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Abstract—We propose a model predictive control (MPC) often impossible to compute in practice due to the computa-
strategy for sampled-data implementation (with the zero order tional burden associated with solving the Hamilton-Jacobi
hold assumption) of continuous-time controllers for general equations, different suboptimal solutions are much more

nonlinear systems. We assume that a continuous-time controller tractable. E le th del dicti di
has been designed so that the continuous-time closed-loop ractable. For example, the model predictive (or receding

satisfies all performance requirements. Then, we use this control N0rizon) control has a manageable computational complexity
law indirectly to compute numerically a sampled-data controller ~ for relatively large nonlinear problems [7], [9], [14].

via an MPC strategy that minimizes the mismatch between the |t js the purpose of this paper to describe and numerically
solutions of the sampled-data model and the continuous-time y,,syrate a novel model predictive control scheme that can be
closed-loop model. We present conditions under which stability used in implementing digitally continuous-time controllers
and sub-optimality of the closed loop can be proved. p g dig y )
that have been already designed. The cost function that
|. INTRODUCTION we consider penalizes the difference of solutions of the
_ ) continuous-time closed-loop system and the sampled-data so-
_Nowadays, modern controllers are typically implementeg iong | this sense, the control scheme that we consider can
digitally and this fact strongly motivates investigation ofj), reqarded as a nonlinear and sub-optimal version of linear
sampled-data systems that consist of a continuous-time plagk, it presented in [1], [3]. For simplicity, we only consider
controlled by a discrete-time (digital) controller. While toolSjqita| implementation of static state feedback controllers and
for analysis and d_es_|gn of linear samplgd-data systems affe present results only for unconstrained MPC. Stability of
well developed, similar results for nonl_mgar systems St"bur control scheme follows from recent results in [7] and
need dfavelopment to be as useful as their linear cour_lterparigs.anmyzed in detail in [15]. Under appropriate conditions
A possible approach for sampled-data controller design is ur MPC scheme is also inverse optimal (or sub-optimal) in

first design a continuous-time controller for the continuouséome sense. which is similar to standard MPC results. see
time plant ignoring sampling and then discretize the obtainelq4] ’ ’

c?ntrglltalrdfor d'.g'ta.l |mplerrr]1e(;1tat|on h[3]’ [‘:’]]’ I[Elzl] T_Ir_]e . The paper is organized as follows. In Section |l we present
classical discretization met 0as, such as the =Uler, TUSWhaliminaries, pose the problem we consider and present
or matched pole-zero discretization are attractive for the

L ) S ur control scheme. Details about its stability and inverse
simplicity but they may not perform well in practice since the

. ) = optimality properties are given in Section Ill. I1ts numerical
required sampling rate may exceed the hardware “m'tat'ori'rgplementation and numerical examples are presented in

even for linear systems [1], [10]. This has lead to a ranggg (s |\, The final section V concludes our paper.
of advanced controller discretization techniques based on

optimization ideas that compute "the best discretization” of Il. PRELIMINARIES

the continuous-time controller in some sense. A nice account ) )

of these optimization based approaches for linear systems had "€ set of real numbers is denotediasA function 7 :

been given in the Bode Lecture by Anderson in [1] and latdf>0 — R>o is called classg if it is continuous, zero at

in the book [3]. zero and non—decregsmg. It is qf cIdés_:f it is contlr_1u.0t_Js,
We are not aware of a similar optimization based approadif'© &t zero and strictly increasing. Itis of class, if it is

for discretization of continuous-time controllers for nonlinea\f“ls0 unboun_ded. Itis of cIa;@ if it is strictly p03|t|v_e z?m_d

systems. A possible reason for this may be the inherent cofS decreasing to zero as its argument tends to infinity. A

putational complexity of nonlinear optimal control problemgdunction 5 : R>o x R>o — R is of classK.L if for every

that inevitably require solutions to Hamilton-Jacobi typd!X€d ¢ = 0 the function/3(-,7) is of classk’ and for each

equations. However, while nonlinear optimal controllers ard*ed s > 0 the function3(s, -) is class.. Gi\éenTV(;ctors
&,z € R™ we often use the notatioft, z) := (§* z*)".
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vjo,n—1)) Of the cost of the form:

Standing Assumptions: Tur(e ) = F(E(tar). 2(tar) @)
1) A continuous-time controllen, = w(z), such that M N’]a_;’lv[o’tM*” o MM
u(z) € U,vx € R™ has been designed for the o N ‘
continuous-time plant (1) so that the continuous-time + ; 6 CE(E & vp,g) — w(t 2),vi) dt

closed-loop system
where/ : R® x U — Ryp and F' : R" x R® — Rxg. In

z(t) = fx(t), u(z(t))) z(0) ==z (2) particular, at each sampling interval we solve the following

. . o unconstrained optimization problem:
is (globally) asymptotically stable and satisfies all

performance requirements. Qon-1 = argv[ inf ]JM(£7x,v[o7M_1]) )
2) The controller is to be implemented using a sampler Ot
and zero order hold. In other words, for a given v, € U  Vie{o,...,.M—1},

fixed sampling periodl’ > 0 the control signal is where the actual plant stateis measured at sampling times

constant during sampling intervals, i) = u(tx) = andz is the nominal reference state from (2), which is deter-
const.,Vt € [ty tp+1),k € N, wherety, := kT. U mined numerically. Moreover, we implement the controller
We will always usex(t,zo) to denote the solution of the in areceding horizon fashion where at each sampling interval
system (2) at timeé emanating from the initial state(0) = we apply only the first control
xo. We assume in what follows that(z,u(z)) is locally .
Lipschitz inz and, hence, for any(0) = x, the continuous u=uy(§, ) = o (8, x) ©6)
time closed loop system (2) has a unique solution. in the optimal sequencé ;1. At the next sampling

Before we pose the problem we consider, we first defing@terval the new control sequence is obtained by solving
what we mean by solutions of the sampled-data system. Thigain the optimization problem with new measured states
definition is the same as the definition®fsolution (sampled and only the first control in the sequence is actually applied.
solution) proposed in [4]. Given an initial sta€to) = o Note that the receding horizon control law is a static state
and a control signab(t) = vy, t € [ty,tx+1),k € N, the  feedbacku = uy, (&, z) that is implemented in a sampled-
solution of the sampled data system on intef¥igl?1] is the  data fashion so that the overall closed loop system can be

solution of the continuous time system: written as follows:
£(t) = F(E(t), o), £00)=¢. (3) ) = FE®),umEte),2(tr)), tE [tr trr1)
Let the solution of this system at timie¢ = T' be denoted as o(t) = flet),ux(t)) ()

§(t1). Then, solution of the sampled-data system on the timgith ¢(0) = ¢ and z(0) = =.

interval [t1, 2] is the solution of the continuous-time system Remark 2.1:0ne goal of our analysis will be to show that
: the system (7) is asymptotically stable since then we have
£(t) = fE(),vm1), &), y (@) ymp y

and so on. Denote a sequence of contiglsk € [0, M] as (€W, 2O < B 28 ¥ =0, ®
vjo,n)- The solution of the sampled data system at time for some 3 € KL, which implies tracking, i.e.
starting at§, and under the sequeneg, »; is denoted as lim; .. [{(t) — z(t)| = 0. It is obvious from item 1) of our
&(t, €0, vio,ar7) OF simply £(t) when&, and vy 5y are clear Standing Assumptions thainy sampled-data controller that
from the context. yields lim;_, |£(¢)| = 0 would imply tracking. However,
The problem that we consider in this paper is as followsnodel predictive controllers that we propose are sub-optimal
Find a sampled data controller so that for any givgio) = ¢ in an appropriate sense (see Theorem 3.5) and, hence,
and z(0) = z, the solution{(t) of the sampled-data systemthey are not only achieving tracking but also do so in an
reproduces the solutior(¢) of the continuous-time systemappropriate sub-optimal manner.
"as close as possible”. Remark 2.2:Note that in the system (7) the control de-
The optimal solution of the above problem would necessasigner can choose to initialize the bottom continuous-time
ily involve infinite horizon minimization (optimization) of subsystem in a particular manner, since this is just a reference
some measure of the mismatch between sampled-data anddel to be used in computing the controliey; (¢, x). For
continuous-time solutions¢(-) and z(+)). While for linear instance, we could measure the initial state of the sampled-
systems this problem is feasible, cf. [1], [3], for nonlin-data system at the initial tim&(0) = ¢ and then let
ear systems infinite horizon optimization typically leads tac(0) = £(0) = ¢£. This makes sense because we would
computationally intractable problems: Hence we will insteatlke the sampled-data system to recover as close as possible
investigate suboptimal model predictive (or receding horizorf)ehavior of the continuous-time system from the same initial
controllers that are known to be much more manageabt®ndition. Nevertheless, we will present analysis of stability
computationally. In particular, given a fixed positive integeof the system (7) that yields bounds on transients for arbitrary
M, the controllers we consider involve minimization (ininitializations.



Remark 2.3:A brute force approach to solving the abovewe can rewrite the cost (4) as follows:
problem is to simply implement themulatedcontroller: M1

u(t) = u(@(te)),  VEE [boterr), keN Tu (8, 2,u) = ZO Q&> iy ui) + Fl&ar, o) (11)
and then sample as fast as possible (rediieThis ap- where Q is defined in (10) and;,»; are solutions of the

proach was shown in [12] to recover the performance Qfiscrete-time system (9). Finally, optimization problem (5)
the continuous-time system in an appropriate semi-globakn pe rewritten as follows:

practical sensel( is the parameter that we need to reduce M1

sufficiently). However, due to hardware limitations on the . :

.. . b i A u I— = ar inf iy Liy Us + F 1sZ]
minimum achievablél" this approach is often not feasible. (0.0 =1] gv[o,Wu ; Q¢ ) (Cars@ar)
In this paper, we use the designed continuous-time control v, € U Vie {0,1,...,M —1} (12)

law indirectly as a part of a receding horizon strategy.
Remark 2.4:Note that we consider general terminal costgind the discrete-time model of the closed-loop sampled-data
of the form F(&(tar), z(tr)) instead of the costs of the form system (7) can be written as follows:
F(&(ty) — z(ty)) that may appear to be more natural in
thi(s (con)text. E-|OV\)/39ver, if weythizpk of the terminal cost as the ¢ =G un(§2), " = H() (13)
approximation of the infinite horizon value function, thenwherew,,(-,-) comes from (6).
it is obvious that the form off'(-,-) that we use is more  Remark 2.6:It is a standard result in the literature to show
appropriate since the infinite horizon value functiould  (under weak assumptions) that stability of the discrete-time
notin general have the fornr,, (¢ — z). model (13) implies stability of the sampled-data system (7)
Remark 2.5:The problem we consider can be viewed agsee, for instance [18]).
a special case of a more general problem where we assumeRemark 2.7:Typically the (exact) discrete-time model of
that the reference model which we would like our sampledhe system is not available and hence the controller design
data closed-loop to track is not necessarily of the form (2)eeds to be based on an approximate discrete-time model.
but perhaps of the more general form We do not investigate these issues in this paper and refer
. to the rigorous framework for controller design based on
#(t) = gx(t) () tE [t tenr) s approximate discrete-time models developed in [17], [16].
where we assume that this reference model is stable andWWe next adapt appropriate definitions and results from [7]
satisfies all performance requirements. to be applicable for stability analysis of (13). Some of these
definitions can be further relaxed (see [7]) but the version
B. Stability properties of discrete-time MPC schemes we present suffices for our purposes.

Our stability results will be heavily based on recently Definition 2.8: Consider the system (9) and a function
proved stability results of discrete-time MPC schemes in [7[¢ = Q(&,z,u). The system (9) is said to be detectable
A unique feature of these results is that the terminal angiom @ with respect to(@w, aw,yw) if aw,yw € Koo
stage costs do not have be positive definite functions of tff1d @w € G and there exists a continuous functiéh :
state, which is the case for our MPC scheme. Moreover, the~ — R>o such that for all(¢, ) € R*" and allu € U:
terminal cost does not have to be a local control Lyapunov

. . . . W (& z) <aw (| x)]) (14)
function for the system to show stability. In this section, we o
summarize results from [7] and in the next section we show W(G(&,u), H(z)) — W(,z)
how they can be used to analyze stability of the closed loop < —aw (& 2)]) +yw(Q(& z,u))  (15)

system (7). To this end, we introduce an auxiliary discrete- Definition 2.9: We will say that the terminal cost’ is
time problem since [7] deal only with discrete-time systemg2 control Lyapunov function for the system if it can be
Note that given any fixed sampling perigd> 0 the (exact) decomposed aB(&,x) = Fy(§,x) = ['(M)-F(&,z), where
discrete-time model of the uncontrolled sampled-data systeid is the optimization horizon, the functidn: Z>; — R>;
(3), (2), when it is well defined, has the form: is nondecreasing and unbounded and, moreover, there exist
functionsa ., @g € Ko such that
& = GEu)  £0)=¢

zt = H(z) 2(0) ==z , (9) ap(|(& 7)]) < F(f,x)

2n i
where G(¢,u) = &(T.¢,u) and H(z) = 2(T,z). We and for every(¢, x) € R*" there exist € U such that
denote the solutions of the discrete-time model (9) as F(G(& u),H(z) - F(&z) < 0
§(k, &, vp0,—17) and z(k, x) or simply by &, and z;, when < =
the initial states and the control sequence are clear from the-l-he following resultsQ\E\férxé qg)rovgd iﬁcf%.(g’ o) -
context. Moreover, by introducing the following: Theorem 2.10:Suppose that: '

T ; - )
Q& x,u) = /o 0(E(s, & u) — x(s,2),u)ds (10) (E:)) ggngimﬁzd(?ontmuous'



(iii) The system (9) is detectable fro@ (¢, z, u) for some (iii-c) f(-,-) andu(-) are locally Lipschitz in their arguments;

functions (aw, yw,aw); (iv) The value function is such that for somaec K., we
(iv) The value function is such that for soraec K., we have thatV;(¢,z) < @(|(¢,x)|) for all ¢ > 0 and all

have thatV;(¢,z) < @(|(&,z)|) for all i« > 0 and all (&,z) € R?™.

(& x) e R*™ Then, there exist§ € KL such that for each pair of strictly

Then, for each\/ > 2 there existay, oy, ay € K, By €  positive real numbergA, §) there existsM; € Zs; such
KL and a continuous functioly; : R*" — R, such that that for all (¢,z) € B and M > M; the solutions of the

for all (¢,2) € R?™ we have: system (7) satisfy:
ay (I€,2))) = Yu(& o) < av((&2))) (A8)  |(g(t), o(t))] < max{B(|(€ x)[,1),0}  ¥t>0. (19)
Yu (G up(€,2)), H(x)) — Y (&, x) Proof The proof consists of showing that conditions of
< —ay((€&.2)) + By ((€,2), M) . (17) Theorem 3.1 imply that all conditions of Proposition 2.12
) ) N hold for the underlying discrete-time system, details can be
Moreover, if the following condition also holds: found in [15]. -
(V) The terminal cost” is a control Lyapunov function for  \ne note that Remarks 2.13 and 2.14 hold accordingly for
the system (9), . this theorem.
then there exists a continuous functidh, and 3y € KL Remark 3.2:Note that although we are considering an
such that for all(¢, z) € R*" (16) holds and unconstrained optimization problem, the problem may not be
: om . -
Yar (G, unt (€, 7)), H(z)) — Yar (€, ) feasible for all(¢, z) € R*™ andw € U. First, controllability

of the sampled-data (and, hence, discrete-time) system can
be lost due to sampling. Moreover, due to possible finite
escape times, the solutions of the sampled-data system may
not be defined for all initial states and inputs. However, it is
standard to show that both of these issues disappear on any
egiven compact set if we sample fast enough.

Remark 3.3:Note that our problem can be interpreted as a
tracking problem where we want trajectories of the sampled-
data system to track the trajectories of the continuous-time

[(&k, )| < max{B(|(&, )|, k),d} Vk>0. (18) model. This setup is standard in the output tracking literature
Suppose, moreover, that condition (v) of Theorem 2.10 holdg'.here the continuous-time model is termed an exogenous
Then, for each pair of strictly positive real numbérs, ) model (e.g. see [8]). We n_ote, however, that our controller
there existsM; € Z-, such that for all(¢,z) € Ba the does not have the typ|ca_l mterna! model structure because
solutions of the system (13) satisfy (18). our exogeneous system is not qugon stable.

Remark 2.13:Significance of the condition (v) in the | It is mteres_tln_g to note t_hat similar to standard results
above theorem is that the prediction horizéfy obtained n model_ predictive control I|t(_arqture (see [.1 4]), under extra
from the proof is typically smaller thad/; for the same assumpt|ons our control law is inverse optimal. ,
given (A, 4). Assumzptlon 3.4Suppose thaf’ is such that there exists

Remark 2.14:Under additional assumptions on the func=X/ R and a control lawu = uy(¢, ) such that the
tions aw,aw,yw,a one can conclude stronger stabilityfo”m"’Ing conditions hold:
properties, like, e.g., exponential stability, cf. [7] and [15]. 1) uy(§,x) € U, for all (§,z) € X

Remark 2.15:With minor changes one can state regional 2) if (§,z) € Xy, then(G(&,uyp(§,x)), H(x)) € X§
stability results instead of the global results presented here. 3) fOE f;')' (5795() G)Xf vg?e( have t(hatf;)(G(&Uf(S,I))v
H(z 7F€,£L’ <- 571',’&'5,1' .

I1l. STABILITY AND OPTIMALITY For details on how to construgt ajl‘ndé meeting Assump-
Under reasonable assumptions we can conclude stabilfgn 3.4 we refer to [15].

of the sampled-data system (7). The following theorem is the The following theorem is our main result on inverse

< —ay (|, 2)]) + By (I(€, )|, T (M))

Remark 2.11:Explicit formulas for computing all bound-
ing functions in Theorem 2.10 are given in [7].

A direct consequence of Theorem 2.10 is

Proposition 2.12: Suppose that items (i), (ii), (iii) and (iv)
of Theorem 2.10 hold. Then for each pair of strictly positiv
real numbergA, §) there existsM; € Z>, such that for all
(&, x) € Ba the solutions of the system (13) satisfy:

main result in this context. optimality.
Theorem 3.1:Suppose that the following conditions hold:  Theorem 3.5:Consider the discrete-time plant model (9).
() ¢ andF are continuous; Suppose that Assumption 3.4 holds. Then, there exists a set
(i) U is bounded; Xy C R2" and a functionQ : R™ x R™® x U — R, with
(ii-a) The continuous-time system (2) is globally asymptotQ(¢, z, uns) > Q(E, x,unr), Y(€, ) € Xar,u € U such that
ically stable; for all (¢,z) € X, the controller (6) minimizes the cost
(iii-b) There existsry > 0 andy € K., with! -
tr) > mox { o ()l 90} e T (& uo00) = 3 Qe zir)

=0
Proof: By checking the principle of optimality one
1A similar condition was first used in [2]. proves the optimality forQ(¢,z,u) = Q& x,u) +



Var—1(G(&,u), H(x)) — Vi (G(&,u), H(x))]. Then As- convergence can still be shown, see [19]. The stepcsizds
sumption 3.4 is used to sho@(¢, z,up) > Q(&,z,up), Obtained by minimizing a merit function such that the natural
see [15] for details. B step sizen® = 1 of the Newton method is reduced but one
can expect it to be close to 1 in a small neighborhood*of
We illustrate the performance of our algorithm by a third
In order to calculate a numerical solution of the optimabrder Galerkin approximation of the Moore—Greitzer model
control problem a direct discretization method is used. ) 3 1
Following [13], the optimal control problem can be ¢ = —- §¢>2 - 54253 —3R¢ — 3R
replaced approximatively using numerical approximations s
E(t,&,u) of £(t,&,u) and Z(t, z,u) of z(t, z), respectively, v o= —u )
to computearginfy, ,, . Jo(&, 7, vjo,a—1)), Where R = —oR(R+2¢+¢7)

A stabilizing continuous time feedback has been obtained in
[11] and is given by

IV. NUMERICAL IMPLEMENTATION AND EXAMPLE

JO(ga :U/U[O,Mfl]) =
m—-1 T

> /5(5(875%) —&(s,a7),vj)ds + F(¢M, 2™) u = —(c1 —3¢) (W - %df" - %dﬁ’ — 3¢R — 3R>

j=0 0

GH=LT,¢,v), M =8(T,a7), 2" =2, =6 ) (w —c1p+ %& +3R) ~¢—=30R (R+2¢+¢%)
Using the Euler approximation one can guarantee that the L
order of convergence of this approximation G§7T°), see Using the parameterscy, cz,0) = (1,2,2), initial yalue
[13]. However, in our MPC scheme the purpose is to use &> %> 1) = (6,25,1) and sampling ratd” = 0.05, Figure
large sampling rat& which would cause large errors using1 Sh_O_WS that using emulation efaccording to R_en_wark 2.3
Euler. To avoid this conflict we generageand by the fifth stabilizes the system but that the model predictive control

order Runge—Kutta—England method with adaptive step Siz‘aégorithm improves on the emulation design since the trajec-
control on each intervaljT, (j + 1)T], j = 0,...,M — 1. tories of the system stay closer to solutions of the system

The same scheme is used for the numerical approximatidfith continuous feedback. In this case the length of the

of the integral appearing in the definition g§. horizon was chosen to bE)T.

The optimization problem is how obtained by introducing Changing the above p.arameters(t@,c%a) - (1,50,2),
the variablez :— (€0,...,¢M 20 ... 2M 40 . " uM) ¢ it can be seen from Figure 2 that emulation ©fdoes

no longer stabilize the system. However, also in this case
the implemented MPC scheme is able to generate a control
sequence that stabilizes the system and keeps the sampled

RM:, N, = (2n+m) - (M + 1) to rewrite the approximated
optimal control problem asin, cg~. F(z) with

M-1 1 R ‘ ‘ data solution close to the continuous time one. Note that we
F(z)=Y_ /l(g(s7gﬂ7vj)—:%(s,x]),vj)ds+F(§M,a:M) achieved these numerical results without using a Lyapunov
3=0 7} function for the terminal cost.
and z satisfying the constraints V. CONCLUSIONS
[—gitt +£(h, &9, 0;)]j=0.... -1 We have considered implementation of continuous time
Gl e [—27+t 4 Z(h, 29)] =0, M1 _0 control laws using a sampled feedback with a zero order
(2) = 20— - hold assumption. The implementation aims at minimizing
0 —¢ the distance between the trajectories of the sampled-data

This | Il Kk bl hich b ved usi hsystem and the continuous-time system in a receding horizon
Is 1s a well known problem which can be solved using the;q,io \we have considered unconstrained model predictive

KKT Condition_s_ by SQP methods. These are known to bce,ontrol and under different conditions proved their stability,
stable and efficient even for large scale systems and requjfgq e optimality and feasibility properties

the functionsF’ and G to be sufficiently often differentiable
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