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We investigate the effect of time–varying perturbations on the dynamical behavior of
nonlinear control systems. More specifically, we study the effect of such perturbations

on the controlled equivalent of asymptotically stable sets, i.e., asymptotically control-
lable sets. In the first part of this paper we illustrate by a simple example how different
types of perturbations affect this dynamical behavior and use concepts from dynamical

game theory in order to identify classes of perturbations which allow to model the effects
of numerical discretization errors both in time and space. In the second part we intro-
duce appropriate robustness properties and prove that these are inherent properties for

asymptotically controllable sets under these classes of perturbations.
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1. Introduction

The numerical investigation of the long–time behavior of dynamical systems has
been an object of interest for the last two decades with a huge number of contribu-
tions centering around the questions of reliability of numerically observed dynami-
cal behavior and on the design of efficient algorithms for the determination of such
behavior4,6,20. While most of the results in this field center around autonomous
dynamical systems, here we consider control systems, i.e., dynamical systems which
can be influenced by a time dependent control function and which can be inter-
preted as a nonautonomous dynamical systems2. For such systems, the analogue of
an asymptotically stable set is an asymptotically controllable set. As in the uncon-
trolled case such sets are characterized by the long term behavior of solutions which
implies that standard finite time error estimates for numerical approximations do
not allow to conclude that these sets persist under discretization. For asymptotically
stable sets this persistence property was shown by arguments using the numerical
scheme itself15. The approach in the present paper, however, differs from this direct
line of reasoning because here we use an “embedding” of the numerical approxima-
tion into a suitably perturbed system. The main advantage of this approach is that
robustness properties obtained for the perturbed system allow us to simultaneously
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conclude robustness results for large classes of different numerical discretizations of
control systems, e.g., in time5,9 or in space21.

In the context of asymptotically stable sets (or, more specifically, attractors) this
perturbation technique was used by Kloeden and Kozyakin14 and in a sense our pa-
per can be understood as a controlled equivalent to this paper. In the controlled
case, however, several difficulties arise from the question of how the control function
and the perturbation interact. The goal of this paper is therefore to present a frame-
work for studying discretization effects on dynamical objects in control systems by
embedding such systems in suitable perturbed systems for which asymptotic con-
trollability can be shown to be a robust property in an appropriate sense.

More precisely, the contribution of the present paper is twofold. After fixing the
setup in Section 2, the first contribution is the discussion of different possible per-
turbation structures in Section 3. Here we identify suitable classes of perturbations
which are able to capture the effect of discretization errors. In particular, we show
that a free choice of the perturbation will not allow for reasonable robustness prop-
erties (Example 3.1), we prove that certain discretizations in time can be covered
by so called nonanticipative strategies (Lemma 3.1 and the subsequent discussion)
and we demonstrate that this class needs to be broadened in order to cover errors
from space discretizations (Discussion after Definition 3.5 and Lemma 3.2). The
second contribution of this paper is found in Section 4, where it is shown that and
in which sense asymptotic controllability is a robust dynamical phenomenon. The
corresponding results were already formulated in Chapter 4 of Grüne6, here, how-
ever, we give alternative proofs which avoid the technical apparatus developed in
this reference and close some gaps in the proofs.

2. Setup

In this paper we consider perturbed control systems of the form

ẋ(t) = f(x(t), u(t), w(t)) (2.1)

with vector field

f : Rd × U ×W → Rd

being continuous and globally Lipschitz in x uniformly for all u and w, control
functions

u ∈ U := {u : R → U |u measurable}

and time–varying perturbations

w ∈ W := {w : R → W |w measurable},

where U ⊂ Rm and W ⊂ Rl are the control and perturbation ranges which we
consider as compact. The solutions of (2.1) for initial value x at initial time t = 0
will be denoted by ϕ(t, x, u, w). Note that our assumptions can be weakened in
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many ways. In particular, the compactness and global Lipschitz assumptions are
only imposed in order to simplify the presentation of the proofs and can be relaxed
by suitable cutoff techniques since we are interested in the behavior of the system
only on compact subsets of the state space.

We want to study the influence of the time–varying perturbations w(t) on asymp-
totically controllable sets A. More precisely, using the notion of KL functionsa and
denoting the Euclidean distance to a set A by ‖ · ‖A we consider the following
objects.

Definition 2.1. A compact set A ⊂ Rd is called asymptotically controllable with
controllability neighborhood B of A, if there exists a function β ∈ KL such that for
each x ∈ B there exists ux ∈ U with

‖ϕ(t, x, ux, 0)‖A ≤ β(‖x‖A, t)

for all t ≥ 0.

This definition generalizes the concept of asymptotic stability to control systems
and is standard in mathematical control theory, cf. e.g. Sontag18. Several other
stability concepts for control systems were investigated by Kloeden13, in particular
the eventual uniform asymptotic weak stability in this reference is closely related
to our notion.

The aim of this paper is to analyze what happens to this asymptotic control-
lability property if we “turn on” the perturbation w, i.e., consider the trajectories
ϕ(t, x, u, w) instead of ϕ(t, x, u, 0). Our goal is to derive a robustness statement for
the sets A guaranteeing that approximate controllability is preserved under pertur-
bations, where “approximate” will be made precise later.

The behavior of the perturbed system crucially depends on what kind of pertur-
bations we allow, i.e., we will need to pick the right perturbation classes in order to
be able to prove robustness properties. On the other hand, the choice of perturba-
tion classes depends on modeling issues, i.e., which kind of perturbation influence
we want to be present in our system. Here we will address discretization phenomena
by considering perturbations that are induced by the effect of discretization errors.

3. Discretization and perturbation

In this section we want to study the effects of discretizations in both time and space
and identify suitable classes of perturbations for modeling these effects. We consider

aA function γ : [0,∞)→ [0,∞) is of class K if it is continuous, zero at zero and strictly increasing.

A function β : [0,∞) × [0,∞) → [0,∞) is of class KL if it is continuous, of class K in the first
variable and strictly decreasing to 0 in the second variable. The use of K and KL functions in
stability theory for ODEs apparently goes back to Hahn’s books10,11, where these classes are

introduced without further explanation of the nomenclature. Conceptually similar functions have
already been used earlier by Müller16 and Kamke12 for the qualitative analysis of ODEs, which

has lead to the conjecture that K stands for Kamke. Note, however, that in the literature one can

also find a definition for Kamke functions which differs from the K and KL classes22 and is in fact
closer to the functions used by Kamke and Müller.
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discretizations of control systems without perturbations, i.e., systems of the form

ẋ(t) = g(x(t), u(t)) (3.2)

whose trajectories we denote by ϕ(t, x, u) and start with the discretization in time.

3.1. Discretization in time

For affinely controlled nonlinear control systems, i.e., unperturbed control systems
(3.2) with the special structure

g(x, u) = g0(x) +
m∑

i=1

uigi(x)

it was recently shown9 that one can derive numerical one step schemes similar to
the classical Taylor– and Runge–Kutta schemes for ordinary differential equations.
The main difficulty here lies in the fact that the control functions u are in general
allowed to be measurable in t and in many applications (like, e.g., optimal control)
may indeed exhibit discontinuities. Hence the classical schemes are not applicable
directly, instead one needs to use modified schemes using suitable integrals over u.
The simplest case of such a scheme is the analogue of the Euler scheme which for a
control affine system and time step h > 0 reads

xj+1 = xj + hg0(xj) +
m∑

i=1

ūi,jgi(xj) (3.3)

with

ūi,j =
∫ (j+1)h

jh

ui(t)dt.

In a more abstract formulation, any such scheme can be written as

xj+1 = Φh (xj , u(jh + ·)) (3.4)

for an appropriately chosen map Φh : Rd×U → Rd involving multiple integrals over
the control functions u(jh + ·) on the interval [0, h] or — equivalently — integrals
over u on [jh, (j + 1)h]. By iterating these schemes from x0 = x on can define
associated discrete trajectories by

Φh(t, x, u) := xj for t = jh, j = 0, 1, 2, . . . .

The discretization error of (3.4) is measured by the usual consistency estimate

‖ϕ(h, x, u)− Φh (x, u)‖ ≤ Chp+1 (3.5)

which is supposed to hold for all sufficiently small time steps h > 0. Here the
parameter p > 0 is called the order of the scheme and it was shown9 that in
principle one can construct schemes of arbitrary order, for the Euler scheme (3.3)
one obtains p = 1. Convergence statements of these schemes are easily derived from
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(3.5) using appropriate stability (or Lipschitz) conditions which are also satisfied
by the mentioned schemes9.

The goal of the construction of our perturbed system is now to define a class
of perturbations such that the numerical scheme Φh can be embedded into the
perturbed system (2.1) with

f(x, u, w) = g(x, u) + w. (3.6)

This particular structure, sometimes referred to as the inflated system (see also
Kloeden and Kozyakin14 for an equivalent definition via differential inclusions),
allows the perturbation to change the system’s trajectories in all possible directions
contained in the perturbation range W . In order to include all possible directions
we will use the particular perturbation range

Wα := {w ∈ Rd | ‖w‖ ≤ α}

and denote by Wα the corresponding space of perturbation functions. The desired
embedding property is now given by the following definition.

Definition 3.1. We say that the numerical scheme (3.4) is embedded into the per-
turbed system (2.1), (3.6) for α > 0, if for any initial value x ∈ Rd and any control
function u ∈ U there exists an admissible perturbation function w ∈ Wα such that

ϕ(t, x, u, w) = Φh(t, x, u) (3.7)

holds for all t = 0, h, 2h, . . ..

Since we can use the consistency estimate (3.5) it seems reasonable to expect
that this embedding property can be met for perturbation range Wα with α ∼ hp,
and we will see later that this is indeed the case. Obviously, the discretization error
will depend on the time t which motivates our general setting using time–varying
perturbations, because with a fixed perturbation w ≡ const it will in general be
impossible to satisfy (3.7). Furthermore, the perturbation w will depend on x and u

as well as on the dynamics ϕ and on the choice of the numerical scheme Φh. In this
context the delicate question is, what kind of information about u is allowed in the
choice of w. Certainly, in order to satisfy (3.7) the perturbation needs information
about the control function because the discretization error will depend on u. Hence,
the problems we will discuss next are:

• Which information from u is needed for the choice of w such that (3.7) can
be satisfied?

• How much information can we allow to use such that we can still obtain a
robustness property for A?

A first attempt would be to choose w freely from the space Wα using all avail-
able information about the unperturbed system’s behavior. However, the following
example shows that with this choice the perturbation can completely destroy the
asymptotic controllability property.
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Example 3.1. Consider the 1d control system

ẋ(t) = u(t) + w(t).

Clearly, the unperturbed system for w ≡ 0 is asymptotically controllable to the set
A = {0} from B = R, which can be seen by choosing, e.g., ux(t) = −e−tx resulting
in the solution trajectories

ϕ(t, x, u, 0) = e−tx

which satisfy Definition 2.1 with β(|x|, t) = e−t|x|. Since the perturbation can be
chosen freely from Wα using all available information, we can pick an arbitrary
T > 0 and set

w ≡
{
−α, if ϕ(T, x, u, 0) ≤ 0

α, if ϕ(T, x, u, 0) > 0.

It immediately follows that the perturbed trajectory satisfies

|ϕ(T, x, u, w)| ≥ Tα,

i.e., no matter how small α > 0 is, one can always choose a perturbation which
steers the system arbitrarily far away from the asymptotically controllable set A.

Even in this simple example a “free” choice of w completely destroys the asymp-
totic controllability property, hence we do not obtain any reasonable “approximate”
notion of controllability. The reason for this effect lies in the fact that in this setting
the control was not allowed to “react” on the specific perturbation acting on the
system. Thus, we need a perturbation structure which (i) allows w to depend on
u and (ii) allows u to react on the chosen perturbation w. Since this will in turn
change w, again, we need a suitable information structure that allows for both (i)
and (ii) without creating infinite “loops”.

The solution for this problem is obtained by carefully looking at the time: in
the example above in the choice of w we were allowed to look into the future of the
trajectories’ behavior, i.e., we have used information about ϕ(T, x, u, 0) at a time
T > 0 in order to design w on the interval [0, T ]. We will now introduce a class
of perturbations which do not allow for using this type of information from the
future. The appropriate formal concept for this has its origins in differential game
theory23,1.

Definition 3.2. We define the class of nonanticipative strategies by

Pα :=

p : U → Wα

∣∣∣∣∣∣∣∣
for all t ∈ R the following implication holds:

u1(s) = u2(s) for almost all s ∈ (−∞, t] ⇒

p[u1](s) = p[u2](s) for almost all s ∈ (−∞, t]


In other words, this definition demands the following: For any perturbation

w(t) = p[u](t) it is still allowed to use the full information from u (and the induced



June 8, 2004 10:3 WSPC/INSTRUCTION FILE tvpert

Robust asymptotic controllability under time–varying perturbations 7

information on ϕ and Φh depending on u) for the design of w, however, with the
restriction that

• we are only allowed to use information from the past
• we are not allowed to change the past behavior of w at a later time.

Once the perturbation strategy p[u] is fixed, then the control u may be chosen
freely from U , assuming the knowledge of p. This way of choosing p and u defines
the rules of our “differential game”, and we re–examine Example 3.1 for this class
of perturbations in order to show that for perturbations from P we can obtain
controllability under perturbations.

Example 3.2. We again consider the system

ẋ(t) = u(t) + w(t)

now with control range U = [−1, 1] and perturbation range W = [−1/2, 1/2]. Let
p[u] be an arbitrary perturbation strategy. For some given time τ > 0 we inductively
define a control function u(t) by

u|[iτ,(i+1)τ ] ≡
{

max{−1,−ϕ(iτ, x, u, p[u])/τ}, if ϕ(iτ, x, u, p[u]) ≥ 0
min{ 1,−ϕ(iτ, x, u, p[u])/τ}, if ϕ(iτ, x, u, p[u]) < 0.

By induction one sees that each trajectory reaches the set [−τ/2, τ/2] at a time
t ≤ T = 2|x| and stays there for all future times. Hence for the perturbed system
we find asymptotically controllable sets which are arbitrarily close to A = {0}, i.e.,
the asymptotic controllability property is robust w.r.t. perturbations from P.

We will show in the next section that this class indeed allows for general robust-
ness statements of asymptotic controllability. Before we turn to this question, we
need to investigate whether this class is still rich enough to achieve the embedding
property from Definition 3.1. The following Lemma shows that this is the case for
the Euler scheme (3.3).

Lemma 3.1. Consider the controlled Euler scheme given by

Φh(x, u) = xj + hg0(xj) +
m∑

i=1

∫ h

0

ui(t)dtgi(xj)

for some step size h > 0. Then for each x ∈ Rd there exists a nonanticipative
strategy p ∈ Wα for α = Kh and some suitable K > 0, such that (3.7) is satisfied
with w(t) = p[u](t).

Proof. We first show (3.7) for t = h. In order to prove this observe that the map

t 7→ Φt(x, u)

is differentiable almost everywhere and satisfies

d

dt
Φt(x, u) = g0(x) +

m∑
i=1

ui(t)gi(x) = g(x, u(t)) = f(x, u(t), 0)
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for almost all t ∈ [0, h]. Now we define the perturbation strategy p[u] for t ∈ [0, h]
as

p[u](t) = f(x, u(t), 0)− f(Φt(x, u), u(t)).

This strategy satisfies Definition 3.2 because if u1 and u2 coincide for almost all
s ∈ [0, t], then also the quantities defining p[u1] and p[u2] coincide, hence we obtain
p[u1](s) = p[u2](s) for almost all s ∈ [0, t].

In order to see (3.7), observe that on the one hand we have

d

dt
ϕ(t, x, u, p[u]) = f(ϕ(t, x, u, p[u]), u(t), 0) + p[u](t)

and on the other hand one computes

d

dt
Φt(x, u) = f(x, u(t), 0) = f(Φt(x, u), u(t), 0) + p[u](t).

Thus, ϕ(t, x, u, p[u]) and Φt(x, u) satisfy the same Carathèodory differential equa-
tion and since their initial value x at t = 0 coincides, by uniqueness of solutions we
can conclude (3.7).

Finally, we show that p ∈ Pα, i.e., p[u](t) ∈ Wα with α = Kh for some suitable
K > 0 almost all t ∈ [0, h]. This follows immediately from

‖p[u](t)‖ = ‖f(x, u(t), 0)− f(Φt(x, u), u(t), 0)‖ ≤ L‖Φt(x, u)− x‖ ≤ LMt ≤ Kh

with M := maxu∈U ‖f(x, u)‖ and K = LM .
For the times t = jh with j ≥ 2 the proof is obtained by induction: on each

interval Ij = [jh, (j + 1)h] we repeat the construction from above replacing x by
xj = Φ(jh, x, u), which defines p[u] on Ij . Since this choice of p[u] only depends on
the past values of u we indeed obtain a nonanticipative strategy.

A similar construction can be applied to the higher order schemes developed
by Grüne and Kloeden9, where, however, an appropriate Taylor series expansion
of ϕ(t, x, u) is needed, see Proposition 5.2.14 in Grüne6. Indeed, it seems plausible
to conjecture that any reasonable discretization in time can be embedded using
perturbations generated by nonanticipative strategies P. In the next section we
show that this is no longer the case when we consider spatial discretizations.

3.2. Discretization in space

In many algorithms for the actual computation of dynamical objects like attrac-
tors, invariant manifolds or — in our setting — asymptotically controllable sets, a
discretization of the underlying state space is used in order to represent the desired
objects on a finite “basis” of sets. The method we describe next is based on a cell
discretization of the space and was motivated by the subdivision algorithm devel-
oped by Dellnitz and Hohmann3, but similar arguments are valid for other types
of discretizations, like, e.g., quantization techniques which are often used in control
theory.
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Formally, our cell discretization can be described as follows.

Definition 3.3. Consider a compact set Ω ⊂ Rd.
(i) A cell covering Q = (Qi)i=1,...,P of Ω is a finite family of closed sets Qi,

i = 1, . . . , P , P ∈ N, with Qi = intQi, such that int Qi ∩ int Qj = ∅ for all i 6= j

and
⋃

i=1,...,P Qi = Ω holds. The sets Qi are called the cells of the covering.
(ii) With CQ we denote the set of all possible unions of cells in Q, i.e.,

CQ := {C ⊆ Ω |C =
⋃
i∈I

Qi for an arbitrary index set I ⊆ {1, . . . , P} }.

(iii) The value diam(Qi) := maxx,y∈Qi
‖x− y‖ is called the diameter of the cell

Qi and the value diam(Q) := maxi=1,...,P diam(Qi) is called the diameter of the
covering Q.

Next we define an approximation of our control system (3.2) on CQ.

Definition 3.4. For a given time step h > 0 a space discretization of (3.2) is a set
valued map Ψ : Ω× U → CQ satisfying

Ψ(x, u) = Qi,

for some cell Qi ∈ Q with ϕ(h, x, u) ∈ Qi and

Ψ(x, u) = ∅

if ϕ(h, x, u) 6∈ Ω.

Note that the above definition does not uniquely determine the set valued map
Ψ, it just requests that Ψ assigns to each pair (x, u) a cell Qi with ϕ(h, x, u) ∈ Qi. We
emphasize that this definition describes a theoretical discretization which cannot
in general be implemented numerically. For implementational issues we refer to
Chapter 5 of Grüne6. Observe that the resulting value only depends on the piece
u|[0,h] of the chosen control function.

In order to iterate the map Ψ, we need to pick a point x1 ∈ Ψ(x, u) to which
we can apply Ψ again using the next piece u|[h,2h] of the control function. However,
taking into account that we want to model the influence of “bad” perturbations
we are not free to choose this point x1. Instead, we model the fact that there is a
perturbation acting on the system which determines the point x1 ∈ Ψ(x, u) to be
chosen for the next step. Once x1 is determined we can apply the map Ψ once again
and define its second iterate by

Ψ2(x, u) = Ψ(x1, u(h + ·)).

This procedure can be repeated iteratively, yielding a sequence of points
x0, x1, x2, . . . with the property

x0 = x, xj+1 ∈ Ψ(xj , u(jh + ·)), j = 0, 1, 2, . . . (3.8)

As for the time discretization case we now define a concept of embedding.
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Definition 3.5. We say that the space discretization Ψ is embedded into the per-
turbed system (2.1), (3.6) for some α > 0, if for any initial value x ∈ Rd, any
control function u ∈ U and any sequence of points xj satisfying (3.8) there exists
an admissible perturbation function w ∈ Wα such that

ϕ(jh, x, u, j) = xj (3.9)

holds for all j ≥ 0.

Again we have to decide which class of perturbation functions we define to be
admissible. Analogous to Lemma 3.1 we want to relate the perturbation range α

to the discretization error, which here is given by the diameter diam(Q). It turns
out that in order to realize this embedding the nonanticipative strategies P form a
too restrictive class, which can be illustrated by Example 3.2: assume that the cell
covering Q satisfies diam(Q) = 2∆ and contains the cell Qi∗ = [−∆,∆] centered
around the origin. Then for any x ∈ R and any control u ∈ U there exists a sequence
of points satisfying (3.8) and |xj | ≥ ∆ for each j ≥ 1, which is simply due to the
fact that each cell Qi of Q contains a point x with |x| ≥ ∆.

On the other hand, in Example 3.2 we have seen that if we choose U = [−1, 1]
and W = [−1/2, 1/2] and nonanticipative perturbation strategies w(t) = p[u](t)
then for any τ > 0 we can find a control u ∈ U such that

|ϕ(t, x, u, p[u])| ≤ τ/2

holds for each sufficiently large t = jh > 0. Since |xj | ≥ ∆ and τ > 0 is arbitrary, we
can choose τ = ∆/4 and it follows that for this class of perturbations (3.9) cannot
be satisfied for α = 1/2, no matter how small diam(Q) is.

The reason for this behavior lies in the fact that the inherent discrete time
nature of the generation of the trajectory sequence (3.8) is not reflected in the
strategy space P. In order to overcome this problem it is necessary to relax the
nonanticipation requirement in Definition 3.2 as follows.

Definition 3.6. For a time step h > 0 we define the class of h–nonanticipative
strategies by

Ph
α :=

p : U → Wα

∣∣∣∣∣∣∣∣
for all t = jh, j ∈ Z the following implication holds:

u1(s) = u2(s) for almost all s ∈ (−∞, t] ⇒

p[u1](s) = p[u2](s) for almost all s ∈ (−∞, t]


Hence, for any j ∈ N and any s ∈ (jh, (j + 1)h] the corresponding perturbation

value p[u](s) may be determined using all the values u(t) for t ∈ [0, (j + 1)h] or, in
other words, the perturbation function to be used on (jh, (j + 1)h] has to be fixed
at time (j + 1)h.

We return to Example 3.2 to illustrate this class of perturbations.
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Example 3.3. For the 1d system from the Examples 3.1 and 3.2, again with U =
[−1, 1] and W = [−α, α] we investigate the effect of perturbations from Ph

α. We
inductively define the perturbation strategies

p[u]|[jh,(j+1)h) ≡
{
−α, if ϕ(h, ϕ(jh, x, u, p[u]), u(jh + ·), 0) ≤ 0

α, if ϕ(h, ϕ(jh, x, u, p[u]), u(jh + ·), 0) > 0.

By induction over j one sees that for any u ∈ U the resulting trajectory satisfies
|ϕ(jh, x, u, p[u])| ≥ αh. This shows that in contrast to Example 3.2 the perturba-
tions from Ph

α are powerful enough to keep the system’s trajectories persistently
away from A = {0}, with the distance depending on both the size of α and on the
time step h.

On the other hand, using the same u as in Example 3.2 with τ = h yields
a trajectory satisfying |ϕ(jh, x, u, p[u])| ≤ αh for all sufficiently large j. Hence, in
contrast to Example 3.1 under the perturbations from Ph

α we are still able to control
our system to a neighborhood of A = {0} depending on α and h. Note that it is not
possible to steer closer to A by using τ = h/n for some n ∈ N in the construction
of u in Example 3.2, because this construction needs the values ϕ(iτ, x, u, p[u]) for
i ∈ N0, which are uncertain for iτ ∈ (jh, (j + 1)j) because the values of the chosen
strategy p on the interval (jh, (j + 1)h] will only be fixed at time (j + 1)h.

As expected, the controllability behavior of the system under these h–
anticipative perturbations from Ph

α lies between the behavior of Example 3.1 (full
anticipation) and Example 3.2 (no anticipation). In particular, the effect of cells in
a space discretization is reflected correctly as the following Lemma formally shows.

Lemma 3.2. Consider a trajectory (3.8) induced by a space discretization Q from
Definition 3.3 with time step h > 0. Then there exists a perturbation p ∈ Ph

α with
α = Kdiam(Q)/h for some K > 0 such that the embedding property (3.9) holds for
all j ≥ 0 and all u ∈ U .

Proof. For t ∈ [0, h] we have no restriction in our choice of p, hence given x0, u

and x1 we can use

∆x =
x1 − ϕ(h, x0, u, 0)

h
and y(t) = ϕ(t, x0, u, 0) + t∆x

in order to define

p[u](t) = f(ϕ(t, x, u, 0), u(t))− f(y(t), u(t)) + ∆x.

A uniqueness argument similar to the proof of Lemma 3.1 shows that this perturba-
tion yields the desired equality ϕ(h, x0, u, p[u]) = x1. A straightforward computation
yields ‖p[u](t)‖ ≤ (1 + Lh)‖∆x‖. Since x1 and ϕ(h, x, u, 0) lie in the same cell Qi

with diam(Qi) ≤ diam(Q) we obtain ‖∆x‖ ≤ diam(Q)/h which shows the asser-
tion on the interval [0, h]. The extension to arbitrary intervals [0, jh] now follows
by induction over j.
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Remark 3.1. The embedding properties from Lemma 3.1 and 3.2 form one of the
main motivations for the study of the robustness properties of the perturbed systems
(2.1) or, more specifically, (3.6). The general structure of these systems allows for
“universal” statements about robustness which can then be used for the analysis of
large classes of numerical discretizations and algorithms. We will not pursue this
analysis in detail here, instead we refer the interested reader to the Chapters 6 and
7 of Grüne6 as well as to Grüne8 and Kloeden and Kozyakin14.

4. Robustness properties

In this section we prove two robustness properties for asymptotic controllability
under perturbations from Ph

α from Definition 3.6. In fact, we will prove the results
for a more general class of perturbations than Ph

α, namely

P̃h
α :=


p : U → Wα

∣∣∣∣∣∣∣∣∣∣∣∣∣

there exists a strictly increasing sequence (ti)i∈Z with

ti → ±∞ for i → ±∞ and ti+1 − ti ≤ h for all i ∈ Z

such that for all i ∈ Z the following implication holds:

u1(s) = u2(s) for almost all s ∈ (−∞, ti] ⇒

p[u1](s) = p[u2](s) for almost all s ∈ (−∞, ti]


The sequence (ti) is called anticipation sequence of p. Note that this sequence need
not be unique, e.g. for p ∈ Pα any strictly increasing sequence (ti)i∈Z with the
properties from above will be an anticipation sequence. Clearly, P̃h

α contains Ph
α,

thus robustness w.r.t. P̃h
α implies robustness w.r.t. Ph

α. The main advantage of this
larger set is that for any two perturbations strategy p1, p2 ∈ P̃h

α and any τ ∈ R the
strategy p defined by the concatenation

p[u](t) =
{

p1[u](t), t ∈ (−∞, τ)
p2[u](t), t ∈ [τ,∞)

again lies in P̃h
α, i.e., this space is closed under concatenation for arbitrary times

τ ∈ R. We will need this property in the proofs of the following results.
For our first result we need the following definition.

Definition 4.1. Consider α > 0. A compact set Aα ⊂ Rd is called α–controllable
if

(i) for each x ∈ Aα and each p ∈ P̃h
α there exists u ∈ U with ϕ(t, x, u, p[u]) ∈ Aα

for all t ≥ 0.
(ii) there exists a neighborhood Bα of Aα and a time Tα > 0 such that for each

x ∈ Bα and each p ∈ P̃h
α there exists a control function u ∈ U with ϕ(t, x, u, p[u]) ∈

Aα for all t ≥ Tα.

Note that for α = 0 this definition is both stronger and weaker than the asymp-
totic controllability property in Definition 2.1: stronger, because it assumes control-
lability in finite time and weaker, because it does not impose a KL–estimate. In
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particular, it might happen that a point close to Aα might only be controllable to
Aα by first steering far away from this set, which contradicts the existence of a KL
function β as in Definition 2.1.

Definition 4.1 forms the basis for the following first robustness result.

Proposition 4.1. For every asymptotically controllable set A with controllability
neighborhood B there exists γ ∈ K∞ and α0 > 0 such that for each α ∈ [0, α0]
there exists an α–controllable set Aα with Bα = B and H(Aα, A) ≤ γ(α), where H

denotes the Hausdorff metric for compact subsets of Rd.
In addition, for each α1, α2 ∈ [0, α0] with α2 > α1, any x ∈ Aα2 and any p ∈ P̃h

α1

the control u steering x to Aα1 can be chosen such that

ϕ(t, x, u, p[u]) ∈ Aα2

holds for all t ≥ 0.
Furthermore, there exists a function χ ∈ K∞ such that for each α > 0 and each

two points x ∈ A and y 6∈ Aα the inequality ‖x− y‖ ≥ χ(α) holds.

Proof. For each x ∈ B we denote by ux ∈ U the control satisfying

‖ϕ(t, x, ux, 0)‖A ≤ β(‖x‖A, t)

for all t ≥ 0. We set r0 = H(B,A). For all r ∈ (0, r0] we define

T (r) = min
{

t ≥ 0
∣∣∣ β(s, t) ≤ s

4
for all s ∈ [r, r0]

}
.

Then T (r) is finite for all r ∈ (0, r] and monotone decreasing. The monotonicity of
β implies

β(s, T (r) + t) ≤ r

4
for all t ≥ 0, all r ∈ (0, r0] and all s ∈ [0, r]. Via

T̃ (r) = sup
s>0

{T (s)− |s− r|}+ h

we obtain a function T̃ (r) ≥ T (r) + h, which is also monotone decreasing but in
addition continuous, even globally Lipschitz with constant L = 1.

We set α0 to

α0 :=
r0

4T̃ (r0)eT̃ (r0)

and define a function r(α) for α ∈ (0, α0] by setting r(α) = r > 0 for r being the
(unique) solution of the equation

T̃ (r)eT̃ (r)α =
r

4
. (4.10)

Observe that the monotonicity and continuity properties of the functions involved
in (4.10) imply continuity of r(α), furthermore, this function is strictly increasing
in α with r(α) → 0 for α → 0. We set r(0) = 0. For any perturbation p we denote
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by Tp(r) the smallest time ti ≥ T (r) in the anticipation sequence of p. Note that
Tp(r) ≤ T̃ (r) holds.

From the Gronwall Lemma we obtain for each x ∈ B and p ∈ P̃h
α the inequality

‖ϕ(t, x, ux, p[ux])‖A ≤ ‖ϕ(t, x, ux, p[ux])− ϕ(t, x, ux, 0)‖+ ‖ϕ(t, x, ux, 0)‖A

≤ αteLt + β(‖x‖A, t).

For t ≤ T̃ (r(α)) we have

αteLt ≤ αT̃ (r(α))eLT̃ (r(α)) =
r(α)

4
. (4.11)

Now we consider the sets

Dα = B(r(α), A).

For x ∈ Dα we have d(x,A) ≤ r(α) and thus by Gronwall’s Lemma, (4.11) and the
definition of T̃ (r) the estimate

‖ϕ(Tp(r(α)), x, ux, p[ux])‖A ≤ r(α)
4

+ β(‖x‖A, T (r(α)))︸ ︷︷ ︸
≤r(α)/4

≤ r(α)
2

< r(α),

thus

ϕ(Tp(r(α)), x, ux, p[ux]) ∈ Dα. (4.12)

For the times t with 0 ≤ t ≤ Tp(r(α)) we have

ϕ(t, x, ux, p[ux])‖A ≤ r(α)
4

+ β(‖x‖A, t) ≤ r(α)
4

+ β(r(α), 0). (4.13)

Denoting x1 := ϕ(Tp(r(α)), x, ux, p[ux]) by (4.12) we can continue

‖ϕ(t, x1, ux1 , p[ux1 ])‖A ≤ r(α)
4

+ β(‖x1‖A, t) ≤ r(α)
4

+ β(r(α), 0).

Thus, proceeding inductively (note that this is possible due to the fact that Tp(r(α))
is from the anticipation sequence of p), we can construct u such that (4.13) holds
for all t ≥ 0. Defining

Aα =
⋃
t≥0

⋃
x∈Dα,p∈P̃h

α

{ϕ(t, x, u, p[u])},

we obtain a set such that for each point x ∈ Aα and each p ∈ P̃h
α there exists u ∈ U

with

ϕ((t, x, u, p[u]) ∈ Aα

for all t ≥ 0. Furthermore, we obtain the inequality

H(Aα, A) ≤ r(α)
4

+ β(r(α), 0) =: γ(α).

Observe that this γ only depends on β and r(α), and thus — via Gronwall’s Lemma
— on β, r0 = H(B,A) and the Lipschitz constant L of f .
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The α–controllability property to Aα is shown analogously with the same in-
ductively defined control functions u, again using Gronwall’s Lemma to show that
each point x ∈ B can be controlled to Dα ⊆ Aα in finite time.

The fact that each point from Aα2 can be controlled to α1 without leaving Aα2

follows from the construction of the control functions u, which are the same in both
parts of the proof.

Finally, the existence of the function χ follows from the fact that each Aα con-
tains the closed ball Dα = B(r(α), A), i.e., we can choose χ(α) = r(α).

Remark 4.1. For arbitrarily perturbed systems (2.1) is it in general not possible
to derive a perturbed analogue of Definition 2.1 for the sets Aα from Proposition
4.1, i.e., an estimate of the type

‖ϕ(t, x, u, p[u])‖Aα
≤ β̃(‖x‖Aα

, t), (4.14)

for some β̃ ∈ KL because it might be necessary to steer far away from Aα before
we can actually control the system to Aα. For inflated systems (3.6), however, one
can exploit the particular perturbation structure in order to conclude (4.14) for all
p ∈ P̃h

α′ with α′ ∈ (0, α) arbitrary and β̃ depending on α′, see Proposition 4.7.4 in
Grüne6.

The major drawback of Proposition 4.1 in our setting is that the time–varying
nature of the perturbations w(t) = p[u](t) is not reflected: the statement only takes
into account the maximal norm of p but not the change of p in time. The following
definition is motivated by the notion of input–to–state dynamical stability (ISDS)7

which in turn is based on the input–to–state stability property (ISS) introduced
by Sontag17,19. For its formulation we need so called KLD functions, which are
functions µ ∈ KL which in addition satisfy µ(r, 0) = r and µ(r, t + s) = µ(µ(r, t), s)
for all r, t, s ≥ 0, i.e., they are semi dynamical systems.

Definition 4.2. An asymptotically controllable set A is called controlled input–to–
state dynamically stable (cISDS) if there exist α0 > 0, γ, σ ∈ K∞, µ ∈ KLD and
a neighborhood B of A, such that for each x ∈ B and each perturbation strategy
p ∈ P̃h

α0
with anticipation sequence (ti) there exists u ∈ U with

‖ϕ(t, x, u, p[u])‖A ≤ max{µ(σ(‖x‖A), t), ν(p, t)}

for all t = ti ≥ 0 from the sequence (ti), where

ν(p, t) = sup
u∈U

ess sup
τ∈[0,t]

µ(γ(‖p[u](τ)‖), t− τ)

Our main result states that each asymptotically controllable set has the cISDS
property.

Theorem 4.1. Every asymptotically controllable set A is cISDS for suitable α0 >

0, γ, σ ∈ K∞ and µ ∈ KLD.
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Proof. We show the assertion by constructing a function V : B → R with the
property

‖x‖A ≤ V (x) ≤ σ(‖x‖A) (4.15)

and

V (ϕ(t, x, u, p[u])‖A ≤ max{µ(V (x), t), ν(p, t)} (4.16)

for any x ∈ O, p ∈ P̃h
α, t = ti ≥ 0, ν from Definition 4.2 and a suitable u ∈ U

depending on x, p and the sequence (ti). From these inequalities the asserted cISDS
property follows immediately.

Without loss of generality we can assume that B is controlled invariant, i.e.,
that for each x ∈ B and each p ∈ P̃h

α0
there exists u ∈ U with ϕ(t, x, u, p[u]) ∈ B

for all t ≥ 0.
In order to construct V we use Proposition 4.1. We denote the K∞ function

from Proposition 4.1 by γ̄ and consider an arbitrary γ̃ ∈ K∞ with γ̃ > γ̄ for r > 0.
We define η = γ̄−1 ◦ γ̃ ∈ K∞ and inductively define a two sided sequence bi, i ∈ Z,
by setting b0 = 1 and

bi+1 = η(bi) and bi−1 = η−1(bi)

for i ∈ Z. One easily computes that

bi < bi+1 and γ̃(bi) = γ̄(bi+1),

as well as bi → 0 for i → −∞ and bi → ∞ for i → ∞ holds. We abbreviate
ri = γ̄(bi) and r̃i = γ̃(bi) and set ai = max{bi, α0}.

Now we define the sets

Bi := Aai

for Aα from Proposition 4.1. These sets satisfy H(Bi, A) ≤ ri and — by their
construction in the proof of Proposition 4.1 — Bi ⊆ Bi+1. Furthermore, for each
x ∈ Bi and each p ∈ P̃h

ai−1
there exists ux,p ∈ U with

ϕ(t, x, ux,p, p[ux,p]) ∈ Bi

for all t ≥ 0 and

ϕ(t, x, ux,p, p[ux,p]) ∈ Bi−1

for all t ≥ Tai−1 from Definition 4.1(ii).
We set ∆ti = Tai−1 + h and define V as follows: for each r ∈ [r̃i−1, r̃i] we define

the sets

Cr :=
⋃

p∈P̃h
ai−1

,x∈Bi

ϕ

(
r̃i − r

r̃i − r̃i−1
∆ti, x, ux,p, p[ux,p]

)
∪ Bi−1.

Observe that the choice of ∆ti implies

Cr = Bi−1 for r ≤ r̃i −
∆ti − h

∆ti
(r̃i − r̃i−1). (4.17)
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Now we obtain our function V by setting

V (x) := inf{r > 0 |x ∈ Cr}.

We first show that (4.15) holds. From Proposition 4.1 we know that each x ∈ Bi

satisfies ‖x‖A ≤ γ̄(bi) = γ̃(bi−1). For r ∈ [r̃i−1, r̃i] and x ∈ Cr we obtain x ∈ Bi

and hence ‖x‖A ≤ γ̃(bi−1) = r̃i−1 ≤ r. This yields the implication d(x,A) = r ⇒
x 6∈ Cr̃ for all r̃ < r ⇒ V (x) ≥ r̃ for all r̃ < r ⇒ V (x) ≥ r and consequently

V (x) ≥ d(x,A).

For the upper bound recall that Proposition 4.1 yields x 6∈ Bi ⇒ ‖x‖A ≥ χ(bi). For
r ∈ [r̃i−1, r̃i] and x 6∈ Cr we obtain x 6∈ Bi−1 and thus

‖x‖A > χ(bi−1) ≥ χ ◦ γ̃−1 ◦ γ̄ ◦ γ̃−1(r̃i) ≥ χ ◦ γ̃−1 ◦ γ̄ ◦ γ̃−1(r).

Defining σ(r) := γ̃ ◦ γ̄−1 ◦ γ̃ ◦ χ−1 we obtain

V (x) > r ⇒ x 6∈ Cr ⇒ σ(‖x‖A) > r

and finally

V (x) ≤ σ(‖x‖A).

It remains to show (4.16), in particular we have to define µ. To this end for
r = r̃i and t ∈ [0,∆ti] we set

µ(r, t) = r − t
r̃i − r̃i−1

∆ti
and extend this map for all t, r ≥ 0 such that the dynamical systems property
µ(r, t + s) = µ(µ(r, t), s) holds. This construction yields

r̃i − µ(r, t)
r̃i − r̃i−1

∆ti ≤
r̃i −

(
r − t r̃i−r̃i−1

∆ti

)
r̃i − r̃i−1

∆ti =
r̃i − r

r̃i − r̃i−1
∆ti + t.

For any r ∈ (r̃i−1, r̃i] we define t(r) := r̃i−r
r̃i−r̃i−1

∆ti which implies

µ(r̃i, t(r)) = r.

From the construction of Cr each x∗ ∈ Cr is either in Bi−1 or it is the image of ϕ for
some point x ∈ Bi, some perturbation p and control ux,p at time t(r). Now consider
a perturbation p∗ ∈ P̃h

ai−1
and a time t ∈ [0,∆ti − t(r)]. In the first case we choose

u∗ = ux∗,p∗ which keeps the resulting trajectory inside Bi−1. In the second case,
by the concatenation property of P̃h

ai−1
for all x ∈ Cr and all t ∈ [0,∆ti − t(r)] we

find a perturbation p ∈ P̃h
ai−1

which coincides with p∗ on [t(r),∞) and we choose
u∗ = up,x(t(r) + ·). This yields

ϕ(t, x∗, u∗, p[u∗]) ∈
⋃

p∈P̃h
ai−1

,x∈Bi

ϕ (t(r) + t, x, ux,p, p[ux,p]) ∪ Bi−1

⊆
⋃

p∈P̃h
ai−1

,x∈Bi

ϕ

(
r̃i − µ(r, t)
r̃i − r̃i−1

∆ti, x, ux,p, p[ux,p]
)
∪ Bi−1

⊆ Cµ(r,t) (4.18)
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for all t ∈ [0,∆ti − t(r)].
Finally, we use (4.18) to show that (4.16) holds for the robustness gain γ ∈ K

given by γ = η ◦ γ̃. Note that this definition implies γ ◦ γ̃−1(r̃i−1) = r̃i. We consider
x ∈ B, some perturbation p ∈ P̃h

α0
and the smallest positive time tj > 0 from the

anticipation sequence (ti) of p. We pick the minimal value r ≥ 0 with the following
properties:

V (x) ≤ r, qt := sup
u∈U

ess sup
τ∈[0,tj ]

γ̃(‖p[u](τ)‖) ≤ r

and

r ∈
[
r̃i −

∆ti − h

∆ti
(r̃i − r̃i−1), r̃i

]
(4.19)

for some i ∈ Z. The minimality of r implies that either V (x) = r or qt = r or
r = r̃i−∆ti−h

∆ti
(r̃i−r̃i−1) must hold. Since (4.17) implies that V cannot assume values

in the intervals given in (4.19), we obtain that if V (x) < r and qt < r hold then
qt > r̃i−1 must hold, because otherwise the minimal r would satisfy r ≤ r̃i−1. From
γ ◦ γ̃−1(r̃i−1) = r̃i and the definition of ν we obtain ν(p, tj) ≥ µ(r̃i, tj) ≥ µ(r, tj)
because µ is monotone increasing in its first argument, and consequently

µ(r, tj) ≤ max{µ(V (x), tj), ν(p, tj)}. (4.20)

Since r satisfies 4.19 and V only assumes values in the intervals from (4.19) we
can conclude that we either have r = r̃i implying x ∈ Cr, or x ∈ Cr̃ for all r̃ ≥ r.
In any case we can pick r̃ from the interval in (4.19) with x ∈ Cr̃ for which the
definition of t(r) implies ∆ti− t(r̃) ≥ h, i.e., in particular tj ∈ [0,∆ti− t(r̃)]. Hence
we can use u = u∗ ∈ U from (4.18) with x∗ = x in order to obtain

ϕ(tj , x, u, p[u]) ∈ Cµ(r̃,tj).

For V this implies

V (ϕ(tj , x, u, p[u])) ≤ µ(r̃, tj),

and since either r = r̃ holds or r > r̃ is arbitrary we obtain

V (ϕ(t, x, u, p[u])) ≤ µ(r, t). (4.21)

Together with (4.20) this proves (4.16) for t = tj .
In order to continue this estimate for larger ti from the anticipation sequence (ti)

we consider the next anticipation time tj+1 and repeat the construction on [tj , tj+1]
with x = ϕ(tj , x, u, p[u]) and p[u] = p[u](tj + ·) to conclude the inequality (4.16) for
all t ∈ [0, tj+1]. Proceeding inductively we obtain (4.16) for all anticipation times
ti ≥ 0.

Remark 4.2. The cISDS property contains many interesting features of the
system in one compact formula. For instance, one immediately obtains that if
supu∈U p[u](t) → 0 for t →∞ then the system can be asymptotically controlled to
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A. In the context of discretizations this is an important feature to analyze schemes
with time–varying discretization errors like adaptive subdivision schemes as devel-
oped by Dellnitz and Hohmann3 and Szolnoki21, see also Chapter 6 of Grüne6. The
cISDS property also contains Proposition 4.1 because one can easily identify the
sets Aα as sublevel sets of V . In fact, the existence of the function V , which acts
as a cISDS Lyapunov function, is the main motivation for the specific form of the
cISDS formulation, cf. Grüne7 for details on this in the uncontrolled case. Note
that the function V constructed above is in general discontinuous and it is an open
question whether and under which conditions one can find a continuous or even
differentiable cISDS Lyapunov function V .

Remark 4.3. Note that for p ∈ Pα we can choose an arbitrary anticipation se-
quence (ti) for which the cISDS estimate holds, such that we recover the wISDS
definition from Chapter 4 of Grüne6. Note that for the times t ∈ (ti, ti+1) in between
the anticipation times the proof above yields the estimate

‖ϕ(t, x, u, p[u])‖A ≤ max{µ(σ(‖x‖A), t), ν(p, ti+1)},

i.e., we obtain a similar estimate involving “future” perturbation values from the
interval (ti, ti+1).

Acknowledgment: I would like to thank Tony Michel for information about
the history of K and KL functions.
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