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Abstract: In this paper we study the domain of asymptotic nullcontrollability of
control systems. It is shown that this domain may be characterized by optimal control
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PDE. This value function turns out to be a control Lyapunov function. The approach
generalizes Zubov’s method.
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1. INTRODUCTION

In this paper we consider finite-dimensional non-
linear control systems that are asymptotically null
controllable in a neighborhood of the origin and
study the construction of control Lyapunov func-
tions on that neighborhood. The relation between
asymptotic null-controllability and the existence
of control Lyapunov functions has attracted wide
interest recently. In (Sontag, 1983) it is shown that
(global) asymptotic nullcontrollability is equiva-
lent to the existence of a control Lyapunov func-
tion using optimal control methods. A discussion
of the literature control Lyapunov functions can
be found in (Sontag, 1999).

Constructive approaches to control Lyapunov
functions have received widespread attention most
notably with the techniques known as backstep-
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ping and forwarding. In (Freeman and Koko-
tovic, 1996) it is shown that a smooth robust
control Lyapunov functions is the solution of a
suitable Hamilton-Jacobi-Isaacs equation making
another connection of the field with optimal con-
trol. In a different approach in (Dubljevič and
Kazantsis, 2002) Zubov’s method is applied to
single-input systems and control Lyapunov func-
tions are obtained by truncation of series so-
lutions. This approach resembles earlier works
on approximate series solutions of Zubov’s equa-
tion as e.g. (Kirin et al., 1982; Vannelli and
Vidyasagar, 1985). The approach taken in the
present paper uses ideas from (Camilli et al., 2001)
where perturbed systems are studied and also fur-
ther references on Zubov’s method may be found.

We proceed as follows: In the ensuing Section 2
we define the class of systems under consider-
ation and introduce the problem. In Section 3
we introduce the optimal control problem that
characterizes the domain of asymptotic nullcon-



trollability. In Section 4 we show that the value
function of this optimal control problem is the
unique viscosity solution of a generalization of
Zubov’s equation.

2. NULL-CONTROLLABILITY

We consider nonlinear control systems of the type

ẋ(t) = f(x(t), u(t)) , (1)

where f : R
n × U → R is continuous, U ⊂ R

m

is a closed set and the space of admissible control
functions is given by

u ∈ U := L∞([0,∞), U) .

Solutions corresponding to an initial value x and
a control u ∈ U at time t are denoted by ϕ(t, x, u).
They are defined on a maximal positive interval of
definition [0, Tmax(x, u)), where we do not exclude
the case that Tmax(x, u) <∞. In the following the
open ball of radius r around a point z ∈ R

p is
denoted by B(z, r).

Uniqueness of solutions is a consequence of our
further standard assumption on f , which are
formulated using comparison functions. 2

(H0)

There exists γ ∈ K∞ such that for any
R > 0 there is CR > 0 with

‖f(x, u)−f(y, u)‖ ≤ CR(1+γ(‖u‖))‖x−y‖ ,

for all x, y with ‖x‖, ‖y‖ ≤ R,

(H1) f(0, 0) = 0,

(H2)

There exists an open ball B(0, r), a con-
stant ū > 0, and β ∈ KL such that for
any x ∈ B(0, r) there exists ux ∈ U with
‖ux‖∞ ≤ ū and

‖ϕ(t, x, ux)‖ ≤ β(‖x‖, t) .

Remark 1. The Lipschitz assumption (H0) is wea-
ker than the following assumption:

For any R > 0 there exists CR > 0 with

‖f(x, u) − f(y, u)‖ ≤ CR(1 + ‖u‖)‖x− y‖ ,

for all x, y with ‖x‖, ‖y‖ ≤ R,

which is used in (Soravia, 1999a; Soravia, 1999b),
the results of which we will use later. In order to
be able to use these results using (H0) we define
an input transformation R(u) = γ−1(‖u‖)u/‖u‖
and consider the vector field

f̂(x, u) = f(x,R(u))

2 As usual we call a function α of class K∞ if it is a

homeomorphism of [0,∞), a continuous function β in two

real nonnegative arguments is called of class KL if it is of

class K∞ in the first and decreasing to zero in the second
argument.

with u ∈ Ũ := R−1(U). This system satisfies

‖f̂(x, u) − f̂(y, u)‖ ≤ CR(1 + ‖u‖)‖x− y‖ .

Hence the results of (Soravia, 1999a; Soravia,
1999b) are applicable to our case.

Property (H2) is a local asymptotic controllability
property. It is known (Sontag, 1998) that for any
β ∈ KL there exist two functions α1, α2 ∈ K∞

such that β(r, t) ≤ α2(α1(r)e
−t). For ease of

presentation we use this upper bound.

We define the domain of null controllability by

D0 := {x ∈ R
n | there exists u ∈ U with

‖ϕ(t, x, u)‖ → 0 for t→ ∞} .

Recall that a set M is called viable, if ∀x ∈
M ∃u ∈ U such that ϕ(t, x, u) ∈ M for all
t ≥ 0. Using ideas similar to those in (Grüne and
Wirth, 2000) the following can be shown.

Proposition 2. Assume (H0)–(H2). Then the fol-
lowing properties hold.

(i) clB(0, r) ⊂ D0,
(ii) the set D0 is open, connected and viable.

3. OPTIMAL CONTROL
CHARACTERIZATION OF D0

In this section D0 is characterized via an optimal
control problem and the continuity of the corre-
sponding value function is shown. In order to set
up the problem we need a running cost g satisfying
the following assumptions:

(H3)

The function g : R
n×U → R is continuous

and satisfies (H0) with the same γ ∈ K∞

as f . Furthermore, for all c > 0 we have

inf {g(x, u) | ‖x‖ ≥ c, u ∈ U} =: gc > 0 .

We need to ensure convergence of the integral
cost that is introduced shortly for the “right”
stabilizing solutions. To this end we assume that

(H4)
g(x, u) ≤ Cα−1

2 (‖x‖) ,

for all (x, u) ∈ B(0, r) ×B(0, ū) .

(H5)
g(x, u) ≥ ‖f(x, u)‖ + γ(‖u‖) ,

whenever ‖x‖ ≥ 2r or ‖u‖ ≥ 2ū .

For u such that Tmax(x, u) = ∞ we define the
functional

J(x, u) :=

∫ ∞

0

g(ϕ(t, x, u), u(t))dt ,

and we set J(x, u) := ∞, if Tmax(x, u) < ∞.
We define furthermore the (extended real valued)
optimal value function

V (x) := inf
u∈U

J(x, u) , x ∈ R
n , (2)



and the function v(x) := 1 − e−V (x) , x ∈ R
n.

Note that both V and v satisfy appropriate dy-
namic programming principles, i.e., for each T > 0
we have

V (x) = inf
u∈U

{∫ T

0

g(ϕ(t, x, u), u(t))dt+ V (ϕ(T ))

}

and

v(x) = inf
u∈U

{1 +G(x, T, u)(v(ϕ(T, x, u)) − 1)} ,

where

G(x, T, u) := exp

(
−

∫ T

0

g(ϕ(t, x, u), u(t))dt

)
.

We now investigate the properties of V and v. For
this purpose using the function γ from (H0) we
define for u ∈ U

‖u‖γ,T :=

∫ T

0

γ(‖u(t)‖)dt .

Lemma 3. Let T > 0. If x ∈ R
n and u ∈ U

are such that ‖ϕ(t, x, u)‖ ≥ 2r, t ∈ [0, T ] or
‖u(t)‖ ≥ 2ū a.e. t ∈ [0, T ], then
∫ T

0

g(ϕ(t, x, u), u(t))dt ≥ ‖ϕ(T, x, u)−x‖+‖u‖γ,T

Proposition 4. Assume (H0)–(H4), then

(i) V (x) <∞ and v(x) < 1 if and only if x ∈ D0,
(ii) if in addition (H5) holds, then V (x) = 0 ⇔

x = 0 and v(x) = 0 ⇔ x = 0.

Proof. We show the statements for V ; where
(i) may be shown using ideas as in (Camilli et
al., 2001).

(ii) It is clear that V (0) = 0, so let x 6= 0. Assume
to the contrary that there is a sequence {uk} ⊂ U
such that J(x, uk) → 0. Let c := ‖x‖/2 and denote

tk := inf{t ≥ 0 | ‖ϕ(t, x, uk)‖ ≤ c} .

By (H3) we have for all k that J(x, uk) ≥∫ tk

0
g(ϕ(s, x, uk), uk(s))ds ≥ tkgc which implies

that tk → 0. Now ‖f‖ is bounded on W :=
B(0, 2r)×B(0, 2ū) by the constant C := C2r(1 +
γ(2ū))2r. Denote by E(k) the set

{t ∈ [0, tk] | (ϕ(t, x, uk), uk(t)) ∈W} ,

which is well defined up to a set of measure zero.
Then ∫

E(k)

‖f(ϕ(t, x, uk), uk(t))‖dt ≤ tkC .

On the other hand we have for all k that∫ tk

0

‖f(ϕ(t, x, uk), uk(t))‖dt ≥ ‖x− ϕ(tk, x, uk)‖ .

Using (H5) this implies that

J(x, uk) ≥

∫

[0,tk]\E(k)

g(ϕ(s, x, uk), uk(s))ds

≥

∫

[0,tk]\E(k)

‖f(ϕ(s, x, uk), uk(s))‖ds ≥ c− tkC .

As tk → 0 this contradicts J(x, uk) → 0.

We start our investigation by proving continuity
properties for the trajectories of (1). The following
is a consequence of Gronwall’s lemma.

Lemma 5. Assume (H0) and let T > 0 and R > 0
be arbitrary constants. Then for all x, y ∈ R

n and
all u ∈ U satisfying

‖ϕ(t, x, u)‖ ≤ R, ‖ϕ(t, y, u)‖ ≤ R , ∀t ∈ [0, T ]

we have

‖ϕ(t, x, u) − ϕ(t, y, u)‖ ≤ eCR(‖u‖γ,t+t)‖x− y‖ ,
(3)

for all t ∈ [0, T ].

Now we can prove the desired continuity result.

Proposition 6. Assume (H0)–(H5), then V is con-
tinuous on D0 and v is continuous on R

n.

Proof. We show the continuity of V on D0,
then the statement for v follows immediately from
its definition and Proposition 7. The proof is
performed in several steps. First note that we have

V (x) ≤ Cα1(‖x‖) , for x ∈ B(0, α−1
1 ◦ α−1

2 (r)) .
(4)

Using a concatenation argument this may be used
to show that for x0 in D0 there is a δ > 0 such
that supx∈B(x0,δ) V (x) =: BV is finite.

(i) (Bounds on ε–optimal controls and trajecto-
ries)

For any x ∈ B(x0, δ) and any ε ∈ (0, 1] we pick
ux,ε ∈ U such that

J(x, ux,ε) ≤ V (x) + ε .

We claim that for any ε > 0 the set

Kε := {ϕ(t, x, ux,ε) | t ≥ 0, x ∈ B(x0, δ)}

and the sets

{‖ux,ε‖γ,T | x ∈ B(x0, δ)} , T > 0

are bounded. If the first set were unbounded then
there would be an x ∈ B(x0, δ) and t1 > 0 such
that ‖ϕ(t1, x, ux,ε)‖ ≥ V (x)+2ε+2r. If t2 > t1 is
the first time at which ‖ϕ(t1, x, ux,ε)‖ = 2r again,
then we obtain using Lemma 3 that

J(x, ux,ε) ≥ V (x) + 2ε ,

a contradiction. The second claim is brought to a
contradiction using Lemma 3 in a similar manner.

(ii) (Continuity of trajectories)

We denote by Rε an upper bound on the set Kε.
By Lemma 5 we can conclude that for x, y ∈
B(x0, δ) and all t ≥ 0 such that

‖x− y‖ ≤ Rε exp(−C2Rε
(‖ux,ε‖γ,t + t))



we have

‖ϕ(t, x, ux,ε) − ϕ(t, y, ux,ε)‖

≤ exp(C2Rε
(‖ux,ε‖γ,t + t)) ‖x− y‖ .

(5)

(iii) (Continuity of V )

It suffices to show continuity of V on B(x0, δ). So
pick 0 < ε < α−1

2 (r)C. By (H3) and the finiteness
of J(x, ux,ε) we may assume that the controls ux,ε

are chosen in such a way that there exists Tε > 0
(depending on BV ) such that

ϕ(t, x, ux,ε) ∈ B(0, α−1
1 (ε/C)/2) ,

for all t ≥ Tε, x ∈ B(0, δ). Denote

C̃ := exp(−C2Rε
( max
z∈B(x0,δ)

‖uz,ε‖γ,Tε
+ Tε)) ,

and note that the right hand side is finite by (i).
Choose two points x, y ∈ B(x0, δ) such that

‖x− y‖ ≤ RεC̃ .

Without loss of generality assume V (y) ≥ V (x).
Abbreviating u := ux,ε, T := Tε we obtain

|V (y) − V (x)| = V (y) − V (x)

≤

∫ T

0

|g(ϕ(t, y, u), u(t)) − g(ϕ(t, x, u), u(t))|dt

+V (ϕ(T, y, u)) + ε .

Using (H3) and (5) we continue

≤

∫ T

0

C2Rε
(1 + γ(‖u(t)‖))C̃‖x− y‖dt

+V (ϕ(T, y, u)) + ε

and we obtain

≤ C2Rε
(T + ‖u‖γ,T )C̃‖x− y‖ + 2ε,

provided ‖y−x‖ ≤ α−1
1 (ε/C)/(2C̃). It is now easy

to show the assertion.

The next proposition concerns the behavior of
V (x) near the boundary of D0 or at ∞.

Proposition 7. Assume (H0)–(H5). Then for any
sequence xn which satisfies dist(xn, ∂D0) → 0 or
‖xn‖ → ∞ we have V (xn) → ∞ and v(xn) → 1.

Proof. This follows using similar arguments to
the ones to the proof of Proposition 6.

4. ZUBOV’S METHOD

The aim of this section is to characterize the
functions V and v in the previous section as (the
unique) viscosity solutions of the equations

sup
u∈U

{−DV (x)f(x, u) − g(x, u)} = 0 (6)

and

sup
u∈U

{−Dv(x)f(x, u)− (1−v(x))g(x, u)} = 0, (7)

respectively (for the definition of viscosity solution
we refer to (Bardi and Capuzzo-Dolcetta, 1997)).
Note that it follows from these characterizations
that v is a control Lyapunov function on D0 in the
usual sense, (Sontag, 1999). In fact, a small cal-
culation shows that v is a viscosity supersolution
on D0 of

max
u∈U

−Dv(x)f(x, u) ≥W (x)g‖x‖ ,

where 0 < W (x) := 1− v(x) for x ∈ D0 \ {0} and
g‖x‖ denotes the constant from (H3) for c = ‖x‖.

In this section we drop the assumption (H5) and
replace it by assumptions relating the growth of
f and g. To this end we define the functions

f̃(x, u) =
f(x, u)

1 + ‖f(x, u)‖
, g̃(x, u) =

g(x, u)

1 + ‖f(x, u)‖
.

Remark 8. The effect of the rescaling described
above can be described as follows. Let x ∈ R

n, u ∈
U be given. Now introduce a new time variable τ
through

dt(τ)

dτ
=

1

1 + ‖f(φ(t(τ), x, u), u(t(τ)))‖
, a.e.,

and a control ũ(τ) := u(t(τ)), a.e. Then ψ(τ) :=
φ(t(τ), x, u) satisfies the differential equation

dψ(τ)

dτ
= f̃(ψ(τ), ũ(τ)) .

So if we consider the system

ẋ(t) = f̃(x(t), u(t)) , (8)

it is easy to see that if f satisfies (H0), (H1)
and (H2) then also f̃ satisfies these properties for
suitably adjusted functions γ̃ and β̃. Also D0 is
the same for f and f̃ .

Consider now the optimal control problem for
system (8) given by the running cost g̃. Then using
standard transformation of integral formulas it is
also easy to see that J̃(x, ũ) = J(x, u), where J̃ is
defined using g̃ in the spirit of (3). In particular,
this implies that the value functions v and V
coincide for the optimal control problems defined
through (1) and (3), and the rescaled version.

Note also, that g̃ clearly satisfies (H4) with a
modified decay α̃2, as well as the first statement of
(H3), whereas the lower bound gc need not exist.
This is no problem, however, as gc is only used to
ensure that trajectories not converging to 0 result
in the value ∞ for the original optimal control
problem. As the value associated with a trajectory
does not change, this property is preserved under
our transformation.

Now we introduce the following assumption,
which implies (H5).



(H6)
g(x, u) ≥ ‖f(x, u)‖+γ(‖u‖)(1+‖f(x, u)‖),
whenever ‖x‖ ≥ 2r or ‖u‖ ≥ 2ū,

To (6) and (7) we associate the Hamiltonians

HV (x, p) = sup
u∈U

{−f(x, u)p− g(x, u)} ,

and

Hv(x, r, p) = sup
u∈U

{−f(x, u)p− (1 − r)g(x, u)} .

Given (H6) (and assuming r < 1 for Hv) the
Hamiltonians HV and Hv are locally Lipschitz
continuous with respect to their arguments . Also,
recalling that V is locally bounded in D0 and v
is bounded in R

n, our first result follows from a
standard application of the dynamic programming
principles satisfied by v and V , see (Bardi and
Capuzzo-Dolcetta, 1997).

Proposition 9. Assume (H0) - (H6), then V is a
viscosity solution of (6) in D0 and v is a viscosity
solution of (7) in R

n.

The following is the main theorem of our paper.

Theorem 10. Assume that (H0)–(H6) hold. Then

(i) v is the unique bounded continuous viscosity
solution v of (7) vanishing at the origin,

(ii) (D0, V ) is the unique couple of an open set
containing the origin and a locally bounded,
continuous viscosity solution of (6) in O with
V (0) = 0 and V (x) → +∞ for x→ ∂D0.

In the proof we encounter two difficulties: the
unbounded dependence of the coefficients on the
control variable and the vanishing of the cost g at
the origin. To solve the first problem we introduce
two rescaled equations which share with (6) and
(7) the same set of sub- and supersolutions.

Lemma 11. Assume (H0)–(H6) and consider the
equations

sup
u∈U

{−DṼ (x)f̃(x, u) − g̃(x, u)} = 0 (9)

and

sup
u∈U

{−Dṽ(x)f̃(x, u) − (1 − ṽ(x))g̃(x, u)} = 0,

(10)
for the functions f̃ and g̃. Then any viscosity
subsolution (supersolution) of (6) is a viscosity
subsolution (supersolution) for (9) and vice versa.
The same assertions hold for (10) and (7).

Proof. We prove the lemma for subsolutions of
(6) and (9), the assertions supersolutions and for
(7) and (10) follow by very similar arguments.

If V − is a viscosity subsolution of (6), then for
any supergradient p of V − in x we have that

sup
u∈U

{−f(x, u)p− g(x, u)} ≤ 0.

This implies

−f(x, u)p− g(x, u) ≤ 0 , for all u ∈ U

and since 1 + ‖f(x, u)‖ is positive, this implies

−f̃(x, u)p− g̃(x, u) ≤ 0 , for all u ∈ U,

which in turn implies

sup
u∈U

{−f̃(x, u)p− g̃(x, u)} ≤ 0,

hence V − is a viscosity supersolution of (9).

The converse direction follows by the same argu-
ment, since again we multiply by a positive factor,
now 1 + ‖f(x, u)‖.

The following corollary is a simple consequence of
this lemma.

Corollary 12. Assume (H0)–(H6), then
(i) Any viscosity solution of (6) is a viscosity
solution of (9) in D0 and vice versa.
(i) Any viscosity solution of (7) is a viscosity
solution of (10) and vice versa.

In order to prove a uniqueness result for (9) and
(10), we use a control theoretic argument and
some optimality principles introduced in (Soravia,
1999a; Soravia, 1999b), as stated in the following
lemma.

Lemma 13. Assume (H0) and (H3) and denote by
ϕ̃(t, x, u) the solution of (8). Define

G̃(x, t, u) := exp

(
−

∫ t

0

g̃(ϕ̃(τ, x, u), u(τ))dτ

)
.

Then

(i) Any upper semicontinuous viscosity subsolu-
tion w− of (10) is pointwise upper bounded by

inf
u∈U

inf
t∈[0,T ]

{
1 + G̃(x, t, u)(w−(ϕ̃(t, x, u)) − 1)

}
.

(11)
for each T > 0.
(ii) Consider a continuous viscosity supersolution
w+ of (10) and let Ω ⊂ R

n be an open and
bounded set with supx∈Ω w

+(x) < 1. Consider the
first exit time from Ω given by

Tex(x, u,Ω) = min{t ≥ 0 |ϕ(t, x0, u) 6∈ Ω} .

Then w+ is a pointwise upper bound for

inf
u∈U

sup
{

1 + G̃(x, t, u)(w+(ϕ̃(t, x, u)) − 1)
}
,

where the second supremum is taken over t ∈
[0, Tex(x, u,Ω)].

Using these inequalities we can now prove our
uniqueness results.



Proof. of Theorem 10 We prove only (i), since
the proof of assertion (ii) is similar. Note that by
Remark 8 the functions v and V can be taken to
be defined through (8) and the running cost g̃.
In the following we work with this representation.
Again by ϕ̃(t, x, u) we denote the solutions of (8).
Claim 1: If w− is a bounded u.s.c. subsolution of
(10) on R

n with w−(0) ≤ 0, then w− ≤ v.

By the upper semicontinuity of w− and w−(0) ≤ 0
we obtain that for every ε > 0 there exists a δ > 0
with w−(x) ≤ ε for all x ∈ R

n with ‖x‖ ≤ δ.
Now we distinguish two cases:
(i) x0 ∈ D0: We choose u∗ ∈ U such that v(x0) +
ε > J̃(x0, u

∗) = 1 − G̃(x0,∞, u∗). In particular,
using (H3) and the final statement of Remark 8
this implies that there exists a sequence tk → ∞
such that ϕ̃(tk, x0, u

∗) → 0 as k → ∞. Thus it
follows from the lower optimality principle (11)
and the definition of v that

w−(x0) ≤

lim sup
k→∞

1 + G̃(x0, tk, u
∗)(w−(ϕ̃(tk, x0, u

∗)) − 1)

≤ 1 + G̃(x0,∞, u∗)(ε− 1) ≤ v(x0) + 2ε

which shows the claim as ε > 0 was arbitrary.

(ii) x0 6∈ D0: In this case by Proposition 4 it is
sufficient to show that w−(x0) ≤ 1. Let M be a
bound on |w−|.

In the following we use t as the variable for (1) and
τ for the time-variable of (8) as in Remark 4.1.
Since ϕ̃(τ, x0, u) 6∈ B(0, r) for all ũ ∈ U and all
τ ≥ 0 by (H3) and Remark 8 we have

∫ τ

0

g̃(ϕ̃(s, x0, u), ũ(s))ds ≥ grt(τ)

for the constant gr > 0 from (H3). Therefore
G̃(x0, τ, ũ) ≤ exp(−g̃rt(τ)) for all τ ≥ 0, ũ ∈ U .
Hence

1 + G̃(x0, τ, ũ)(w
−(ϕ̃(τ, x0, ũ)) − 1)

≤ 1 + exp(−grt(τ))(M + 1)

for all ũ ∈ U and the result follows by (11) as the
right hand side tends to 1 for τ → ∞.
Therefore Claim 1 is proved. Consider now
Claim 2: Let w+ be a bounded lower semicontin-
uous supersolution of (7) on R

n with w+(0) ≥ 0.
Then w+be ≥ v. The proof is omitted for reasons
of space. The combination of Claim 1 and 2 yields
the proof.

5. CONCLUSION

We have generalized Zubov’s method to the prob-
lem of calculating domains of null-controllability
and maximal control Lyapunov functions. A dis-
cussion of the numerical merits of the methods
can be found in (Camilli et al., 2004).
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