
A set oriented approach to optimal

feedback stabilization

Lars Grüne
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Abstract

We present a numerical construction of an optimal control based feedback law for
the stabilization of discrete time nonlinear control systems. The feedback is based on
a recently developed numerical solution method for optimal control problems using
set oriented and graph theoretic algorithms. We show how this method can be used
to construct approximately optimal and stabilizing feedback laws and present an a
posteriori error estimation technique for the adaptive generation of the underlying
set oriented space discretization.
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1 Introduction

Optimization based stabilization has been a popular method for many decades,
in particular for linear systems where the linear quadratic controller design is a
by now classical method, see (Sontag, 1998, Chapter 8). The key property that
makes this method work is an appropriately chosen infinite horizon cost func-
tional which will guarantee that an optimal feedback law is also a stabilizing
controller.
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For nonlinear systems stabilization techniques based on direct applications of
infinite horizon optimal control are much less popular. The reason lies in the
fact that nonlinear infinite horizon optimal control problems are difficult to
solve, both analytically and numerically. Hence, instead of solving such prob-
lems, one often tries to circumvent the difficulties, as, e.g., in inverse optimal
design where first a suitable Lyapunov function is designed by techniques like
backstepping and then an optimal control is identified for which this function
is the optimal value function, see e.g. Freeman and Kokotovic (1996); Free-
man and Kokotović (1996). On the numerical side a popular way to avoid
the inherent difficulties of infinite horizon optimal control is receding horizon
or model predictive control where the solutions of a sequence of finite hori-
zon optimal control problems are used for the feedback design, see e.g. Fontes
(2001); Mayne et al. (2000) and the references therein.

Theoretically, however, infinite horizon optimal control based design is very
attractive provided the corresponding optimization problem is numerically
feasible, because it is flexible due to the choice of the cost function, does not
need any analytical a priori information like Lyapunov functions (in contrast
to the inverse optimal approach), allows for the treatment of deterministic and
stochastic perturbations and — since the main numerical work is done offline
— provides feedback laws whose numerical evaluation is fast and easy to im-
plement (in contrast to the receding horizon approach). Approaches for the
construction of such feedback laws reported in the literature (see e.g. Kreis-
selmeier and Birkhölzer (1994), Grüne and Wirth (1999) or Grüne (2000))
demonstrate that this method can work very well, furthermore, a theoreti-
cal framework for the rigorous treatment of sampled data systems using this
approach has recently been developed Grüne and Nešić (2003).

In the present paper, we follow this infinite horizon approach for discrete time
nonlinear systems using a recently developed set oriented technique for the
numerical solution of global optimal control problems from Junge and Osinga
(2004). Set oriented numerical methods have been developed for the anal-
ysis of invariant objects for dynamical and control systems, see Dellnitz and
Hohmann (1997); Dellnitz and Junge (2002); Szolnoki (2003) and also (Grüne,
2002, Chapters 6 and 7). In these methods the state space is divided into cells
and the underlying dynamics of the control system is represented by a graph
on the set of cells. The combination of hierarchical tree data structures with
subdivision techniques which allow to adaptively refine those parts of the state
space where high accuracy is needed make these methods very appealing and
highly efficient. The connection to optimal control problems was established
in Junge and Osinga (2004) via the observation that the graph on the cells
can be complemented by suitably chosen weights on the edges representing the
cost function which then allows for the use of fast graph theoretic algorithms
for the solution of the numerical optimization problem.
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While the convergence of this method in terms of the optimal value function
was proved in Junge and Osinga (2004) it was not completely clear whether
and how one can use this approximate solution for the feedback design prob-
lem. Our paper closes this gap by combining ideas from set oriented methods
Junge and Osinga (2004), dynamic programming Grüne (1997) and Lyapunov
based approximate stability analysis Nešić and Teel (2004) in order to con-
struct a suitable feedback law and prove approximate asymptotic stability for
the resulting closed system. In addition, we develop an error estimation tech-
nique which is adapted to the stabilization problem and allows to derive an
adaptive subdivision of the cell covering used in our numerical approximation.

The paper is organized as follows. In the ensuing Section 2 we describe the
problem formulation in detail. In Section 3 we explain the set oriented numer-
ical solution from Junge and Osinga (2004). The construction of our feedback
is presented in Section 4 together with a proof of approximate optimality for
the case of equally sized cells. The error estimation and adaptive subdivision
ideas and the corresponding optimality and stability proof for the resulting
feedback law are given in Section 5 and, finally, two numerical examples are
presented in Section 6.

2 Problem formulation

We consider the problem of optimally stabilizing the discrete-time control
system

xk+1 = f(xk, uk), k = 0, 1, . . . , (1)

subject to the instantaneous cost g : X × U → [0,∞). Here f : X × U → Rd

is continuous, f(0, 0) = 0, X ⊂ Rd, 0 ∈ X, is compact, U ⊂ Rm, 0 ∈ U , is
compact and g(x, u) > 0 for all x 6= 0. Let U(x) = {u ∈ UN : xk(x,u) →
0 as k →∞} the set of stabilizing control sequences for x ∈ X and S = {x ∈
X : U(x) 6= ∅} the stabilizable subset S ⊂ X. The total cost along a controlled
trajectory is given by

J(x,u) =
∞∑

k=0

g(xk(x,u), uk) ∈ [0,∞].

and we assume that g is chosen such that this sum is finite for each x ∈ S and
appropriately chosen u (see Grüne and Nešić (2003) for details on how such a
g can be found).

Our goal is to construct an approximate optimal feedback u : S → U such
that we can prove a suitable approximate asymptotic stability property for
the resulting closed loop system. The construction will be based on an ap-
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proximation of the (optimal) value function V : S → [0,∞],

V (x) = inf
u∈U(x)

J(x,u)

which will act as a Lyapunov function in the asymptotic stability proofs.

3 Computational approach

In this section we discuss a set oriented numerical method for the computation
of V which was developed in Junge and Osinga (2004). The method relies
on the observation that one may formulate the above discrete-time optimal
control problem equivalently as the problem of finding a shortest path within
a directed weighted graph G = (X, E), where the set E of edges of G is given
by all pairs (x, f(x, u)), x ∈ X, u ∈ U , and the weight w(e) ∈ [0,∞) of the
edge e = (x, f(x, u)) is given by w(e) = g(x, u).

We roughly touch on this equivalent formulation, because we are going to use
a finite version of the graph G in order to compute an approximation to V .
The idea is that on a finite graph which in a certain sense is an approxima-
tion to G, we can apply standard algorithms for computing shortest paths.
More precisely, the algorithm that we need here computes “all source, single
destination shortest paths”, since we are interested in computing the cost of
the optimal trajectory for all initial conditions, but for a single target point.
A typical algorithm of this type is Dijkstra’s algorithm Dijkstra (1959). In a
suitable implementation this algorithm has complexity O((|X|+ |E|) log |X|),
where |X| is the number of nodes and |E| is the number of edges of the graph
G.

The finite approximation to G is constructed as follows: Let P be a partition
of X, that is, a finite collection of compact subsets Pi ⊂ X, i = 1, . . . , r,
with ∪r

i=1Pi = X, and m(Pi ∩ Pj) = 0 for i 6= j (where m denotes Lebesgue
measure). Define the graph

GP = (P , EP), EP = {(Pi, Pj) ∈ P × P | f(Pi, U) ∩ Pj 6= ∅}, (2)

where the edge e = (Pi, Pj) carries the weight

w(e) = min
x∈Pi,u∈U

{g(x, u) | f(x, u) ∈ Pj}. (3)

We use GP to find an approximation to the optimal value function V . For any
x ∈ X there is a least one subset P ∈ P containing x. The approximation for
V (x) will be the length w(p) of a shortest path p from a node P, x ∈ P, to a
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node P ′ ∈ P that contains the origin, i.e. we approximate V (x) by

VP(x) = min{w(p) | p is a path from a set P , x ∈ P , to a set P ′, 0 ∈ P ′}.
(4)

3.0.0.1 Convergence. Let (P(l))l be a nested sequence of partitions of
X (i.e. for every l, each element of P(l+1) is contained in an element of P(l)).
One can show that for x ∈ S, VP(l) converges pointwise to V , see Junge and
Osinga (2004). Here we additionally show the following

Proposition 1 Let D ⊂ S be a set on which V is continuous. Then VP(l) → V
uniformly on every closed subset D̄ ⊂ D.

Proof. Let ε > 0. By continuity of V and compactness of D̄, we can choose a
finite subset C ⊂ D̄ and compact neighborhoods Bx ⊂ D̄, x ∈ C, such that
D̄ is contained in the union of the Bx, x ∈ C, and |V (y)− V (x)| ≤ ε/2 for all
y ∈ Bx.

Consider Bx for x ∈ C. Since VP(l) converges pointwise to V on D, for every
y ∈ Bx there is an ly such that V (y) − VP(l)(y) ≤ ε/2 for all l ≥ ly. What is
more, since VP(l) is piecewise constant, for every y ∈ Bx and every l ∈ N there
is an open neighborhood Ny(l) ⊂ Bx of y, such that VP(l)(z) ≥ VP(l)(y) for all
z ∈ Ny(l):

• Either y is in the interior of some partition element P ∈ P(l). Since VP(l)

is constant on int(P ), there is a neighborhood Ny(l) ⊂ P of y such that
VP(l)(z) = VP(l)(y) for all z ∈ Ny(l);

• Or y is on the boundary of several partition elements. Then, by definition
of VP(l),

VP(l)(y) = min{VP(l)(z) : z ∈ P, y ∈ P, P ∈ P(l)},
and there is a neighborhood Ny(l) ⊂

⋃
y∈P,P∈P(l) P such that VP(l)(z) ≥

VP(l)(y) for all z ∈ Ny(l).

The collection Ny(ly), y ∈ Bx, is an open covering of Bx and since Bx is
compact, we can choose a finite subset Ax ⊂ Bx, such that the collection
Ny(ly), y ∈ Ax, still covers Bx. Let lx = maxy∈Ax ly. Since VP(l) is monotonously
increasing, we have that

VP(l)(z) ≥ VP(ly)(y) for all z ∈ Ny(ly) and all l ≥ ly,

so in particular V (y)− VP(l)(y) ≤ ε/2 for all y ∈ Bx and all l ≥ lx.

Choosing L = maxx∈C lx we get that V (x)− VP(l)(x) ≤ ε/2 for all x ∈ D̄ and
all l ≥ L, which completes the proof.

2
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3.0.0.2 Implementation. The computation of VP breaks down into three
steps:

(1) Construction of a suitable partition P ;
(2) Construction of GP ;
(3) Computation of VP by applying Dijkstra’s algorithm to GP .

In the numerical realization we always let X be a box in Rd and construct
a partition of X by dividing X uniformly into smaller boxes. In fact, we
realize this division by repeatedly bisecting the current division (changing the
coordinate direction after each bisection). The resulting sequence of partitions
can efficiently be stored as a binary tree — see Dellnitz and Hohmann (1997)
for more details.

Once P has been constructed, we need to compute the set EP of edges of GP ,
as well as the weight w(e) for every edge e ∈ EP . Naively, one is faced with
r2 optimization problems (where r is the number of elements in the partition
P) – one for each pair (Pi, Pj) of partition elements. The objective function
is g, and for the pair (Pi, Pj), the constraints on x and u are given by the
requirements f(x, u) ∈ Pj, x ∈ Pi.

However, using the hierarchical construction of the partitions, one can reduce
the complexity of the problem. Here we simply use the following approach: we
approximate EP by

ẼP = {(Pi, Pj) | f(P̃i, Ũ) ∩ Pj 6= ∅},

where P̃i ⊂ Pi and Ũ ⊂ U are finite sets of “test points”. For example, one
may choose these sets as points on an equidistant grid. Correspondingly the
weight w(e) on e = (Pi, Pj) is approximated by

w̃(e) = min
x∈P̃i,u∈Ũ

{g(x, u) | f(x, u) ∈ Pj}.

Again, we refer to Dellnitz and Hohmann (1997) and Junge and Osinga (2004)
for further details.

4 Constructing the feedback

It was shown in Junge and Osinga (2004) that the set oriented algorithm gives
approximately optimal pseudo-trajectories by following the shortest path on
the partitions linking the initial value to the subset P0 ∈ P containing the
origin. Here the term pseudo-trajectory refers to the fact that at each time
instance a small jump (corresponding to the size of the current cell P ) in the
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trajectory is introduced. It is by no means clear how and under which condi-
tions these pseudo-trajectories can be used for the generation of approximate
optimal real trajectories.

Hence, our construction of the approximately optimal feedback law uses a
different idea, namely the classical dynamic programming technique. It follows
from standard dynamic programming arguments that the exact optimal value
function V satisfies

V (x) = inf
u∈U

{g(x, u) + V (f(x, u))}

and that an optimal feedback law u is given by the control u(x) minimizing
the right hand side of this equation, provided this minimum exists.

For the construction of our feedback law we will use this fact, replacing V by
its approximation VP . Thus for each point x ∈ S we define

uP(x) = argminu∈U{g(x, u) + VP(f(x, u))} (5)

Note that the minimum exists because VP admits only finitely many values.

The following theorem shows in which sense this feedback is approximately
optimal.

Theorem 2 Consider a sequence of partitions P(l), l ∈ N and let D ⊆ S be
an open set with the following properties.

(i) 0 ∈ intD
(ii) U(x) 6= ∅ for all x ∈ D
(iii) For each ε > 0 there exists l0(ε) > 0 such that that the inequality

V (x)− VP(l)(x) ≤ ε

holds for all x ∈ D and all l ≥ l0(ε).

Let c > 0 be the largest value such that the inclusion Dc(l) := V −1
P(l)([0, c]) ⊂ D

holds for all l ∈ N.

Then there exists ε0 > 0 and a function δ : R → R with limα→0 δ(α) = 0, such
that for all ε ∈ (0, ε0], all l ≥ l0(ε/2), all η ∈ (0, 1) and all x0 ∈ Dc(l) the
trajectory xi generated by

xi+1 = f(xi, uP(l)(xi))
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satisfies

V (xi) ≤ max

V (x0)− (1− η)
i−1∑
j=0

g(xj, uP(`)(xj)), δ(ε/η) + ε

 .

Proof: For each x ∈ D we define g0(x) := minu∈U(x){g(x, u)} and choose
ε0 > 0, such that the implication

g0(x) < ε0 ⇒ V (x) ≤ c− ε0/2

holds. Note that this ε0 exists since V is continuous in a neighborhood of 0
and satisfies V (0) = 0. We show that our assertion holds for all ε ∈ (0, ε0] and
fix an arbitrary ε ∈ (0, ε0] and an arbitrary l ≥ l0(ε/2).

We first show that the implication xi ∈ Dc(l) ⇒ xi+1 ∈ Dc(l) holds. Let
x ∈ Dc(l). Then we obtain

VP(x) + ε/2 ≥ V (x) = inf
u∈U(x)

{g(x, u) + V (f(x, u))}

≥ min
u∈U(x)

{g(x, u) + VP(l)(f(x, u))}

= g(x, uP(l)(x)) + VP(l)(f(x, uP(l)(x)))

which implies

VP(l)(xi+1) ≤ V (xi)− g(xi, uP(l)(xi)) ≤ VP(xi)− g(xi, uP(l)(xi)) + ε/2 (6)

for all xi ∈ Dc(l). We distinguish two cases:

(a): If g(xi, uP(l)(xi)) ≥ ε/2, then we obtain VP(l)(xi+1) ≤ VP(xi) ≤ c, i.e.,
xi+1 ∈ Dc(l).

(b): If g(xi, uP(l)(xi) < ε/2 then we know g0(xi) < ε/2 ≤ ε0/2, which implies
V (xi) ≤ c− ε0/2 ≤ c− ε/2 and thus VP(l)(xi+1) ≤ V (xi) + ε/2 ≤ c, i.e., again
xi+1 ∈ Dc(l).

Now for each xi ∈ Dc(l) we know xi+1 ∈ Dc(l) ⊆ D, thus any trajectory
with x0 ∈ Dc(l) remains in Dc(l) for all future times. Furthermore, since
Dc(l) ⊆ D, for each trajectory starting in Dc(l) and all i ≥ 0 we obtain from
(6) the inequality

V (xi+1)≤VP(l)(xi+1) + ε/2

≤VP(l)(xi)− g(xi, uP(l)(xi)) + ε (7)

≤V (xi)− g(xi, uP(l)(xi)) + ε.
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Now we construct the value δ(α). We define the set

Cα := {x ∈ Dc(l) | g0(x) ≤ α}

and set

δ(α) := sup
x∈Cα

V (x).

Note that δ(α) → 0 as α → 0 because Cα shrinks down to 0 and V is contin-
uous around 0 with V (0) = 0. We claim that the implication

V (xi) ≤ δ(α) + ε ⇒ V (xi+1) ≤ δ(α) + ε (8)

holds for all α ≥ ε. Again, we distinguish two cases:

(a) V (xi) ≤ δ(α): In this case, inequality (8) implies

V (xi+1) ≤ V (xi)− g(xi, uP(l)(xi)) + ε ≤ V (xi) + ε ≤ δ(α) + ε

which proves (8) in this case.

(b) V (xi) ∈ [δ(α), δ(α) + ε]: In this case we know that xi 6∈ Cα, hence again
using (8) we obtain

V (xi+1) ≤ V (xi)− g(xi, uP(l)(xi))︸ ︷︷ ︸
≥α≥ε

+ε ≤ V (xi) ≤ δ(α) + ε

which also proves invariance.

Finally we show the assertion of the theorem. Fix η ∈ (0, 1) and consider an
arbitrary i ∈ N0. If V (xi) ≤ δ(ε/η) + ε then we have nothing to show.

If V (xi) > δ(ε/η) + ε then by (8) we can conclude that V (xj) > δ(ε/η) + ε
for j = 0, . . . , i, thus in particular xj 6∈ Cε/η, i.e., g(xj, uP(l)(xj)) ≥ ε/η. Hence
(8) implies for j = 0, . . . , i− 1

V (xj+1) ≤ V (xj)− g(xi, uP(l)(xi)) + ε ≤ V (xj)− (1− η)g(xi, uP(l)(xi)),

because g(xi, uP(l)(xi)) ≥ ε/η implies ε ≤ ηg(xi, uP(l)(xi)).

Applying this inequality iteratively for j = 0, . . . , i− 1 we obtain

V (xi) ≤ V (x0)− (1− η)
i−1∑
j=0

g(xi, uP(l)(xi),

i.e., the assertion. 2
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5 Error estimation, adaptive partitions and stabilizing feedback

The a priori estimate in Theorem 2 has its merits because it shows that and
in which sense our feedback definition leads to an approximate optimal per-
formance. From a practical point of view, however, the theorem does not give
much information about the structure of the partition P which is needed in
order to achieve a desired level of accuracy.

In particular, our set valued approach is most efficient if we do not use a
uniform partition P but use small cells P only in those regions where a high
resolution is really needed. In order to identify such regions we make use of
an a posteriori error estimate which is motivated by a similar construction
for discrete Hamilton–Jacobi–Bellman equations Grüne (1997), which in turn
is based on similar concepts for the numerical solution of partial differential
equations.

To this end let S0 = {x ∈ X : V (x) < ∞}. For x ∈ S0 consider the error
function

e(x) = min
u∈U

{g(x, u) + VP(f(x, u))} − VP(x).

Note that by definition of VP we have e(x) ≥ 0. Since

V (x)− VP(x) = min
u∈U

{g(x, u) + V (f(x, u))} − VP(x)

≥min
u∈U

{g(x, u) + VP(f(x, u))} − VP(x) = e(x),

we get

Proposition 3 The error function e : S0 → [0,∞) is a lower bound on the
error between the true value function V and its approximation VP :

e(x) ≤ V (x)− VP(x), x ∈ S0.

On a given collection P with |P| ⊂ S0 define the error function e : P → [0,∞)
by

e(P ) = max
x∈P

e(x), P ∈ P . (9)

Finally, let e(P) = maxP∈P e(P ).

It should be noted that according to Proposition 3 the error estimate provides
a lower bound for the real error but no upper bound; we will illustrate this fact
in our numerical examples. Nevertheless, when we look at the performance of
the derived feedback law uP in the sense of Theorem 2 then we see that the
error function e(x) does give an upper bound for the error, as shown in the
following theorem.
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For its formulation we need a function δ, which for sublevel sets Dc = V −1
P ([0, c])

is defined by

δ(ε) := sup
x∈Cε

V (x),

where Cε := {x ∈ Dc | g0(x) ≤ ε} and g0(x) := infu∈U(x) g(x, u). Note that
δ(ε) → 0 as ε → 0 because Cε shrinks down to 0 and V is continuous around
0 with V (0) = 0.

Theorem 4 Consider a partition P and a sublevel set Dc = V −1
P ([0, c]) for

some c > 0. Assume that the error estimate e satisfies

e(x) ≤ max{ηg0(x), ε} (10)

for all x ∈ Dc, some ε > 0 and some η ∈ (0, 1).

Then the trajectory xi generated by

xi+1 = f(xi, uP(xi)) (11)

for each x0 ∈ Dc satisfies

VP(xi) ≤ max

VP(x0)− (1− η)
i−1∑
j=0

g(xi, uP(l)(xi)), δ(ε/η) + ε

 . (12)

Proof. If VP(x) ≤ δ(ε/η)+ε for all x ∈ Dc then there is nothing to show. Thus
we can assume VP(x) > δ(ε/η) + ε for some x ∈ Dc, i.e., c > δ(ε/η) + ε. Note
that from the construction of δ the implication

g0(x) ≤ α ⇒ V (x) ≤ δ(α) ⇒ VP(x) ≤ δ(α)

follows for each α ≥ 0.

We first show that the implication xi ∈ Dc ⇒ xi+1 ∈ Dc holds. Let xi ∈ Dc.
From the assumption of the error estimate we obtain

VP(xi+1) ≤ VP(xi)− g(xi, uP(xi)) + e(xi). (13)

for all xi ∈ Dc. We distinguish two cases:

(a): If g(xi, uP(xi)) ≥ e(x), then we obtain VP(l)(xi+1) ≤ VP(xi) ≤ c, i.e.,
xi+1 ∈ Dc.

(b): If g(xi, uP(xi)) < e(x) then we know ηg0(xi) < e(x), thus e(x) < ε and
consequently g0(xi) < ε/η. This implies VP(xi) ≤ δ(ε/η) and thus

VP(xi+1) ≤ VP(xi) + ε ≤ δ(ε/η) + ε ≤ c,
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i.e., again xi+1 ∈ Dc.

Next we show that the implication

VP(xi) ≤ δ(ε/η) + ε ⇒ VP(xi+1) ≤ δ(ε/η) + ε (14)

holds. If e(xi) ≤ ηg0(xi) then from (13) we immediately obtain VP(xi) ≤
VP(xi+1). It remains to consider e(xi) > ηg0(xi), in which case e(xi) ≤ ε
holds. Again, we distinguish two cases:

(a) VP(xi) ≤ δ(ε/η): In this case, inequality (13) implies

VP(xi+1) ≤ VP(xi)− g(xi, uP(xi)) + ε ≤ VP(xi) + ε ≤ δ(ε/η) + ε

which proves (14) in this case.

(b) V (xi) ∈ [δ(ε/η), δ(ε/η) + ε]: In this case we know that xi 6∈ Cε/η with C·
being the set from the definition of δ. Hence again using (13) we obtain

VP(xi+1) ≤ VP(xi)− g(xi, uP(l)(xi))︸ ︷︷ ︸
≥ε/η≥ε

+ε ≤ VP(xi) ≤ δ(ε/η) + ε

which also proves the invariance (14).

Finally we show the assertion of the theorem. Consider an arbitrary i ∈ N0.
If V (xi) ≤ δ(ε/η) + ε then we have nothing to show.

If VP(xi) > δ(ε/η) + ε then by (14) we can conclude that VP(xj) > δ(ε/η) + ε
for j = 0, . . . , i, thus also V (xj) > δ(ε/η) + ε and in particular xj 6∈ Cε/η,
i.e., g(xj, uP(l)(xj)) ≥ ε/η which implies e(x) ≤ ηg(xj, ucP (l)(xj)). Hence (8)
implies for j = 0, . . . , i− 1

VP(xj+1) ≤ VP(xj)− g(xi, uP(l)(xi)) + e(xi) ≤ VP(xj)− (1− η)g(xi, uP(l)(xi)).

Applying this inequality iteratively for j = 0, . . . , i− 1 we obtain

VP(xi) ≤ VP(x0)− (1− η)
i−1∑
j=0

g(xi, uP(xi),

i.e., the assertion. 2

Note that the inequality (10) makes use of two “tuning” parameters, namely η
and ε. For each fixed η ∈ (0, 1), the parameter ε > 0 induces an upper bound
for the lowest achievable value of VP(xi), while η ∈ (0, 1) controls the speed of
decay of VP(xi) until the lowest value is reached. Clearly, when aiming at an
approximately optimal feedback whose performance is as good as possible, one
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would choose η << 1 and ε/η << 1. This, in turn, requires a very fine partition
which poses considerably numerical problems both in terms of computation
time and memory consumption, especially in higher dimensions, because, like
in traditional dynamic programming schemes, out procedure is subject to the
curse of dimensionality.

Keeping in mind that the main purpose of the kind of optimal control problems
treated in our setup is the derivation of asymptotically stabilizing feedback
laws one might therefore ask to relax the strict “approximate optimality” con-
dition by looking only for a feedback which — although far from optimal —
still ensures approximate asymptotic stability in a suitable sense. Taking into
account the nature of the two parameters, in terms of asymptotic stability the
parameter ε describes the size of a neighborhood of the origin where every
trajectory starting in Dc will eventually end while η describes the conver-
gence rate to this neighborhood. Therefore, it may be a good compromise to
choose a relatively large η ∈ (0, 1). This way we slow down the convergence of
the trajectories to the (neighborhood of the) origin, but in turn the problem
becomes numerically easier and can be solved on a coarser partition. Such
relaxations of the optimality conditions have recently been used also for other
dynamic programming formulations of optimal control problems, see Lincoln
and Rantzer (2002), and can considerably reduce the computational cost.

We will make this statement precise using a general framework for the deriva-
tion of rigorous stability estimates for approximately optimal feedback laws
developed in Nešić and Teel (2004). A first application of this framework to
numerical optimal control was given in Grüne and Nešić (2003), where the
effect of numerical time discretization in sampled data controller design was
investigated. Likewise, the framework from Nešić and Teel (2004) allows the
conclusion of asymptotic stability in our framework, as stated in the follow-
ing corollary. The result is stated using the by now standard definitions of
comparison functions. 1

Corollary 1 Let the assumptions of Theorem 4 be satisfied. Then for any
η ∈ (0, 1) the feedback law uP renders the closed loop system

xi+1 = f(xi, uP(xi))

practically asymptotically stable on Dc, i.e., there exists a KL–function β de-
pending on g0 and η, with the property that for any δ > 0 there exists ε > 0

1 As usual we call a function α of class K∞ if it is a homeomorphism of [0,∞) (i.e.,
α(0) = 0 and α(r) →∞ as r →∞), a continuous function β in two real nonnegative
arguments is called of class KL if it is of class K∞ in the first and decreasing to
zero in the second argument.
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such that the inequality

‖xi+1‖ ≤ β(‖x0‖, t) + δ

holds for each x0 ∈ Dc and all partitions for which the error estimate e satisfies
the assumption of Theorem 4 with the given ε.

Proof. From (13) we obtain the inequality

VP(xi+1) ≤ VP(xi)− ηg0(xi) + ε.

This estimate implies that on Dc all assumptions of (Nešić and Teel, 2004,
Theorem 1) are satisfied except the continuity of VP . An inspection of the
proof of (Nešić and Teel, 2004, Theorem 1), however, reveals that continuity
of V is only needed if the feedback was designed using an approximation of f
which is not the case in our setting. 2

It is worth noting that even though continuity of VP is not needed in the
proof of the previous corollary, in general one cannot expect robustness of the
feedback law even for arbitrarily small perturbations f̃ of f if the controller
design is based on the discontinuous (Lyapunov) function VP . In practice,
small perturbations of f can only cause problems if the image f(x, uP(x))
lies close to the boundary of a cell, because as long as the perturbed image
f̃(x, uP(x)) lies in the same cell as f(x, uP(x)), the inequality (13) remains
valid. Thus, we can expect that in general the feedback should behave rather
robust.

Nevertheless, in order to obtain rigorous robustness results our construction
of VP and uP needs to be modified. For instance, the computation of VP
could be based on a set valued “inflation” f + Bε(0) instead of f , an idea
which bears some similarity with the rigorous discretization methods for set
valued numerical methods presented in Junge (2000a,b) (see also (Grüne, 2002,
Chapter 5)). In order to keep the presentation simple, we will not go into
details here and address this question in a later paper.

6 Numerical examples

We are going to illustrate the results of the previous sections by means of
two example computations: first we consider a very simple control system
with a one-dimensional state space for which we can compute all quantities
explicitely. As the second example we choose a controlled pendulum that is
supposed to be steered into the (“upper”) unstable equilibrium.

14



6.1 A simple 1D system

Consider the system

xk+1 = xk + (1− a)ukxk, k = 0, 1, . . . , (15)

where xk ∈ X = [0, 1], uk ∈ U = [−1, 1] and a ∈ (0, 1) is a fixed parameter.
As the instantaneous cost function we choose

g(x, u) = (1− a)x,

such that the optimal control policy is to steer to the origin as fast as possible,
i.e. for every x, the optimal control policy is u(x) = (−1,−1, . . .). This yields
V (x) = x as the optimal value function.

For the following computations we consider the value a = 0.8 and a partition
P of [0, 1] into 64 intervals. The weights on the edges of the graph (2) are
approximated by minimizing (3) over 100 equally spaced test points in each
interval P ∈ P and 10 equidistant points in U .

Figure 1 (left) shows V (red line) and the approximate optimal value function
VP (blue bars), as well as (right) the true error E(P ) = maxx∈P V (x)−VP(x),
P ∈ P , (blue bars) and the error function e : P → [0,∞) (red bars).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P

V
 a

nd
 V

P

V
V

P
a=0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

P

E
(P

) 
an

d 
e(

P
)

E(P)
e(P)
a=0.8

Fig. 1. Left: true (red) and approximate (blue) optimal value function. Right: true
error E(P ) (blue) and error function e(P ) (red) (a = 0.8, equipartition of 64 inter-
vals).

We note that D1 = X = [0, 1], g0(x) = minu∈U g(x, u) = (1 − a)x, and thus
Cε = {x ∈ [0, 1] | x ≤ ε/(1 − a)}, as well as δ(ε) = ε/(1 − a). Using these
formulas we can compare the value of VP to the estimate (12) for different
choices of η (we choose ε = max{e(x) | e(x) > ηg0(x)}). Figure 2 shows VP
and the left hand side of (12) for four different values of η along a feedback
trajectory to the initial point x = 1. Note that in this example the cost
function g does actually not depend on the control. In the computation of the
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Fig. 2. Comparison of VP and the estimate (12) for different values of η. The markers
indicate the values at points xk of a trajectory generated by (11).

feedback control in (5) this leads to uP(x) being not unique. For the above
computation we have chosen uk = −1. A different choice may actually lead to
a non-stabilizing control policy: note that for uk = 0 every point in [0, 1] is a
fixed point of (15).

6.2 Inverted pendulum

As the second example, we reconsider a computation from Junge and Osinga
(2004):

ẋ1 = x2 (16)

ẋ2 =
g
l

sin(x1)− 1
2
mr x2

2 sin(2x1)− mr

m l
cos(x1) u

4
3
−mr cos2(x1)

The equations model the motion of a (planar) inverted pendulum on a cart
which moves under an applied horizontal force u. The position x1 of the pen-
dulum is measured relative to the position of the cart as the offset angle from
the vertical up position. The parameters are as in Junge and Osinga (2004),
M = 8, m = 2, mr = m/(m+M), l = 0.5, g = 9.8. The instantaneous cost is

q(x, u) =
1

2
(0.1x2

1 + 0.05x2
2 + 0.01u2). (17)
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Fig. 3. Approximate optimal value function (left) and local error indicator (right,
logarithmic scaling of the coloring) for V −1

P ([0, 7]) on depth 18.

Considering the time-T -map of this system (with T = 0.1, computed via the
Runge-Kutta scheme of 4-th order with step size 0.02), we arrive at the cost
function

g(x, u) =
∫ T

0
q(φt(x; u), u) dt, (18)

where u denotes the constant function with value u on [0, T ]. We choose X =
[−8, 8] × [−10, 10] as the region of interest, partitioned into 218 boxes of size
1/32× 5/128. For the computation of the weights (3) we used the vertices of
each box in phase space and the set {−64,−56, . . . ,−8, 0, 8, . . . , 56, 64} for U .

Figure 3 shows the approximate optimal value function VP as computed on
this partition as well as the local error indicator (9). In Figure 4 we compare
the feedback trajectory as generated by (11) with a pseudo-trajectory (cf. the
discussion at the beginning of Section 4) obtained by following the shortest
path in the graph (2) in phase space, while in Figure 5 we visualize their
time-dependence, together with the piecewise constant approximate optimal
control policy.
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Grüne, L., Nešić, D., 2003. Optimization based stabilization of sampled–data
nonlinear systems via their approximate discrete–time models. SIAM J.
Control Optim. 42, 98–122.
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