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Abstract

The pricing and control of firms’ debt has become a major issue
since Merton’s (1974) seminal paper. Yet, Merton as well as other re-
cent theories presume that the asset value of the firm is independent
of the debt of the firm. However, when using debt finance firms may
have to pay a premium for an idiosyncratic default risk and may face
debt constraints. We demonstrate that firm specific debt constraints
and endogenous risk premia, based on collateralized borrowing, affect
the asset value of the firm and, in turn, the collateral value of the firm.
In order to explore the interdependence of debt finance and asset pric-
ing of firms we endogenize default premia and borrowing constraints
in a production based asset pricing model. In this context then the
dynamic decision problem of maximizing the present value of the firm
faces an additional constraint giving rise to the debt dependent firm
value. We solve for the asset value of the firm with debt finance by
the use of numerical dynamic programming. This allows us to solve
the debt control problem and to compute sustainable debt as well as
firm’s debt value.
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1 Introduction

Most economic agents (households, firms, banks, governments and countries)
extensively borrow to finance economic activity. An important part of risk
management is the evaluation and control of credit risk. In this paper we
solely focus on evaluating credit risk of firms in the context of a production
oriented asset pricing model. Evaluating credit risk of firms amounts to
evaluating creditworthiness by solving a debt control problem in the context
of a dynamic decision problem. The solution of the dynamic decision problem
- in our context of a firm - gives us the firm’s asset value. The usual approach
is to derive security prices, such as the prices for stocks and bonds from the
firm’s asset value. In the finance literature it is well recognized that the value
of stocks may not be independent of the valuation of the firm’s debt.1 This
paper goes a step further and claims that also the asset value of the firm is
not independent of default risk of the firm arising from a firm’s borrowing
constraint which will, in our context, be defined by creditworthiness of the
firm. Our results of default risk dependent asset price value of the firm has
implications for at least three strands of literature on firm value.

The first strand of literature goes back to Modigliani and Miller (1958),
Black and Scholes (1973) and Merton (1974) where it is presumed that the
asset value of the firm is exogenously given by a Brownian motion when the
firm’s debt is priced. This is usually done by using the adding up theorem,
namely V = S + B where V is the asset value, S the value of stocks and B
the value of bonds. Furthermore, when short-term interest rates are given
and two different firms are presumed to undertake the same investment one
can derive the risk structure of interest rates.2

The second important strand of literature builds on Tobin’s q theory.
Here the asset value of the firm is related to a pay-off of the firm and a
discount factor. For a firm the present value of its activity is the discounted
pay-off with the discount factor determined by the ex-ante rate of return on
capital. In Tobin’s q theory it is the marginal cash flow, the marginal profit,
arising from an increase in a unit of investment, that is priced through a
discount rate. The present value of the future marginal cash flow gives us
Tobin’s q.3

A third strand of literature arises from the application of intertemporal
general equilibrium models (known as Real Business Cycle Models) to asset
pricing.4 Here then too, the asset value of a firm represents an unlevered
claim to the stock of capital and thus default risk and claims arising from
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bonds do not impact the asset value of the firm.
We will show that the key to the impact of debt finance on the firm’s

asset value is the impact of debt finance on credit cost and the sequence
of the firm’s investment decisions. Firm behavior under finance constraints
has been studied starting with Gaskins (1971) and Judd and Petersen (1986)
and then recently in Gertler and Gilchrist (1994) and further literature cited
below. In this paper we study how finance constraints impact investment
and firm value. We presume that, although all firms pursue dynamic invest-
ment decisions, they may be valued differently since they face different credit
conditions in capital markets and thus may exhibit a different sequence of
investments.

The above mentioned literature on asset pricing of firms has not suffi-
ciently considered the implication of the impact of finance premia and bor-
rowing constraints on the value of firms’ assets. Usually it is assumed that a
firm can undertake investment by borrowing from the capital market at an
ex-ante capital cost up to the point where the discounted pay-off is equal to
the present value of the firm. Taking this as a benchmark case, we consider
the pricing of firms’ assets in the case when firms face borrowing constraints
or when firms face an external finance premium due to collateralized borrow-
ing. The external finance premium is, in this literature, often interpreted as
default premium reflecting firm specific default risk. It is the firm specific
default risk that will give rise to a risk-caused endogenous credit cost and
thus an endogenously determined risk structure of interest rates in the sense
of Merton (1974).

We also want to study what impact this has on the firm’s creditworthiness,
the dynamics of its capital stock and its asset value. In pursuing this study,
default risk and default premia, in contrast to many other recent theories,
will be endogenized and thus will be made state dependent. Allowing to do so
may give rise to the fact that for firms with slightly different characteristics
different domains of attraction of the capital stock and asset value exist.

An important issue in computing the asset value of the firm is the opti-
mization problem of the firm.5 The consumption based asset pricing theory
would argue that the objective of the firm is to deliver a stream of dividends
for the equity holder. The optimization problem of the firm would then be
to maximize the present value of dividends to the share holders, whereby
the growth rate of marginal utilities serves as a discount factor6 to price the
dividend stream.

Yet, we would like to argue that in an environment with debt financed
investment of the firm one should be interested in the asset value of the firm
and not solely in the equity value of the firm relevant for the share holders.
The work on pricing of corporate liability has taken this line of research
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since Merton (1974) and numerous empirical approaches have been pursued
to infer from time series data on equity value the asset value of the firm.7

We also want to note that if we take the maximization of the equity
value for the share holders as optimization problem it is then obvious – since
endogenous credit cost reduce net income of the firm before dividends are
paid – that the equity value of the firm will be affected by state dependent
default premia.

What is, however, important in our formulation of the optimization prob-
lem, is that the asset value of the firm will be affected by the sequence of
optimal investment decisions of a firm facing idiosyncratic default premia.
Thus, in our case, it is this constraint on investment decisions that affects
firm value. We are dealing with a complicated constrained optimization
problem for the solution of which we need advanced numerical methods.

Another important issue is of how to treat consumption in a production
oriented asset pricing model. This issue has been taken up in Grüne, Semm-
ler and Sieveking (2003) where we show that a separation theorem can be
applied according to which the computation of the asset value of the firm can
be separated from consumption, i.e. the sequence of consumption by which
the asset value is eventually consumed. In that paper it is shown that any
sequence of consumption decisions, based on some preferences of the con-
sumer, is consistent with our model of asset pricing as long as the asset value
remains a constraint to the consumption sequence.

As to our solution method we want to note that those rather complex
models cannot be solved analytically. We will make use of a dynamic pro-
gramming algorithm with adaptively refined grids and a set oriented algo-
rithm to solve the different model variants. Those methods are well suited
to study problems when firms face imperfect capital markets and when the
risk premia need to be endogenized.8

The remainder of the paper is organized as follows. Section 2 discusses
the relevant literature. Section 3 introduces the basic dynamic asset pric-
ing model. Section 4 discusses the numerical solution methods. Sections 5
reports the detailed results from our numerical study on the different vari-
ants of the model. Section 6 concludes the paper. The appendix provides
some technical derivation on the numerical methods that are used to study
different variants of the dynamic model.

4



2 Default Risk, Investment and Asset Pric-

ing

As above noted the Modigliani-Miller (1958) and Merton (1974) results follow
from the proposition that the capital structure does not affect the firm’s asset
value. Although, as shown in recent papers, applying Black-Scholes and
option pricing, the stock price of the firm can be impacted by the capital
structure, yet the asset value, which is split up into stocks and bonds, is
independent of the capital structure.9 Those results are, however, obtained
by assuming an exogenous stochastic process, a Brownian motion, for the
asset value, which does not originate, as we will argue later, in a solution of
a dynamic decision problem of a firm acting under constraints.

In the tradition of the evaluation of firm’s debt using option pricing since
Merton (1974), the security price of bonds depends on the value of an under-
lying asset, the (not observable) asset value of the firm. Defining the value
of the firm’s asset value by V and debt by B, we have B = F (V, t). On the
maturity date t, one needs to have V −B > 0 otherwise the firm will default.
Thus, the value of debt is

F (V, 0) = min(V,B)

In terms of a Brownian motion one can write a change of the value of
debt as

dB = (αBB − CB)dt + δBBtdz

with αB, δB and CB constants. Since B = F (V, t), and given a Brownian
motion for the value of the underlying asset, V, a solution of the stochastic
equation for the debt, B, depending on the stochastic process for V, can be
obtained by using Ito’s lemma (see Merton, 1974). Below in the context
of a dynamic model, it will be shown that if there are no risk premia and
the firm issues debt at a risk free interest rate the debt value of the firm is
equal to its creditworthiness and the latter is equal to the firm’s asset value.
Thus we have as maximum debt capacity B∗ = V . This will, however be
different for endogenous risk premium where the risk premia may depend on
the extent to which the firm is levered. Then, as shown below, we will have
B∗ = F (V (B∗)) which is a more difficult problem to solve.

In the second strand of literature, in the literature on Tobin’s q, invest-
ment is an increasing function of the ratio of the market value of the firm to
the replacement cost of the firm’s capital.10 More properly, it can be shown
that the optimal investment is the rate that equates the marginal value of
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installed capital with its marginal adjustment cost.11 Here too, a stochastic
version may allow for a random variable that could represent randomness of
technology, in input and output prices or in demand facing the firm. Given
a stochastic process and a capital stock state equation firms are presumed
to maximize an expected profit flow, π(k, j), less adjustment cost of capital,
φ(k, j), subject to a random process and a capital accumulation equation. A
version of this type can be found in Abel and Eberly (1994), which can be
written, by disregarding the randomness, as the following Hamilton-Jacobi-
Bellman (HJB) equation. Using the notation f(k, j) = π(k, j) − φ(k, j) we
can write

θV = max
j

{f(k, j) + q(j − σk)}

where θ is the discount rate, k, capital stock, j, investment and σ, capital
depreciation. Tobin’s q in the above HJB-equation represents the derivative
of the value function, with respect to k. For later use we may write q =
V ′(k). Abel and Eberly (1994) show that only under the assumption that
the adjustment cost of capital φ(k, j), is linear homogeneous in j and k
Tobin’s q equals the average value of capital. From V (k) = qk then one

obtains V (k)
k

= q. Here then too default risk and default premia does not
affect firm’s asset value and thus asset value represents an unlevered claim
to the capital stock.12

The same presumption of firm value representing an unlevered claim to
the capital stock is also made in recent attempts to employ intertemporal
equilibrium models (RBC models) to spell out asset price implications. Nu-
merous variants of the intertemporal equilibrium models have attempted to
match asset price predictions with the financial statistics obtained from fi-
nancial time series data, yet most of them presume that the equity of the
firm is not affected by debt finance. Rouwenhorst summarizes the tradition
in asset pricing theory by writing that an ”...unrealistic aspect of the equity
definition is that it represents an unlevered claim to the stock of capital,
whereas many firms rely in part on debt to finance productive investments.
Because the economy is one in which the Modigliani and Miller propositions
hold, there is, strictly speaking, no role for debt financing. By the same token,
however, because capital structure does not alter the equilibrium allocations,
we can simply assume a particular financial structure and use the complete
markets framework to study two sets of contingent claims, corporate debt,
and levered equity, that add up in value to the capital stock” (Rouwenhorst,
1995:304). Here again, as stated in this citation, the adding up theorem is
supposed to hold.

On the other hand, as above noted, recently there has been much work
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on imperfect capital markets and firm’s investment. Many dynamic models
have been proposed where the firm operates in an environment of imperfect
capital markets. Here the firm may face an idiosyncratic default risk and
default premium as well as borrowing constraints.13

There are two ways to formalize the impact of credit market conditions
on firm value and investment. First, very often borrowing ceilings are as-
sumed which are supposed to prevent agents from borrowing an unlimited
amount. There could be various provisions and restrictions for firms’ debt
issuance. One important way to restrict borrowing is to require that agent’s
assets serve as collateral. A convenient way to define the debt ceiling is then
to assume that the debt ceiling is a fraction of the agents’ wealth. Second, it
is frequently posited that borrowers face a risk dependent interest rate which
is assumed to be composed by a market interest rate (for example, risk-free
interest rate) and an idiosyncratic component determined by the individual
risk of premium for the borrower. Recently the theory of asymmetric infor-
mation and costly state verification has been employed, (see Bernanke et al.
(1999), for example), where a risk premium is made endogenous by making
the default risk dependent on net worth of the borrower, as collateral for
borrowing. This gives rise to risk premia that firms have to pay contingent
on their net worth. In this paper the impact of both the credit constraint as
well as endogenous risk premia on firm’s value will be explored.

As to the more specifics of our different model variants we draw on
the literature on asymmetric information and costly state verification14 in
which lenders must pay a cost in order to observe the borrower’s realized
returns.15This motivates the use of collaterals in credit market models. Un-
collateralized borrowing is assumed to pay a larger premium than collater-
alized borrowing or self-financing. The premium arises from the threat of
bankruptcy namely by the cost constituted by auditing, accounting, legal
cost, as well as loss of assets arising from asset liquidation.

In terms of observable variables the premium the firm has to pay is in-
terpreted as default premium arising from default risk.16 Such a premium
drives a wedge between the expected return of the borrower and the risk-free
interest rate whereby the premium is positively related to the default cost
and inversely related to the borrowers net worth. Net worth is defined as the
firm’s collateral value of the (illiquid) capital stock less the agent’s outstand-
ing obligations. Following Bernanke, Gertler and Gilchrist (1999) we measure
the inverse relationship between the risk premium (default premium) and net
worth in a function such as
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H (k(t), B(t)) =
α1

(

α2 + N(t)
k(t)

)µ θB(t) (1)

with H (k(t), B(t)) the credit cost depending on net worth, N(t) = k(t)−
B(t), with k((t) as capital stock and B(t) as debt. The parameters are
α1, α2, µ > 0 and θ is the risk-free interest rate. In the analytical and nu-
merical study of the model below we presume that the risk premium will be
zero for N(t) = k(t) and thus, in the limit, for B(t) = 0, the borrowing rate
is the risk-free rate. Borrowing at a risk-free rate will be considered here as
a benchmark case.17

Figure 1 depicts the equ. (1) with the external finance premium which
arises if N(t) < k(t), yet note that different firms could face a different slope
of such a default premium cost function, see sect. 4.2.18

Figure 1 about here
Endogenous Credit Cost

Note also that even if the default premium is endogenized in the way we
have indicated in figure 1 we might want to define constraints for the firm
which, in our model, will be given by an upper bound of a debt-capital stock
ratio. As we will show both the default risk creating an endogenous credit
cost as well as upper borrowing constraints can affect the value of the firm
so that the net worth will also become endogenous. Such a case is studied
below through the use of a modified HJB-equation and our new numerical
methods. Moreover, we want to note that the risk-free rate does not need to
be a constant, it could be stochastic and vary over time.19

3 The Model with Endogenized Default Pre-

mium and Borrowing Constraints

Next we specify the dynamic decision problem of a firm that faces such de-
fault premia and/or borrowing constraints. We want to note that although
our model can be nested in utility theory, we use a separation theorem that
permits us to separate the present value problem from the consumption prob-
lem. In our model, as in Cochrane (1991, 1996), in his production based asset
pricing model, asset pricing can be studied without reference to utility the-
ory and a discount factor obtained from the growth rate of marginal utilities.
In Grüne, Semmler and Sieveking (2003) an analytical treatment is given of
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why and under what conditions the subsequent dynamic decision problem of
a firm can be separated from the consumption problem.

We focus on the firm’s intertemporal optimal investment where debt can
be continuously issued and retired. In each period the firm does not have to
pay attention to the maturity structure of its debt and it does not face one pe-
riod borrowing constraints. Yet, there can be intertemporal debt constraints
that affect the present value of the activity of the firm.

Employing the above theory on default risk and risk premia as formulated
in equ. (1), we study the following dynamic decision problem of a firm20

V (k) = Max
j

∫ ∞

0

e−θtf (k(t), j(t)) dt (2)

k̇(t) = j(t) − σk(t), k(0) = k. (3)

.
Ḃ(t) = H (k(t), B(t)) − f (k(t), j(t)) , B(0) = B0 (4)

The firm’s net income

f(k, j) = akα − j − jβk−γ (5)

is generated from capital stock, through a production function, Akα , and
investment, j, is undertaken so as to maximize the present value of net income
of (5) given the adjustment cost of capital ϕ(k, j) = jβk−γ. Note that σ >
0, α > 0, β > 1, γ > 0, are constants. Equ. (3) represents the equation for
capital accumulation and equ. (4) the evolution of debt of the firm. Since
net income in (5) can be negative the temporary budget constraint requires
further borrowing from credit markets and if there is positive net income
debt can be retired.21

As above shown, we assume that the risk premium in our credit cost
function H (k,B) may be state dependent, depending on the capital stock,
k, and the level of debt B with Hk < 0 and HB > 0. Note, however, that if
we assume that the default risk depends inversely on net worth, as in equ.
(1), we get a special case of our model when only the risk-free interest rate
determines the credit cost. We then have a linear model with constant credit
cost, θ, and a state equation for the evolution of debt such as

Ḃ(t) = θB(t) − f(k,B), B(0) = B0 (6)

In this case, which we consider our benchmark case, we would only have to
consider the transversality condition lim

t→∞
e−θtB(t) = 0, as the non-explosiveness
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condition for debt, to close the model and (2)-(3) would give us the firm’s
asset value.

In our more general model (2)-(4) representing a decision problem of a
firm facing a risk premium we define the limit of B(t) equal to V (k(t)) which
now represents the creditworthiness, the present value borrowing constraint.
The problem to be solved in this paper is how to compute V (k).

If the interest rate θ = H(k,B)
B

is constant22, and we have the benchmark
case, then as is easy to see, V (k) is in fact the present value of k

V (k) = Max
j

∫ ∞

0

e−θtf (k(t), j(t)) dt (7)

k̇(t) = j(t) − σk(t), k(0) = k. (8)

Ḃ(t) = θB − f(k(t), j(t) − c(t)), B(0) = B0 (9)

with k(0) and B(0) the initial value of k and B. For any value of debt,
B, below B∗ = V , holds that V − B > 0 and the residual remains as equity
of the firm.

The more general case is, however, when there is an endogenous default
premium. If we have H (k,B), as in equ. (1) and thus equs. (2)-(4) then,
the creditworthiness itself becomes difficult to treat. Pontryagin’s maximum
principle is not suitable to solve the problem with endogenous default pre-
mium and endogenous net worth and we thus need to use special numerical
methods to solve for the present value and investment strategy of a levered
firm.

We can study the difference of models (2)-(4) and (7)-(9) by using the
Hamilton-Jacobi-Bellman (HJB) equation. The HJB equation for equs. (7)-
(9), leaving aside the time subscripts, corresponds to the above mentioned
case of the B∗ = V in sect. 2 and the above first strand of literature. Here
we have

θV = max
j

[

f(k, j) +
dV (k)

dk
(j − σk)

]

(10)

In the appendix 1 the HJB-equation (10) is solved for steady state values
and below we use dynamic programming which allows us to study the value
of the firm and local and global dynamics of its capital stock. Note that dV (k)

dk

represents Tobin’s q, as in the second strand of literature see appendix 1 and
Abel and Eberly (1994).23
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In the general case of equ. (2)-(4) with firm specific default risk and
external finance premium as stated in equ. (1) and shown in Figure 1, we
have the following modified HJB-equation instead.

H(k,B∗(k)) = max
j

[

f(k, j) +
dB∗(k)

dk
(j − σk)

]

(11)

Note that in the limit case, where there is no borrowing and N = k, and
thus the constant discount rate θ holds we obtain the HJB-equation (10).
The HJB-equation (11) can be written as

B∗(k) = max
j

H−1

[

f(k, j) +
dB∗(k)

dk
(j − σk)

]

(12)

which is a standard dynamic form of a HJB-equation. Next, for the
purpose of an example, let us specify H(k,B) = Bκθ where, with κ > 1 the
interest payment is solely convex in B. We then have

B∗(k) = max
j

[

f(k, j) +
dB∗

dk
(j − σk)

]
1

κ

θ−
1

κ (13)

In the appendix 1 the equilibria of the HJB-equation (13) with κ > 1
are shown and it is demonstrated that for κ = 1 in (13) the same equilibria
emerge as for (10). The algorithm to study the more general problem of equ.
(11) is described in appendix 3.

Note that B∗(k) in (13) for the case of κ > 1 will be smaller than V (k) in
(10). There is an additional default cost to be paid which is not present in
equ. (10), the integral of which will drive a wedge between the present value
V (k) and B∗(k). So that B∗(k) < V (k) will hold.

Employing our general form of a default premium24 H(k,B) ≥ θB the
creditworthiness B∗(k) relates to the asset value of the firm for B(t) ≤
B∗(k(t)) as follows. Consider the equation

Ḃ = H(k,B) − f(k, j).

Multiplying by e−θt and using partial integration we find

∫ T

0

e−θtf(k, j)dt = B(0) − e−θT B(T ) +

∫ T

0

e−θt(H − θB)dt.

Let us define the present value of the external finance premium - with
initial value (k,B) - by
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∫ ∞

0

e−θt(H − θB)dt = VH(k,B).

where we use the optimal investment rate j. Then for T → ∞ we find

V (k) = B(0) − lim e−θT B(T ) + VH(k,B)

Note that we permit B(t) to be negative. The term VH(k,B) would be
equal to zero for the case H(k,B) = θB.25

In particular, if B(0) = B∗(k) we have

V (k) = B∗(k) + VH(k,B∗(k))

We want to point out how to compute V (k) and its component parts.
We can use the above statement to compute the solution to the optimal
investment problem:

1. Compute B∗(k), thereby find the optimal path (k(t), B(t)) which sat-
isfies B(t) = B∗(k(t)).

2. Compute

VH(k,B) =

∫ ∞

0

e−θt(H(k(t), B(t)) − θB(t))dt

3. Compute

V (k) = B∗(k) + VH(k,B∗(k)). (14)

In sum, the above three steps allow us to compute the creditworthiness,
for the case H(k,B) = θB where V (k) = B∗(k) and for the case of an endoge-
nous default premium H(k,B), where for H(k,B∗(k)) the creditworthiness
will be less than V (k). Whenever B < B∗ the value of the firm’s assets can
be represented by stocks and bonds permitting also a consumption stream
for the owner of the stocks. Yet, as we will show in sect. 4.2 the firm’s asset
value may also be affected by the default premium.

In the context of the model (2)-(4) we can also explore the use of ’ceilings’
in debt contracts and their impact on the present value of the firm. Indeed
credit restrictions may affect the present value. Suppose the ’ceiling’ is of
the form B(t) < C, with C a constant, for all t. Either C > V (k), then the
ceiling is too high because the debtor might be tempted to move close to
the ceiling and then goes bankrupt if B > V (k). If C < V (k), then the firm
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may not be able to develop its full potentials, and thus face a welfare loss26.
Those conditions obviously are of no practical use for debt control if we can
not say when B(t) ≤ C. The major tasks of our methods will be to compute
the present value and thus the asset price of the firm V (k) even for the case
of endogenous credit cost as given in equ. (1).

Since the optimal investment strategy depends on the initial conditions of
the firms, on the firms’ capital stock, there may be thresholds that separate
the optimal solution paths for V (k) to different domains of attraction. For
firms with lower capital stock then below the threshold it will be optimal for
the firm to contract whereas large firms may choose an investment strategy
to expand. We also will consider the case of debt for a constrained firm for
which holds that B(t)/k(t) ≤ c with c a constant and then study the asset
price of the firm. Moreover, we can admit in our study various paths for the
consumption stream, c(t), and their impact on the present value curve V (k)
for our different model variants.

4 Numerical Solution Methods

A dynamic programming (DP) algorithm27 can be applied to solve the dis-
counted infinite horizon optimal control problem of type (7)–(9). This is
applicable when no restriction on the dynamics is present. For our model,
this applies when the the model is linear, i.e., H(k,B) = θB as in (9) and
if in addition the constraint on B is given by infj supt≥0 B(t) < ∞, since in
this case it follows from (7) that B∗(k) is easily obtained from V (k) in (2),
namely from

V (k) = Max
j

∫ ∞

0

e−θtf (k(t), j(t)) dt

We will briefly describe the algorithm which goes back to Capuzzo Dol-
cetta (1983), Falcone (1987) and Grüne (1997). For details and for a math-
ematically rigorous convergence analysis we refer to the work by Bardi and
Capuzzo Dolcetta (1997) and to Grüne, Metscher and Ohlberger (1999).

In the first step, the continuous time optimal control problem is replaced
by a first order discrete time approximation given by

Vh(k) = Max
j

Jh(k, j), Jh(k, j) = h

∞
∑

i=0

(1 − θh)if(kh(i), ji) (15)

where kh is defined by the discrete dynamics

kh(0) = k, kh(i + 1) = kh(i) + h(ji − σkh(i)) (16)
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and h > 0 is the discretization time step. Note that j = (ji)i∈N0
here denotes

a discrete control sequence.
The optimal value function is the unique solution of the discrete Hamilton–

Jacobi–Bellman equation

Vh(k) = Max
j

{hf(k, j0) + (1 − θh)Vh(kh(1))} , (17)

where kh(1) denotes the discrete solution corresponding to the control j and
initial value k after one time step h. Abbreviating

Th(Vh)(k) = Max
j

{hf(k, j0) + (1 − θh)Vh(kh(1))} (18)

the second step of the algorithm now approximates the solution on a grid Γ
covering a compact subset of the state space, i.e., a compact interval [0, K]
in our setup. Denoting the nodes of Γ by ki, i = 1, . . . , P , we are now looking
for an approximation V Γ

h satisfying

V Γ
h (ki) = Th(V

Γ
h )(ki) (19)

for each node ki of the grid, where the value of V Γ
h for points k which are not

grid points (these are needed for the evaluation of Th) is determined by linear
interpolation. We refer to the work cited above for the description of iterative
methods. Note that an approximately optimal control law (in feedback form
for the discrete dynamics) can be obtained from this approximation by taking
the value j∗(k) = j for j realizing the maximum in (A10), where Vh is replaced
by V Γ

h . This procedure in particular allows the numerical computation of
approximately optimal trajectories.

In order to distribute the nodes of the grid efficiently, we make use of a
posteriori error estimation. For each cell Cl of the grid Γ we compute

ηl := Max
k∈Cl

|Th(V
Γ
h )(k) − V Γ

h (k)|

(more precisely we approximate this value by evaluating the right hand side
in a number of test points). It can be shown that the error estimators ηl

give upper and lower bounds for the real error (i.e., the difference between
Vh and V Γ

h ) and hence serve as an indicator for a possible local refinement
of the grid Γ. It should be noted that this adaptive refinement of the grid is
very effective28 for detecting thresholds, because the optimal value function
typically fails to be differentiable in these points, resulting in large local errors
and consequently in a fine grid.

For the more general model, i.e., if there is a default premium as defined
by H(k,B) in (1) and/or restrictions of the type B/k ≤ c, the above DP-
algorithm unfortunately is not applicable. Even though in certain cases a
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HJB-equation for a discrete time version of the problem is available, it is
not clear whether the full discretization procedure described above leads to a
valid and convergent approximation of the asset price and the present value
borrowing constraint.

Hence we propose a different approach for the solution of this problem,
based on a set oriented method for the computation of domains of attrac-
tion. The method relies on the following observation: For a given compact
interval 29 [0, K] for the capital stock k one sees that there exists a constant
c∗ > 0 such that B∗(k) ≤ c∗ for all k ∈ [0, K]. We here denote B∗(k) as
the borrowing constraint of the firm. Hence, for k ∈ [0, K] the condition
supt≥0 B(t) < ∞ can be replaced by

sup
t≥0

B(t) < c∗.

Hence both this constraint and the constraint B(t) ≤ ck(t) can be expressed
as

B(t) ≤ d(k(t)) for all t ≥ 0

for some suitable function d. In other words, the set of all initial values
(k0, B0) for which this constraint is violated is given by

D =

{

(k0, B0)

∣

∣

∣

∣

there exists T > 0 such that B(t(j)) ≥ d(k(t(j)))
for all j and some t(j) ∈ [0, T ]

}

and the curve B∗(k) is exactly the lower boundary of D. For details of how
the domains of attraction are computed, see appendix 2. Equipped with
the above two algorithms the firm’s asset value and thus the maximum debt
capacity B∗ can be computed.

5 Results of the Numerical Study

Next, we present numerical results for our debt control problem obtained for
our case with a risk-free interest rate, and the case of a default premium. In
the latter cases we have to specify H(k,B). For both cases we specify the
firms’ technology parameters to be the same namely σ = 0.15, A = 0.29,
α = 1.1, β = 2, γ = 0.3 and θ = 0.1, so that results do not differ because
of different technology parameters.30 The distinct results that we obtain
should therefore solely arise from the issuance of the firm’s risky debt. The
remaining parameters are specified below.31

As for the numerical procedure, all examples were computed for different
k′s in the compact interval [0, 2] with control range j ∈ [0, 0.25].32 For our
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dynamic programming algorithm, discussed above, we have used the numer-
ical time step h = 0.05 and an initial grid with 39 nodes. The final adapted
grid consisted of 130 nodes. The range of control values was discretized using
101 equidistributed values. For the algorithm of appendix 2 that computes
domains of attraction we used the time step h = 0.5, in order to generate the
discrete time model Ψ we used a highly accurate extrapolation method. For
this algorithm the range of control values was discretized using 51 equidis-
tributed values. The domain covered by the grid was chosen to be [0, 2]×[0, 3]
where the upper value B = 3 coincides with the value c∗ = 3 used in order
to implement the restriction supt≥0 B(t) < ∞. The initial grid was chosen
with 1024 cells, while the final adapted grids consisted of about 100000 up
to 500000 cells, depending on the example. For this algorithm the figures
below always show the set EΓ which approximates the present value curve
V (k). Recall that the width of this set gives an estimate for the spatial
discretization error.

5.1 Borrowing at the Risk-free Rate

In our benchmark case, debt is issued but with zero default premium paid
by the firm so that we have as credit cost H(k,B) = θB. In this case we can
use the DP algorithm of section 4 in order to solve the discounted infinite
horizon problem (7)–(9). Figure 2 shows the corresponding optimal value
function representing the present value curve, V (k), (upper graph) and the
related optimal control, the investment decision, in feedback form (lower
graph). The present value curve represents the asset value of the firm for
initial conditions k(0).

Figure 2 about here:
Optimal value function and optimal investment

The debt control problem is solved whenever debt is bounded by the
firm’s asset value, so that we have V − B ≥ 0. In this case, however, the
optimal investment strategy is not constrained and thus the asset value which
represents the maximum debt capacity B∗, is obtained by a solution for an
unconstrained optimal investment strategy, represented by the value function
in Figure 2. Note however, that for our parameters the model does not
necessarily have a unique steady state equilibrium. There can be multiple
domains of attraction depending on the initial capital stock size, k. The
multiple steady states of the above model are computed in appendix 1. As
we can observe from figure 2, there is a threshold, s, at k+ = 0.267 which
is clearly visible in the optimal control law, which is discontinuous at this
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point. Thus, the dynamic decision problem of the firm faces a discontinuity.
For firms with initial values of the capital stock k(0) < k+ the optimal
trajectories tend to k∗ = 0, for initial values of the capital stock k(0) > k+

the optimal trajectories tend to the domain of attraction k∗∗ = 0.996. Yet,
for all of those different initial conditions debt dynamics is bounded as long
V − B ≥ 0, which allows the firms equity holder to exercise the option of
refining the debt and to obtain an equity value of S = V − B.

Figure 2 also shows the sequence of investment decisions, in a neighbor-
hood of the threshold for the given initial capital stock. There is a disconti-
nuity and thus a jump in the investment strategy of the firms, which is clearly
observable. Investment of a firm to the left of k+ is lower than σk and makes
the capital stock shrinking whereas investment of a firm to the right of k+

is larger than σk and let the capital stock increase. At k+ investment of the
firm then jumps.33

5.2 Borrowing with a Default Premium

For the more general case where a default premium is to be paid we had
suggested the following function to represent risk premia:

H (k(t), B(t))) =
α1

(

α2 + N(t)
k(t)

)µ θB(t)

For the model (2)-(4) with a risk premium included in the firms’ borrow-
ing cost it is not possible to transform the model into a standard infinite
horizon optimal control problem of a firm since debt, or net worth, is now
an additional constraint on the optimization problem. Hence we will use
the algorithm for the computation of domains of attractions from appendix
2 and undertake experiments for different shapes of the credit cost function
representing different alternative functions for the risk premium. An impor-
tant class of functions for risk premia is defined by the steepness of the slope
defined by the parameter α2.

34

For the above risk premium function we specify µ = 2. Taking into
account that we want θ to be the risk–free interest rate, we obtain the con-
dition α1/(α2 + 1)2 = 1 and thus α1 = (α2 + 1)2. Note that for α2 → ∞
and 0 ≤ B ≤ k one obtains H(k,B) = θB, i.e., the model from the previous
section. 35

Figure 3 shows the respective present value curves V (k) = B∗(k) +
VH(k,B) under the condition supt≥0 B(t) < ∞ for α2 = 100, 10, 1 ,

√
2 − 1

(from top to bottom) and the corresponding α1 = (α2 + 1)2.

Figure 3 about here: Present value curve V (k) for different α2
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For α2 = 100 firm’s asset value and the trajectories on the curve V (k)
show almost the same behavior as the ones in the previous section: There
exists a threshold (now at k+ = 0.32) and two stable domains of attraction
at k∗ = 0 for all initial capital sizes and we have k∗∗ = 0.99. For this as well
as the other trajectories hold that the value function and thus the asset value
of the firm is smaller the larger the default risk resulting from low net worth.
Thus, a state dependent default risk has the same effect on firm value as a
higher discount rate in a standard q-theory of investment. The debt capacity
curve, B∗, moves down due to higher credit cost (higher default risk) and if
the debt rises such that the debt constraint curve B∗(k) is reached the net
income of the firm shrinks to zero so that V − B = 0 and no equity value
claim on the net income stream of the firm can be supported.

From the figure 3 one can observe that, as our study in sect. 3 predicts,
the constraint on the maximum debt claim to the firm B∗(k) = V (k) curve
moves down with a steeper slope of the risk premium function, equ. (1),
which gives rise to a larger loss VH(k,B∗) in equ. (14).

α2 100 10
√

2 − 1
VH(k,B∗(k)) 0.041 0.274 1.140

B∗(k) 2.477 2.214 1.273
V (k) 2.518 2.488 2.410

V (k) for θB 2.523 2.523 2.523

Table 1: Optimal values

In order to evaluate the extent to which a value loss occurs, due to the risk
premium of equ. (1), we computed the component parts of V (k) for different
slopes of the risk premium function H(k,B). Note again that hereby the
lower α2 represents a higher risk premium. In table 1, the values are given
for k0 = 2. The last row represents the benchmark case where we have
computed the V (k) for linear function θB, the other rows represent the case
H(k,B).

In Figure 4 the value V (k), left figure, and the value loss VH(k), right
figure, for different initial values and α2 = 100 and α2 =

√
2 − 1 are shown.

In the left figure, for reasons of comparison, the benchmark case for the lin-
ear function θB is also shown, which, however, is almost undistinguishable
from the curve for α2 = 100. As observable from our two figures the value
V (k) slightly decreases with rising risk premium (falling α2), left figure, and
the value loss, VH(k,B), substantially increases (the debt capacity, B∗(k),
substantially decreases), right figure. The results clearly show the nonlinear
effect of the risk premium on firm’s asset value and maximum debt value
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B∗(k). Of course, for any actual B(k) here too it holds again that the value
of stocks is S(k) = V (k)−B(k). The reduction of firm‘s asset value through
the debt issuance comes from the fact that firms now face a constrained opti-
mization problem, through which, since their sequence of optimal investment
strategy is constrained, asset value is reduced.36

Figure 4 about here:
Value V (k) (left) and Value loss VH(k) (right) for Different

Endogenous Credit Cost

The next figure, figure 5, shows of how the choice of α2 affects the value
V (k) and the maximum debt capacity B∗(k), evaluated at k = 2. The
parameter α2 determines how much the credit cost grows when the debt-
capital ratio B/k grows. In the limit for α2 → ∞ we obtain the linear credit
cost θB while for decreasing α2 the risk premium becomes higher, hence
H(k,B) becomes steeper for fixed B and growing ratio B/k.

Figure 5 shows that, as expected, the maximum debt capacity B∗(k)
decreases monotonically as α2 becomes smaller. The same happens for the
value V (k), however, for larger values of α2 this decrease of the firm’s value
is almost neglegible, i.e., if the credit cost is close to the risk free rate it needs
a substantial increase of the credit cost. (in order to reduce the maximum
capacity B∗(k) and the asset value of the firm V (k).

Figure 5 about here:
B∗(k) (left) and V (k) (right) at k = 2 for varying α2

Yet, note that the dependence between all these values is highly nonlinear.
It is rather difficult to visualize the relationship between credit cost and
present value in general. In order to give an intuition about the relationship
between these quantities, for selected values of α2 and k = 2 in the following
table we show the increase of the interest rate at the point (k,B∗(k)), i.e., the
relation H(k,B)/(θB) and the decrease of the value V (k), both in percent.

α2 increase of interest rate decrease of V
100 1.24% 0.16%
50 2.45% 0.20%
10 11.67% 1.38%
3 30.55% 5.51%

Table 2: Increase of credit cost vs. decrease of value V
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In table 2 numerical results are reported to what extent a certain percent
of an increase in the credit cost would cause a certain percent fall in the value
V (k). This is undertaken for a fixed value of the capital stock k = 2. The
percent increases in interest rate of 1.24% in the table 2 for example means
that the default risk causes the interest rate to rise from θ = 0.1, the risk
free interest rate, to H(k,B) = 0.1124, causing a fall of the asset value of
the firm by 0.16 percent. Note that the parameter of our credit cost function
of equ. (1) are chosen in such a way so as to have only slight increases in
default premia with rising default risk. The cases shown in table 2 above
represent, for example, an increase of the credit cost from α2 = ∞ with a
credit cost θ = 0.1, to α2 = 3, with a credit cost of 0.13055. Yet, in the
latter case the asset value of the firm is predicted to fall by 5.51 percent. We
thus can conclude that the decrease of the asset value of the firm, caused by
higher default premia, is of quantitative importance.

Next let us consider the debt control problem for different regions of the
capital stock k. This has already been shown in figure 3 above. As concerning
thresholds, the jump in investment, for the above discrete values occurs with
large α2. With smaller values of α2 than 100, somewhere, there is no jump
observable and there exists only one domain of attraction at k∗ = 0 which
is stable. Further simulations have revealed that for decreasing values of
α2 ≤ 100 the threshold value k+ increases (i.e., moves to the right) and the
stable equilibrium k∗∗ decreases (i.e., moves to the left), until they meet at
about α2 = 31.

Then for all smaller values of α2 there exists just one equilibrium at k∗ = 0
for all capital stock sizes which is stable. The reason for this behavior lies
in the fact that for decreasing α2 credit becomes more expensive, hence for
small α2 it is no longer optimal for the firm – with any size of the capital
stock – to borrow large amounts and to increase the capital stock for a given
initial size of the firm, instead it is optimal to shrink the capital stock and
to reduce the stock of debt B(t) to 0. Thus, with small α2 and steep risk
premia, it is for any firm size, i.e. for any initial capital stock, optimal to
shrink the capital stock.

5.3 Debt Ceilings and Asset Value

For the case of a risk premium given by H(k,B) from (1) with α2 = 100
we now test a different criterion for the debt ceiling and its impact on the
investment decision and firm value: instead of supt≥0 B(t) < ∞ we impose
a stronger restriction, namely B(t)/k(t) ≤ c for some constant c. This pre-
sumes that the creditors impose a debt ceiling for the firm which has been
asumed in recent literature on imperfect capital markets. Again we use the
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algorithm from appendix 2. Figure 6 shows the respective curves for the
restriction supt≥0 B(t) < ∞ and for the ratio–restriction with c = 1.2 and
c = 0.6 (from top to bottom). In addition, the restriction curves B = ck are
shown with dots for c = 1.2 and c = 0.6.

Figure 6 about here:
Present value curve V (k) for different debt ceilings, H(k,B) from (

1)

For c = 0.6 the firm asset value curve V (k) coincides with the “restriction
curve” B(k) = ck; in this case the curve (k, V (k)) is no longer invariant for
the dynamics,37 i.e., each trajectory B(t) with B(t) ≤ V (k(t)) leaves the
curve (k, V (k)) and eventually B(t) tends to −∞. For c = 1.2 38 the curves
B∗(k) and B = ck coincide only for capital stock size k ≥ 1.46. Overall, the
solution of the debt control problem by imposing debt ceilings is that the
debt becomes controllable and can be steered to zero with low debt ceilings
but the firm’s asset value, V (k) also shrinks.

As concerns the threshold and the jump in investment here one observes
the same steady stock equilibria k∗ and k∗∗ and threshold k+ as for the sup–
restriction (see sect. 5.2), however, in addition to these here a new threshold
appears at k++ = 1.54. For initial values of capital stock (k, V (k)) with
k+ < k < k++ the firm expands and tends to the stable domain of attraction
k∗∗, while for firms with initial capital stock k > k++ the behavior is the
same as for c = 0.6, i.e., the corresponding trajectories leave the curve V (k)
and eventually B(t) tends to zero.39

In sum we can observe that introducing low enough debt ceilings may, as
in the case of c = 0.6, decrease the default risk, keeping the solvency of the
firm, but the present value and thus the asset price of the firm will decrease
too.

6 Conclusions

In the paper we study the firm’s asset value in the context of a dynamic deci-
sion problem where firms can borrow from the credit market for investment
and where there is a risk premium which may be state dependent and the
firms may face debt ceilings. Firms may be heterogeneous with respect to cer-
tain characteristics relevant for the credit market. Building on a production
oriented asset pricing model we can show that those characteristics impact
the firm’s risk premia, the firm’s sequence of investment decision as well as
the firm’s asset value. If risk premia, debt capacity (creditworthiness)40 and
asset value are endogenous resulting from a constrained investment strategy
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then the asset value of firms cannot be taken as exogenously when firms
securities such as stocks and bonds are priced. We use modern computa-
tional methods to solve the intertemporal decision problem and to compute
the asset value of firms with endogenous risk premia. We also explore the
impact of different shapes of the risk premium function and debt ceilings on
the investment strategy, which may be discontinuous, and on the firm’s asset
value. If multiple domains of attraction exist we compute thresholds separat-
ing different domains of attraction of the capital stock and the corresponding
asset price movements. We employ numerical dynamic programming and a
set oriented algorithm solve the complicated optimization problems and the
dynamics of the asset value of the firm.

22



7 Appendix

In this appendix we present the solution technique of how to find the equilib-
ria of the HJB-equations (10) and (11). Moreover, we describe an algorithm
which enable us to compute the asset price of the firm for the HJB equation of
a type such as (13) which will give us the present value borrowing constraint,
the discontinuities in the decision variable and thresholds separating different
domains of attraction for initial capital stocks. While the DP-algorithm as
proposed in sect. 4 and the one proposed below are of quite different nature,
a common feature of both is the adaptive discretization of the state space
which leads to high numerical accuracy with moderate use of memory.

7.1 Computation of the Steady State Equilibria

The HJB-equation (10) for our problem reads

θV = max
j

[

kα − j − j2k−γ + V ′(k)(j − σk)
]

(A1)

We can compute the steady state equilibria and the rough shape of value
function and thresholds in three steps

Step 1: Compute the steady state candidates

For the steady state candidates, for which 0 = j − σk holds, we obtain:

V (k) =
f(k, j)

θ
(A2)

V ′(k) =
f ′(k, j)

θ
=

∂
∂k

(kα − σk − σ2k2−γ)

θ
(A3)

Using the information of (A2)-(A3) in (A1) gives, after taking the deriva-
tives of (A1) with respect to j, the steady states for the stationary HJB
equation:

−1 − 2jk−γ +
αkα−1 − σ − σ2(2 − γ)k1−γ

θ
= 0 (A4)

Note that hereby j = σk. Given our parameters the equation admits three
steady states.

Step 2: Derive the differential equation V
′
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Next, we derive differential equation V
′

by taking

∂θV

∂j
= 0;

We obtain

−1 − 2jk−γ + V ′(k) = 0

Note that V ′(k) represents Tobin’s q. So we have q − 1 = 2jk−γ or

j = (q−1)kγ

2
which is familiar from Tobin’s investment theory. Yet, note that

out of the steady state equilibria we do not have any information on V ′(k).
Solving for the optimal j and using the optimal j in (A1) we get

V ′ = 1 + 2σk1−α ±
√

(1 + 2σk1−α)2 + 4δk−αV + kγ−α − 6 (A5)

To solve (A5) we could start the iteration with steady states as initial
conditions. For e, a steady state, we get as initial value for the solution of
the differential equation (A3):

V0 =

∫ ∞

0

e−δtf(e, j)dt

V0 =
1

δ
f(e, j)

Step 3: Compute the global value function by taking

V (k) = max
i

Vi

where V (k) is the outer envelop of the piece-wise value function.
If the HJB-equation (13) holds with H(B) = θBκ, the external finance

premium, depends on the liability of the firm. This extension is presented
in Semmler and Sieveking (2000) and Grüne, Semmler and Sieveking (2003).
For H(B) = θBκ for κ ≥ 1 it leads to the following equation for candidates
of equilibrium steady states

1 + 2jk−γ =
αkα−1 − σ − σ2(2 − γ)k1−γ

θκ(kα − σk − σ2k2−γ)(κ−1)/κ
(A6)

Note that the steady state candidates are the same as in (A4) if in (A6)
κ = 1 holds. For details of the solution and the use of the HJB-equation to
solve for thresholds, see Grüne, Semmler and Sieveking (2003).
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7.2 Computing Domains of Attraction

The set D in sect. 4 is what is called a robust domain of attraction of the
set A = {(k,B) ∈ R

2 |B ≥ d(k)} and we will here give a brief description of
an algorithm for the computation of such sets, for details we refer to Grüne
(2001) and Chapter 7 of Grüne (2002).

We we consider a first order discrete time approximate model, now both
for k and B given by the Euler discretization41

kh(i + 1) = kh(i) + h(ji − σkh(i))

Bh(i + 1) = Bh(i) + hH(kh(i), Bh(i)) − hf(kh(i), ji)

and abbreviate the right hand side by Ψ(k,B, j). Just as above, for the space
discretization we use a grid Γ, now covering a two–dimensional rectangular
domain [0, K] × [0, B]. For each cell Cl, l = 1, . . . , Q of the grid we use a
collection of test points xi

l = (ki
l , B

i
l ), i = 1, . . . , N in order to compute the

set image

Φ(Cl, ̄) =
⋃

m

Cm for all m ∈ {1, . . . , Q} with Ψ(ki
l , B

i
l , j

i) ∈ Cm

where ̄ = (j1, . . . , jN) is a vector of N control values associated to the N
test points. For a sequence (̄i), i = 0, 1, 2, . . . of such control vectors we can
iterate the map Φ and we denote the resulting iterated map by Φi(Cl, (̄i)).
Now we can define the following three sets

DΓ =
⋃

m

Cm for all m with Φi(Cm, (̄i)) ⊆ A for all (̄i) and some i

BΓ =
⋃

m

Cm for all m with Φi(Cm, (̄i)) ∩ A = ∅ for some (̄i) and some i

EΓ =
⋃

m

Cm for all m with Cm 6⊆ DΓ and Cm 6⊆ EΓ

These sets are easily computed by a dynamic programming type iteration
and under appropriate conditions it can be shown that the set DΓ approx-
imates D, the set BΓ approximates Dc (the complement of D) and the set
EΓ approximates ∂D (the boundary of D), which in our case is exactly the
curve B∗(k). It turns out that for obtaining more and more accurate approx-
imations (with respect to the space discretizations) it is sufficient to increase
the accuracy on the set EΓ, i.e., to refine the cells Cm ⊆ EΓ.

While the convergence analysis in the general case is rather complicated
and depends on certain properties of D, for our problem we can use the
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fact that the boundary ∂D is given by the curve B∗(k) which is monotone
increasing in k. Hence, if we use a rectangular grid, and choose the test
points in each cell to be the 4 corners of this rectangular cell, we obtain that
if a cell Cm intersects both D and Dc, then there exist test points xk1

m and
xk2

m in this set such that xk1

m ∈ D and xk2

m 6∈ D. Consequently, the iterated
cell image Φi cannot be contained in A for all (̄i) (implying that Cm 6⊆ DΓ)
but it intersects A for each (̄i) (implying that Cm 6⊆ BΓ). Thus, if a cell
Cm intersects both D and Dc then we obtain that Cm ⊆ EΓ which finally
yields that the set EΓ always covers the boundary ∂D and hence gives an
approximation of the curve B∗(k) whose accuracy is equal to the width of
the set EΓ.42

Since the problem which is solved by this algorithm is not a classical
optimal control problem (though it can be interpreted as an optimal control
problem for the set valued dynamics) it is not possible to obtain optimal
trajectories with respect to some given functional. However, it is not too
difficult to prove that the boundary of a domain of attraction D is weakly
invariant (i.e., for an initial value on the boundary ∂D we can always find
trajectories that remain on ∂D for all future times), provided it is a “proper”
domain of attraction, i.e., its boundary does not intersect with the boundary
of A. Due to this fact, for each initial value (k,B) ∈ BΓ (recall that this
set forms our numerical approximation of the set {(k,B)|B ≤ B∗(k)} of
subcritical initial values) we can compute a control sequence ji realizing a
(discrete time) trajectory for which Bh(i) remains bounded for all times i ≥ 0
and for initial values on the upper part of the boundary ∂BΓ we can even
expect to find trajectories that stay on this upper part of ∂BΓ for all future
times, i.e., they are (up to the numerical error) of the form (k(t), B∗(k(t)).
The limiting behavior of these trajectories can then be used for the detection
of the thresholds, separating different domains of attraction, and it turns out
that this procedure yields very good results.
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Endnotes

1See Hanke (2003, ch. 2) where this is shown using option prices with endogenous stock

price process.

2For details see Merton (1974).

3Empirical studies on Tobin’s q and investment can be found in Abel and Blanchard (1986),

Cochrane (1991), Abel and Eberly (1994) and Lettau and Ludvigson (2002), in particular

the latter state that perfect capital markets are hereby presumed.

4See Rouwenhorst, (1995).

5We are grateful for comments on this issue by a referee of the journal.

6For asset pricing with all equity finance of firms, see Grüne and Semmler (2003). As has

been argued since long, in the case of an all equity financed firm the optimization problem

of the firm and the one from the consumption based asset pricing theory should give the

same results.

7See, for example, Duan, Ganthier, Simonato and Zaanoun (2002). The survey of empirical

methods is given of how to estimate the asset value of the firm from time series of its

equity value.

8A stochastic version of such a dynamic programming algorithm is used in Grüne and

Semmler (2002) where a consumption based asset pricing model is solved.

9 see Hankel (2003).

10See Tobin (1969).

11 Hayashi (1982) presents conditions under which average and marginal q are equal.

12Numerous tests on investment and the average and marginal q have been undertaken.

See, for example, Abel and Blanchard (1986) and recently Lettau and Ludvigson (2002)

and the discussion of the recent empirical literature therein. In consumption based asset
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pricing models the price of an asset purchases a dividend stream for consumption whereby

the discount factor is derived from a long term objective of the asset holder, namely the

subjective discount factor times the growth rate of the marginal utility in consumption,

for a theoretical analysis see Cochrane (2001), ch. 1 and for a numerical study, see Grüne

and Semmler (2003).

13Investment models with credit market borrowing from imperfect capital markets can be

found in Townsend (1979), Kiyotaki and Moore (1997), Bernanke, Gertler and Gilchrist

(1999) and Miller and Stiglitz (1999). In these models the impact of imperfect credit

market borrowing and debt dynamics on economic activity is studied. See also Flaschel,

Franke and Semmler (1997, ch. 12) for the impact of finance constraints on investment.

Yet in those models the implications of debt financing on firms’ asset pricing and credit-

worthiness has not been sufficiently explored.

14 This literature originates in the seminal work by Townsend (1979).

15 We, in order to simplify matters, do not employ a stochastic version but rather employ

a deterministic framework. A stochastic version is discussed in Sieveking and Semmler

(1999) and Grüne and Semmler (2003). Recent work has been undertaken by nesting

credit market imperfections and endogenous borrowing cost more formally in intertemporal

models, see Carlstrom and Fuerst (1997), Cooley and Quadrini (1998) and Krieger (1999).

16As Gomes et al (2002) show for a large class of models one can expect the external finance

premium indeed to be equal to the premium necesssary to compensate lenders for the

default risk. Gomes et al (2002) measure the default risk by the spread of corporate bonds

and T-bills. Another proxy is the relative size of external finance to capital, see Gomes et

al (2002).

17Another way to state the risk premium, and thus the risk structure of interest rates if

there is debt with different maturity, is R(τ) − θ with R(τ) the yield to maturity τ , see

28



Merton (1974). Hereby R(τ) is then implicitly defined as e−R(τ)τ = F (V,τ)
B

.

18Note also that for each firm bonds with different maturity could have different risk premia

which we will, however, disregard here.

19For details of such a model see Sieveking and Semmler (1999).

20Note that in order to recover the usual optimization problem for linear credit cost, we

state our optimization problem in a way so as to include the limit case when there is a

linear credit cost. Yet our numerical procedure (as briefly summarized in appendix 2) can

solve the difficult problem when there are state dependent default premia.

21The model can also be interpreted as written in efficiency labor, therefore σ can represent

the sum of the capital depreciation rate, and rate of exogenous technical change. Note

that in (4) a consumption stream could be included. In the study by Grüne, Semmler and

Sieveking (2003) such a consumption stream is treated.

22 As aforementioned in computing the present value of the future net income we do not have

to assume a particular fixed interest rate, but the present value, V (k), will, for the optimal

investment decision, enter as argument in the credit cost function H (k(t), V ((k(t)) .

23Note, however, that in the first two strands of literature mentioned in sect. 2 there is

usually a stochastic version used where in the HJB equation then, using Ito’s lemma, also

the derivatives of V with respect to the random disturbance would appear in the HJB

equation.

24For more details of the subsequent derivations, see Grüne, Semmler and Sieveking (2002).

25Note that in practise the discount rate θ is often approximated by taking a weighted

average cost of capital (WACC) composed of the weighted average of equity return and

bond return, see Benninga (2000, ch. 2), see also Abel and Blanchard (1986).

26 See Section 5.3 below.

27For a further discussion of the dynamic programming algorithm and more detailed appli-
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cations in economics, see Grüne and Semmler (2002).

28Actually, for the one–dimensional problem at hand it is possible to compute rather accurate

approximations vΓ
h also with equidistributed grid points. In higher dimensions the com-

putational advantage of adaptive gridding is much more obvious, see, e.g., the examples

in Grüne (1997) or Grüne et al. (1999).

29In any numerical method we must restrict ourselves to a compact computational domain,

hence this restriction is natural in this context.

30We want to note that the technology parameter α does not need to be as high as we here

assumed to obtain multiple equilibria, sufficient nonlinearity in adjustment costs will also

generate that result.

31Note that we, of course, could choose another source of heterogeneity of firms, namely by

assuming different technology parameters for firms. This might be another line of research

which we will not pursue here.

32 In all our experiments larger control ranges did not yield different results.

33In either case debt is controllable for V − B ≥ 0. As mentioned in section 4, in our

DP algorithm the grid about the threshold point, is particularly refined where the value

function at this point, results in a non–differentiable value function and hence in large

local errors.

34As we will show, when presenting our numerical results, the parameter α2 generates only

moderate steepness of the credit cost curve.

35 For small values of α2 it turns out that the present value curve satisfies V (k) < k, hence

this change of the formula has no effect on V (k) .

36Note that this effect could not be seen in Merton (1974) and Modigliani and Miller (1958)

and since the firm’s asset value in their studies, is exogenously given.

37 As mentioned in appendix 2 the boundary of the domain of attraction D = {(k,B) |B >
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V (k)} of the set A = {(k,B) |B ≥ ck} is invariant for the trajectories, provided ∂D and

∂A do not intersect. Here we have V (k) = ck, i.e., the boundaries ∂D and ∂A do intersect

(they even coincide) and consequently we cannot expect invariance.

38 This curve is difficult to see because it coincides with the curve for supt≥0 B(t) < ∞ for

small k and with the restriction curve B = ck for large k.

39 The simulation are halted at zero, but we would like to report if continued the B(t) curve

becomes negative and tends to −∞.

40Our above analytical study of the debt control problem and suggests some methods of how

to empirically evaluate sustainable debt, see Semmler (2003, ch. 4).

41We use the simple first order Euler scheme here in order to avoid too much technicality

in our presentation. For higher order discrete time approximations see, e.g., Chapter 5 of

Grüne (2002).

42Of course, this discussion concerns the spatial discretization error only. For the analysis

of the full error we refer to the cited references.
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