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Abstract

We consider a controlled stochastic system with an a.s. lo-
cally exponentially controllable compact set. Our aim is to
characterize the set of points which can be driven by a suit-
able control to this set with either positive probability or with
probability one. This will be obtained by associating to the
stochastic system a suitable control problem and the corre-
sponding Bellman equation. We then show that this approach
can be used as basis for numerical computations of these
sets.

1 Introduction

Zubov’s method is a general procedure which allows to char-
acterize the domain of attraction of an asymptotically sta-
ble fixed point of a deterministic system by the solution of a
suitable partial differential equation, the Zubov equation (see
f.e. [13] for an account of the various developments of this
method).

A typical difficulty in the application of this method, i.e.
the existence of a regular solution to the Zubov equation, was
overcome in [5] by using a suitable notion of weak solution,
the Crandall-Lions viscosity solution. The use of weak so-
lutions allows the extension of this method to perturbed and
controlled systems, see [9], Chapter VII for an overview.

In [6], [3] the Zubov method was applied to Ito stochastic
differential equations obtaining in the former a characteriza-
tion of set of points which are attracted with positive proba-
bility to an almost surely exponentially stable fixed point; in
the latter a characterization of the points which are attracted
with probability 1 (or any fixed probability) to the fixed point.

It is worth noting that the Zubov method also yields a Lya-
punov function for the deterministic or the stochastic system
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as the unique solution of the Zubov equation. This fact can
be used as a basis for numerical computations of the domain
of attraction (see [4] in the deterministic case and [3] in the
stochastic one).

In many applications it is interesting to consider the so-
called asymptotic controllability problem, i.e. the possibility
of asymptotically driving a nonlinear system to a desired tar-
get by a suitable choice of the control law. Whereas in the
deterministic case there is huge literature about this prob-
lem (see f.e. [16]), in the stochastic case it seems to be less
considered, also because it request some degeneration of the
stochastic part which makes it difficult to handle with classi-
cal stochastic techniques.

In [12] this problem was studied for a deterministic sys-
tem by means of Zubov’s method. Here we use the same ap-
proach for a stochastic differential equation. In the stochastic
case the Zubov method splits into two parts:

In the first step we introduce a suitable control problem,
with a fixed positive discount factorδ (chosen equal to 1 for
simplicity), associated with the stochastic system. We show
that a suitable level set of the corresponding value functionv
gives the set of initial points for which there exists a control
driving the stochastic system to the locally controllable with
positive probability. The value function is characterized as
the unique viscosity solution of the Zubov equation, which is
the Hamilton–Jacobi–Bellman of the control problem.

In the second step we consider as a parameter the discount
factor δ and we pass to the limit forδ → 0+. The set of
points controllable to the fixed point with probability one is
given by the subset ofRN where the sequencevδ converges
to 0. The sequencevδ converges to a l.s.c.v0 which is a
supersolution of an Hamilton-Jacobi-Bellman related to an
ergodic control problem. In this respect the Zubov equation
with positive discount factor can be seen as a regularization
of the limit ergodic control problem which gives the appro-
priate characterization.

This paper is organized as follows: In Section 2 we give
the setup and study the domain of possible controllability. In
Section 3 we analyze the domain of almost sure controllabil-
ity, and finally, in Section 4 we describe an example where
the previous objects are calculated numerically.



2 Domain of possible null-controllability and
the Zubov equation

We fix a probability space(Ω,F ,Ft, P), where{Ft}t≥0 is a
right continuous increasing filtration, and consider the con-
trolled stochastic differential equation{

dX(t) = b(X(t), α(t)) dt + σ(X(t), α(t)) dW (t)
X(0) = x

(1)
whereα(t), the control applied to the system, is a progres-
sively measurable process having values in a compact set
A ⊂ RM . We denote byA the set of the admissible con-
trol lawsα(t). Solutions corresponding to an initial valuex
and a control lawα ∈ A will be denoted byX(t, x, α) (or
X(t) if there no ambiguity).

We assume that the functionsb : RN × A → RN , σ :
RN ×A → RN×M are continuous and bounded onRN ×A
and Lipschitz inx uniformly with respect toa ∈ A and that
0 ∈ A.

Moreover we assume that there exists a set∆ ⊂ RN lo-
cally a.s. uniformly null-controllable, i.e. there existr, λ
positive and a finite random variableβ such that for any
x ∈ B(∆, r) = {x ∈ RN : d(x,∆) ≤ r}, there exists
α ∈ A for which

d(X(t, x, α),∆) ≤ βe−λt a.s. for anyt > 0. (2)

In this section we study the domain ofpossible null-
controllability C, i.e. the set of pointsx for which it is pos-
sible to design a control lawα such that the corresponding
trajectoryX(t, x, α) is attracted with positive probability to
∆. Hence

C =
{
x ∈ RN : there existsα ∈ A s.t.

P[ lim
t→+∞

d(X(t, x, α),∆) = 0] > 0
}
.

We introduce a control problem associated to the dynamics
in the following way. We consider forx ∈ RN andα ∈ A
the cost functional

J(x, α) = E
{∫ +∞

0
g(X(t), α(t))e−

∫ t

0
g(X(s),α(s))ds

dt

}
= 1− E

[
e
−

∫ +∞

0
g(X(t),α(t))dt

]
(3)

whereg : RN × A → R is continuous and bounded on
RN × A and Lipschitz continuous inx uniformly in a ∈ A,
g(x, a) = 0 for any(x, a) ∈ ∆×A and

inf
(RN\B(∆,r))×A

g(x, a) ≥ g0 > 0.

We consider the value function

v(x) = inf
α∈A

J(x, α)

and we can prove

Theorem 2.1

C = {x ∈ RN : v(x) < 1}.

Proof: Note that by definition0 ≤ v ≤ 1 andv(x) > 0 for
x 6∈ ∆. We claim thatC is the set of the pointsx ∈ RN for
which there existsα ∈ A such thatE[exp(−t(x, α))] > 0,
where

t(x, α) = inf{t > 0 : X(t, x, α) ∈ B(∆, r)}. (4)

In fact, if x ∈ C, then clearlyP[{t(x, α) < ∞}] > 0 for
someα ∈ A and thereforeE[exp(−t(x, α))] > 0. On the
other hand, ifE[exp(−t(x, α))] > 0 for a controlα ∈ A,
thenP[{t(x, α) < ∞}] > 0. By (2), we have

P[{t(x, α) < +∞} ∩ { lim
t→+∞

d(X(t, x, α),∆) = 0}]

= P[{ lim
t→+∞

d(X(t, x, α),∆) = 0
∣∣t(x, α) < ∞}] ·

= P[{t(x, α) < ∞}] = P[{t(x, α) < +∞}],

hencex ∈ C. This shows the claim.
Now if x 6∈ C, then for any controlα we have

E[e−t(x,α)] = 0. Hence

1− E
[
e
−

∫ t(x,α)

0
g(X(t),α(t))dt

]
≥ 1− E[e−g0t(x,α)] = 1.

and thereforev(x) = 1.
If x ∈ C, by the previous claim there existsα such

that P[t(x, α) < +∞] > 0. Set τ = t(x, α) and
take T and K sufficiently large in such a wayP[B] :=
P [{τ ≤ T} ∩ {β ≤ K}] ≥ η > 0 whereβ is given as in
(2) Fort > T , by (2) we have

E
[
E[‖X(t, x α)‖

∣∣B] χB

]
= E

[
E[‖X(t− τ,X(τ, x, α), α(t− τ))‖

∣∣B]χB

]
≤ Ke−λ(t−T ).

Then

v(x)
≤ 1−

E
[
E[e−

∫ T

0
g(X(t),α(t)))dt+

∫ +∞

T
g(X(t),α(t)))dt∣∣B]χB

]
≤ 1− e−(MgT+LgK/λ) < 1

whereMg andLg are respectively an upper bound and the
Lipschitz constant ofg.
We have obtained a link betweenC andv. In the next two
propositions we study the properties of these objects in order
to get a PDE characterization ofv.

Proposition 2.2

i) B(∆, r) is a proper subset ofC.

ii) C is open, connected, weakly positive forward invari-
ant (i.e. there existsα ∈ A such thatP[X(t, x, α) ∈
C for anyt] > 0.)



iii) supα∈A E[exp(−t(x, α))] → 0 if x → x0 ∈ ∂C.

Proof: The proof of this proposition is similar to the ones
of the corresponding results in [6]. Hence we only give the
details ofi) and we refer the interested reader to [6] for the
other two statements.

Takex ∈ B(∆, r), let α be a control satisfying (2) and fix
b > 0 such thatP[B] := P[β ≤ b] ≥ ε > 0. From (2), there
is T > 0 such that

P[B ∩ {d(X(t, x, α),∆) ≤ r

2
for t > T}] = ε (5)

Recalling that for anyx, y ∈ RN andδ > 0

lim
|x−y|→0

P
[

sup
t∈[0,T ]

‖X(t, x, α)−X(t, y, α)‖ > δ
]

= 0.

select δ such that for anyy ∈ B(x, δ), definedA =
{supt∈[0,T ] ‖X(t, x, α)−X(t, y, α)‖ ≤ r/2}, then

P [Ac] ≤ ε/2

(Ac denotes the complement ofA in Ω). SetC = A ∩ B.
From (5), ify ∈ B(x, δ) we have that

P[{d(X(t, y, α),∆) ≤ r}]
≥ P[{d(X(t, x, α),∆) ≤ r/2} ∩ C]

and therefore, from (2)

P[{ lim
t→+∞

d(X(t, y, α),∆) = 0}]

≥ P[{d(X(t, y, α),∆) ≤ r}] ≥ P[C]

Moreover

P[C] = 1− P[Ac ∪Bc] ≥ 1− (P[Ac] + P[Bc]) ≥ ε

2
.

It follows thatP[{limt→+∞ d(X(t, y, α),∆) = 0}] is posi-
tive for anyy ∈ B(x, δ) and thereforeB(x, δ) ⊂ C for any
x ∈ B(∆, r).

Remark 2.3 Note that ifC does not coincide with allRN ,
the weakly forward invariance property requires some de-
generation of the diffusion part of the stochastic differential
equation on the boundary ofC, see f.e. [1].

The typical example we have in mind is a deterministic
system driven by a stochastic force, i.e. a coupled system
X(t) = (X1(t), X2(t)) ∈ RN1 × RN2 = RN of the form

dX1(t) = b1(X1(t), X2(t), α(t))dt

dX2(t) = b2(X2(t), α(t)) dt + σ2(X2(t), α(t)) dW (t),

see e.g. [7] for examples of such systems. Note that for
systems of this class the diffusion for the overall process
X(t) = (X1(t), X2(t)) is naturally degenerate.

Set Σ(x, a) = σ(x, a)σt(x, a) for any a ∈ A and con-
sider the generator of the Markov process associated to the
stochastic differential equation

L(x, a) =
1
2

N∑
i,j=1

Σi j(x, a)
∂2

∂xi∂xj
+

N∑
i=1

bi(x, a)
∂

∂xi
. (6)

Proposition 2.4 v is continuous onRN and a viscosity so-
lution of Zubov’s equation

sup
a∈A

{
− L(x, a)vδ − (1− v(x))g(x)

}
= 0 (7)

for x ∈ RN \∆.

Proof: The only point is to prove thatv is continuous on
RN . Then from a standard application of the dynamic pro-
gramming principle it follows immediately thatv is a viscos-
ity solution of (7) (see f.e. [17], [8]).

Note thatv ≡ 1 in the complement ofC. From Prop 2.2,
if xn ∈ C andxn → x0 ∈ ∂C we have

v(xn) ≥ 1− sup
α∈A

E[e−g0t(xn,α)] → 1 for n → +∞

and thereforev is continuous on the boundary ofC.
To prove thatv is continuous on the interior ofC, it is suf-

ficient to show thatv is continuous inB(∆, r) since outside
g is strictly positive and we can use the argument in [14, part
I], Theorem II.2.

Fix x, y ∈ B(∆, r) and ε > 0. Let b be such that
P[B] := P [{β ≤ b}] ≥ 1 − ε/8. TakeT in such a way
thatLgb exp(−λT )/λ < ε/4, whereλ as in (2), and letα be
a control satisfying (2) and

v(x) ≥ 1− E[e−
∫ +∞

0
g(X(t,x,α),α(t))dt] +

ε

8

andδ sufficiently small in such a way thatE‖X(t, x, α) −
X(t, y, α)‖ ≤ ε/4LgT if ‖x− y‖ ≤ δ andt ≤ T . Hence

E
[∫ ∞

T

d(X(t, y, α),∆)dt χB

]
≤ E

[∫ ∞

0

d(X(t + T, y, α(·+ T )),∆)dt χB

]
≤ be−λT /λ.

and

v(y)− v(x)

≤ E
∥∥∥e
−

∫ +∞

0
g(X(t,y,α),α(t))dt

−e
−

∫ +∞

0
g(X(t,x,α),α(t))dt

∥∥∥ +
ε

8

≤ 2P(Bc) + E
[
Lg

( ∫ T

0

‖X(t, y, α)−X(t, x, α)‖dt

+
∫ ∞

T

(d(X(t, x, α),∆) + d(X(t, y, α),∆))dt
)
χB

]
+

ε

8
≤ ε.

The next theorem gives the characterization ofC through
the Zubov equation (7).

Theorem 2.5 The value functionv is the unique bounded,
continuous viscosity solution of(7) which is null on∆.



Proof: We show that ifw is a continuous viscosity subsolu-
tion of (7) such thatw(x) ≤ 0 for x ∈ ∆, thenw ≤ v in RN .
Using a standard comparison theorem (see f.e. [8]), the only
problem is the vanishing ofg on∆. Therefore we first prove
thatw ≤ v in B(∆, r) using (2), we then obtain the result in
all RN by applying the comparison result inRN \B(∆, r).

Sincew is a continuous viscosity subsolution, it satisfies
for anyx ∈ {δ ≤ d(x,∆) ≤ 1/δ}

w(x) ≤

infα∈A E
{∫ T∧τδ

0
g(X(t), α(t))e−

∫ t

0
g(X(s),α(s))ds

dt +

e
−

∫ T∧τδ

0
g(X(t),α(t))dt

w(X(T ∧ τδ))
}

for any T > 0 whereτδ = τδ(α) is the exit time of the
processX(t) = X(t, x, α) from {δ ≤ d(x, ∆) ≤ 1/δ}(see
[15]).

Fix ε > 0 and letδ > 0 be such that ifd(z,∆) ≤ δ,
then w(z), v(z) ≤ ε. For x ∈ B(∆, r) by the dynamic
programming principle we can findα ∈ A satisfying (2) and
such that

v(x) ≤ E
{∫ T∧τδ

0
g(X(t), α(t))e−

∫ t

0
g(X(s),α(s))ds

dt +

e
−

∫ T∧τδ

0
g(X(t),α(t))dt

v(X(T ∧ τδ))
}

+ ε.

Therefore we have

w(x)− v(x) ≤
E

{
e
−

∫ τδ

0
g(X(t),α(t))dt(w(X(τδ))− v(X(τδ))

χ{τδ≤T}
}

+ 2Me−gδT + ε

(8)

wheregδ = inf{g(x, a) : d(x, ∆) ≥ δ, a ∈ A} > 0 and
M = max{‖w‖∞, ‖v‖∞}.

SetBk = {β ≤ K} and takeT andK sufficiently large in
such a way that2Me−gδT ≤ ε, 2MP[Bc

k] ≤ ε and, recalling
(2), P[Bk ∩ {τδ ≤ T}] = P[Bk]. By (8), we get

v(x)− w(x) ≤ 2εP[Bk] + 2MP[Bc
k] + 2ε ≤ 4ε

and for the arbitrariness ofε we havew ≤ v in B(∆, r).
By a similar argument we can prove that ifu is a contin-

uous viscosity supersolution of (7) such thatu(x) ≥ 0 for
x ∈ ∆, thenu ≥ v in RN .

Remark 2.6 The functionv is a stochastic control Lyapunov
function for the system in the sense that

inf
α∈A

E[v(X(t, x, α))− v(x)] < 0

for anyx ∈ C \∆ and anyt > 0.

3 Domain of almost sure controllability

In this section we are interested in a characterization of the
set of points which are asymptotically controllable to the set
∆ with probability arbitrarily close to one, i.e. in the set

D =
{
x ∈ RN : sup

α∈A
P[ lim

t→+∞
d(X(t, x, α),∆) = 0] = 1

}
.

We require a slightly stronger stability condition, namely that
besides (2) it is also verified that for anyx ∈ B(0, r), there
exists a controlα ∈ A such that

E[d(X(t, x, α),∆)q] ≤ Me−µt a.s. for anyt > 0 (9)

for someq ∈ (0, 1] and positive constantsM , µ.
We consider a family of value functions depending in the

discount factor on a positive parameterδ

vδ(x) =

inf
α∈A

E
[∫ +∞

0

δg(X(t), α(t))e−
∫ t

0
δg(X(s),α(s))ds

dt

]
= inf

α∈A
E

[
1− e

−
∫ +∞

0
δg(X(t),α(t))dt]

The main result of this section is

Theorem 3.1

D = {x ∈ RN : lim
δ→0

vδ(x) = 0} (10)

Proof: The proof of the result is split in some steps.
Claim 1: For anyx ∈ B(∆, r), vδ(x) ≤ Cδ for some

positive constantC.
Sinceg is Lipschitz continuous inx uniformly in a and

g(x, a) = 0 for any (x, a) ∈ ∆ × A, we haveg(x, a) ≤
min{Lg‖x‖,Mg} ≤ Cq‖x‖q for any q ∈ (0, 1] and corre-
sponding constantCq. Letα be a control satisfying (9). Then
for anyδ, by the Lipschitz continuity ofg, (2) and (9) we get

vδ(x)

≤ E
[∫ +∞

0

δg(X(t), α(t))e−
∫ t

0
δg(X(s),α(s))ds

dt

]
≤ δ

∫ +∞

0

E [g(X(t), α(t))] dt

≤ δCq

∫ +∞

0

E[d(X(t, x, α),∆)q]dt

≤ δCq

∫ +∞

0

Me−µtdt

hence the claim.
Claim 2: For anyx ∈ RN ,

lim
δ→0

sup
α∈A

E[e−δt(x,α)] = sup
α∈A

P[t(x, α) < ∞] (11)

wheret(x, a) is defined as in (4).
The proof of the claim is very similar to the one of Lemma

3.2 in [3], so we just sketch it. Letα ∈ A be such that
supα∈A E[e−δt(x,α)] ≤ E[e−δt(x,α)] + ε and T0 such that
exp(−δT ) ≤ ε for T > T0. Hence forT > T0

E[e−δt(x,α)] ≤ E[e−δt(x,α)χ{t(x,a)<T}] + E[e−δT ]
≤ P[t(x, α) < T ] + ε ≤ sup

α∈A
P[t(x, α) < ∞] + ε

from which we get

lim sup
δ→0

sup
α∈A

E[e−δt(x,α)] ≤ sup
α∈A

P[t(x, α) < ∞].



To obtain the other inequality in (11), takeα ∈ A, T suffi-
ciently large andδ small such that

sup
α∈A

P[t(x, α) < ∞] ≤ P[t(x, α) < ∞] + ε

≤ P[t(x, α) < T ] + 2ε

and fort < T
e−δt ≥ 1− ε.

Hence

E[e−δt(x,α)] ≥ E[e−δt(x,α)χ{t(x,α)<T}]
≥ E[(1− ε)χ{t(x,α)<T}] = (1− ε)P[t(x, α) < T ]

(1− ε)
(

sup
α∈A

P[t(x, α) < ∞]− ε
)
.

Sinceε is arbitrary, it follows that

lim inf
δ→0

sup
α∈A

E[e−δt(x,α)] ≥ sup
α∈A

P[t(x, α) < ∞].

Claim 3: For anyx ∈ RN ,

lim
δ→0

vδ(x) = 1− sup
α∈A

P[t(x, α) < ∞]

For anyα ∈ A, we have

1− E[e−
∫∞

0
δg(X(t),α(t))dt] ≥ 1− E[e−δg0t(x,α)]

and therefore by Claim 2,

lim inf
δ→0

vδ(x) ≥ lim inf
δ→0

inf
α∈A

{1− E[e−δg0t(x,α)]}

≥ 1− sup
α∈A

P[t(x, α) < ∞].

Now fix ε > 0, δ > 0 and takeT sufficiently large in such a
way thatexp(−δMgT ) ≤ ε. By the dynamic programming
principle, for anyα ∈ A we have

vδ(x) ≤
E{

∫ T∧t(x,α)

0
δg(X(t), α(t))e−

∫ t

0
δg(X(s),α(s))ds

dt+

e
−

∫ T∧t(x,α)

0
δg(X(t),α(t))dt

v(X(T ∧ t(x, α))}.
(12)

Now using Claim 1 and recalling that0 ≤ vδ ≤ 1 we esti-
mate the second term in the right hand side of (12) by

E[e−
∫ T∧t(x,α)

0
δg(X(t),α(t))dt

v(X(T ∧ t(x, α))] ≤
E[v(X(t(x, α))χ{t(x,a)≤T} +

E[e−
∫ T

0
δMgdt

χ{t(x,a)≥T}] ≤ Cδ + ε

and the first one by

E

[∫ T∧t(x,α)

0

δg(X(t), α(t))e−
∫ t

0
δg(X(s),α(s))ds

dt

]

≤ E

[∫ t(x,α)

0

δg(X(t), α(t))e−
∫ t

0
δg(X(s),α(s))ds

dt

]

= E[1− e
−

∫ t(x,α)

0
δg(X(t),α(t))dt] ≤ E[1− e−δMgt(x,α)].

Substituting the previous inequalities in (12) we obtain

lim sup
δ→0

vδ(x) ≤ lim sup
δ→0

inf
α∈A

E[1− e−δMgt(x,α) + Cδ + ε]

which, recalling Claim 2, completes the proof of Claim 3.
Equality (10) follows immediately from Claim 3 observ-

ing that

P[ lim
t→+∞

d(X(t, x, α),∆) = 0] = P[t(x, a) < ∞]

Remark 3.2 Note the by the same argument of the previous
theorem we can more generally prove that ifDp =

{
x ∈

RN : supα∈A P[limt→+∞ d(X(t, x, α),∆) = 0] = p
}

for
p ∈ [0, 1] then the following characterization holds

Dp = {x ∈ RN : lim
δ→0

vδ(x) = 1− p}

Remark 3.3 As in Theorem 2.5, we can prove that for any
δ > 0 the value functionvδ is the unique viscosity solution
of the Zubov equation

sup
a∈A

{
− L(x, a)vδ − δ(1− vδ(x))g(x)

}
= 0

in RN \ ∆ which is null on∆, whereL(x, a)· is defined as
in (6)

4 A numerical example

We illustrate our results by a numerical example. The exam-
ple is a stochastic version of a creditworthiness model given
by

dX1(t) = (α(t)− λX1(t))dt + σX1(t)dW (t)
dX2(t) = (H(X1(t), X2(t))− f(X1(t), α(t)))dt

with

H(x1, x2) =


α1(

α2+
x1−x2

x1

)µ θx2, 0 ≤ x2 ≤ x1

α1
α2

2
θx2, x2 > x1

and
f(x1, α) = axν

1 − α− αβx−γ
1 .

A detailed study of the deterministic model (i.e., with
σ = 0) can be found in [11]. In this modelk = x1 is the cap-
ital stock of an economic agent,B = x2 is the debt,j = α
is the rate of investment,H is the external finance premium
andf is the agent‘s net income. The goal of the economic
agent is to steer the system to the set{x2 ≤ 0}, i.e., to re-
duce the debt to0. ExtendingH to negative values ofx2

via H(x1, x2) = θx2 one easily sees that for the determinis-
tic model controllability to{x2 ≤ 0} becomes equivalent to
controllability to∆ = {x2 ≤ −1/2}, furthermore, also for
the stochastic model any solution with initial value(x1, x2)
with x2 < 0 will converge to∆, even in finite time, hence∆
satisfies our assumptions.



Using the parametersλ = 0.15, α2 = 100, α1 =
(α2 + 1)2, µ = 2, θ = 0.1,, a = 0.29 ν = 1.1, β = 2,
γ = 0.3 and the cost functiong(x1, x2) = x2

2 we have
numerically computed the solutionvδ for the corresponding
Zubov equation withδ = 10−4 using the scheme described
in [3] extended to the controlled case (see [2] for more de-
tailed information). For the numerical solution we used the
time steph = 0.05 and an adaptive grid (see [10]) covering
the domainΩ = [0, 2]× [−1/2, 3]. For the control values we
used the setA = [0, 0.25].

As boundary conditions for the outflowing trajectories we
usedvδ = 1 on the upper boundary andvδ = 0 for the lower
boundary, on the left boundary no trajectories can exit. On
the right boundary we did not impose boundary conditions
(since it does not seem reasonable to define this as either “in-
side” or “outside”). Instead we imposed a state constraint
by projecting all trajectories exiting to the right back toΩ.
We should remark that both the upper as well as the right
boundary condition affect the attraction probabilities, an ef-
fect which has to be taken into account in the interpretation
of the numerical results.

Figure 1 show the numerical results forσ = 0, 0.1 and0.5
(top to bottom). In order to improve the visibility, we have
excluded the values forx1 = 0 from the figures (observe that
for x1 = 0 andx2 > 0 it is impossible to control the system
to ∆, hence we obtainvδ ≈ 1 in this case).
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[11] L. Grüne, W. Semmler and M. Sieveking, Creditwor-
thiness and Thresholds in a Credit Market Model with
Multiple Equilibria,Economic Theory, to appear.
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