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∗∗

Fabian Wirth
∗∗∗,1

∗ Sez. di Matematica per l’Ingegneria, Dip. di Matematica Pura e
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Abstract: We present a numerical method for the computation of control Lyapunov
functions on the domain of nullcontrollability of a nonlinear system. We apply an
adaptive semi–Lagrangian discretization technique to a generalized version of the
Zubov equation whose solutions provide such Lyapunov functions. In particular, we
address regularization issues which need to be resolved before the scheme is applicable
and discuss an adaptive space discretization technique.
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1. INTRODUCTION

In this paper we continue the theoretical work
presented in the companion paper (Camilli et al.,
2004) on the construction of Lyapunov functions
on the domain of nullcontrollability. We consider
finite-dimensional nonlinear control systems that
are asymptotically nullcontrollable in a neighbor-
hood of the origin. In (Camilli et al., 2004) it was
shown that the desired Lyapunov functions can
be characterized as (i) optimal value functions
to suitable optimal control problems and (ii) as
viscosity solutions to a suitable Hamilton–Jacobi
PDE, which is a generalization of Zubov’s equa-
tion.

In this paper we will use both characterizations as
we apply a semi–Lagrangian discretization tech-

1 This work was supported by Science Foundation Ireland
grant 00/PI.1/C067.

nique to the PDE relying on ideas from opti-
mal control and dynamic programming (Falcone,
1997). In the past, Zubov’s equation has already
been used as the basis for numerical computa-
tions, e.g. in (Dubljevič and Kazantsis, 2002),
where the solutions to Zubov’s equation for a
fixed control value are approximated by trunca-
tion of series solutions and the resulting Lyapunov
function is used for controller design. This series
approximation resembles earlier works, e.g. (Kirin
et al., 1982; Vannelli and Vidyasagar, 1985). The
method we present here is closer to classical finite
element and finite difference techniques for the
numerical solution of PDEs and can in particular
deal with non smooth solutions which naturally
appear in the framework of control Lyapunov
functions.

This paper is organized as follows. In the Section 2
we define the class of systems under consideration
and introduce the problem.In Section 3 we show



that our original problem can be approximated
by a problem with restricted control range. In
Section 4 we present the scheme and show that
the original equation needs to be regularized in
order to guarantee convergence, an appropriate
regularization technique is presented in Section 5.
In Section 6 we present the final scheme and in
Section 7 we discuss a numerical example.

2. SETUP

We consider the domain of asymptotic nullcon-
trollability

D0 :=

{

x ∈ R
n

∣

∣

∣

∣

there exists u ∈ U with
‖ϕ(t, x, u)‖ → 0 for t → ∞

}

,

where ϕ denotes the solutions of a general nonlin-
ear control system

ẋ(t) = f(x(t), u(t)) (1)

with possibly unbounded control value space, i.e.,

u ∈ U := L∞([0,∞), U)

for some closed set U ⊂ R
m, assuming that the

system is locally asymptotically controllable to
the origin. In (Camilli et al., 2004) we have shown
that D0 is characterized by the solution v of the
generalized Zubov equation

sup
u∈U

{−Dv(x)f(x, u) − (1 − v(x))g(x, u)} = 0.(2)

More precisely, under mild local Lipschitz con-
ditions on f and g and when g : R

n → R is
nonnegative, vanishes at 0 and satisfies appropri-
ate growth properties, then (2) admits a unique
viscosity solution v which

(i) characterizes the domain of nullcontrollabil-
ity via D0 := {x ∈ R

n | v(x) ≤ 1}
(ii) is a control Lyapunov function for (1) on D0.

For details on the conditions on f and g we refer
to (Camilli et al., 2004).

In this paper we show how this equation can
be solved numerically using an adaptive semi–
Lagrangian scheme developed in (Capuzzo Dol-
cetta, 1983), (Falcone, 1987) and (Grüne, 1997),
see also (Falcone, 1997).

3. RESTRICTION TO COMPACT U

The numerical scheme we want to apply needs
stronger regularity conditions than posed in the
theoretical results in (Camilli et al., 2004). More
precisely, here we need Lipschitz continuity of
f and g uniformly in x and u. The Lipschitz

assumptions in (Camilli et al., 2004), however,
are uniformly only on compact subsets for the
state x and the control variable u. The desired
uniformity in x is achieved in a natural way
since for our numerical solution we will always
have to restrict ourselves to a compact subset
Ω ⊂ R

n; we will discuss appropriate numerical
boundary conditions in the numerical examples
Section 7. In order to achieve uniformity in u
we restrict ourselves to a compact subset of the
control range U , because in this way the global
Lipschitz property follows from the assumptions
in (Camilli et al., 2004). The following proposition
shows that if we choose this compact subset of
U large enough then we will end up with a
good approximation for the original domain of
null controllability. For its formulation, recall the
definition of set limits, which for a sequence of sets
Xk are given by

lim sup
k→∞

Xk :=
⋂

k∈N

⋃

m≥k

Xm

and

lim inf
k→∞

Xk :=
⋃

k∈N

⋂

m≥k

Xm

and, if these two sets coincide,

lim
k→∞

Xk := lim sup
k→∞

Xk = lim inf
k→∞

Xk.

Proposition 1. Consider a possibly unbounded
closed set U ⊂ R

m of control values and its
approximation by the compact sets Uk = {u ∈
U | ‖u‖ ≤ k} for k ∈ N. For the associated spaces
of control functions Uk consider the domains of
nullcontrollability Dk for U = Uk. Then the set
limit limk→∞ Dk exists and satisfies

D0 = lim
k→∞

Dk.

Proof: We first show that that the solutions
vk of equation (2) with U = Uk satisfy v(x) =
infk∈N vk(x). In order to prove this property, ob-
serve that vk satisfies

vk(x) = inf
u∈Uk

1 − eJ(x,u)

with

J(x, u) =

∞
∫

0

g(ϕ(t, x, u), u(t))dt,

see (Camilli et al., 2004, Section 3). Since Uk ⊆ U
we obviously have the inequality vk(x) ≥ v(x).
Now let x ∈ D0 and u ∈ U be such that

1 − eJ(x,u) ≤ v(x) + ε



for some ε > 0. Since u ∈ U there exists k0 ∈ N

such that ‖u‖∞ ≤ k0, hence u ∈ Uk0
. This implies

inf
k∈N

vk(x) ≤ vk0
(x) ≤ v(x) + ε.

Since ε was arbitrary this shows the claim on D0.
For x 6∈ D0 we have vk(x) = v(x) = 1 which shows
the claim also in this case.

Using the inf–property we now show the claim of
the proposition. Since we have that v ≤ . . . ≤
vk+1 ≤ vk we obtain the inclusion

Dk ⊆ Dk+1 ⊆ . . . ⊆ D0.

It follows that
⋃

m≥k Dm ⊆ D0 for each k and
hence

lim sup
k→∞

Dk =
⋂

k∈N

⋃

m≥k

Dm ⊆ D0.

On the other hand, if x ∈ D0 then for any ε > 0
there exists k0 ∈ N with vk(x) ≤ v(x) + ε for all
k ≥ k0. This implies that x ∈ Dk for all k ≥ k0

and consequently x ∈
⋂

m≥k0
Dm. This implies

x ∈
⋃

k∈N

⋂

m≥k

Dm = lim inf
k→∞

Dk,

and since x ∈ D0 was arbitrary we obtain

D0 ⊆ lim inf
k→∞

Dk,

which shows the claim. 2

Remark 2. Note that the restriction of U to some
compact set often has a well defined meaning, e.g.
when the effect of actuator saturation shall be
investigated. Solving (2) for U being the range of
possible actuator values then gives the maximal
domain of nullcontrollability under saturation.

In the remainder of this paper we always assume
that the control range U is a compact set.

4. THE NUMERICAL SCHEME I

With restricted control range U we can now for-
mally apply the semi–Lagrangian discretization
technique to our system. The method relies on a
discretization of the dynamic programming prin-
ciple, which for v reads

v(x) = inf
u∈U

{1 + G(x, h, u)(v(ϕ(h, x, u)) − 1)}(3)

where

G(x, h, u) := exp



−

h
∫

0

g(ϕ(t, x, u), u(t))dt



(4)

and h > 0 is arbitrary. In the first step we
discretize the system in time using a time step
h and a numerical one step method Φh(x, u) ≈
ϕ(h, x, u) for control systems, see (Grüne and
Kloeden, 2001) and a quadrature rule for the
integrals, above. In order to keep our presentation
simple, here we use a first order approximation
given by

ϕ(h, x, u) ≈ Φh(x, u) := x + hf(x, u)

and

G(x, h, u) ≈ 1 − hg(x, u),

where u ∈ U denotes a constant control value.
This way (3) becomes

vh(x) = inf
u∈U

{(1 − hg(x, u))vh(Φh(x, u))

+hg(x, u)}. (5)

In the second step we consider a closed domain
Ω ⊂ R

n and on Ω we use a rectangular grid Γ with
nodes xi where the values on the non grid points
are reconstructed by multilinear interpolation.
This results in solving

ṽ(xi) = inf
u∈U

{(1 − hg(xi, u))ṽ(Φh(xi, u))

+hg(xi, u)}. (6)

for each node xi of the grid Γ, where ṽ is contin-
uous and multilinear on each element in the grid
(i.e., linear in R

1, bilinear in R
2 etc.) and satisfies

ṽ(0) = 0 (assuming, of course, that 0 is a node
of the grid) and ṽ(xi) = 1 for all xi ∈ ∂Ω with
Φh(x, u) 6∈ Ω for all u ∈ U . We refer to (6) as the
discretized Zubov equation.

While this is indeed the correct formal appli-
cation of the scheme from (Capuzzo Dolcetta,
1983; Falcone, 1987) which shows good results in
many numerical experiments, unfortunately the
discretized Zubov equation (6) has a singularity
in 0 and hence the fixed point argument used
in (Falcone, 1987) fails here. Thus from a theo-
retical point of view convergence is not guaran-
teed. In fact, the following counterexample of a
system without controls (i.e., f(x, u) = f(x) and
g(x, u) = g(x)) shows that non convergence of this
scheme can indeed happen in practice: consider
the situation depicted in Figure 1 (showing one
trajectory and the elements surrounding the fixed
point 0 in a two-dimensional example). Here the
piecewise bilinear function ṽ with

ṽ(xi) =

{

1, xi 6= 0
0, xi = 0

satisfies (6), since for all nodes xi 6= 0 the value
xi + hf(xi) lies in an element with nodes xj 6= 0,
hence ṽ(xi + hf(xi)) = 1 implying



(1 − hg(xi))ṽ(xi + hf(xi)) + hg(xi) = 1 = ṽ(xi),

i.e. (6). As this situation may occur for arbitrarily
fine grids (and also on simplicid grids, see (Camilli
et al., 2001)), this scheme may indeed fail to be
convergent.

0

Fig. 1. A situation of non-convergence

5. REGULARIZATION OF THE EQUATION

In order to ensure convergence we will therefore
have to use a regularization of (2). The main idea
in this is to change (2) in such a way that the
“discount rate” (i.e. the factor g(x) in front of the
zero order term v(x)) becomes strictly positive,
and thus the singularity disappears. To this end
consider some parameter ε > 0 and consider the
function

gε(x, u) = max{g(x, u), ε}.

Using this gε we approximate (2) by

sup
u∈U

{−Dv(x)f(x, u)

+g(x, u) − v(x)gε(x, u)} = 0 (7)

With DRε := {x ∈ R
n | gε(x, u) 6= g(x, u) for

some u ∈ U} we denote the domain of regulariza-
tion. The following proposition summarizes some
properties of (7).

Proposition 3. Let the assumptions of (Camilli et
al., 2004, Theorem 10) hold and let v be the
unique solution of (2) with v(0) = 0. Then for
each ε > 0 equation (7) has a unique continuous
viscosity solution vε with the following properties.

(i) vε(x) ≤ v(x) for all x ∈ R
n

(ii) vε → v uniformly in R
n as ε → 0

(iii) If DRε ⊂ D0 then the characterization D0 =
{x ∈ R

n | vε(x) < 1} holds
(iv) vε is a control Lyapunov function on D0\DRε

in the following sense: For each x ∈ D0, each
t > 0 and each δ > 0 there exists u ∈ U
such that either ϕ(τ, x, u) ∈ DRε for some
τ ∈ [0, t] or the inequality

vε(ϕ(t, x, u)) − vε(x)

≤ (1 − G(t, x, u))(vε(ϕ(t, x, u)) − 1) + δ

holds.

Proof: Since the discount rate in (7) is strictly
positive it follows by standard viscosity solution

arguments (Bardi and Capuzzo Dolcetta, 1997,
Chapter III) that there exists a unique continuous
solution vε which furthermore for all t ≥ 0 satisfies
the following dynamic programming principle

vε(x) = inf
u∈U

{1 + Gε(x, h, u)(vε(ϕ(h, x, u)) − 1)}(8)

with

Gε(x, h, u) := exp



−

h
∫

0

gε(ϕ(t, x, a), u(t))dt



 .

Since v satisfies the same principle (3) with
G(x, t, u) ≥ Gε(x, t, u) by (4) and g > 0 the stated
inequality (i) follows.

In order to see (ii) observe that the properties of g
and v imply that for each δ > 0 there exists ε > 0
with DRε ⊂ {x ∈ R

n | v(x) ≤ δ}. ¿From (i) this
immediately implies DRε ⊂ {x ∈ R

n | vε(x) ≤ δ}.
Now fix δ > 0 and consider the corresponding
ε > 0. Let x ∈ R

n and pick some γ > 0 and a
control uγ ∈ U such that

vε(x) ≥

∞
∫

0

Gε(x, τ, uγ)g(x(τ, x, aγ), uγ(τ))dτ − γ.

Note that the corresponding trajectory has to
enter DRε, because otherwise the integral would
be unbounded. Hence there exists a minimal time
T ≥ 0 such that ϕ(T, x, uγ)) ∈ DRε. Then we can
conclude that

v(x) − vε(x) − γ

≤

∞
∫

0

(G(x, τ, uγ)g(ϕ(τ, x, uγ), uγ(τ))

− Gε(x, τ, uγ)g(x(τ, x, uγ), uγ(τ)))dτ

≤

T
∫

0

(G(x, τ, uγ)g(x(τ, x, uγ), uγ(τ))

− Gε(x, τ, uγ)g(x(τ, x, uγ), uγ(τ)))dτ

+G(x, T, aγ)v(ϕ(T, x, uγ))

≤ δ.

Since γ > 0 was arbitrary this shows v(x) −
vε(x) ≤ δ for each x ∈ R

n and each ε > 0
sufficiently small and hence (ii).

To prove (iii) let ε > 0 be so small that DRε ⊂ D0.
Then for all x 6∈ D0, all T > 0 and all u ∈ U we
obtain G(x, t, u) = Gε(x, t, u) for all t ∈ [0, T ]
which immediately implies vε(x) = v(x) = 1.
Together with (i) this yields the desired equality
D0 = {x ∈ R

n | vε(x) < 1}.

(iv) This property follows immediately from
(8). 2



Remark 4. The property (iv) can be seen as a
“practical” Lyapunov function property, because
it means that the optimal trajectories will even-
tually tend to a neighborhood of the origin whose
size depends on the size of DRε. More precisely,
defining

ηε := sup{vε(x) |x ∈ DRε}

we obtain that each optimal trajectory will even-
tually tend to the set

Nε := {x ∈ R
n | vε(x) ≤ ηε}

and stay inside this set. Since by (ii) vε → v
uniformly on R

n we obtain that Nε indeed shrinks
down to 0 as ε → 0.

6. THE NUMERICAL SCHEME II

We now apply the numerical scheme to (7). Pro-
ceeding just as in Section 4, above, we end up with
the discrete regularized Zubov equation

ṽε(xi) = inf
u∈U

{(1 − hgε(xi, u))ṽε(Φh(xi, u))

+hg(xi, u)}.

where again ṽε is continuous and multilinear on
each element of the grid Γ and satisfies ṽε(0) = 0
and ṽε(xi) = 1 for all xi ∈ ∂Ω.

A straightforward modification of the arguments
in (Falcone, 1997) yields that there exists a unique
solution ṽε converging to vε as h and the size of
the grid elements tends to 0. Theoretically the
convergence speed depends on the size of ε, in
most numerical examples, however, this depen-
dence could not be observed. For the solution of
the resulting discrete equation (9) a number of
different iterative solvers for are available, see e.g.
(Grüne, 1997) and (Grüne and Semmler, 2004).

In higher dimensions the space discretization be-
comes difficult as our method — which essentially
relies on the dynamic programming mechanism
— is subject to the well known curse of dimen-
sionality. It is therefore important to choose fine
elements in the grid Γ only in those regions of
the state space where they are really needed. In
order to obtain such an efficient discretization,
we apply the adaptive gridding method developed
in (Grüne, 1997), see also (Grüne and Semm-
ler, 2004). To this end we define the dynamic
programming operator related to (9) by

T (w)(x) := inf
u∈U

{(1 − hgε(x, u))w(Φh(x, u))

+hg(x, u)}

and a posteriori error estimates by

η(x) = |ṽε(x) − T (ṽε(x))|

for each x ∈ Ω. It can be proved (see (Grüne,
1997, Theorem 2.2)), that there exist constants
C1, C2 > 0 such that the inequality

C1‖η‖∞ ≤ ‖ṽε − vε,h‖∞ ≤ C2‖η‖∞,

where vε,h is the solution of the regularized version
of (5). Furthermore, η(x) → 0 as the size of
the element containing x tends to 0. Thus, the
values η can be used as error indicators which
serve as a basis for a local refinement of the
grid elements by refining those elements carrying
large (relative) values of η, see (Grüne, 1997)
and (Grüne and Semmler, 2004) for details. This
mechanism was used in our numerical examples in
the next section.

Remark 5. If we use the cost functions δg(x, u)
and δgε(x, u) for δ > 0 and denote the correspond-
ing solutions by vδ and vε,δ, respectively, then it
is easy to prove that the convergence property

vδ → 1 − χD0
and vε,δ → 1 − χD0

holds for δ → 0 uniformly on compact subsets
K ⊂ R

n with K ∩ ∂D0 = ∅. Here χD0
denotes the

characteristic function of D0.

It turns out that the numerical solutions share
this behavior which can be rigorously proved us-
ing ideas from numerical dynamics and suitable
robustness conditions for D0; for details we re-
fer to (Grüne, 2002, Chapter 7), where also the
relation to set valued numerical methods from
(Grüne, 2001) is discussed.

7. A NUMERICAL EXAMPLE

We illustrate our algorithm with a simple example
of an inverted pendulum with different restrictions
on the control range. The model is given by

ẋ1 = x2, ẋ2 = − sin(x1 + π) − x2 + u

For this model we have solved equation (7) on
the domain Ω = [−π, π] × [−5, 5] using periodic
boundary conditions on the left and right bound-
ary (taking into account the periodicity of the
system) and using “transparent” Dirichlet bound-
ary conditions on the upper and lower boundary.
By transparent Dirichlet conditions we mean that
we set vε(x) = 1 for each x ∈ ∂Ω for which the
condition Φh(x, u) 6∈ Ω for all u ∈ U holds. This
means that we actually compute the domain of
nullcontrollability relative to Ω, i.e., the set of
all points which can be controlled to 0 without
leaving Ω. Here we have used the control ranges
U = [−ρ, ρ] with ρ = 0.5, 0.7, 0.9 and 1. With this
choice of U it turns out that that the boundary



condition never becomes active because all tra-
jectories starting in Ω remain in Ω for all future
times, hence our computation really approximate
the solution to (7) on R

2 restricted to Ω. As
numerical parameters for our calculations we have
used the time step h = 0.05 and adaptively gener-
ated grids with ≈ 10000 nodes. The cost function
was g(x) = ‖x‖2/10 and the regularization pa-
rameter was chosen as ε = 10−4. Figure 2 shows
the respective results for the different values of ρ.
Note that for ρ ≤ 0.9 the computed domain of
nullcontrollability is a proper subset of Ω, while
for ρ = 1 it coincides with Ω as the maximum of
ṽε on Ω is 0.933 < 1.
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Fig. 2. Solution of (7) with U = [−ρ, ρ], ρ =
0.5, 0.7, 0.9, 1 (top to bottom)

8. REFERENCES

Bardi, M. and I. Capuzzo Dolcetta (1997).
Optimal control and viscosity solutions of
Hamilton-Jacobi-Bellman equations. Systems
& Control: Foundations & Applications.
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Grüne, L. and W. Semmler (2004). Using dynamic
programming with adaptive grid scheme for
optimal control problems in economics. Jour-
nal of Economic Dynamics and Control. To
appear.

Kirin, N. E., R. A. Nelepin and V. N. Bajdaev
(1982). Construction of the attraction re-
gion by Zubov’s method. Differ. Equations
17, 871–880.

Vannelli, A. and M. Vidyasagar (1985). Maximal
Lyapunov functions and domains of attrac-
tion for autonomous nonlinear systems. Au-
tomatica 21, 69–80.


