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Abstract o _ .
In many applications it is interesting to consider the so-

We consider a controlled stochastic system with an a.s. loc@lled asymptotic controllability problem, i.e. the possibility
cally exponentially controllable compact set. Our aim is to ©f asymptotically driving a nonlinear system to a desired tar-
characterize the set of points which can be driven by a suit9€t by & suitable choice of the control law. Whereas in the
able control to this set with either positive probability or with deterministic case there is huge literature about this prob-
probability one. This will be obtained by associating to the 16m (see f.e. [16]), in the stochastic case it seems to be less
stochastic system a suitable control problem and the correconsidered, also because it request some degeneration of the
sponding Bellman equation. We then show that this approac|§tochastic part which makes it difficult to handle with classi-
can be used as basis for numerical computations of thesg@l stochastic techniques.

sets.
In [12] this problem was studied for a deterministic sys-

tem by means of Zubov’s method. Here we use the same ap-
proach for a stochastic differential equation. In the stochastic

. . he Z h lits i :
Zubov’s method is a general procedure which allows to char-Case the Zubov method splits into two parts

acterize the domain of attraction of an asymptotically sta- ) ) .
In the first step we introduce a suitable control problem,

ble fixed point of a deterministic system by the solution of a - -+ )
suitable partial differential equation, the Zubov equation (see’Vith @ fixed positive discount factar(chosen equal to 1 for

f.e. [13] for an account of the various developments of thisSimp”City)’ associated with the stochastic system. We show
method). that a suitable level set of the corresponding value funation

A typical difficulty in the application of this method, i.e. gi\_/e_s the set of initiz_il points for which there exists a control
the existence of a regular solution to the Zubov equation, wagving the stochastic system to the locally controllable with
overcome in [5] by using a suitable notion of weak solution, posmv_e prot.)ablllt_y. The .value function is characterlzt_ad as
the Crandall-Lions viscosity solution. The use of weak so- the unique viscosity solution of the Zubov equation, which is

lutions allows the extension of this method to perturbed andiNe Hamilton-Jacobi-Bellman of the control problem.
controlled systems, see [9], Chapter VII for an overview.
In [6], [3] the Zubov method was applied to Ito stochastic [N the second step we consider as a parameter the discount
differential equations obtaining in the former a characteriza-factor & and we pass to the limit fo§ — 0. The set of
tion of set of points which are attracted with positive proba- Points controllable to the fixed point with probability one is
bility to an almost surely exponentially stable fixed point; in given by the subset &" where the sequenag converges
the latter a characterization of the points which are attractedo 0. The sequence; converges to a l.s.cuy which is a
with probability 1 (or any fixed probability) to the fixed point. supersolution of an Hamilton-Jacobi-Bellman related to an
It is worth noting that the Zubov method also yields a Lya- €rgodic control problem. In this respect the Zubov equation

punov function for the deterministic or the stochastic systemWith positive discount factor can be seen as a regularization
of the limit ergodic control problem which gives the appro-
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1 Introduction




2 Domain of possible null-controllability and
the Zubov equation

We fix a probability spac&?, F, F;, P), where{F; };>¢ is a

right continuous increasing filtration, and consider the con-

trolled stochastic differential equation

{

dX (t)
X(0)

= B(X (), a(t)) dt + o(X (1), lt)) AW (1)

1)

Theorem 2.1
C={zcR":v(z) <1}

Proof: Note that by definitiord < v < 1 andv(x) > 0 for
xr ¢ A. We claim thatC is the set of the points € R" for
which there existax € A such thaff[exp(—t(z, a))] > 0,
where

t(z,a) =inf{t > 0: X(¢t,z,a) € B(A,r)}. (4)

wherea(t), the control applied to the system, is a progres- | fact if 2 € C, then clearlyP[{t(z,a) < oo}] > 0 for
sively measurable process having values in a compact s&lymen ¢ A and thereforeZ[exp(—t(z, a))] > 0. On the

A c RM. We denote byA the set of the admissible con-
trol laws «(t). Solutions corresponding to an initial value
and a control lawy € A will be denoted byX (¢, z, ) (or

X (t) if there no ambiguity).

We assume that the functions: RV x A — RN, o :
RY x A — RNV*M are continuous and bounded B x A
and Lipschitz inz uniformly with respect ta € A and that
0e A

Moreover we assume that there exists aset R” lo-
cally a.s. uniformly null-controllable, i.e. there exist A
positive and a finite random variabj@ such that for any
r € B(A,r) = {z € RN : d(z,A) < r}, there exists
a € A for which

d(X(t,z,a),A) < Be™ as.foranyt >0. (2)
In this section we study the domain gfossible null-
controllability C, i.e. the set of pointg for which it is pos-
sible to design a control law such that the corresponding
trajectory X (¢, z, o) is attracted with positive probability to
A. Hence

C = {z € RY : there existsx € As.t.
P[, lim d(X(t,z,a),A) =0] > 0}.

other hand, ifE[exp(—t(z,«))] > 0 for a controla € A,
thenP[{t(z, o) < c0}] > 0. By (2), we have

P[{t(z,a) < +oo}n {tl}?oo d(X(t,z,a),A) = 0}]

IP’[{t_léglm d(X (t,z,a),A) = 0|t(z,a) < oo}] -
Pl{t(z,a) < oo}] = PH{t(z,a) < +00}],

hencer € C. This shows the claim.
Now if « ¢ C, then for any controla we have
E[e~t(®:2)] = 0. Hence

- fot(m,a)g(X({;),Ot(t))dt

1-E > 1 —Ele~%t@)] =1,

and therefore(z) = 1.

If € C, by the previous claim there exists such
that Plt(x,a) < +oo] > 0. Setr t(z,«) and
take T and K sufficiently large in such a wap[B] :=
PH{r<T}n{B <K} >n > 0whereg is given as in
(2) Fort > T, by (2) we have

E[E[| X (t,za)||B] x5]
E[E[|X(t — 7, X (7, %, a),a(t — 7))||| Blx5]
Ke Mt=T)

IN

We introduce a control problem associated to the dynamics

in the following way. We consider far ¢ RY anda € A
the cost functional

+oo
0

Haa) = f

t
mxaxmww-ﬁﬂxwﬂwﬂm§
zl—E{e_

0

[ g(X(tm(t))dt]

®3)
whereg : RV x A — R is continuous and bounded on
RY x A and Lipschitz continuous im uniformly ina € A,
g(z,a) = 0forany(z,a) € A x Aand

inf

z,a) > go > 0.
(RN\B(A,r))xAg( ) 2 90

We consider the value function
z) = inf J
v(z) = inf J(z,0)

and we can prove

Then

(x
<1-
E[E[e” N g<x<t>,a<t)))dt+f;°° G(X(1),a(t)))dt B

0

<

XB}

< —(MyT+LyK/A) 1

1—e

where M, and L, are respectively an upper bound and the
Lipschitz constant of. U

We have obtained a link betweghandv. In the next two
propositions we study the properties of these objects in order
to get a PDE characterization of

Proposition 2.2
i) B(A,r)is a proper subset df.

i) C is open, connected, weakly positive forward invari-
ant (i.e. there existex € A such thatP[X(¢,z,a) €
Cforanyt] > 0.)



iii) supye4 Elexp(—t(z,a))] — 0if 2 — z¢ € OC.

Proof: The proof of this proposition is similar to the ones

of the corresponding results in [6]. Hence we only give the

details ofi) and we refer the interested reader to [6] for the
other two statements.

Takex € B(A,r), leta be a control satisfying (2) and fix
b > 0 such thafP[B] := P[8 < b] > ¢ > 0. From (2), there
isT > 0 such that

P[B N {d(X(t,z,a),A) < gfort ST} =¢ (5)

Recalling that for any, y € RY andd > 0

lim P[ sup [ X(t z «a)—X(t,y,a)|>6 =0.
lz—y[—0  “telo0,T]

selectd such that for anyy € B(z,d), defined A
{SuptG[O,T] ||X(t,$, a) - X(tvyv CV)H < T/Z}’ then

P[A%] < /2

(A¢ denotes the complement df in 2). SetC' = AN B.
From (5), ify € B(z,0) we have that

PHd(X(t,y, ), A) < 7}]

> PHd(X (¢, z,a),A) <r/2}NC]
and therefore, from (2)

P[{, lim_d(X(t,y, ), A) = 0}

> PHd(X(t,y,0),A) <r}] > P[C]
Moreover

P[C] =1 — P[A°U B°] > 1 — (P[A°] + P[B]) > %

It follows thatP[{lim;—, oo d(X (t,y, ), A) = 0}] is posi-

tive for anyy € B(x,¢) and thereforeéB(x, ) C C for any
x € B(A,r). U

Remark 2.3 Note that ifC does not coincide with aR”",

the weakly forward invariance property requires some de-

generation of the diffusion part of the stochastic differential
equation on the boundary 6f see f.e. [1].

The typical example we have in mind is a deterministic
system driven by a stochastic force, i.e. a coupled system

X(t) = (X1(t), X2(t)) € RM x RM2 = R¥ of the form
dXi(t) = by(X1(t), Xa(t), a(t))dt
dXs(t) = ba(Xa(t), a(t)) dt + o2(X2(t), a(t)) dW (1),
see e.g. [7] for examples of such systems.

X (t) = (X1(t), X2(t)) is naturally degenerate.

SetY(z,a) = o(x,a)c'(x,a) for anya € A and con-

sider the generator of the Markov process associated to the

stochastic differential equation

N

+Z bi(x,a)

i=1

2

c’)xiaxj

0
asci ’

1 N
,C(.’,E,Cl) = 5 Z Eij(zaa)

i,j=1

(6)

Note that for
systems of this class the diffusion for the overall process

Proposition 2.4 v is continuous oY and a viscosity so-
lution of Zubov’s equation

21613{ — L(z,a)vs — (1 —v(x))g(x)} =0

()

forz e RV \ A.

Proof: The only point is to prove that is continuous on
RY. Then from a standard application of the dynamic pro-
gramming principle it follows immediately thatis a viscos-
ity solution of (7) (see f.e. [17], [8]).

Note thatv = 1 in the complement of. From Prop 2.2,
if x, € C andx,, — zo € 9C we have

v(zn) > 1 — sup E[e” %) -1 forn — 400
acA
and therefore is continuous on the boundary 6f

To prove that is continuous on the interior @f, it is suf-
ficient to show that is continuous inB(A, r) since outside
g Is strictly positive and we can use the argument in [14, part
I], Theorem I1.2.

Fix z, y € B(A,r) ande > 0. Letb be such that
P[B] := P[{ < b}] > 1 — ¢/8. TakeT in such a way
thatL,bexp(—AT) /X < €/4, where) as in (2), and let be
a control satisfying (2) and

— [T g(X (t,m,0),at))dty | €

v(z) > 1—E[e Jo ]+§

and¢ sufficiently small in such a way th&| X (¢, z, ) —
X(t,y,a)|| < e/ALT if ||z — y|| < 6 andt < T'. Hence

g
E UOOO d(X(t+T,y,a(-+T)),A)dt XB}

be M/

d(X(tv Y, a)a A)dt XB]

IN

IN

and

v(y) — v(z)
2 g(

< EH{ A X(t,y,a),a(t))dt

L€
8

< 2P(B°) + E[Lg(/OT 1X(t,y,a) — X(t,z,a)|dt

/

€
8

o ST eX (e a)at

3

+ (d(X(t,z,a),A) —l—d(X(t,y,a),A))dt)XB}

+

IN

€.

U

The next theorem gives the characterizatior® dhrough
the Zubov equation (7).

Theorem 2.5 The value functior is the unique bounded,
continuous viscosity solution ¢f) which is null onA.



Proof: We show that ifw is a continuous viscosity subsolu-

tion of (7) such thatv(z) < 0 forz € A, thenw < vinRY.

We require a slightly stronger stability condition, namely that
besides (2) it is also verified that for amye B(0,r), there

Using a standard comparison theorem (see f.e. [8]), the onlgxists a controty € A such that

problem is the vanishing af on A. Therefore we first prove

thatw < v in B(A,r) using (2), we then obtain the result in

all R by applying the comparison resulti" \ B(A, ).

Sincew is a continuous viscosity subsolution, it satisfies

foranyz € {§ <d(z,A) <1/6}
w(z) <

lnfaeAE{fT/\T5 X(t),a(t))e_fo/g(X(s)va(S))dsdt+

o 9(X @Oty X (T A 75))}

for any T > 0 wherets = 75(a) is the exit time of the
processX (t) = X (t,z,«) from {6 < d(z,A) < 1/5}(see
[15]).

Fix e > 0 and let§ > 0 be such that ifi(z,A) < §,
thenw(z), v(z) < e. Forz € B(A,r) by the dynamic
programming principle we can find € A satisfying (2) and
such that

( <E {fT/\Tg —folg(X(s),oz(s))dsdt +

fT/\T&

(X(2), alt))e

a(t))dt v(X(T A 7'5))} +e.

Therefore we have
w(r) —v(z) <
Bl Jr 9@t (X (75)) — v(X (75))
X(ms<ry} +2Me™9T 4 ¢

d(z,A) > 6,a € A} > 0 and

(8)

wheregs = inf{g(z,a) :
M = max{||wl|sc, [|v]|oc }-

SetB, = {# < K} and takel’ and K sufficiently large in
such away tha2Me~%7T < ¢, 2MP[B{] < e and, recalling
(2),P[By, N {r5 < T'}] = P[By]. By (8), we get

v(x)

and for the arbitrariness efwe havew < vin B(A,r).

By a similar argument we can prove thatifis a contin-
uous viscosity supersolution of (7) such thét:) > 0 for
r € A, thenu > vinRY,

—w(x) < 2eP[Bg] + 2MP[Bj] + 2¢ < 4e

Remark 2.6 The functiorv is a stochastic control Lyapunov
function for the system in the sense that

(irelJleI[E[v(X(t7 x,q))

foranyz € C\ A and anyt > 0.

—v(z)] <0

3 Domain of almost sure controllability

In this section we are interested in a characterization of the

E[d(X (t,z,a),A)] < Me™#  as. forany >0 (9)

for someq € (0, 1] and positive constant¥/, .
We consider a family of value functions depending in the
discount factor on a positive parameter

v(;(;c) =
+oo fé « )
mf]E{ dg(X (1), (t))e*fo (X (s),0(s))ds g,
= inf E[l —e fn 59(X(t).,oz(t))dt}
acA

The main result of this section is

Theorem 3.1

D={zcR": (%in% vs(x) =0} (10)
Proof: The proof of the result is split in some steps.

Claim 1: For anyz € B(A,r), vs(z) < C¢ for some
positive constant'.

Sincey is Lipschitz continuous in: uniformly in a and
g(xz,a) = 0 forany (z,a) € A x A, we haveg(z,a) <
min{Ly||z|, My} < Cy|lx||? for anyq € (0,1] and corre-
sponding constartt,. Leto be a control satisfying (9). Then
for anyd, by the Lipschitz continuity of, (2) and (9) we get

vs ()
EU " sg(X (1) altye Jo X 0@y
0

+oo

<5 Elxe
+oo

5cq/ E[d(X (¢, 2, ), A)dt
0

—+oo
sc, Me™Htdt
0

IN

A

a(t))) dt

IN

IN

hence the claim.
Claim 2: For anyz € RV,

lim sup E[e %"®®)] = sup P[t(x,

a) < o0
§—0qecA acA

(11)
wheret(z, a) is defined as in (4).

The proof of the claim is very similar to the one of Lemma
3.2 in [3], so we just sketch it. Let € A be such that
SUpyeq Ele 04 ™)) < Ele=9®)] + ¢ and Ty such that
exp(—dT) < eforT > T,. Hence forT > T,

]E[e—ét(l‘,a)] < E[e_ét(w7a)X{t(m,a)<T}} + E[e—éT]
< Plt(z,a) < T+ € < sup Plt(zr,a) < co] + €
acA

set of points which are asymptotically controllable to the set

A with probability arbitrarily close to one, i.e. in the set

D={zeRY: supP[ lim d(X(t =z a),A)=0=1}.
acA t—too

from which we get

lim sup sup E[e @] < sup P[¢(z,
6—0 acA acA

a) < o).



To obtain the other inequality in (11), takee A, T suffi-
ciently large and small such that

sup Plt(z, a) < oo] < Plt(z, @) < oo] + €

acA
< Plt(x, @) < T+ 2¢

and fort < T

e o >1—e

Hence

E[e—ét(m,a)] > E[e—&(m,a)x{t(m’a)<T}}
> E[(1 = e)x{t(eam)<r}] = (1 — €)P[t(x
(1- e)( sup P[t(z, o) < oo] — 5)_

acA

Sincee is arbitrary, it follows that

,a) < T

lim inf sup E[e %] > sup Plt(z, a) < 0.

0—0 qeAd aEA

Claim 3: For anyz € RV,

lim vs(z) = 1 — sup P[t(z, a) < o0
§—0 acA

For anya € A, we have

| _Ele Jo S9XOa®)dty 5 | _ gro-bani(e))

and therefore by Claim 2,

Now fix e > 0, § > 0 and takel” sufficiently large in such a
way thatexp(—0M,T) < e. By the dynamic programming

lign i(I)lf vs(z) > liminf ian{l — E[e~%%0t@)}

0—0 ac
>1— sup Plt(z, o) < o0].
acA

principle, for anya € A we have

vs(z) <

E{fTAt moz)(5

e ST s x@aar

Now using Claim 1 and recalling that< vs < 1 we esti-

X(8), at))e Jo S9X G al)ds gy

X(T Nt(z,a))}.

(12)

mate the second term in the right hand side of (12) by

TAt(z,x)
Ele o 09X W0ty e p g,

E[U(X(t('r7 a))X{t(wﬁa)ST} +

T
s ngth{t(z,a)ZT}] <Co+e

and the first one by

. [/TAt(x-,od 5a(X (1), a(t))e™ f 59(X (s),x(s)) dt]
0

<

e — [ da(X(s).a(s)
B[ sgx.ate Jy oot
0

E[l—e fo“”‘” 6g(X(t),a(t))dt] <E[l—ec

a))] <

dsdt]

76]\f1gt(:r,a)]‘

Substituting the previous inequalities in (12) we obtain

lim sup vs(z) < limsup inf E[1 — e 0Mat@0) L 0§ 4 ¢
§—0 5—0 a€A

which, recalling Claim 2, completes the proof of Claim 3.
Equality (10) follows immediately from Claim 3 observ-
ing that
P[ lim d(X(t,z,a),A)=0] =Pl(x,a) < x]

t——+oo

U

Remark 3.2 Note the by the same argument of the previous
theorem we can more generally prove thaDf = {x €

RY ¢ sup e 4 Pllimy— o0 d(X (¢, 7, 00), A) = 0] = p} for

p € [0, 1] then the following characterization holds

D, ={zcRY: giH(l)'U(;(l')Zl—p}

Remark 3.3 As in Theorem 2.5, we can prove that for any
0 > 0 the value functiorv;s is the unique viscosity solution
of the Zubov equation

sup { — L(z,a)vs — 6(1 —vs(z))g(x)} =0

a€A

in RY \ A which is null onA, whereL(x, a)- is defined as
in (6)

4 A numerical example

We illustrate our results by a numerical example. The exam-
ple is a stochastic version of a creditworthiness model given

by

dX1(t) = (a(t) = AX1(t))dt + o X4 (t)dW (t)
dXy(t) = (H(X1(1), X2(t)) — f(X1(2), a(t)))dt
with
w012, S T2 17
H(xy,x2) = (oat=1572) 0=m=
%9%2, To > T1
and

f(z1,0) = az? —a— Pz,

A detailed study of the deterministic model (i.e., with
o = 0) can be found in [11]. In this modél = z; is the cap-
ital stock of an economic agenB = x» is the debtj = «
is the rate of investment{ is the external finance premium
and f is the agent's net income. The goal of the economic
agent is to steer the system to the &es < 0}, i.e., to re-
duce the debt t®. ExtendingH to negative values ats
via H(z1, z2) = 6z One easily sees that for the determinis-
tic model controllability to{z> < 0} becomes equivalent to
controllability to A = {z, < —1/2}, furthermore, also for
the stochastic model any solution with initial val(e, z-)
with x5 < 0 will converge toA, even in finite time, hencA
satisfies our assumptions.



Using the parametersa = 0.15, as = 100, a; =
(e + 1% p=20=01,a=02v =118 =2,

v = 0.3 and the cost functio(x1,22) = 23 we have
numerically computed the solutiany for the corresponding
Zubov equation withf = 10~ using the scheme described
in [3] extended to the controlled case (see [2] for more de-
tailed information). For the numerical solution we used the
time steph = 0.05 and an adaptive grid (see [10]) covering
the domair? = [0,2] x [—1/2, 3]. For the control values we
used the sefl = [0, 0.25].

As boundary conditions for the outflowing trajectories we
usedvs = 1 on the upper boundary ang = 0 for the lower
boundary, on the left boundary no trajectories can exit. On
the right boundary we did not impose boundary conditions
(since it does not seem reasonable to define this as either “in-
side” or “outside”). Instead we imposed a state constraint
by projecting all trajectories exiting to the right backo
We should remark that both the upper as well as the right
boundary condition affect the attraction probabilities, an ef-
fect which has to be taken into account in the interpretation
of the numerical results.

Figure 1 show the numerical results tor= 0, 0.1 and0.5
(top to bottom). In order to improve the visibility, we have
excluded the values far; = 0 from the figures (observe that
for z; = 0 andx, > 0 it is impossible to control the system
to A, hence we obtains ~ 1 in this case).
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