∫ t∧τδ(x,ᾱ)
0 g(Xs,ᾱs)ds

]
︸ ︷︷ ︸

≤v(x)+ε

≤ lim sup
t→+∞

∫
Bt

u(Xτδ(x,ᾱ))︸ ︷︷ ︸
≤ε

e−
∫ τδ(x,ᾱ)
0 g(Xs,ᾱs)ds︸ ︷︷ ︸

≤1

dP

+
∫

BC
t

u(Xt)︸ ︷︷ ︸
≤u∗

e−
∫ t
0 g(Xs,ᾱs)ds︸ ︷︷ ︸
≤e−g∗t

dP + v(x) + ε

≤ lim sup
t→+∞

ε + u∗e−g∗t + v(x) + ε ≤ v(x) + 2ε.

As ε > 0 was arbitrary, this shows the claim.
Now we prove that if w is an lower semicontinuous bounded supersolution

in RN \K of (3.17) with w(x) = 0 for x ∈ K then w(x) ≥ v(x). Fix ε > 0.
Then by lower semicontinuity of w and the continuity of v there exists a
δ > 0 such that w(x) ≥ −ε and v(x) ≤ ε and thus w(x)− v(x) ≥ −2ε holds
for every x with d(x,K) ≤ δ.

Now fix x ∈ RN and define τδ(x, α), g∗ and Bt as in the proof for u, above.
Then for any control ᾱ and any t ≥ 0 the Dynamic Programming Principle
for v yields

v(x) = inf
α

E
[
v(Xt∧τδ(x,α))e

−
∫ t∧τδ(x,α)
0 g(Xs,αs)ds+1− e−

∫ t∧τδ(x,α)
0 g(Xs,αs)ds

]
≤ E

[
v(Xt∧τδ(x,ᾱ))e

−
∫ t∧τδ(x,ᾱ)
0 g(Xs,ᾱs)ds

]
+ E

[
1− e−

∫ t∧τδ(x,ᾱ)
0 g(Xs,ᾱs)ds

]
implying

E
[
1− e−

∫ t∧τδ(x,ᾱ)
0 g(Xs,ᾱs)ds

]
≥ v(x)− E

[
v(Xt∧τδ(x,ᾱ))e

−
∫ t∧τδ(x,ᾱ)
0 g(Xs,ᾱs)ds

]
.
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Let w∗ ≤ 0 be a lower bound for w and recall that v is bounded from above
by 1. We choose a control ᾱ such that, by the superoptimality principle,

w(x) ≥ sup
t≥0

E
[
w(Xt∧τδ(x,ᾱ))e

−
∫ t∧τδ(x,ᾱ)
0 g(Xs,ᾱs)ds

]
+E

[
1− e−

∫ t∧τδ(x,ᾱ)
0 g(Xs,ᾱs)ds

]
− ε

≥ sup
t≥0

E
[
w(Xt∧τδ(x,ᾱ))e

−
∫ t∧τδ(x,ᾱ)
0 g(Xs,ᾱs)ds

]
+ v(x)− E

[
v(Xt∧τδ(x,ᾱ))e

−
∫ t∧τδ(x,ᾱ)
0 g(Xs,ᾱs)ds

]
− ε

≥ lim inf
t→+∞

E
[
(w(Xt∧τδ(x,ᾱ))− v(Xt∧τδ(x,ᾱ)))e

−
∫ t∧τδ(x,ᾱ)
0

]
+ v(x)− ε

= lim inf
t→+∞

∫
Bt

(w(Xτδ(x,ᾱ))− v(Xτδ(x,ᾱ)))︸ ︷︷ ︸
≥−2ε

e−
∫ τδ(x,ᾱ)
0 g(Xs,ᾱs)ds︸ ︷︷ ︸

∈[0,1]

dP

+ lim inf
t→+∞

∫
BC

t

(w(Xt)− v(Xt))︸ ︷︷ ︸
≥w∗−1

e−
∫ t
0 g(Xs,ᾱs)ds︸ ︷︷ ︸
∈[0,e−g∗t]

dP + v(x)− ε

≥ v(x)− 3ε.

This yields the assertion because ε > 0 was arbitrary. �

4. Null-controllability with a given probability

In this section we are interested in the sets Dp, see (2.5), of the points
which are stabilizable to K with a given probability p. In order to describe
these sets we consider a family of Zubov functions depending on a positive
parameter δ. These functions are defined by

vδ(x) = inf
α∈A

E
[∫ +∞

0
δg(Xt(x, α), αt)e−

∫ t
0 δg(Xs(x,α),αs)dsdt

]
(4.1)

= inf
α∈A

E
[
1− E

[
e−

∫ +∞
0 δg(Xt(x,α),αt)dt

]]
,

where g is a function satisfying all conditions that we imposed for (3.4).
Since δ > 0 is only a scaling factor, vδ satisfies the same properties as v
defined in (3.4). In particular, the characterization provided by Theorem 3.4
holds with vδ in place of v, for any δ > 0. Moreover vδ is the unique bounded
continuous viscosity solution of the equation

(4.2) sup
a∈A

{−L(x, a)vδ − δ(1− vδ)g(x)} = 0 x ∈ RN ,

such that vδ(x) = 0 for x ∈ K. The following result shows how the functions
vδ(x) may be used to characterize the sets Dp.
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Theorem 4.1. Consider system (2.1) and the functions vδ defined in (4.1).
For any p ∈ [0, 1],

(4.3) Dp = {x ∈ RN : lim
δ→0

vδ(x) = 1− p} .

Remark 4.2. A property corresponding to (4.3) was proved in [3] for the
uncontrolled process, under the stronger assumptions of almost sure expo-
nential stability (see (2.6)) of K and a technical condition on E[d(Xt,K)q]
for some q ∈ (0, 1] (see (11) in [3]).

To prove the theorem, we need two preliminary lemmas.

Lemma 4.3. Consider system (2.1) and the hitting-time τ(x, α) defined in
(3.1). For all x ∈ RN ,

(4.4) lim
δ→0

sup
α∈A

E[e−δτ(x,α)] = sup
α∈A

P(τ(x, α) < +∞) .

Proof. Fix ε > 0. Let α ∈ A be such that supα∈A E[e−δτ(x,α)] ≤ E[e−δτ(x,α)]+
ε and T0 such that exp(−δT ) ≤ ε for T > T0. Then for T > T0

E[e−δτ(x,α)] ≤ E[e−δτ(x,α)χ{τ(x,a)<T}] + E[e−δT ] ≤
P[τ(x, α) < T ] + ε ≤ sup

α∈A
P[τ(x, α) < ∞] + ε ,

which implies that

lim sup
δ→0

sup
α∈A

E[e−δτ(x,α)] ≤ sup
α∈A

P[τ(x, α) < ∞].

To obtain the converse inequality in (4.4), choose α ∈ A, T sufficiently large
such that

sup
α∈A

P[τ(x, α) < ∞] ≤ P[τ(x, α) < ∞] + ε ≤ P[τ(x, α) < T ] + 2ε .

Now fix δ > 0 small enough so that, for t < T , we have e−δt ≥ 1− ε. Then

E[e−δτ(x,α)] ≥ E[e−δτ(x,α)χ{τ(x,α)<T}] ≥
E[(1− ε)χ{τ(x,α)<T}] = (1− ε)P[τ(x, α) < T ] ≥
(1− ε)

(
sup
α∈A

P[τ(x, α) < ∞]− 2ε
)
.

Since ε > 0 is arbitrary, it follows that

lim inf
δ→0

sup
α∈A

E[e−δτ(x,α)] ≥ sup
α∈A

P[τ(x, α) < ∞].

�

The second lemma is an estimate of vδ in Kr.

Lemma 4.4. Consider system (2.1) and the functions vδ defined in (4.1).
Then lim

δ→0
sup
Kr

|vδ| = 0.
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Proof. By (2.4), given ε > 0, we can find C > 0 such that for any x ∈ Kr

there exists an α ∈ A such that P(B) := P(supt d(Xt(x, α),K)eλt ≥ C) ≤ ε.
Select δ in such a way that Cδ < ε. Hence

vδ(x) ≤
∫

B
(1− e−

∫ +∞
0 δg(Xt,αt)dt)dP +

∫
BC

(1− e−
∫ +∞
0 δg(Xt,αt)dt)dP

≤ P(B) + δLg

∫
BC

∫ +∞

0
d(Xt(x, α),K)dt dP

≤ ε + LgP(BC)ε
∫ +∞

0
e−λtdt ≤ Cε ,

where C is independent of ε. This shows the assertion. �

Proof of Theorem 4.1. Using a slight extension of (3.2) in the the proof of
Proposition 3.1 and Remark 2.2 we see that

sup
α∈A

P( lim
t→+∞

d(Xt(x, α),K) = 0) = sup
α∈A

P(τ(x, α) < +∞) .

Thus the statement of the theorem follows immediately from Lemma 4.3 if
we prove that

(4.5) lim
δ→0

vδ(x) = 1− lim
δ→0

sup
α∈A

{
E[e−δτ(x,α)]

}
.

Note furthermore that, if α ∈ A is ε-optimal, we have

vδ(x) + ε ≥ 1− E[e−
∫ τ(x,α)
0 δg(Xt,αt)dt] ≥ 1− E[e−δg0τ(x,α)] ,

and hence

lim inf
δ→0

vδ(x) + ε ≥ 1− lim sup
δ→0

E[e−δg0τ(x,α)] =

1− lim sup
δ→0

E[e−δτ(x,α)] ≥ 1− lim sup
δ→0

sup
α∈A

{
E[e−δτ(x,α)]

}
.

As ε > 0 is arbitrary, this shows the claim. To prove the converse inequality
in (4.5) for fixed ε > 0, we choose T > 0 large enough such that e−δMgT ≤ ε,
where Mg is an upper bound for g. Now vδ is continuous so that we have
by the Dynamic Programming Principle that

vδ(x) = inf
a∈A

E
[ ∫ τ(x,α)∧T

0
δg(Xt, αt)e−

∫ t
0 δg(Xs,αs))dsdt(4.6)

+ e−
∫ τ(x,α)
0 δg(Xt,αt)dtvδ(Xτ(x,α)(x, α))χ{T≥τ(x,α)}

+ e−
∫ T
0 δg(Xt,αt)dtvδ(XT (x, α))χ{T≤τ(x,α)}

]
.

The second term on the right hand side of (4.6) can be bounded from above
in the following way

(4.7) E
[
e−

∫ τ(x,α)
0 δg(Xt,αt)dtvδ(Xτ(x,α))χ{T≥τ(x,α)}

]
≤ E[vδ(Xτ(x,α)(x, α))] ≤ supKr

|vδ| .
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By the choice of T , the third term satisfies

(4.8) E
[
e−

∫ T
0 δg(Xt,αt)dtvδ(XT (x, α))χ{T≤τ(x,α)}

]
≤ e−

∫ T
0 δMgdt ≤ ε.

Inserting (4.7) and (4.8) in (4.6), we obtain

vδ(x) ≤ inf
a∈A

E

[∫ τ(x,α)

0
δg(Xt, αt)e−

∫ t
0 δg(Xs,αs)dsdt

]
+ sup

Kr

|vδ|+ ε

= 1− sup
a∈A

E
[
e−

∫ τ(x,α)
0 δg(Xs,αs)ds

]
+ sup

Kr

|vδ|+ ε

≤ 1− sup
α∈A

E
[
e−δMgτ(x,α)dt

]
+ sup

Kr

|vδ|+ ε.

As ε > 0 is arbitrary, by Lemma 4.4 we get

lim sup
δ→0

vδ(x) ≤ lim
δ→0

(1− sup
α∈A

E
[
e−δMgτ(x,α)

]
+ sup

Kr

|vδ|)

= 1− lim
δ→0

sup
α∈A

E
[
e−δτ(x,α)

]
.

�

Remark 4.5. Note that the sequence vδ is decreasing in δ. By stability
properties of viscosity solution, this implies that the sequence vδ converges to
a function v0 whose lower semicontinuous envelope (see [8]) is a supersolution
of the Hamilton-Jacobi-Bellman equation

sup
a∈A

{−L(x, a)v(x)} = 0 x ∈ RN \K

with v0(x) = 0 on K. The previous equation is related to an ergodic control
problem for (2.1). In this respect the Zubov equation with positive discount
factor can be seen as a regularization of the limit ergodic control problem
which gives the appropriate characterization of the sets Dp.

5. A numerical example

We illustrate our results by a numerical example. The example is a
stochastic version of a deterministic creditworthiness model discussed in
[12, 13]. Consider

dX1(t) = (α(t)− λX1(t))dt + σX1(t)dW (t)
dX2(t) = (H(X1(t), X2(t))− f(X1(t), α(t)))dt

with

H(x1, x2) =

{ α1(
α2+

x1−x2
x1

)µ θx2, 0 ≤ x2 ≤ x1

α1
α22θx2, x2 > x1

and
f(x1, α) = axν

1 − α− αβx−γ
1 .

In this model k = x1 is the capital stock of an economic agent, B = x2 is
the debt, j = α is the rate of investment, H is the external finance premium
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and f is the agent’s net income. The goal of the economic agent is to steer
the system to the set {x2 ≤ 0}, i.e., to reduce the debt to 0 and the goal
of the analysis is to determine the maximum level of debt B∗(k0) for which
this is possible, depending on the initial capital k0. In other words, we look
for the domain of controllability of the set K = {(x1, x2) ∈ R2 |x2 ≤ 0}.
Observe that in practice the problem can be restricted to a finite interval I
for the x1–value. So we consider it in a compact set. Under this restriction,
conditions (2.2) and (2.3) on the drift and diffusion of the stochastic system
hold.

In contrast to other formulations of such problems here the credit cost,
modelled by the external finance premium H, is not given by a constant
interest rate, i.e., H(x2) = θx2 but with an interest rate which grows with
the ratio of debt over capital stock, i.e., the larger x2/x1 becomes the higher
the interest rate becomes. The main goal of the study of the deterministic
model in [12, 13] is the analysis of the dependence of the maximum debt
level B∗(k0) on the shape of H. Here we pick one particular form of H
and add a stochastic uncertainty in the equation for the capital stock k =
x1, i.e., the capital is now subject to random perturbations. Instead of a
domain of controllability we will now get controllability probabilities which
can be characterized by our method and computed numerically by a suitable
numerical scheme.

In order to show that the stochastic version of the model satisfies our
exponential controllability assumption we extend H to negative values of
x2 via H(x1, x2) = θx2. Then it is easily seen that for the deterministic
model controllability to K becomes equivalent to controllability to K =
{(x1, x2)T ∈ R2 |x2 ≤ −1/2}. Furthermore, also for the stochastic model
any solution with initial value (x1, x2) with x2 < −1/4 will converge to
K for α ≡ 0, even in finite time, which implies the assumed exponential
controllability to the modified set K, even almost surely.

Using the parameters λ = 0.15, α2 = 100, α1 = (α2 + 1)2, µ = 2, θ = 0.1,
a = 0.29 ν = 1.1, β = 2, γ = 0.3 and the cost function g(x1, x2) = x22
we have numerically computed the solution vδ for the corresponding Zubov
equation (4.2) with δ = 10−4 using the scheme described in [3] extended to
the controlled case (see [4] for more detailed information). For the numerical
solution we used the time step h = 0.05 and an adaptive grid (see [11])
covering the domain Ω = [0, 2] × [−1/2, 3]. For the control values we used
the set A = [0, 0.25]. As boundary conditions for the outflowing trajectories
we used vδ = 1 on the upper boundary and vδ = 0 for the lower boundary,
on the left boundary no trajectories can exit. On the right boundary we did
not impose boundary conditions (since it does not seem reasonable to define
this as either “inside” or “outside”). Instead we imposed a state constraint
by projecting all trajectories exiting to the right back to Ω. We should
remark that both the upper as well as the right boundary condition affect
the attraction probabilities, an effect which has to be taken into account in
the interpretation of the numerical results.
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Figure 1. Numerically determined controllability probabil-
ities for σ = 0, 0.1, 0.5 (top to bottom)

Figure 1 show the numerical results for σ = 0, 0.1 and 0.5 (top to bottom).
In order to improve the visibility, we have excluded the values for x1 = 0
from these figures. Observe that for x1 = 0 and x2 > 0 it is impossible to
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control the system to K, hence we obtain vδ ≈ 1 in this case. This can
be seen in Figure 2 which shows the result including the values for x1 = 0
for σ = 0.5. Note that due to the degeneracy of the solution, which is
almost discontinuous for x1 = 0 and x2 ≥ 0, the use of the adaptive space
discretization method from [11] is crucial in order to obtain accurate results.
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Figure 2. Numerically determined controllability probabil-
ities for σ = 0.5 including the value for x1 = 0
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