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Abstract— We propose a model predictive control (MPC)
strategy for sampled-data implementation (with the zero order
hold assumption) of continuous-time controllers for general
nonlinear systems. We assume that a continuous-time controller
has been designed so that the continuous-time closed-loop
satisfies all performance requirements. Then, we use this control
law indirectly to compute numerically a sampled-data controller
via an MPC strategy that minimizes the mismatch between the
solutions of the sampled-data model and the continuous-time
closed-loop model. We present conditions under which stability
and sub-optimality of the closed loop can be proved.

I. I NTRODUCTION

Nowadays, modern controllers are typically implemented
digitally and this fact strongly motivates investigation of
sampled-data systems that consist of a continuous-time plant
controlled by a discrete-time (digital) controller. While tools
for analysis and design of linear sampled-data systems are
well developed, similar results for nonlinear systems still
need development to be as useful as their linear counterparts.
A possible approach for sampled-data controller design is to
first design a continuous-time controller for the continuous-
time plant ignoring sampling and then discretize the obtained
controller for digital implementation [3], [5], [12]. The
classical discretization methods, such as the Euler, Tustin
or matched pole-zero discretization are attractive for their
simplicity but they may not perform well in practice since the
required sampling rate may exceed the hardware limitations
even for linear systems [1], [10]. This has lead to a range
of advanced controller discretization techniques based on
optimization ideas that compute ”the best discretization” of
the continuous-time controller in some sense. A nice account
of these optimization based approaches for linear systems has
been given in the Bode Lecture by Anderson in [1] and later
in the book [3].

We are not aware of a similar optimization based approach
for discretization of continuous-time controllers for nonlinear
systems. A possible reason for this may be the inherent com-
putational complexity of nonlinear optimal control problems
that inevitably require solutions to Hamilton-Jacobi type
equations. However, while nonlinear optimal controllers are
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often impossible to compute in practice due to the computa-
tional burden associated with solving the Hamilton-Jacobi
equations, different suboptimal solutions are much more
tractable. For example, the model predictive (or receding
horizon) control has a manageable computational complexity
for relatively large nonlinear problems [7], [9], [14].

It is the purpose of this paper to describe and numerically
illustrate a novel model predictive control scheme that can be
used in implementing digitally continuous-time controllers
that have been already designed. The cost function that
we consider penalizes the difference of solutions of the
continuous-time closed-loop system and the sampled-data so-
lutions. In this sense, the control scheme that we consider can
be regarded as a nonlinear and sub-optimal version of linear
results presented in [1], [3]. For simplicity, we only consider
digital implementation of static state feedback controllers and
we present results only for unconstrained MPC. Stability of
our control scheme follows from recent results in [7] and
is analyzed in detail in [15]. Under appropriate conditions
our MPC scheme is also inverse optimal (or sub-optimal) in
some sense, which is similar to standard MPC results, see
[14].

The paper is organized as follows. In Section II we present
preliminaries, pose the problem we consider and present
our control scheme. Details about its stability and inverse
optimality properties are given in Section III. Its numerical
implementation and numerical examples are presented in
Section IV. The final section V concludes our paper.

II. PRELIMINARIES

The set of real numbers is denoted asR. A function γ :
R≥0 → R≥0 is called classG if it is continuous, zero at
zero and non-decreasing. It is of classK if it is continuous,
zero at zero and strictly increasing. It is of classK∞ if it is
also unbounded. It is of classL if it is strictly positive and
it is decreasing to zero as its argument tends to infinity. A
function β : R≥0 ×R≥0 → R≥0 is of classKL if for every
fixed t ≥ 0 the functionβ(·, t) is of classK and for each
fixed s > 0 the functionβ(s, ·) is classL. Given vectors
ξ, x ∈ Rn we often use the notation(ξ, x) := (ξT xT )T .

A. Problem formulation

Consider the plant:

ẋ = f(x, u) , (1)

wherex ∈ Rn andu ∈ U ⊂ Rm are respectively the state
and the control input of the system. Standing assumptions
that we will use throughout the paper are as follows:



Standing Assumptions:

1) A continuous-time controlleru = u(x), such that
u(x) ∈ U,∀x ∈ Rn has been designed for the
continuous-time plant (1) so that the continuous-time
closed-loop system

ẋ(t) = f(x(t), u(x(t))) x(0) = x (2)

is (globally) asymptotically stable and satisfies all
performance requirements.

2) The controller is to be implemented using a sampler
and zero order hold. In other words, for a given
fixed sampling periodT > 0 the control signal is
constant during sampling intervals, i.e.u(t) = u(tk) =
const.,∀t ∈ [tk, tk+1), k ∈ N, wheretk := kT . �

We will always usex(t, x0) to denote the solution of the
system (2) at timet emanating from the initial statex(0) =
x0. We assume in what follows thatf(x, u(x)) is locally
Lipschitz inx and, hence, for anyx(0) = x0 the continuous
time closed loop system (2) has a unique solution.

Before we pose the problem we consider, we first define
what we mean by solutions of the sampled-data system. This
definition is the same as the definition ofS-solution (sampled
solution) proposed in [4]. Given an initial stateξ(t0) = ξ0
and a control signalv(t) = vk, t ∈ [tk, tk+1), k ∈ N, the
solution of the sampled data system on interval[t0, t1] is the
solution of the continuous time system:

ξ̇(t) = f(ξ(t), v0), ξ(0) = ξ . (3)

Let the solution of this system at timet1 = T be denoted as
ξ(t1). Then, solution of the sampled-data system on the time
interval [t1, t2] is the solution of the continuous-time system

ξ̇(t) = f(ξ(t), v1), ξ(t1) ,

and so on. Denote a sequence of controlsvk, k ∈ [0,M ] as
v[0,M ]. The solution of the sampled data system at timet,
starting atξ0 and under the sequencev[0,M ] is denoted as
ξ(t, ξ0, v[0,M ]) or simply ξ(t) when ξ0 and v[0,M ] are clear
from the context.

The problem that we consider in this paper is as follows:
Find a sampled data controller so that for any givenξ(0) = ξ
and x(0) = x, the solutionξ(t) of the sampled-data system
reproduces the solutionx(t) of the continuous-time system
”as close as possible”.
The optimal solution of the above problem would necessar-
ily involve infinite horizon minimization (optimization) of
some measure of the mismatch between sampled-data and
continuous-time solutions (ξ(·) and x(·)). While for linear
systems this problem is feasible, cf. [1], [3], for nonlin-
ear systems infinite horizon optimization typically leads to
computationally intractable problems: Hence we will instead
investigate suboptimal model predictive (or receding horizon)
controllers that are known to be much more manageable
computationally. In particular, given a fixed positive integer
M , the controllers we consider involve minimization (in

v[0,M−1]) of the cost of the form:

JM (ξ, x, v[0,M−1]) := F (ξ(tM ), x(tM )) (4)

+
M−1∑
i=0

∫ ti+1

ti

`
(
ξ(t, ξ, v[0,i])− x(t, x), vi

)
dt

where ` : Rn × U → R≥0 and F : Rn × Rn → R≥0. In
particular, at each sampling interval we solve the following
unconstrained optimization problem:

û[0,M−1] = arg inf
v[0,M−1]

JM (ξ, x, v[0,M−1]) (5)

vi ∈ U ∀i ∈ {0, . . . ,M − 1} ,

where the actual plant stateξ is measured at sampling times
andx is the nominal reference state from (2), which is deter-
mined numerically. Moreover, we implement the controller
in a receding horizon fashion where at each sampling interval
we apply only the first control

u = uM (ξ, x) := û0(ξ, x) (6)

in the optimal sequencêu[0,M−1]. At the next sampling
interval the new control sequence is obtained by solving
again the optimization problem with new measured states
and only the first control in the sequence is actually applied.
Note that the receding horizon control law is a static state
feedbacku = uM (ξ, x) that is implemented in a sampled-
data fashion so that the overall closed loop system can be
written as follows:

ξ̇(t) = f(ξ(t), uM (ξ(tk), x(tk))), t ∈ [tk, tk+1)
ẋ(t) = f(x(t), u(x(t))) (7)

with ξ(0) = ξ andx(0) = x.
Remark 2.1:One goal of our analysis will be to show that

the system (7) is asymptotically stable since then we have

|(ξ(t), x(t))| ≤ β(|(ξ, x)|, t) ∀t ≥ 0 , (8)

for some β ∈ KL, which implies tracking, i.e.
limt→∞ |ξ(t)− x(t)| = 0. It is obvious from item 1) of our
Standing Assumptions thatany sampled-data controller that
yields limt→∞ |ξ(t)| = 0 would imply tracking. However,
model predictive controllers that we propose are sub-optimal
in an appropriate sense (see Theorem 3.5) and, hence,
they are not only achieving tracking but also do so in an
appropriate sub-optimal manner.

Remark 2.2:Note that in the system (7) the control de-
signer can choose to initialize the bottom continuous-time
subsystem in a particular manner, since this is just a reference
model to be used in computing the controlleruM (ξ, x). For
instance, we could measure the initial state of the sampled-
data system at the initial timeξ(0) = ξ and then let
x(0) = ξ(0) = ξ. This makes sense because we would
like the sampled-data system to recover as close as possible
behavior of the continuous-time system from the same initial
condition. Nevertheless, we will present analysis of stability
of the system (7) that yields bounds on transients for arbitrary
initializations.



Remark 2.3:A brute force approach to solving the above
problem is to simply implement theemulatedcontroller:

u(t) = u(x(tk)), ∀t ∈ [tk, tk+1), k ∈ N

and then sample as fast as possible (reduceT ). This ap-
proach was shown in [12] to recover the performance of
the continuous-time system in an appropriate semi-global
practical sense (T is the parameter that we need to reduce
sufficiently). However, due to hardware limitations on the
minimum achievableT this approach is often not feasible.
In this paper, we use the designed continuous-time control
law indirectly as a part of a receding horizon strategy.

Remark 2.4:Note that we consider general terminal costs
of the formF (ξ(tM ), x(tM )) instead of the costs of the form
F (ξ(tM ) − x(tM )) that may appear to be more natural in
this context. However, if we think of the terminal cost as the
approximation of the infinite horizon value function, then
it is obvious that the form ofF (·, ·) that we use is more
appropriate since the infinite horizon value functionwould
not in general have the formV∞(ξ − x).

Remark 2.5:The problem we consider can be viewed as
a special case of a more general problem where we assume
that the reference model which we would like our sampled-
data closed-loop to track is not necessarily of the form (2)
but perhaps of the more general form

ẋ(t) = g(x(t), x(tk)) t ∈ [tk, tk+1) ,

where we assume that this reference model is stable and
satisfies all performance requirements.

B. Stability properties of discrete-time MPC schemes

Our stability results will be heavily based on recently
proved stability results of discrete-time MPC schemes in [7].
A unique feature of these results is that the terminal and
stage costs do not have be positive definite functions of the
state, which is the case for our MPC scheme. Moreover, the
terminal cost does not have to be a local control Lyapunov
function for the system to show stability. In this section, we
summarize results from [7] and in the next section we show
how they can be used to analyze stability of the closed loop
system (7). To this end, we introduce an auxiliary discrete-
time problem since [7] deal only with discrete-time systems.
Note that given any fixed sampling periodT > 0 the (exact)
discrete-time model of the uncontrolled sampled-data system
(3), (2), when it is well defined, has the form:

ξ+ = G(ξ, u) ξ(0) = ξ

x+ = H(x) x(0) = x , (9)

where G(ξ, u) := ξ(T, ξ, u) and H(x) := x(T, x). We
denote the solutions of the discrete-time model (9) as
ξ(k, ξ, v[0,k−1]) and x(k, x) or simply by ξk and xk when
the initial states and the control sequence are clear from the
context. Moreover, by introducing the following:

Q(ξ, x, u) :=
∫ T

0

`(ξ(s, ξ, u)− x(s, x), u)ds (10)

we can rewrite the cost (4) as follows:

JM (ξ, x, u) =
M−1∑
i=0

Q(ξi, xi, ui) + F (ξM , xM ) (11)

whereQ is defined in (10) andξi, xi are solutions of the
discrete-time system (9). Finally, optimization problem (5)
can be rewritten as follows:

û[0,M−1] = arg inf
v[0,M−1]

M−1∑
i=0

Q(ξi, xi, vi) + F (ξM , xM )

vi ∈ U ∀i ∈ {0, 1, . . . ,M − 1} (12)

and the discrete-time model of the closed-loop sampled-data
system (7) can be written as follows:

ξ+ = G(ξ, uM (ξ, x)), x+ = H(x) (13)

whereuM (·, ·) comes from (6).
Remark 2.6:It is a standard result in the literature to show

(under weak assumptions) that stability of the discrete-time
model (13) implies stability of the sampled-data system (7)
(see, for instance [18]).

Remark 2.7:Typically the (exact) discrete-time model of
the system is not available and hence the controller design
needs to be based on an approximate discrete-time model.
We do not investigate these issues in this paper and refer
to the rigorous framework for controller design based on
approximate discrete-time models developed in [17], [16].

We next adapt appropriate definitions and results from [7]
to be applicable for stability analysis of (13). Some of these
definitions can be further relaxed (see [7]) but the version
we present suffices for our purposes.

Definition 2.8: Consider the system (9) and a function
Q = Q(ξ, x, u). The system (9) is said to be detectable
from Q with respect to(αW , αW , γW ) if αW , γW ∈ K∞
and αW ∈ G and there exists a continuous functionW :
R2n → R≥0 such that for all(ξ, x) ∈ R2n and allu ∈ U:

W (ξ, x) ≤ αW (|(ξ, x)|) (14)

W (G(ξ, u),H(x))−W (ξ, x)
≤ −αW (|(ξ, x)|) + γW (Q(ξ, x, u)) (15)

Definition 2.9: We will say that the terminal costF is
a control Lyapunov function for the system if it can be
decomposed asF (ξ, x) = FM (ξ, x) = Γ(M)·F (ξ, x), where
M is the optimization horizon, the functionΓ : Z≥1 → R≥1

is nondecreasing and unbounded and, moreover, there exist
functionsαF , αQ ∈ K∞ such that

αF (|(ξ, x)|) ≤ F (ξ, x)

and for every(ξ, x) ∈ R2n there existsu ∈ U such that

F (G(ξ, u),H(x))− F (ξ, x) ≤ 0
Q(ξ, x, u) ≤ αQ(|(ξ, x)|) .

The following results were proved in [7]:
Theorem 2.10:Suppose that:

(i) Q andF are continuous;
(ii) U is bounded;



(iii) The system (9) is detectable fromQ(ξ, x, u) for some
functions(αW , γW , αW );

(iv) The value function is such that for someα ∈ K∞ we
have thatVi(ξ, x) ≤ α(|(ξ, x)|) for all i ≥ 0 and all
(ξ, x) ∈ R2n.

Then, for eachM ≥ 2 there existαY , αY , αY ∈ K∞, βY ∈
KL and a continuous functionYM : R2n → R≥0 such that
for all (ξ, x) ∈ R2n we have:

αY (|(ξ, x)|) ≤ YM (ξ, x) ≤ αY (|(ξ, x)|) (16)

YM (G(ξ, uM (ξ, x)),H(x))− YM (ξ, x)
≤ −αY (|(ξ, x)|) + βY (|(ξ, x)|,M) . (17)

Moreover, if the following condition also holds:
(v) The terminal costF is a control Lyapunov function for

the system (9),
then there exists a continuous functionYM and β̂Y ∈ KL
such that for all(ξ, x) ∈ R2n (16) holds and

YM (G(ξ, uM (ξ, x)),H(x))− YM (ξ, x)

≤ −αY (|(ξ, x)|) + β̂Y (|(ξ, x)|,Γ(M))
Remark 2.11:Explicit formulas for computing all bound-

ing functions in Theorem 2.10 are given in [7].
A direct consequence of Theorem 2.10 is
Proposition 2.12:Suppose that items (i), (ii), (iii) and (iv)

of Theorem 2.10 hold. Then for each pair of strictly positive
real numbers(∆, δ) there existsM∗

1 ∈ Z≥1 such that for all
(ξ, x) ∈ B∆ the solutions of the system (13) satisfy:

|(ξk, xk)| ≤ max{β(|(ξ, x)|, k), δ} ∀k ≥ 0 . (18)

Suppose, moreover, that condition (v) of Theorem 2.10 holds.
Then, for each pair of strictly positive real numbers(∆, δ)
there existsM∗

2 ∈ Z≥1 such that for all(ξ, x) ∈ B∆ the
solutions of the system (13) satisfy (18).

Remark 2.13:Significance of the condition (v) in the
above theorem is that the prediction horizonM∗

2 obtained
from the proof is typically smaller thanM∗

1 for the same
given (∆, δ).

Remark 2.14:Under additional assumptions on the func-
tions αW , αW , γW , α one can conclude stronger stability
properties, like, e.g., exponential stability, cf. [7] and [15].

Remark 2.15:With minor changes one can state regional
stability results instead of the global results presented here.

III. STABILITY AND OPTIMALITY

Under reasonable assumptions we can conclude stability
of the sampled-data system (7). The following theorem is the
main result in this context.

Theorem 3.1:Suppose that the following conditions hold:
(i) ` andF are continuous;

(ii) U is bounded;
(iii-a) The continuous-time system (2) is globally asymptot-

ically stable;
(iii-b) There existsr0 > 0 andγ ∈ K∞ with1

l(r, u) ≥ max
{

max
|x|≤2r

|f(x, u)|, γ(r)
}

∀r ≥ r0;

1A similar condition was first used in [2].

(iii-c) f(·, ·) andu(·) are locally Lipschitz in their arguments;
(iv) The value function is such that for someα ∈ K∞ we

have thatVi(ξ, x) ≤ α(|(ξ, x)|) for all i ≥ 0 and all
(ξ, x) ∈ R2n.

Then, there existsβ ∈ KL such that for each pair of strictly
positive real numbers(∆, δ) there existsM∗

1 ∈ Z≥1 such
that for all (ξ, x) ∈ B∆ andM ≥ M∗

1 the solutions of the
system (7) satisfy:

|(ξ(t), x(t))| ≤ max{β(|(ξ, x)|, t), δ} ∀t ≥ 0 . (19)
Proof The proof consists of showing that conditions of

Theorem 3.1 imply that all conditions of Proposition 2.12
hold for the underlying discrete-time system, details can be
found in [15].

We note that Remarks 2.13 and 2.14 hold accordingly for
this theorem.

Remark 3.2:Note that although we are considering an
unconstrained optimization problem, the problem may not be
feasible for all(ξ, x) ∈ R2n andu ∈ U. First, controllability
of the sampled-data (and, hence, discrete-time) system can
be lost due to sampling. Moreover, due to possible finite
escape times, the solutions of the sampled-data system may
not be defined for all initial states and inputs. However, it is
standard to show that both of these issues disappear on any
given compact set if we sample fast enough.

Remark 3.3:Note that our problem can be interpreted as a
tracking problem where we want trajectories of the sampled-
data system to track the trajectories of the continuous-time
model. This set up is standard in the output tracking literature
where the continuous-time model is termed an exogenous
model (e.g. see [8]). We note, however, that our controller
does not have the typical internal model structure because
our exogeneous system is not Poisson stable.

It is interesting to note that similar to standard results
in model predictive control literature (see [14]), under extra
assumptions our control law is inverse optimal.

Assumption 3.4:Suppose thatF is such that there exists
Xf ⊂ R2n and a control lawu = uf (ξ, x) such that the
following conditions hold:

1) uf (ξ, x) ∈ U, for all (ξ, x) ∈ Xf

2) if (ξ, x) ∈ Xf , then(G(ξ, uf (ξ, x)),H(x)) ∈ Xf

3) for all (ξ, x) ∈ Xf we have thatF (G(ξ, uf (ξ, x)),
H(x))− F (ξ, x) ≤ −Q(ξ, x, uf (ξ, x)).

For details on how to constructF and` meeting Assump-
tion 3.4 we refer to [15].

The following theorem is our main result on inverse
optimality.

Theorem 3.5:Consider the discrete-time plant model (9).
Suppose that Assumption 3.4 holds. Then, there exists a set
XM ⊂ R2n and a functionQ : Rn × Rn × U → R, with
Q(ξ, x, uM ) ≥ Q(ξ, x, uM ), ∀(ξ, x) ∈ XM , u ∈ U such that
for all (ξ, x) ∈ XM the controller (6) minimizes the cost

J (ξ, x, u[0,∞)) :=
∞∑

i=0

Q(ξi, xi, ui) .

Proof: By checking the principle of optimality one
proves the optimality forQ(ξ, x, u) := Q(ξ, x, u) +



[VM−1(G(ξ, u),H(x)) − VM (G(ξ, u),H(x))]. Then As-
sumption 3.4 is used to showQ(ξ, x, uM ) ≥ Q(ξ, x, uM ),
see [15] for details.

IV. N UMERICAL IMPLEMENTATION AND EXAMPLE

In order to calculate a numerical solution of the optimal
control problem a direct discretization method is used.

Following [13], the optimal control problem can be
replaced approximatively using numerical approximations
ξ̃(t, ξ, u) of ξ(t, ξ, u) and x̃(t, x, u) of x(t, x), respectively,
to computearg infv[0,M−1] J0(ξ, x, v[0,M−1]), where

J0(ξ, x, v[0,M−1]) =

M−1∑
j=0

T∫
0

l(ξ̃(s, ξj , vj)− x̃(s, xj), vj)ds+ F (ξM , xM )

ξj+1 = ξ̃(T, ξj , vj), xj+1 = x̃(T, xj), x0 = x, ξ0 = ξ

Using the Euler approximation one can guarantee that the
order of convergence of this approximation isO(T ), see
[13]. However, in our MPC scheme the purpose is to use a
large sampling rateT which would cause large errors using
Euler. To avoid this conflict we generatẽξ andx̃ by the fifth
order Runge–Kutta–England method with adaptive step size
control on each interval[jT, (j + 1)T ], j = 0, . . . ,M − 1.
The same scheme is used for the numerical approximation
of the integral appearing in the definition ofJ0.

The optimization problem is now obtained by introducing
the variablez := (ξ0, . . . , ξM , x0, . . . , xM , u0, . . . , uM ) ∈
RNz , Nz = (2n+m) · (M + 1) to rewrite the approximated
optimal control problem asminz∈RNz F (z) with

F (z) :=
M−1∑
j=0

T∫
0

l(ξ̃(s, ξj , vj)−x̃(s, xj), vj)ds+F (ξM , xM )

andz satisfying the constraints

G(z) :=


[−ξj+1 + ξ̃(h, ξj , vj)]j=0,...,M−1

[−xj+1 + x̃(h, xj)]j=0,...,M−1

x0 − x
ξ0 − ξ

 = 0.

This is a well known problem which can be solved using the
KKT conditions by SQP methods. These are known to be
stable and efficient even for large scale systems and require
the functionsF andG to be sufficiently often differentiable
in a sufficiently large neighborhoodN(z∗) of the local
minima z∗. The algorithm was first presented in [6] and
computes a sequence(z[k]) via z[k+1] = z[k] + α[k]p[k].
Within this iteration the search directionp[k] is calculated
by generating and solving quadratic subproblems

min
p∈RNz

∇zF (z[k])p+
1
2
pTB[k]p, s.t.G(z[k])+∇zG(z[k])p = 0

whereB[k] is an approximation of the Hesse matrix using
a BFGS update so that the Hesse matrix has to be cal-
culated only once. Therefore the usual quadratic order of
convergence of the Newton method is reduced but superlinear

convergence can still be shown, see [19]. The step sizeα[k] is
obtained by minimizing a merit function such that the natural
step sizeαk = 1 of the Newton method is reduced but one
can expect it to be close to 1 in a small neighborhood ofz∗.

We illustrate the performance of our algorithm by a third
order Galerkin approximation of the Moore–Greitzer model

φ̇ = −ψ − 3
2
φ2 − 1

2
φ3 − 3Rφ− 3R

ψ̇ = −u
Ṙ = −σR(R+ 2φ+ φ2)

A stabilizing continuous time feedback has been obtained in
[11] and is given by

u = − (c1 − 3φ)
(
−ψ − 3

2
φ2 − 1

2
φ3 − 3φR− 3R

)
+c2

(
ψ − c1φ+

3
2
φ2 + 3R

)
− φ− 3σR

(
R+ 2φ+ φ2

)
Using the parameters(c1, c2, σ) = (1, 2, 2), initial value
(φ, ψ,R) = (6, 25, 1) and sampling rateT = 0.05, Figure
1 shows that using emulation ofu according to Remark 2.3
stabilizes the system but that the model predictive control
algorithm improves on the emulation design since the trajec-
tories of the system stay closer to solutions of the system
with continuous feedback. In this case the length of the
horizon was chosen to be10T .

Changing the above parameters to(c1, c2, σ) = (1, 50, 2),
it can be seen from Figure 2 that emulation ofu does
no longer stabilize the system. However, also in this case
the implemented MPC scheme is able to generate a control
sequence that stabilizes the system and keeps the sampled–
data solution close to the continuous time one. Note that we
achieved these numerical results without using a Lyapunov
function for the terminal cost.

V. CONCLUSIONS

We have considered implementation of continuous time
control laws using a sampled feedback with a zero order
hold assumption. The implementation aims at minimizing
the distance between the trajectories of the sampled-data
system and the continuous-time system in a receding horizon
fashion. We have considered unconstrained model predictive
control and under different conditions proved their stability,
inverse optimality and feasibility properties.
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