
Attraction rates, robustness and discretization of attractors

Lars Grüne
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Abstract: We investigate necessary and sufficient conditions for the convergence of attractors

of discrete time dynamical systems induced by numerical one–step approximations of ordinary

differential equations (ODEs) to an attractor for the approximated ODE. We show that both the

existence of uniform attraction rates (i.e., uniform speed of convergence towards the attractors)

and uniform robustness with respect to perturbations of the numerical attractors are necessary

and sufficient for this convergence property. In addition, we can conclude estimates for the rate of

convergence in the Hausdorff metric.
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1 Introduction

The long time behavior of dissipative dynamical systems is essentially determined by the
attractors of these systems, since for large times its trajectories will typically stay on or near
an attractor. Even for moderately complex finite dimensional systems, however, it is rarely
possible to determine attractors by analytic methods. Hence numerical approximations
form a natural part of a systematic analysis. It is therefore important to know about the
effects of discretization errors on attractors in order to give a reasonable interpretation to
numerical experiments and to justify numerical findings.

For dynamical systems induced by ordinary differential equations (ODEs), numerical one–
step approximations like Runge–Kutta or Taylor schemes form an important class of
schemes. It follows from a result of Kloeden and Lorenz in 1986 [17] for attracting sets,
that if the ODE possesses an attractor A, then the discrete time dynamical system induced
by such a numerical scheme also has an attractor contained in a neighborhood N of A,
where the size of N shrinks down to A as the time–step of the discretization approaches 0.

A number of examples (see, e.g., [7, Example (2.12)], [8, Example 1.1.1] or [11] for the
case of finite dimensional approximations of infinite dimensional systems) shows that the
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limit set for a convergent sequence of numerical attractors for vanishing time–steps may be
strictly smaller than A. This fact, however, imposes a major problem for the interpretation
of numerical results, since it implies that in general one cannot conclude the existence of a
real attractor close to a numerical attractor. Hence it is important to derive techniques or
conditions which allow to conclude convergence of numerical attractors to a real attractor.

There are three main approaches for tackling this problem: The first is to impose suitable
conditions on the approximated system, which ensure a faithful numerical approximation
and exclude the appearance of numerical artifacts. Typical examples of this approach are,
for instance, results on the numerical approximation of Morse–Smale systems by Garay
[5, 6], on the discretization of gradient systems by Stuart and Humphries [21, Section 7.7]
and a result on hyperbolic attractors by the author [9, Remark 2.10(ii)].

The second approach is to design algorithms which can be shown to converge to the right
objects under no or under very mild conditions on the approximated system. An example
for this approach is the subdivision algorithm for the computation of attractors originally
developed by Dellnitz and Hohmann [3] using a rigorous discretization as proposed by
Junge [13, 14], see also [8, Section 6.3] for a description and a quantitative convergence
analysis of this method based on robust Lyapunov functions.

The idea of the third approach is the formulation of conditions on the behavior of the
numerical systems under which we can ensure convergence of the respective sets or the
existence of respective nearby sets for the approximated system. A typical example are the
sufficient conditions for the convergence of numerical attracting sets in the Galerkin approx-
imation to Navier–Stokes equations by Kloeden [15]. For finite dimensional systems, in [9]
a necessary and sufficient condition of this type was developed based on uniform attraction
properties of the numerical attractors, which were characterized using (uniformly) shrink-
ing families of neighborhoods which are mapped onto each other by suitable perturbations
of the numerical flows.

The present paper follows this third approach. As in [9] we are going to formulate necessary
and sufficient conditions for the convergence of numerical attractors to a real attractor in
terms of uniform attraction properties. The difference to [9] lies in the type of uniformity
properties used for this purpose, because (i) here we formulate the properties directly in
terms of the numerical attractors instead of using auxiliary attracting sets, (ii) we use
comparison functions for characterizing attraction properties instead of using geometrical
characterizations by means of shrinking neighborhoods which are difficult to identify in a
numerical simulation, and (iii) most importantly, instead of using a condition on the rate
of attraction (i.e., the speed of convergence towards the attractor) for perturbed numerical
systems, here we “decouple” the rate and the perturbation and give two different conditions,
one based on the attraction rate for the unperturbed numerical systems and the other based
on the robustness against perturbations.

More precisely, we prove that a sequence of numerical attractors converges to a real at-
tractor

• if and only if the numerical attractors are attracting with uniformly bounded attrac-
tion rates, cf. Theorem 6.2(iii)

• if and only if the numerical attractors are robust against perturbation with uniformly
bounded robustness gains, cf. Theorem 6.2(ii) and Theorem 6.4.
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In addition, in Theorem 6.5 we give estimates for the discretization error based on the local
error of the numerical scheme and the robustness gains of the respective attractors.

The tools we need in order to obtain these results are developed step by step in this paper,
which is organized as follows. After defining the setup and stating some preliminary results
in Section 2, in Section 3 we define a suitable robustness concept for attracting sets with
respect to perturbations, describe the concept of embedding systems into each other and
show how this applies to numerical one–step approximations. In Section 4 we study the
relation between robustness of attracting sets and their rate of attraction. In Section 5 we
prove some useful results on the relation between a continuous time system and its time–
h map and finally, in Section 6 we state the main results on attractors under one–step
discretization.

2 Setup and Preliminaries

We consider ordinary differential equations given by

ẋ = f(x) (2.1)

and, for some time–step h > 0, discrete time systems of the form

x(t+ h) = Φh(x(t)), (2.2)

where f and Φh are maps from Rd to Rd, d ∈ N.

For simplicity of exposition (cf. Remark 2.1, below) we assume global Lipschitz properties
of the respective systems, i.e., we assume that there exists a constant L > 0 such that the
inequalities

‖f(x)− f(y)‖ ≤ L‖x− y‖ for all x, y ∈ Rd (2.3)

and

‖Fh(x)− Fh(y)‖ ≤ L‖x− y‖ for all x, y ∈ Rd (2.4)

hold, where Fh(x) = (Φh(x)− x)/h.

The trajectories of system (2.1) with initial value x0 ∈ Rd for initial time t = 0 are denoted
by ϕ(t, x0) for t ∈ R+

0 and the respective trajectories for (2.2) are denoted by Φh(t, x) for
t ∈ hN0 := {hk | k ∈ N0}.

It will often be convenient to combine continuous and discrete time trajectories in one
notation. For this we use the notation Φ(t, x) which either denotes ϕ(t, x) or Φh(t, x),
where the precise meaning will be clear from the context. Whenever we consider a discrete
time system with time–step h > 0 the time t is implicitly assumed to be in the respective
discrete time–scale hN0.

For sets C ⊂ Rd we use the notation

Φ(t, C) =
⋃
x∈C

{Φ(t, x)}.
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A special type of a discrete time system is the time–h map of (2.1) which is defined by the
discrete time system

x(t+ h) = ϕ(h, x(t)). (2.5)

The trajectories of (2.5) are denoted by ϕh(t, x). Note that if (2.1) satisfies (2.3) for some
L > 0 then Gronwall’s Lemma implies that the time–h map (2.5) satisfies (2.4) for the
Lipschitz constant L̃ = LehL > L.

Another special type of a discrete time system (2.2) is a numerical one–step approximation
Φ̃h of (2.1) which is supposed to satisfy (2.4) and is such that there exist constants c, q > 0
with

‖Φ̃h(x)− ϕ(h, x)‖ ≤ chq+1 for all x ∈ Rd. (2.6)

Here q is called the order of the scheme. Examples for such approximations are Taylor and
Runge–Kutta schemes; for details we refer, e.g., to the textbooks [4, 12, 20].

Remark 2.1 The global estimates in the inequalities (2.3), (2.4) and (2.6) are in general
quite restrictive. However, since we are interested in the behavior on bounded subsets
of the state space, one can always assume these properties without loss of generality by
applying standard cutoff techniques.

Since we are going to measure distances between different sets, we need the following
definitions.

Definition 2.2 Let C, D ⊂ Rd be nonempty compact sets, x ∈ Rd, and let ‖ · ‖ be the
Euclidean norm on Rd. We define the distance from a point to a set by

‖x‖D := min
y∈D
‖x− y‖,

the nonsymmetric Hausdorff distance between two compact sets by

dist(C,D) := max
x∈C

min
y∈D
‖x− y‖,

and the Hausdorff metric for compact sets by

dH(C,D) := max{dist(C,D), dist(D,C)}.

We use these distances for arbitrary bounded sets C, D ⊂ Rd by defining

‖x‖D := ‖x‖clD, dist(C,D) := dist(clC, clD) and dH(C,D) := dH(clC, clD).

For ε > 0 we denote the (open) ε-ball around C by B(ε, C) := {y ∈ Rd | ‖y‖C < ε}. If
C = {x} we also write B(ε, x).

Note that for all bounded sets C,D, E ⊂ Rd the equivalences dist(C,D) = 0 ⇔ C ⊆ clD
and dH(C,D) = 0 ⇔ clC = clD and the implication C ⊆ E ⇒ dist(C,D) ≤ dist(E,D)
hold.

Our main objects of interest are attracting sets and attractors as given by the following
definition.
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Definition 2.3 Let Φ denote the trajectories of a system of type (2.1) or (2.2). Consider
a compact set A ⊂ Rd and an open and bounded set B ⊂ Rd with A ⊂ B. Then A is
called an attracting set with attracted neighborhood B if it is forward invariant, i.e.,

Φ(t, A) ⊆ A for all t ≥ 0

and satisfies
lim
t→∞

dist(Φ(t, B), A)→ 0.

An attracting set is called an attractor, if it is invariant, i.e.,

Φ(t, A) = A for all t ≥ 0.

In order to characterize quantitative properties of attracting sets and attractors we make
use of comparison functions as introduced by Hahn [10].

Definition 2.4 We define the following classes of comparison functions.

K := {γ : R+
0 → R+

0 | γ is continuous, strictly increasing and γ(0) = 0}

L := {σ : R+
0 → R+

0 | σ is continuous, strictly decreasing and limr→∞ σ(r) = 0}

KL := {β : R+
0 × R

+
0 → R+

0 | β(·, r) ∈ K and β(r, ·) ∈ L for each r ≥ 0}.

Remark 2.5 The functions β ∈ KL are closely related to the usual ε–δ definition of
asymptotic stability. More precisely, for any function a : R+

0 × R
+
0 → R+

0 satisfying the
two properties

(i) for all ε > 0 there exists δ > 0 such that if r ≤ δ then a(r, t) < ε for all t ≥ 0

(ii) for all ε > 0 and for allR > 0 there exists T > 0 such that a(r, t)< ε for all 0 ≤ r ≤ R
and for all t ≥ T

there exists a function β ∈ KL with a(r, t) ≤ β(r, t) for all r, t ≥ 0.

This fact was already implicitly used in Hahn’s book [10]; in this form it is stated (but not
proved) in Albertini and Sontag [1, Lemma 4.1] and proved (but not explicitly stated) by
Lin, Sontag and Wang [18, Section 3].

Using class KL functions we can define rates of attraction for attracting sets.

Definition 2.6 Let Φ denote the trajectories of a system of type (2.1) or (2.2) and let
A be an attracting set with attracted neighborhood B. Then β ∈ KL is called rate of
attraction of A if the inequality

‖Φ(t, x)‖A ≤ β(‖x‖A, t)

holds for each x ∈ B and each t ≥ 0.
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The following lemma shows that each attracting set possesses a rate of attraction.

Lemma 2.7 Let Φ denote the trajectories of a system of type (2.1) or (2.2) and let A be
an attracting set with attracted neighborhood B. Then there exists a rate of attraction
β ∈ KL for A.

Proof: Using the forward invariance and attractivity properties of A, and the (uniform)
continuous dependence of a trajectory on the initial value (as induced by Gronwall’s Lemma
for (2.1) or by induction for (2.2)) one easily verifies that the function a : R+

0 ×R
+
0 → R+

0

defined by a(0, t) = 0 for t ∈ R+
0 and

a(r, t) := sup
τ≥t

dist (Φ (τ,B(r, A)∩ B) , A)

satisfies the properties (i) and (ii) of Remark 2.5. Hence there exists β ∈ KL with a ≤ β

and consequently

‖Φ(x, t)‖A ≤ sup
τ≥t

dist (Φ (τ,B(‖x‖A, A) ∩B) , A) = a(‖x‖A, t) ≤ β(‖x‖A, t)

for all x ∈ B and all t ≥ 0. This shows the claim.

We end this section by stating some useful properties of attractors which we will need in
what follows.

Lemma 2.8 Let Φ denote the trajectories of a system of type (2.1) or (2.2) and let A
be an attracting set with attracted neighborhood B. Then A contains an attractor with
attracted neighborhood B.

Proof: Verification of the desired properties shows that

Ã :=
⋂
T≥0

cl
⋃
t≥T

Φ(t, B)

is the desired attractor, see [21, Theorem 2.7.4] for details.

Lemma 2.9 Let Φ denote the trajectories of a system of type (2.1) or (2.2). Then a
compact forward invariant attracting set A for Φ with attracted neighborhood B is an
attractor with attracted neighborhood B if and only if it is the minimal compact forward
invariant attracting set (w.r.t. set inclusion) with attracted neighborhood B. In particular
for each open and bounded set B ⊂ Rd there exists at most one attractor with attracted
neighborhood B.

Proof: Let A be an attractor with attracted neighborhood B. Then, in particular, A is
invariant. Now assume that Ã ⊂ A, Ã 6= A, is a forward invariant attracting set. Then
there exists a neighborhood N ⊃ Ã with A 6⊆ N , such that Φ(t, B) ⊂ N for some t ≥ 0,
i.e., in particular Φ(t, A) 6= A which contradicts the invariance of A.
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Let conversely A be a minimal forward invariant attracting set. Then by Lemma 2.8 A
contains an attractor which again is a forward invariant attracting set. Hence by minimality
it coincides with A.

The next Lemma shows that the attractor is also the maximal compact invariant set
contained in intB.

Lemma 2.10 Let Φ denote the trajectories of a system of type (2.1) or (2.2) and let A
be an attractor with attracted neighborhood B for Φ. Then each compact invariant set
D ⊂ B for Φ is contained in A.

Proof: Let D ⊂ B be an invariant set for Φ. Then D = Φ(t, D) ⊂ Φ(t, B) for all t ≥ 0.
On the other hand, for each neighborhood N ⊃ A we know that Φ(t, B) ⊂ N for all t ≥ 0
sufficiently large. Hence D ⊂ N which implies the assertion.

3 Inflation, robustness and embedding

The main technique that we will use in this paper in order to obtain results on convergence
of numerical attractors is the embedding of the numerical approximation into a perturbed
continuous time system, and vice versa. In this section we define suitable perturbed sys-
tems, the corresponding attracting sets and a useful robustness concept for attracting sets.
In addition, we give a mathematically precise meaning for the embedding property.

The following definition gives the appropriate perturbed systems (see also [16] for an equiv-
alent definition using differential inclusions).

Definition 3.1 For α ∈ R, α ≥ 0 we define the set of perturbation values

Wα := {w ∈ Rd | ‖w‖ ≤ α}

and the space of measurable functions with values in Wα by

Wα := {w : R→ Rd |w measurable with w(t) ∈Wα for almost all t ∈ R}.

For functions w ∈ Wα and real values a < b we define ‖w‖[a,b] := ess supt∈[a,b]‖w(t)‖.

For a continuous time system (2.1) we define the α–inflated system by

ẋ = f(x) +w, w ∈Wα, (3.1)

and for a discrete time system we define it by

x(t+ h) = Φh(x(t)) +

∫ t+h

t

w(t)dt, w ∈ Wα. (3.2)

For each initial value x ∈ Rd and each w ∈ Wα we denote the corresponding trajectory by
ϕ(t, x, w) or Φh(t, x, w), respectively. It should be noted that the discrete time inflation
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(3.2) of the time–h map (2.5) of a continuous time system (2.1) differs from the time–h
map of the continuous time inflation (3.1) of system (2.1) defined by

x(t+ h) = ϕ(h, x(t), w(t+ ·)). (3.3)

Throughout this paper, the term inflated time–h map refers to system (3.3), whose trajec-
tories will be denoted by ϕh(t, x, w).

As for the unperturbed systems, we use Φ(t, x, w) to denote both discrete and continuous
time trajectories, depending on the context. Furthermore, for α > 0, x ∈ Rd and a subset
C ⊆ Rd we use the notations

Φα(t, x) :=
⋃

w∈Wα

{Φ(t, x, w)} and Φα(t, C) :=
⋃
x∈C

Φα(t, x).

Next we define suitable attracting sets for inflated systems and a robustness property of
attracting sets.

Definition 3.2 Consider an inflated continuous time system (3.1), an inflated discrete
time system (3.2) or an inflated time–h map (3.3) with trajectories denoted by Φ(t, x, w).
Then a compact set Aα with open neighborhood B is called an α–attracting set with
attracted neighborhood B if it is α–forward invariant, i.e.,

Φα(t, A) ⊆ A for all t ≥ 0

and satisfies
lim
t→∞

dist(Φα(t, B), A)→ 0.

Let α0 > 0 and γ ∈ K. Then an attracting set (or attractor)A with attracted neighborhood
B for an unperturbed system (2.1) or (2.2) is called γ–robust for γ and α0, if for each
α ∈ (0, α0] there exists an α–attracting set Aα with attracted neighborhood B for the
corresponding inflated system with A ⊆ Aα and

dH(A,Aα) ≤ γ(α).

Here γ ∈ K is called robustness gain.

Remark 3.3 Analogous to Lemma 2.7 one sees that for each α–attracting set Aα with
attracted neighborhood B there exists β ∈ KL such that

‖Φ(t, x, w)‖Aα ≤ β(‖x‖Aα , t)

for all x ∈ B, t ≥ 0 and all w ∈ Wα.

We now define what we mean by an embedded system. For our purpose it is sufficient to
define this concept for discrete time systems.
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Definition 3.4 Consider two inflated discrete time systems of type (3.2) with perturba-
tions from Wα̃0 and Wα0, respectively. Denote the trajectories of the systems by Φh and
Ψh, respectively, and let α ≥ 0 and C ≥ 1. Then we say that the second system Ψh is (α,
C)-embedded in the first Φh if for each x ∈ Rd and each w ∈ Wα0 there exist w̃ ∈ Wα̃0 with
‖w̃‖[t,t+h] ≤ α+C‖w‖[t,t+h] and

Φh(t, x, w̃) = Ψh(t, x, w)

for all t ∈ hN0.

Here we call Φh the embedding system and Ψh the embedded system.

Lemma 3.5 Consider three discrete time inflated systems Φh, Ψh and Θh of type (2.2)
and assume that Ψh is (α1, C1)–embedded in Θh and Θh is (α2, C2)–embedded in Φh.
Then Ψh is (α1 +C1α2, C1C2)–embedded in Φh.

Proof: Straightforward using Definition 3.4.

The following proposition shows how the inflated numerical system

x(t+ h) = Φ̃h(t, x(t)) +

∫ t+h

t

w(s)ds, (3.4)

with trajectories denoted by Φ̃h(t, x, w), can be embedded into the inflated time–h map
(3.3), and vice versa.

Proposition 3.6 Consider the numerical approximation Φ̃h of system (2.1) for some h >
0. Let α0 > 0 and consider the constants L and c from (2.3) and (2.6).

Then the α0–inflated numerical system Φ̃h(t, x, w) from (3.4) is (chq, 1 + hL)–embedded
in the chq + (1 + hL)α0–inflated time–h map ϕh from (3.3).

Conversely, the α0–inflated time–h map ϕh from (3.3) is (ehLchq, ehL)–embedded in the
ehLchq + ehLα0–inflated numerical system Φ̃h(t, x, w) from (3.4).

Proof: Consider the auxiliary system defined by

x(t+ h) := ϕ(h, x(t)) +

∫ t+h

t

w(s)ds

for t ∈ hN0 and denote the trajectories with initial value x ∈ Rd at initial time t = 0 by
ϕ̃h(t, x, w). It is immediate from Definition 3.4 and inequality (2.6) that ϕ̃h is (chq, 1)–
embedded in Φ̃h and that Φ̃h is (chq, 1)–embedded in ϕ̃h.

We claim that the system ϕ̃h is (0, 1 + Lh)–embedded in ϕh and that ϕh is (0, eLh)–
embedded in ϕ̃h. Then the assertion follows from Lemma 3.5.

In order to prove the embedding relation between ϕh and ϕ̃h fix some w ∈ Wα0. It is
sufficient to show the embedding for t = h since then we can continue by induction. We
first construct w̃ such that ϕh(h, x, w̃) = ϕ̃h(h, x, w).
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Consider the perturbation

w̃(t) = f(ϕ(t, x)) + w(t)− f

(
ϕ(t, x) +

∫ t

0
w(τ)dτ

)
for t ∈ [0, h]. Then we obtain

d

dt

(
ϕ(t, x) +

∫ t

0
w(τ)dτ

)
= f(ϕ(t, x)) +w(t)

= f

(
ϕ(t, x) +

∫ t

0
w(τ)dτ

)
+ w̃(t)

and
d

dt
ϕ(t, x, w̃) = f(ϕ(t, x, w̃)) + w̃(t),

which by the uniqueness of the solution to this differential equation implies

ϕh(h, x, w̃) = ϕ(h, x, w̃) = ϕ(h, x) +

∫ h

0
w(τ)dτ = ϕ̃h(h, x, w).

From the Lipschitz estimate (2.3) we obtain for almost all τ ∈ [0, h] the inequality

‖w̃(τ)‖ ≤ ‖w(τ)‖+ L

∥∥∥∥∫ τ

0
w(s)ds

∥∥∥∥ ,
which implies

‖w̃‖[0,h] ≤ ‖w‖[0,h] + Lh‖w‖[0,h]

and thus shows the claim.

Conversely, given again w ∈ Wα0, we now construct w̃ such that ϕ̃h(h, x, w̃) = ϕh(h, x, w).

For this purpose, consider w̃ given by

w̃(t) = f(ϕ(t, x, w))+ w(t)− f(ϕ(t, x))

for t ∈ [0, h]. Then similar arguments as above yield the equality ϕ̃h(h, x, w̃) = ϕh(h, x, w).
By Gronwall’s Lemma one easily obtains ‖ϕ(τ, x, w)−ϕ(τ, x)‖ ≤ ‖w‖[0,τ ](e

Lτ −1)/L which

shows that ‖f(ϕ(τ, x, w))− f(ϕ(τ, x))‖ ≤ ‖w‖[0,τ ](e
Lτ − 1) and thus

‖w̃(τ)‖ ≤ ‖w(τ)‖+ ‖w‖[0,τ ](e
Lτ − 1)

for almost all τ ∈ [0, h], implying

‖w̃‖[0,h] ≤ ‖w‖[0,h] + ‖w‖[0,h](e
Lh − 1) = eLh‖w‖[0,h],

i.e., the desired estimate.

In the following two propositions we show the relations between attracting sets of embed-
ding and embedded systems.
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Proposition 3.7 Consider a discrete time system with trajectories Ψh, which is (α, C)-
embedded in some other discrete time system with trajectories denoted by Φh for some
α ≥ 0, C ≥ 1. Assume that the embedding system Φh has an attracting set A which
is γ-robust for some γ ∈ K and some α0 ≥ α. Then the embedded system Ψh has an
attracting set Ã with attracted neighborhood B which satisfies

dH(Ã, A) ≤ γ(α).

Proof: By the embedding property we obtain Ψh(t, B) ⊆ Φα
h(t, B). Hence the α–attracting

set Aα for the inflated embedding system Φα
h is an attracting set for the embedded system

Ψh. Hence Ã = Aα is the desired set.

The next proposition shows that we can even conclude the existence of robust attracting
sets for the embedded system, if we are willing to allow a larger distance between Ã and
A.

Proposition 3.8 Consider a discrete time system with trajectories Ψh, which is (α, C)-
embedded in some other discrete time system with trajectories denoted by Φh for some
α ≥ 0, C ≥ 1. Assume that the embedding system Φh has an attracting set A which is
γ-robust for some γ ∈ K and some α0 > α. Then for each D > 1 with Dα ≤ α0 the
embedded system Ψh has a strongly attracting set Ã, which is γ(CD · /(D − 1))-robust
for α1 = α0(D − 1)/(CD) and satisfies dH(Ã, A) ≤ γ(Dα).

Proof: We set Ã = ADα. The assumption on the (α, C)-embedding implies the inclusions

Ψα′(t, x) ⊆ ΦDα(t, x) for all α′ ∈ [0, (D− 1)α/C]

and

Ψα′(t, x) ⊆ ΦCDα′/(D−1)(t, x) for all α′ ≥ (D − 1)α/C.

Hence setting Ãα′ = ADα for α′ ∈ [0, (D − 1)α/C] and Ãα′ = ACDα′/(D−1) for α′ ≥

(D − 1)α/C gives attracting sets Ãα′ for Ψα′ satisfying

dH(Ãα′, Ã) ≤ dH(Ãα′ , A) ≤ CDα′/(D− 1) for all α′ ≥ 0.

This shows the claim.

4 Robustness and Attraction Rates

In this section we investigate the relation between the robustness gain γ and the attraction
rate β. We start by showing that we can find an upper bound for the robustness gain of
an attracting set A which is essentially determined by its rate of attraction.



12 LARS GRÜNE

Theorem 4.1 There exist maps

µ : KL×R+ ×R+ → K and σ : KL×R+ ×R+ → R+

such that each compact attracting set A ⊂ Rd with attraction rate β ∈ KL and attracted
neighborhood B for a system of type (2.1) or (2.2), is γ–robust for γ = µ(β, dH(B,A), L)
and all α0 > 0 satisfying α0 ≤ σ(β, dH(B,A), L) and B(γ(α0), A) ⊂ B, where L is the
Lipschitz constant from (2.3) or (2.4), respectively.

Proof: Set r0 = dH(A,B). For all r ∈ (0, r0] we can define

Tβ(r) = min
{
t ≥ 0

∣∣∣ β(s, t) ≤
s

4
for all s ∈ [r, r0]

}
.

Note that Tβ is finite for all r > 0 (because β(s, t) ≤ β(r0, t) → 0 as t → ∞), monotone
decreasing and continuous from above, i.e., for rn ↘ r it follows Tβ(rn) → Tβ(r), as a
consequence of the continuity of β. This definition implies β(s, Tβ(r) + t) ≤ r/4 for all
t ≥ 0 and all s ∈ [0, r]. We set

α0 = σ(β, r0, L) := e−LTβ(r0) min{r0, β(r0, 0)}/4.

Now for all α ∈ (0, α0] consider the sets

Dα := clB(r(α), A),

where r(α) is chosen minimal such that eLTβ(r(α))α ≤ r(α)/4. The function r(alpha) is
well defined because of the continuity from above of Tβ . Observe that r only depends on
β, r0 and L, and that it is is monotone increasing with r(α)→ 0 as α→ 0. By Gronwall’s
Lemma for continuous time systems or by induction for discrete time systems we obtain
for t ≤ Tβ(‖x‖A)

‖Φ(t, x, w)‖A ≤ β(‖x‖A, t) + eLtα (4.1)

for all w ∈ Wα, which implies that for each point x ∈ Dα we obtain

Φ(Tβ(r(α)), x, w) ∈ Dα (4.2)

and
‖Φ(t, x, w)‖A ≤ β(r(α), 0)+ r(α)/4 for all t ∈ [0, Tβ(r(α))]. (4.3)

Furthermore, for any w ∈ Wα and any x ∈ B inequality (4.1) implies that the trajectory
satisfies

‖Φ(i Tβ(r(α)), x, w)‖A ≤ max{r0/2
i, r(α)} for all i ∈ N, (4.4)

and hence hits Dα in some uniformly bounded finite time. Now we set

Aα :=
⋃

t∈[0,Tβ(r(α))]

cl Φα(t, Dα).

These sets are α-forward invariant by construction and by (4.2) and α-attracting by (4.4).
Furthermore they satisfy A ⊆ Aα for α ∈ (0, α0], B(r(α), A) ⊆ Aα and because of (4.3)
one obtains dH(Aα, A) ≤ γ(α) with

γ(α) = µ(β, r0, L)(α) := β(r(α), 0) + r(α)/4.
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This shows the desired robustness property.

In general, this construction of γ might not yield the best possible robustness gain for a
given system and attracting set. However, the importance of this theorem is the uniformity
that can be deduced from it: knowing the attraction rate, the distance between B and A

and the Lipschitz constant of the system allows us to give an upper bound for the robustness
gain, no matter how the geometric structure of A or the behavior of Φ around or on A look
like. In particular, when uniform attraction holds for a family of systems with uniform
Lipschitz properties and uniform distance between the attracting sets and their attracted
neighborhoods, then also uniform robustness can be deduced.

Let us illustrate one special case, in which the proof of Theorem 4.1 yields an explicit
expression for µ.

Example 4.2 Assume that A attracts exponentially, i.e., there exist constants ρ > 0 and
λ > 0 such that β(r, t) = ρe−λtr. In this case we obtain Tβ(r) = ln(4ρ)/λ, thus r(α) = c1α

for c1 = 4(4ρ)L/λ, and consequently µ(β, dH(B,A), L)(α) = c2α for c2 = c1(ρ+1/4). Hence
exponential attraction yields γ–robustness with linear robustness gain.

Another interesting consequence of Theorem 4.1 is the following corollary.

Corollary 4.3 Consider an attracting set A for a system of type (2.1) or (2.2). Then
there exists α0 > 0 and γ ∈ K such that A is γ–robust for γ and α0.

Proof: By Lemma 2.7 there exists an attraction rate β ∈ KL for A. Hence Theorem 4.1
immediately gives the assertion.

Knowing that any attracting set admits a robustness gain, we can easily find an upper
bound for a robustness gain for nested attracting sets.

Lemma 4.4 Let A be an attracting set with attracted neighborhood B for a system of
type (2.1) or (2.2) and let Â ⊃ A be an attracting set which is contained in B and is
γ̂–robust for the α0–inflated system for some γ̂ ∈ K and some α0 > 0. Let ρ := dist(Â, A).
Then A is γ–robust for this α0 and some γ ∈ K satisfying γ(r) ≤ γ̂(r) + ρ.

Proof: By Corollary 4.3 there exists α̃0 > 0 and γ̃ ∈ K such that A is γ̃–robust for the α̃0–
inflated system. Without loss of generality we may assume α̃0 ≤ α0 and γ̃(α̃0) ≥ γ̂(α̃0)+ρ.
Now for each α ∈ (0, α0] there exists an α–attracting set Âα ⊇ Â with dist(Âα, Â) ≤ γ̂(α).
Since this implies

dist(Âα, A) ≤ dist(Âα, Â) + dist(Â, A) ≤ γ̂(α) + ρ

we can conclude that A is γ–robust with γ defined by

γ(α) :=

{
min{γ̃(α), γ̂(α) + ρ}, α ∈ [0, α̃0]
γ̂(α) + ρ, α ∈ [α̃0, α0]

This γ is easily verified to be of class K, thus the assertion follows.

We end this section by proving a “uniform attraction” property of the α–attracting sets
appearing in the definition of the γ–robustness property.
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Proposition 4.5 Consider an attracting set Awith attracted neighborhoodB for a system
of type (2.1) or (2.2), which is γ–robust for some γ ∈ K and some α0 > 0. Then for each
ε > 0 there exists a function β ∈ KL such that the inequality

‖Φ(t, x, w)‖A ≤ β(‖x‖A, t) + (1 + ε)γ(α) (4.5)

holds for all t ≥ 0, all x ∈ B, all α ∈ [0, α0], all w ∈ Wα and the trajectories of the
corresponding inflated system.

Proof: It is easily seen that there exists a monotone decreasing sequence αn → 0 such
that α0 is the inflation parameter from the assumption and γ(α) < (1 + ε)γ(αn+1) for all
α ∈ [αn+1, αn]. We set dn = (1 + ε)γ(αn+1) and r0 = dH(B,A). Now for each r ∈ (0, r0]
we define the functions

σn(r, t) := sup
τ≥t

dist(Φαn(τ,B(r,A)∩ B), A)

and
µn(r, t) := max{σn(r, t)− dn, 0}.

It is immediate that for all r, t > 0 the sequences σn(r, t) and µn(r, t) + dn are monotone
decreasing in n and monotone increasing in r. From Remark 3.3 we obtain the existence
of functions βn ∈ KL such that

dist(Φαn(t, x), Aαn) ≤ βn(‖x‖Aαn , t). (4.6)

This implies
lim sup
t→∞

dist(Φαn(τ,B(r0, A) ∩B), A) ≤ γ(αn) < dn

and thus for each n ∈ N there exists T > 0 such that

µk(r, t) = 0 for all k = 1, . . . , n all r ∈ (0, r0] and all t ≥ T. (4.7)

Furthermore, since A ⊆ Aα for all α ∈ (0, α0], from (4.6) for each n ∈ N and all r > 0
sufficiently small (depending on n) we obtain

σn(r, 0)≤ βn(r, 0) + γ(αn) ≤ dn.

Hence for each n ∈ N there exists R > 0 such that

µk(r, t) = 0 for all k = 1, . . . , n, all r ∈ [0, R] and all t ≥ 0. (4.8)

Now consider the function a(r, t) := supn∈N0
µn(r, t). From the definition of the µn we

obtain

‖Φ(t, x, w)‖A ≤ µn(‖x‖A, t) + dn ≤ a(‖x‖A, t) + dn ≤ a(‖x‖A, t) + (1 + ε)γ(α)

for all t ≥ 0, all α ∈ [αn+1, αn] and all w ∈ Wα. Furthermore, a(r, t) is monotone increasing
in r and monotone decreasing in t. If we fix n ∈ N and choose T > 0 such that (4.7) holds,
then (4.7) and the monotonicity of µn(r, t) + dn in n imply

a(r, t) ≤ sup
k∈N0

µk(r, t) ≤ sup
k≥n

µk(r, t) ≤ sup
k≥n

µk(r, t) + dk ≤ µn(r, t) + dn ≤ dn
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for all t ≥ T . Similarly, from (4.8) one sees that for each n ∈ N and each t ≥ 0 there
exists R ≥ 0 such that a(r, t) ≤ dn for all r ≤ R. Thus, since dn → 0 as n→∞ we obtain
a(r, t)→ 0 if either r→ 0 or t→∞. Hence by Remark 2.5 a can be bounded from above
by some function β ∈ KL which shows the claim.

Remark 4.6 Inequality (4.5) describes a property which in nonlinear control theory is
known as input–to–state stability (ISS), see, e.g., the survey [19]. For a detailed comparative
study of various robustness concepts for attracting sets including their characterization via
Lyapunov functions we refer to [8].

5 Discrete and Continuous Time Systems

By its very nature, a numerical one–step approximation with time–step h > 0 only gives
an approximation to the time–h map ϕh (2.5) of the continuous time system ϕ (2.1). It is
therefore necessary to obtain information on the dynamical behavior of ϕ from its time–h
map ϕh. In this section we give two results for this purpose.

Proposition 5.1 Consider a sequence of time–steps hn → 0, and a sequence of γn–robust
attracting sets An for γn ∈ K and αn > 0, each with the same attracted neighborhood
B for the inflated time–hn maps (3.3), where αn → α0 > 0 as n → ∞. Assume there
exists γ ∈ K such that lim supn→∞ γn(α) ≤ γ(α) and a compact set A ⊂ B such that
limn→∞ dH(An, A) = 0.

Then A is a γ–robust attracting set for the continuous time system (2.1) for γ and each
α̃0 ∈ (0, α0).

Proof: We first show that A is an attracting set for ϕ. For this, fix ε > 0 and consider
n ∈ N such that dH(An, A) < ε/3 and hnM < ε/3, where M is a bound on ‖f(x)‖ for x
in a sufficiently large neighborhood of B. Then it is easily seen that there exists T > 0
such that ϕ(ihn, B) ⊂ B(ε/3, An) for all i ∈ N with ihn ≥ T . Consequently, we obtain
ϕ(t, B) ⊂ B(ε, A) for all t ≥ T , and since ε > 0 was arbitrary, this shows the desired
convergence dist(ϕ(t, B), A)→ 0 as t→∞.

It remains to show the γ–robustness. To this end, fix some α ∈ (0, α0) and consider the
set

Aα =
⋂
n≥0

cl
⋃
k≥n

Aαn

where the Aαn denote the α–attracting sets for the inflated time–hn maps (3.3). Using the
fact that

dH

cl
⋃
k≥n

Aαn, A
α

→ 0 as k →∞

(cf. [2, Proposition 1.1.5]), with the same argument as above one sees that this set is α–
attracting for the inflated system. Since for each ε > 0 we find N ∈ N such that for all
n ≥ N the inequalities

dH(An, A) < ε/2 and dH(Aαn, An) ≤ γn(α) ≤ γ(α) + ε/2
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hold we can conclude dH(Aαn, A) ≤ γ(α) + ε for all n ≥ N and thus

dH(Aαn, A) ≤ γ(α) + ε

which shows the desired distance since ε > 0 was arbitrary.

While in general an attracting set for the time–h map is not an attracting set for the
continuous time system, this property is always true for attractors, as the following Lemma
shows.

Lemma 5.2 Let h > 0 and Ah be an attractor with attracted neighborhood B for the
time–h map ϕh (2.5) of the continuous time system (2.1). Then Ah is also an attractor
with attracted neighborhood B for the continuous time system (2.1).

Proof: We first show forward invariance of Ah for ϕ, i.e., ϕ(t, Ah) ⊆ Ah for each t ≥ 0. By
invariance of Ah for ϕh for each t ≥ 0 we know ϕh(h, ϕ(t, Ah)) = ϕ(t, ϕh(h, Ah)) = ϕ(t, Ah),
hence ϕ(t, Ah) is a compact invariant set for ϕh, and by Lemma 2.10 it is contained in Ah.

Now we show that Ah is an attracting set for the continuous time system ϕ. Forward
invariance of Ah and continuous dependence on the initial value imply that for each δ > 0
there exists ε > 0 such that

dH(D,Ah) < ε ⇒ dH(ϕ(t, D), Ah) < δ

for all t ∈ [0, h] and arbitrary bounded sets D ⊂ Rd. Since attractivity of Ah for ϕh implies
limi→∞, i∈N dist(ϕ(ih, B), A) = 0 we can conclude limt→∞ dist(ϕ(t, B), Ah) = 0, i.e. Ah is
also an attracting set for ϕ with attracted neighbourhood B.

It remains to show that Ah is an attractor for ϕ. By Lemma 2.8 there exists an attractor
A ⊆ Ah for ϕ. This, in turn, is also an attractor set for ϕh, hence by Lemma 2.9 it must
coincide with Ah. Thus Ah is an attractor for ϕ.

6 Numerical Discretization

In this section we combine the results from the previous sections in order to derive criteria
under which one can conclude the existence of attracting sets and attractors from numerical
approximations. We start with sufficient conditions for the existence of attracting sets.

Proposition 6.1 Consider the continuous time system (2.1) and a numerical one–step
approximation Φ̃h for h > 0 satisfying (2.6) for c q > 0. Let L denote a Lipschitz constant
for both systems from (2.3) and (2.4), respectively.

(a) Let A be a γ–robust attracting set for (2.1) for γ ∈ K and α0 ≥ ehLchq. Then
there exists an attracting set Ah for the discrete time system induced by the numerical
approximation Φ̃h satisfying

dH(Ah, A) ≤ γ(ehLchq).

(b) Let Ah be a γ–robust attracting set for Φ̃h for γ ∈ K and α0 ≥ ch
q. Then there exists

an attracting set Ãh for the time–h map (2.5) of the continuous time system satisfying

dH(Ãh, Ah) ≤ γ(chq).
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Proof: This follows directly from Proposition 3.6 and Proposition 3.7.

Theorem 6.2 Consider the continuous time system (2.1) and a family of numerical one–
step approximation Φ̃hn satisfying (2.6) for a sequence of time–steps hn → 0 as n→∞. Let
An be attractors for the discrete time systems induced by these numerical approximations,
each with the same attracted neighborhood B, and assume that there exists a compact set
A ⊂ B with dH(An, A)→ as n→∞.

Then the following properties are equivalent

(i) A is an attractor for (2.1) with attracted neighborhood B

(ii) there exist N ∈ N, γ ∈ K, α0 > 0 and sequences Cn → 1 and ρn → 0 such that for
each n ≥ N the attractor An is γn–robust for the numerical system Φ̃hn for α0 and
γn(r) ≤ γ(Cn r) + ρn

(iii) there exist N ∈ N, β ∈ KL and a sequence εn → 0 such that for each n ≥ N the
attractor An for the numerical system Φ̃hn has attraction rate βn ∈ KL satisfying
βn(r, t) ≤ β(r+ εn, t) + εn.

In addition, if (ii) holds for γ ∈ K and α0 > 0 then A is γ–robust for this γ and each
α̃0 ∈ (0, α0) and if (iii) holds for β ∈ KL then A is attracting with this rate β for this
continuous time system (2.1).

Proof: (i)⇒(ii): Since A is an attracting set by Corollary 4.3 it is also γ–robust for some
suitable γ ∈ K and α̃0 > 0. Since by Proposition 3.6 the α0–inflated numerical system
(3.4) for α0 = α̃0/2 and n sufficiently large is embedded in the α̃0–inflated time–hn map

(3.3), Proposition 3.8 applied with α = chqn, C = 1 + hnL and D = 1/
√
chqn implies the

existence of γ̃n–robust attracting sets Ãn with dH(A, Ãn) ≤ γ(
√
chqn) and

γ̃n(r) ≤ γ

(
1 + hnL

1−
√
chqn

r

)
.

Since the attractorsAn converge to A and—by minimality—are contained in the attracting
sets Ãn we can conclude that ρn = dist(An, Ãn) → 0 as n→∞, hence by Lemma 4.4 the
An are γn–robust with γn(r) ≤ γ̃n(r) + ρn and α0 which shows the claim.

(i) ⇒ (iii): Since A is an attracting set by Corollary 4.3 and Proposition 4.5 it satisfies
inequality (4.5) for suitable β, γ and ε. Thus by Proposition 3.6 for all sufficiently large
n ∈ N, all x ∈ B and all i ∈ N we find some w ∈ WehnLchqn such that

ϕ(ihn, x, w) = Φ̃hn(ihn, x).

This yields

‖Φ̃hn(ihn, x)‖An ≤ ‖Φ̃hn(ihn, x)‖A + dH(An, A)

= ‖ϕ(ihn, x, w)‖A+ dH(An, A)

≤ β(‖x‖A, ihn) + dH(An, A) + (1 + ε)γ(ehnLchqn)

≤ β(‖x‖An + dH(An, A), ihn) + dH(An, A) + (1 + ε)γ(ehnLchqn),
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which shows the assertion for εn = dH(An, A) + (1 + ε)γ(ehnLchqn).

(ii) ⇒ (i): Similar to the arguments in case “(i) ⇒ (ii)” we obtain that for sufficiently
large n ∈ N there exist γn(Dn ·)–robust attracting sets Ãn for the inflated time–hn map
(3.3) of the αn–inflated system for suitable constants Cn → 1 and αn → α0, such that
dH(Ãn, A) → 0. Hence by Proposition 5.1 we obtain that A is a γ–robust attracting set
for each α̃0 ∈ (0, α0) for (2.1). It remains to show that A is an attractor. If this was not
the case, then by Lemma 2.8 and Lemma 2.9 there exists an attractor Ã for ϕ with Ã ⊂ A,
Ã 6= A and attracted neighborhood B. Denote η := dH(Ã, A) > 0. Again following the
arguments from the case “(i) ⇒ (ii)” this implies that for all sufficiently large n ∈ N the
attractors An for the numerical systems Φ̃hn must satisfy dist(An, Ã) < η/2. This implies
dH(An, A) ≥ η/2 and hence contradicts the convergence dH(An, A)→ 0 for n→∞.

(iii) ⇒ (i): Fixing some T > 0 and some ε > 0, by Gronwall’s Lemma for all n > 0
sufficiently large and all x ∈ B we obtain the inequality

‖Φ̃h(inhn, x)− ϕ(T, x)‖ ≤ ε

where in ∈ N can be chosen such that |T − inhn| < ε. Hence from the convergence of An
to A and from the properties of βn and β we obtain

‖ϕ(T, x)‖A ≤ β(‖x‖A + ε, T + ε) + ε

and since ε > 0 was arbitrary by continuity of β this implies

‖ϕ(T, x)‖A ≤ β(‖x‖A, T ),

which implies that A is an attracting set since T > 0 was arbitrary. The fact that A is an
attractor follows similar to the case “(ii)⇒ (i)”, above.

In other words, Theorem 6.2 states that a sequence of “numerical” attractors converges to
a “real” attractor if and only if the elements of this sequence are either uniform robust or
attracting with a uniform rate.

Remark 6.3 Note that we have used the minimality of attractors only in the proof of the
implication “(i) ⇒ (ii)”. Hence the equivalence “(i) ⇔ (iii)” and the implication “(ii) ⇒
(i)” remain true for general attracting sets.

In the next theorem we shift our attention to a sequence of uniformly robust numerical
attractors (in the sense of Theorem 6.2 (ii)) without the a priori assumption about conver-
gence of these sets. It turns out that this sequence of numerical attractors converges to a
set if and only if this set is an attractor.

Theorem 6.4 Consider the continuous time system (2.1) and a family of numerical one–
step approximation Φ̃hn satisfying (2.6) for a sequence of time–steps hn → 0 as n→∞. Let
An be attractors for the discrete time systems induced by these numerical approximations,
each with the same attracted neighborhood B, assume that they are γn–robust for the
numerical system Φ̃hn for some α0 > 0 and γn(r) ≤ γ(Cn r) + ρn for some suitable γ ∈ K
and sequences Cn → 1 and ρn → 0, and let A ⊂ B be a compact set.

Then the following statements are equivalent.
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(i) A is an attractor for (2.1) with attracted neighborhood B

(ii) dH(An, A)→ 0 as n→∞

In this case, A is γ–robust for (2.1) for γ and each α̃0 ∈ (0, α0).

Proof: (i) ⇒ (ii): Since by Lemma 2.7 and Theorem 4.1 the attractor A is γ–robust for
some suitable γ ∈ K, by Proposition 6.1(a) and Lemma 2.8 we can conclude dist(An, A)→ 0
as n → ∞. For the converse “dist” estimate, by the assumption on the γn–robustness of
the An, for each ε > 0 and all n ∈ N sufficiently large there exist attracting sets Ãn for the
time–hn map of the continuous time system with dist(Ãn, An) ≤ ε. By Lemma 2.8 each of
these sets contains an attractor for the time–hn map (2.5) and attracted neighborhood B,
which by Lemma 5.2 coincides with A. This implies dist(A,An) ≤ ε and since ε > 0 was
arbitrary we obtain dist(A,An)→ 0 as n→∞. This shows the desired convergence.

(ii) ⇒ (i): This follows from the implication “(ii) ⇒ (i)” in Theorem 6.2.

In other words, Theorem 6.4 states that a sequence of uniformly robust “numerical” at-
tractors converges to some set A if and only if it is a “real” attractor.

Finally, we are going to investigate the rates of convergence of An to A under the assump-
tions of Theorem 6.4.

Theorem 6.5 Consider the continuous time system (2.1) and a family of numerical one–
step approximation Φ̃hn satisfying (2.6) for a sequence of time–steps hn → 0 as n→∞ and
constants c, q > 0. Let An be attractors for the discrete time systems induced by these
numerical approximations, each with the same attracted neighborhoodB, and assume that
they are γn–robust for the numerical system Φ̃hn for some α0 > 0 and γn(r) ≤ γ(Cn r)+ρn
for some suitable γ ∈ K and sequences Cn → 1 and ρn → 0. Let A ⊂ B be a compact set
and assume that one of the two following conditions is satisfied

(i) A is an attractor for (2.1) with attracted neighborhood B

(ii) dH(An, A)→ 0 as n→∞.

Then for all sufficiently large n ∈ N we obtain the estimates

dist(A,An) ≤ γ(Cn e
Lhnchqn) + ρn and dist(An, A) ≤ γ(chqn)

for the rate of convergence of An to A.

Proof: Under the assumptions Theorem 6.4 implies that A is γ–robust for (2.1). Hence
by Proposition 6.1 we obtain the existence of attracting sets for the numerical systems and
the time–hn maps, respectively, with the desired distances. By Lemma 2.8, Lemma 2.9
and Lemma 5.2 the attractors An and A are contained in these attracting sets, hence the
“dist” estimates remain valid.
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