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1 Introduction

Zubov’s method is a general technique to characterize the domain of attraction for asymp-
totically stable sets for ordinary differential equations. With this method, the domain of
attraction is characterized as the sublevel set {x ∈ RN | v(x) < 1} of the solution v of a
suitable partial differential equation, called the Zubov equation. In addition, v turns out
to be a Lyapunov function for the respective stable point or set on its domain of attraction.
Originally developed for exponentially stable fixed points [18], Zubov’s method was subse-
quently generalized to asymptotically stable periodic orbits [2] as well as to asymptotically
stable sets of deterministically perturbed systems [7, 8] and control systems [14], see also
[13, Chapter 7] for an introduction to this problem and for an overview of recent results.
The generalizations to controlled and perturbed systems were considerably facilitated by
the notion of viscosity solutions in the sense of Crandall and Lions (see [3, 12, 17]) which
allows one to formulate an existence and uniqueness theorem for the generalized Zubov
equation without assuming differentiability of the solution.

While all references cited so far deal with deterministic systems, recently Zubov’s equation
was generalized to stochastic systems, more precisely to Ito stochastic differential equations
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with additive or multiplicative white noise with an almost surely exponentially stable fixed
point [10]. While the existence and uniqueness result as well as the Lyapunov function
property could be established here (again within the framework of viscosity solutions,
which is crucial since we allow SDEs with degenerate diffusion) it came as a bit of a
surprise to the authors that the solution of what we will call the stochastic Zubov equation
does not give full information about the attraction properties. More precisely, the sublevel
set {x ∈ RN | v(x) < 1} here only characterizes the set of points which are attracted to
the fixed point with positive probability. Other interesting sets, like e.g. the set of points
attracted with probability one could not be identified.

It is the goal of this paper to fix this gap and to give a characterization of the whole
attraction probability to locally exponentially stable set A. Using an idea which was already
utilized in [7, Section 4], we introduce a parameter δ > 0 into Zubov’s equation and study
the family of solutions vδ parameterized by this parameter. While in the deterministic
case the limit for δ → 0 turns out to be the characteristic function of the complement of
the domain of attraction (see [7, Section 4]), our main Theorem 3.1 will show that in the
stochastic case in the limit one obtains the full information about the attraction probability
to the attracting set. In particular, each set of the form{

x ∈ RN : P[ lim
t→+∞

d(X(t, x), A) = 0] = p

}
for p ∈ [0, 1] can be characterized as a level set of the limiting function limδ→0 vδ.

In the deterministic case, Zubov’s method also leads to numerical techniques for determin-
ing the domain of attraction, either directly by solving the related PDE [9], [13, Section
7.6] or indirectly using set oriented methods [13, Section 7.5 and Remark 7.6.2]. We be-
lieve that similar techniques also apply in the stochastic setting and have included two
numerical examples which illustrate the performance of a numerical scheme for second
order Hamilton–Jacobi equations on the Zubov equation. An extension of the rigorous
convergence analysis using ideas from numerical dynamics [13] to our stochastic setting is
currently under investigation.

This paper is organized as follows. In Section 2 we fix our setting and give the necessary
results from [10]. In Section 3 we state and prove our main theorem and in Section 4 we
give two examples where Zubov’s equation was solved numerically.

2 The Zubov equation for stochastic differential equations

In this section we describe our setup and briefly review the results contained in [10]1.

We fix a probability space (Ω,F ,Ft,P) and on this space we consider the autonomous Ito
stochastic differential equation{

dX(t) = b(X(t)) dt+ σ(X(t)) dW (t)
X(0) = x.

(2.1)

1In [10] the special case A = {0} is considered, however, all results in this paper easily carry over to
arbitrary compact sets A making the obvious changes in the proofs.



CHARACTERIZING ATTRACTION PROBABILITIES VIA ZUBOV’S EQUATION 3

Here W (t) is an M -dimensional Wiener process adapted to the filtration Ft, b : RN → R
N

and σ : RN → R
N×M are bounded, Lipschitz continuous functions. We assume that there

exists an almost surely forward invariant set A for (2.1) for which we additionally assume
that it is almost surely locally exponentially stable ([15], [16]): there exist two positive
constants λ, r and a finite random variable β such that for any x ∈ B(A, r) = {x ∈
R
n | d(x,A) < r}

d(X(t, x), A) ≤ βe−λt a.s. for any t > 0. (2.2)

Here d(x,A) denotes the Euclidean distance of the point x to the set A.

We denote by C the set of points which are attracted with positive probability by the set
A, i.e.

C =
{
x ∈ RN : P[ lim

t→+∞
d(X(t, x), A) = 0] > 0

}
.

Clearly C is not empty since it contains B(A, r). In [10] it is proved that C is open,
connected and RN \ C is invariant for (2.1), i.e. if x ∈ RN \ C, the X(t, x) ∈ RN \ C a.s. for
any t > 0.

In order to obtain a Zubov-type characterization of the set C, we introduce the function
v : RN → R defined by

v(x) = E

{∫ +∞

0
g(X(t, x))e−

∫ t
0 g(X(s,x))dsdt

}
= 1− E

[
e−
∫+∞
0 g(X(t,x))dt

] (2.3)

where g : RN → R is any bounded, Lipschitz continuous function such that g(x) = 0 for
x ∈ A, g(x) > 0 for d(x,A) > 0 and

g(x) ≥ g0 > 0 for any x ∈ RN \B(A, r)

Note that the second equality in (2.3) follows from an application of the chain rule. By
definition we obtain 0 ≤ v(x) ≤ 1 for any x ∈ RN , v(x) = 0 for x ∈ A and v(x) > 0 for
d(x,A) > 0.

Theorem 2.1 The function v is continuous in RN and satisfies

C = {x ∈ RN : v(x) < 1}. (2.4)

The following theorem gives a characterization of v by means of a suitable second order
PDE involving the coefficients of (2.1) and the function g, which we call the stochastic
Zubov equation.

Theorem 2.2 The function v is the unique bounded, continuous viscosity solution of
−1

2Tr
(
a(x)D2v(x)

)
− b(x)Dv(x)− (1− v(x))g(x) = 0 x ∈ RN \A,

v(x) = 0 x ∈ A
(2.5)

where a(x) = σ(x)σt(x).



4 FABIO CAMILLI AND LARS GRÜNE

With

L =
1
2

N∑
i,j=1

ai j(x)
∂2

∂xi∂xj
+

N∑
i=1

bi(x)
∂

∂xi

denoting the generator of the Markov process associated to (2.1), equation (2.5) can be
written in the short form

−Lv − (1− v)g = 0. (2.6)

Note that since we are not assuming any non–degeneracy condition on σ (i.e., L may be a
degenerate elliptic operator), in general classical solutions to (2.5) or (2.6) may not exist.
For this reason we interpret the equation in weak sense, namely in viscosity solution sense
(see [12] for a nice account of this theory in the context of stochastic systems).

A particular class of systems which can be treated in our setting are deterministic systems
driven by a stochastic driving force, i.e., coupled systems with X(t) = (X1(t), X2(t)) ∈
R
N1 × RN2 = R

N of the form

dX1(t) = b1(X1(t), X2(t))dt

dX2(t) = b2(X2(t)) dt+ σ2(X2(t)) dW (t),
(2.7)

see e.g. [11] for examples of such systems (more generally, such systems often occur with
X2 living on some compact manifold; in order to keep the presentation technically simple
we restrict ourselves to systems with real X2, i.e. X2(t) ∈ RN2). For systems of this class
the diffusion for the overall system X(t) = (X1(t), X2(t)) is naturally degenerate. See the
second system in Section 4 for an example from this class.

3 Attraction probabilities and almost sure stability

In contrast to the deterministic case, the solution of Zubov’s equation in the stochastic
setting does not give immediate access to the full information about the attraction of the
solution paths starting from some initial point x ∈ RN .

Apart from the set C of positive attraction probability, which is characterized by v, one
might also be interested in the set of points which are attracted to A with probability one

D =
{
x ∈ RN : P[ lim

t→+∞
d(X(t, x), A) = 0] = 1

}
or, more generally, in the set of points which are attracted to A with some given probability
p ∈ [0, 1]

Dp =
{
x ∈ RN : P[ lim

t→+∞
d(X(t, x), A) = 0] = p

}
.

In order to represent these sets we consider a family of solutions to Zubov’s equation (2.5)
or (2.6) depending on a positive parameter δ

vδ(x) = E

{∫ +∞

0
δg(X(t, x))e−

∫ t
0 δg(X(s,x))dsdt

}
= 1− E

[
e−
∫+∞
0 δg(X(t,x))dt

]
.

(3.1)
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Since δ is only a scaling factor, vδ satisfies the same properties of v defined in (2.3), in
particular Theorems 2.1 and 2.2 where Zubov’s equation (2.5) now reads

−1
2Tr

(
a(x)D2vδ(x)

)
− b(x)Dvδ(x)− δ(1− vδ(x))g(x) = 0 x ∈ RN \A,

vδ(0) = 0 x ∈ A
(3.2)

or in short form analogous to (2.6)

−Lvδ − δ(1− vδ)g = 0. (3.3)

In this section, we assume that in addition to assumption (2.2) the solutions X(t, x) for
any x ∈ B(A, r) satisfy

E [d(X(t, x), A)q] < Me−λ1t. (3.4)

for some q ∈ (0, 1], constants M, λ1 > 0 and all t ≥ 0. The motivation for this assumption
comes from the linear case, where (under suitable conditions) almost sure exponential
stability of A = {0} implies the existence of q0 > 0 such that (3.4) holds for all q ∈ (0, q0],
cf. [1]. Of course, in our nonlinear setting with general sets A this implication might
not hold, but the linear case suggests that (3.4) is a reasonable assumption. Note that
(3.4) holds for any q ∈ (0, 1] (and suitable M, λ1 > 0 depending on q) if (2.2) holds and
E[β] <∞.

The main result of this section is

Theorem 3.1 For any x ∈ RN

lim
δ→0

vδ(x) = 1− P[ lim
t→+∞

d(X(t, x), A) = 0].

An immediate consequence of the Theorem 3.1 is the following characterization of the sets
D and Dp.

Corollary 3.2 The sets D and Dp satisfy

D =
{
x ∈ RN : lim

δ→0
vδ(x) = 0

}
and

Dp =
{
x ∈ RN : lim

δ→0
vδ(x) = 1− p

}
.

Remark 3.3 Note that the sequence of solutions vδ of the equation (3.3) is decreasing
for δ ↘ 0+. Therefore vδ converges pointwise to a l.s.c. function v0 and by standard
stability results in viscosity solution theory (see [12]) v0 is a l.s.c. supersolution of the
equation −Lv0 = 0. Solving this equation directly could be an alternative approach for
characterizing the attraction probability. In our setting, however, the equation −Lv0 = 0,
which is related to ergodic control problems in RN (see [5]), may be degenerate and is
defined on an unbounded domain, and we are not aware of results about the existence of
solutions — neither classical nor in viscosity sense — in these cases, not to mention the
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possible nonuniqueness of such solutions. In this context, Zubov’s equation (3.2) or (3.3) for
small δ > 0 may be interpreted as a regularization of −Lv0 = 0 which allows for existence
and uniqueness results in the viscosity sense and for an approximate characterization of
the attraction probabilities.

The proof of Theorem 3.1 is split in several steps.

Lemma 3.4 There exists C > 0 such that the inequality

vδ(x) ≤ Cδ

holds for all x ∈ B(A, r).

Proof: The almost sure exponential convergence implies

vδ(x) = E

{∫ +∞

0
δg(X(t, x))e−

∫ t
0 δg(X(s,x))dsdt

}
≤ δ

∫ +∞

0
E [g(X(t, x))] dt

since Lipschitz continuity of g and exponential convergence of X(t, x) to A imply that the
integrals under consideration are finite for almost any path. Now the Lipschitz continuity
and boundedness of g imply g(x) ≤ min{Ld(x,A),Mg} ≤ Cqd(x,A)q for each q ∈ (0, 1]
and Cq = LqM1−q

g , which by (3.4) yields

δ

∫ +∞

0
E [g(X(t, x))] dt ≤ δ

∫ +∞

0
CqE [d(X(t, x), A)q] dt ≤ δ

∫ +∞

0
CqMe−λ1tdt = δ

CqM

λ1
,

i.e. the assertion with C = CqM/λ1.

Lemma 3.5 Set t(x) = inf{t > 0 : X(t, x) ∈ B(A, r)} and PA(x) = P[t(x) < ∞]. Then
for any x ∈ RN , the limit limδ→0 E[e−δt(x)] exists and satisfies

lim
δ→0

E[e−δt(x)] = PA(x).

Proof: “≤”: For each δ > 0 and each T > 0 we have

E[e−δt(x)] = E[e−δt(x)χ{t(x)<T}] + E[e−δt(x)χ{t(x)≥T}].

For each δ > 0 and each ε > 0 we find T0 > 0 such that the second term on the right hand
side is smaller than ε for all T ≥ T0, since e−δT → 0 for T →∞. For the first term we can
estimate

E[e−δt(x)︸ ︷︷ ︸
≤1

χ{t(x)<T}] ≤ E[χ{t(x)<T}] = P[t(x) < T ] ≤ PA(x)

which implies
E[e−δt(x)] ≤ PA(x) + ε.
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Since ε > 0 was arbitrary we obtain

E[e−δt(x)] ≤ PA(x),

thus in particular
lim sup
δ→0

E[e−δt(x)] ≤ PA(x).

“≥”: For each T > 0 we have the inequality

E[e−δt(x)] ≥ E[e−δt(x)χ{t(x)<T}].

Now fix ε > 0 and, observing that PA(x) = limT→∞ P[t(x) < T ], pick T > 0 with

PA(x) ≤ P[t(x) < T ] + ε.

For all δ > 0 sufficiently small we obtain

e−δt ≥ 1− ε

if t < T . Hence for all these δ we obtain

E[e−δt(x)] ≥ E[e−δt(x)χ{t(x)<T}]
≥ E[(1− ε)χ{t(x)<T}]
= (1− ε)P[t(x) < T ]
≥ (1− ε)(PA(x)− ε)
= PA(x)− ε(1 + PA(x)) + ε2 ≥ PA(x)− 2ε+ ε2.

This implies
lim inf
δ→0

E[e−δt(x)] ≥ PA(x)− 2ε+ ε2

which yields
lim inf
δ→0

E[e−δt(x)] ≥ PA(x)

since ε > 0 was arbitrary.

Combining the results for “≤” and “≥” now shows the claim.

Lemma 3.6 For any x ∈ RN , the limit limδ→0 vδ(x) exists and satisfies

lim
δ→0

vδ(x) = 1− lim
δ→0

E[e−δt(x)].

Proof: “≥”: By (3.1), we have

vδ(x) ≥ 1− E
[
e−
∫ t(x)
0 δg(X(t,s))ds

]
≥ 1− E

[
e−
∫ t(x)
0 δg0ds

]
= 1− E

[
e−δg0t(x)

]
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and since
lim
δ→0

E

[
e−δg0t(x)

]
= lim

δ→0
E

[
e−δt(x)

]
we obtain

lim inf
δ→0

vδ(x) ≥ 1− lim
δ→0

E[e−δt(x)].

“≤”: Fix ε > 0 and δ > 0 and let T > 0 be so large that

e−δMgT ≤ ε

holds. By Formula (2.10) of [10] we obtain

vδ(x) = E

[∫ t(x)∧T

0
δg(X(t, x))e−

∫ t
0 δg(X(s,x))dsdt

]
+ E

[
e−
∫ t(x)∧T
0 δg(X(t,x))dtvδ(X(t(x) ∧ T, x))

]
,

where a ∧ b = min{a, b}. We can split up the second term into

E

[
e−
∫ t(x)∧T
0 δg(X(t,x))dtvδ(X(t(x) ∧ T, x))χ{t(x)≤T}

]
+ E

[
e−
∫ t(x)∧T
0 δg(X(t,x))dtvδ(X(t(x) ∧ T, x))χ{t(x)>T}

]
.

Now using Lemma 3.4 the first summand satisfies

E

[
e−
∫ t(x)∧T
0 δg(X(t,x))dtvδ(X(t(x) ∧ T, x))χ{t(x)≤T}

]
≤ E[vδ(X(t(x), x))χ{t(x)≤T}] ≤ Cδ

and by the choice of T the second summand can be estimated by

E

[
e−
∫ t(x)∧T
0 δg(X(t,x))dtvδ(X(t(x) ∧ T, x))χ{t(x)>T}

]
≤ e−

∫ T
0 δMgdt = e−δMgT ≤ ε.

Hence we obtain

vδ(x) ≤ E

[∫ t(x)∧T

0
δg(X(t, x))e−

∫ t
0 δg(X(s,x))dsdt

]
+ Cδ + ε

≤ E

[∫ t(x)

0
δg(X(t, x))e−

∫ t
0 δg(X(s,x))dsdt

]
+ Cδ + ε

= 1− E
[
e−
∫ t(x)
0 δg(X(t,x))dt

]
+ Cδ + ε

≤ 1− E
[
e−
∫ t(x)
0 δMgdt

]
+ Cδ + ε = 1− E

[
e−δMgt(x)

]
+ Cδ + ε.

Since ε > 0 was arbitrary this implies

lim sup
δ→0

vδ(x) ≤ lim
δ→0

1− E
[
e−δMgt(x)

]
+ Cδ = 1− lim

δ→0
E

[
e−δMgt(x)

]
= 1− lim

δ→0
E

[
e−δt(x)

]
Combining the inequalities from “≥” and “≤” now yields the assertion.



CHARACTERIZING ATTRACTION PROBABILITIES VIA ZUBOV’S EQUATION 9

Proof of Theorem 3.1 This follows immediately combining Lemma 3.5 and Lemma 3.6
and observing that from (2.2)

P[ lim
t→+∞

d(X(t, x), A) = 0] = PA(x).

We end this section proving a property of the domain of attraction.

Proposition 3.7 The set D is invariant for the dynamics given by (2.1), i.e. if x ∈ D,
then X(t, x) ∈ D a.s. for any t > 0.

Proof: Assume by contradiction that D is not invariant for (2.1), i.e. there exists x0 ∈ D
and t0 > 0 such that

P(X(t0, x0) 6∈ D) > 0. (3.5)

Let
v(x) = lim

δ→0
vδ(x) = inf

δ>0
vδ(x). (3.6)

Since

R
N \ D =

∞⋃
n=1

{
x ∈ RN : v(x) ≥ 1

n

}
,

then from (3.5), there exists n0 such that

P

(
v(X(t0, x0)) ≥ 1

n0

)
= η > 0.

Then

v(x0) = lim
δ→0

vδ(x) = lim
δ→0

E

[∫ t0

0
δg(X(t, x0))e−

∫ t
0 δg(X(s,x0))dsdt

+ e−
∫ t0
0 δg(X(s,x0))dsvδ(X(t0, x0))χ{

vδ(X(t0,x0))< 1
n0

}
+ e−

∫ t0
0 δg(X(s,x0))dsvδ(X(t0, x0))χ{

vδ(X(t0,x0))≥ 1
n0

}
]

≥ lim
δ→0

E

[
e−‖g‖∞δt0

1
n0
χ{

vδ(X(t0,x0))≥ 1
n0

}]
≥ lim

δ→0
E

[
e−‖g‖∞δt0

1
n0
χ{

v(X(t0,x0))≥ 1
n0

}]
=

1
n0
P

(
v(X(t0, x0)) ≥ 1

n0

)
> 0.

Since x0 ∈ D and therefore v(x0) = 0, we get a contradiction.
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4 Examples

In this section we illustrate our results by two simple two–dimensional examples for which
we solve equation (3.2) numerically. As a first example we consider the two–dimensional
system given by

dX(t) =
(
M + ρ(X(t))Id

)
X(t)dt+ σ(X(t))dW (t)

where

M =
(

0 1
−1 0

)
, ρ(x) = |x| − 1 and σ(x) = α|x|(|x| − 1/2)(|x| − 3/2)x

for a constant α ≥ 0. Note that for α = 0 the system becomes deterministic and exhibits
an exponentially stable set A = {0} with domain of attraction C = D = {x ∈ R2 | |x| < 1}.
For α > 0 we obtain that A = {0} remains almost surely locally exponentially stable
with D = {x ∈ R2 | |x| ≤ 1/2} and C = {x ∈ R2 | |x| < 3/2} (the zeros of σ induce this
structure).

We have solved equation (3.2) using a numerical scheme proposed in [6] applied to the
regularized equation from [10, Section 5]. The results in [4, 6] imply convergence of this
scheme, however, the convergence rate for discretization parameters tending to 0 may
become slow for small δ > 0. For the deterministic version of this scheme it was shown
that under suitable robustness assumptions one can obtain a convergence rate which is
independent of δ, see [13, Section 7.6]. A thorough convergence analysis of this scheme in
the stochastic setting along the lines of [13] is currently under investigation.

Figures 4.1 shows the numerical approximations of the solutions of equation (3.2) for α = 0,
α = 1/2 and α = 1, from left to right. The computations were done with g(x) = |x| and
δ = 1/1000. Note that for α = 0 we (almost) obtain the characteristic function for
Dc = {x ∈ R2 | |x| ≥ 1}, since in the deterministic case we either converge with probability
1 or 0 (for δ → 0 and without numerical errors we would obtain exactly the characteristic
function). For the positive values of α we indeed obtain a continuous function characterizing
the attraction probabilities.
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Figure 4.1: Solutions of equation (3.2) for α = 0, 1/2, 1 (left to right)

As a second example we consider a two–dimensional system of class (2.7) given by

dX1(t) = (−3 + cosX2(t))X1(t) +X1(t)3dt

dX2(t) = σdW (t)
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where σ ∈ R is constant. Due to the periodicity of the cosine we can restrict the second
subsystem to the compact interval [0, 2π] where the boundary points 0 and 2π are identified.

If we set A = {0} × [0, 2π] then the structure of the X1 equation immediately reveals
that all initial values x with x1 <

√
2 lie in D while all initial value x with x1 > 2 lie

in C. Figure 4.2 shows the respective attraction probabilities for different values of σ in a
neighborhood of the boundaries of D and C. The computations were done with δ = 1/10000
and g(x) = |x1|.
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Figure 4.2: Solutions of equation (3.2) for σ = 1, 5, 10, 20

What is remarkable here is that first the transition domain between 0 and 1 in the proba-
bility becomes wider and less steep until σ = 5 while for growing intensity of the noise it
becomes narrower and steeper, again.

Acknowledgment: The second author would like to thank Ludwig Arnold and Peter
Baxendale for useful discussions.
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[13] L. Grüne, Asymptotic Behavior of Dynamical and Control Systems under Perturbation
and Discretization, Lecture Notes in Mathematics, Vol. 1783, Springer Verlag, Berlin,
2002.
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