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1 Introduction

The input–to–state stability (ISS) property introduced by Sontag [13] has by now become
one of the central properties in the study of stability of perturbed nonlinear systems. It
assumes that each trajectory ϕ of a perturbed system satisfies the inequality

‖ϕ(t, x, u)‖ ≤ {β(‖x‖, t), ρ(‖u‖∞)}

for suitable functions β of class KL and ρ of class K∞.
While ISS has turned out to be a very useful qualitative property with many applications

(see, e.g., [1, 3, 6, 7, 8, 10, 12, 18]) and lots of interesting features (see, e.g., [5, 14, 17]
and in particular the recent survey [16]), there are some drawbacks of this property when
quantitative statements are of interest. The main problem with ISS in this context is that
it does not yield explicit information about what happens for vanishing perturbations, i.e.,
for perturbations u with u(t) → 0 as t → ∞. Implicitly, ISS ensures that if u(t) tends
to 0 as t tends to infinity then also ϕ(t, x, u) converges to 0 for t tending to infinity, but
no explicit rate of convergence can be deduced. The main idea in order to overcome this
difficulty is by introducing a certain “memory fading” effect into the u–term of the ISS
formulation, an idea which was used before by Praly and Wang [10] in their notion of
exp–ISS. There the perturbation is first fed into a one–dimensional control system whose
output then enters the right hand side of the ISS estimate. Here, instead, we use the value
of the perturbation at each time instant as an initial value of a one–dimensional dynamical
system, which leads to the concept of input–to–state dynamical stability (ISDS). Proceeding
this way, we are in particular able to “synchronize” the effects of past disturbances and
large initial values by using the same dynamical system for both terms. It turns out that
ISDS is qualitatively equivalent to ISS and, in addition, that we can pass from ISS to ISDS
with only slightly larger robustness gains.
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One of the most important features of the ISS property is that it can be characterized by
a dissipation inequality using a so called ISS Lyapunov function, see [17]. One of the central
parts of the present paper is devoted to the construction of an ISDS Lyapunov function,
which not only characterizes ISDS as a qualitative property (the qualitative equivalence
ISS ⇔ ISDS immediately implies that the well known ISS Lyapunov function would be
sufficient for this) but also represents the respective decay rate, the overshoot gain and the
robustness gain. The respective results are given in Section 3.

We believe that there are many applications where quantitative robust stability prop-
erties are of interest. A particular area of applications are numerical investigations, where
one interprets a numerical approximation as a perturbation of the original system and vice
versa. We refer to the monograph [4] for results in this direction. Here we show two control
theoretic applications of the ISDS property in Section 4, which also illustrate the difference
to the ISS property.

2 Input–to–state dynamical stability

We consider nonlinear systems of the form

ẋ(t) = f(x(t), u(t)), (2.1)

where we assume that f : Rn×Rm→ Rn is continuous and that for each two compact
subsets K ⊂ Rn and W ⊂ Rm there exists a constant L = L(K,W ) such that ‖f(x, u)−
f(y, u)‖ ≤ L‖x − y‖ for all x, y ∈ K and all u ∈ W . The perturbation functions u are
supposed to lie in the space U of measurable and locally essentially bounded functions with
values in U , where U is an arbitrary subset of Rm. The trajectories of (2.1) with initial
value x at time t = 0 are denoted by ϕ(t, x, u).

We recall that a continuous function α : R+
0 → R+

0 is called of class K if it is strictly
increasing with α(0) = 0, and is called of class K∞ if, in addition, it is unbounded. A
continuous function β : R+

0 × R
+
0 → R+

0 is called of class KL if it is of class K∞ in the
first and strictly decreasing to 0 in the second argument. We define a continuous function
µ : R+

0 × R → R+
0 to be of class KLD if its restriction to R+

0 × R
+
0 is of class KL and, in

addition, it is a one dimensional dynamical system, i.e., it satisfies

µ(r, t+ s) = µ(µ(r, t), s) for all t, s ∈ R.

Observe that this condition implies µ(r, 0) = r.
The expression ‖ · ‖ denotes the usual euclidean norm, ‖u‖∞ is the L∞ norm of u ∈ U

and for t > 0 and any measurable function g : R → R+
0 the expression ess supτ∈[0,t]g(τ)

denotes the essential supremum of g on [0, t].
Using these notations we can now formulate the concept of input–to-state dynamical

stability.

Definition 2.1 A system (2.1) is called input-to-state dynamically stable (ISDS), if there
exists a function µ of class KLD and functions σ and γ of class K∞ such that the inequality

‖ϕ(t, x, u)‖ ≤ max{µ(σ(‖x‖), t), ν(u, t)}.

holds for all t ≥ 0, x ∈ Rn and all u ∈ U , where ν is defined by

ν(u, t) := ess supτ∈[0,t] µ(γ(‖u(τ)‖), t− τ) (2.2)
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Here we call the function µ the decay rate, the function σ the overshoot gain and the
function γ the robustness gain.

Since µ(σ(r), t) is of class KL, ISDS implies ISS with β(r, t) := µ(σ(r), t) and robustness
gain ρ = γ.

Conversely, a straightforward application of [15, Proposition 7] shows that any class
KL function can be bounded from above by the composition of a class KLD and a class
K∞ function, see [4, Lemma B.1.4]. Hence the only real difference between ISS and ISDS
is the decay property of the ν(u, t)–term. The following theorem shows how one can pass
from the ISS to the ISDS formulation. For the proof see [4, Proposition 3.4.4].

Theorem 2.2 Assume that the system (2.1) is ISS for some β of class KL and ρ of class
K∞. Then for any class K∞ function γ with γ(r) > ρ(r) for all r > 0 there exists a
class KLD function µ such that the system is ISDS with attraction rate µ, overshoot gain
σ(r) = β(r, 0) and robustness gain γ.

For some results in this paper we will need the following assumption.

Assumption 2.3 The functions µ, σ and γ in Definition 2.1 are C∞ on R+ × R or R+,
respectively, and the function µ solves the ordinary differential equation

d

dt
µ(r, t) = −g(µ(r, t))

for some Lipschitz continuous function g : R+ → R+, all r > 0 and all t ∈ R.

It was shown in [4, Appendix A] that for given nonsmooth rates and gains from Definition
2.1 one can find rates and gains arbitrarily close to the original ones, such that Assumption
2.3 holds and Definition 2.1 remains valid. Hence Assumption 2.3 is only a mild regularity
condition.

3 Lyapunov function characterization

One of the main tools for working with ISS systems is the ISS Lyapunov function whose
existence is a necessary and sufficient condition for the ISS property, see [17]. In this section
we provide two theorems on a Lyapunov function characterization of the ISDS property.
We start with a version for discontinuous Lyapunov functions, which can exactly represent
the rate and gains in the ISDS formulation. The proof of the following theorem is given in
Section 5.

Theorem 3.1 A system (2.1) is ISDS with rate µ of class KLD and gains σ and γ of
class K∞ if and only if there exists a (possibly discontinuous) ISDS Lyapunov function
V : Rn → R+

0 satisfying

‖x‖ ≤ V (x) ≤ σ(‖x‖) (3.1)

and

V (ϕ(t, x, u))≤ max{µ(V (x), t), ν(u, t)} (3.2)

for all x ∈ Rn, t ≥ 0 and all u ∈ U , where ν is given by (2.2).
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For many applications it might be desirable to have ISDS Lyapunov functions with some
more regularity. The next theorem, which is also proved in Section 5, shows that if we
slightly relax the sharp representation of the gains, then we can always find smooth (i.e.,
C∞) Lyapunov functions, at least away from the origin.

Theorem 3.2 A system (2.1) is ISDS with rate µ of class KLD and gains σ and γ of
class K∞ satisfying Assumption 2.3 if and only if for each ε > 0 there exists a continuous
function V : Rn → R+

0 which is smooth on Rn \ {0} and satisfies

(1− ε)‖x‖ ≤ V (x) ≤ (1 + ε)σ(‖x‖) (3.3)

and
γ((1 + ε)‖u‖) ≤ V (x) ⇒ DV (x) · f(x, u) ≤ −(1− ε)g(V (x)) (3.4)

for all x ∈ Rn \ {0} and all u ∈ U .

It should be noted that there exists an intermediate object between the discontinuous
and the smooth ISDS Lyapunov function, namely a Lipschitz Lyapunov function which
satisfies (3.4) in a suitable generalized sense using the theory of viscosity solutions, see [4]
for details. While both smooth and Lipschitz Lyapunov functions characterize the optimal
gains “in the limit”, we conjecture that there are examples in which gains can be exactly
characterized by Lipschitz but not by smooth ISDS Lyapunov functions, similar to what
was shown recently for H∞ Lyapunov functions in [11].

Theorem 3.2 gives rise to a constructive procedure of computing ISDS robustness gains
from Lyapunov functions for the unperturbed system f(x, 0). We illustrate this procedure
by three examples.

Example 3.3 Consider a linear system ẋ = f(x, u) = Ax + Bu. If we assume ISDS
then the matrix A needs to be Hurwitz and we can find a quadratic Lyapunov function
W (x) = xTPx for some positive definite matrix P satisfying c1‖x‖2 ≤ W (x) ≤ c2‖x‖2

and DW (x)Ax ≤ −c3‖x‖
2. Setting V (x) =

√
W (x)/c1 we obtain ‖x‖ ≤ V (x) ≤ c4‖x‖,

DV (x)Ax ≤ −c5V (x) and ‖DV (x)‖ ≤ c4 for c4 =
√
c2/c1 and c5 = c3/(2c2). Fixing some

λ ∈ (0, 1) we set γ(r) = c4‖B‖r/(λc5). Then we obtain

γ(‖u‖)≤ V (x) ⇒ DV (x) · f(x, u) ≤ −(1− λ)c5V (x) =: −g(V (x)).

Hence V is an ISDS Lyapunov function in the sense of Theorem 3.2 (for each ε > 0)
and we obtain ISDS with µ(r, t) = e−(1−λ)c5tr, σ(r) = c4r and γ(r) = c4‖B‖r/(λc5), i.e.,
exponential convergence and linear overshoot and robustness gains.

This example nicely illustrates the (typical) tradeoff between the attraction rate µ and the
robustness gain γ, which is represented here by the choice of λ: the smaller γ becomes the
slower convergence can be guaranteed. In the next two examples, showing ISDS estimates
for two simple nonlinear systems, we set λ = 3/4.

Example 3.4 Consider the system ẋ = f(x, u) = −x + u3/2 with x ∈ R, u ∈ R. Using
the Lyapunov function V (x) = |x| one obtains DV (x)f(x, 0) = −|x| = −V (x). We choose
γ such that γ(|u|)≤ V (x) = |x| implies |u3/2| ≤ 3|x|/4, i.e., γ(r) = 2r3/3. Then we obtain

γ(‖u‖) ≤ V (x) ⇒ DV (x) · f(x, u) ≤ −
1

4
V (x) =: −g(V (x)),

and consequently ISDS with µ(r, t) = e−t/4r, σ(r) = r and γ(r) = 2r3/3.
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Example 3.5 Consider the system ẋ = f(x, u) = −x3 +u with x ∈ R, u ∈ R. Again using
the Lyapunov function V (x) = |x| one obtains DV (x)f(x, 0) = −|x|3 = −V (x)3. Here we
choose γ such that γ(|u|)≤ V (x) = |x| implies |u| ≤ 3|x|3/4, i.e., γ(r) = 3

√
4r/3. Then we

obtain

γ(‖u‖)≤ V (x) ⇒ DV (x) · f(x, u) ≤ −
1

4
V (x)3 =: −g(V (x)),

and consequently ISDS with µ(r, t) =
√

2t+ 4/r2/(t+ 2/r2) (the solution of µ̇ = −µ3/4),
σ(r) = r and γ(r) = 3

√
4r/3.

4 Applications

As a first application, we derive an estimate on a nonlinear stability margin. In [17] it was
shown that ISS implies the existence of a stability margin for a perturbed system, however,
for ISS it is difficult to derive an estimate for this margin. In contrast to this, the ISDS
property easily allows to give an estimate based on the ISDS robustness gain.

Theorem 4.1 Consider a system (2.1) and assume ISDS with µ, σ and γ and U = Rm,
satisfying Assumption 2.3. Consider a Lipschitz map k : Rn → R+

0 satisfying k(x) ≤
max{γ−1(‖x‖), k0} for some value k0 ≥ 0. Then for each x ∈ Rn and all u ∈ U with
‖u‖∞ ≤ 1 the trajectories ϕk(t, x, u) of the system ẋ = fk(x, u) := f(x, k(x)u) satisfy

‖ϕk(t, x, u)‖ ≤ max{µ(σ(‖x‖), t), γ(k0)}

for all t ≥ 0.

Proof: Fix ε > 0 and consider the function kε(x) := (1 − ε)k(x). Then for ε → 0 the
trajectories ϕε(t, x, u) of ẋ = f(x, kε(x)u) converge pointwise to ϕk(t, x, u). Now let V be
the ISDS Lyapunov functions from Theorem 3.2 for this ε > 0. Then for all ‖u‖ ≤ 1 we
obtain

DV (x) · f(x, kε(x)u) ≤ −(1− ε)g(V (x)) (4.1)

for all x ∈ Rn with V (x) ≥ γ(k0). Integrating (4.1) we obtain

(1− ε)‖ϕε(t, x, u)‖ ≤ V (ϕε(t, x, u))≤ max{µ(V (‖x‖), (1− ε)t), γ(k0)}.

Since all expressions involved are continuous in ε we obtain the assertion for ε→ 0.

As a second application we consider the stability of coupled systems. The following
theorem is a version of the generalized small gain theorem [7, Theorem 2.1] (in a simplified
setting). As for Theorem 4.1, the qualitative result (i.e., asymptotic stability of the coupled
system) can be proved using the original ISS property. The advantage of ISDS lies in the
estimates for the overshoot and the decay rates of the coupled system.

Theorem 4.2 Consider two systems ẋi = f(xi, ui), i = 1, 2, of type (2.1) where the fi
are Lipschitz in both xi and ui. Let xi ∈ Rni , U1 = Rn2 and U2 = Rn1 . Assume that
the systems are ISDS with rates µi and gains σi and γi and assume that the inequalities
γ1(γ2(r)) ≤ r and γ2(γ1(r)) ≤ r hold for all r > 0. Then the coupled system

ẋ1 = f1(x1, x2), ẋ2 = f2(x2, x1) (4.2)
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is globally asymptotically stable and the trajectories (x1(t), x2(t)) of (4.2) satisfy

‖xi(t)‖ ≤ δi
(

max{σi(‖xi(0)‖), γi(σj(‖xj(0)‖))}, t
)

(4.3)

for i = 1, 2, j = 3− i and functions δi given by

δi(r, t) := sup

θt1,s1i ◦ . . . ◦ θtk ,ski (r)

∣∣∣∣∣∣ k ≥ 1, tj , sj ≥ 0,
k∑
j=1

tj + sj = t


with θt,s1 (r) := µ1(γ1(µ2(γ−1

1 (r), s)), t) and θt,s2 (r) := µ2(γ2(µ1(γ−1
2 (r), s)), t). In particular,

for all t ≥ 0 from (4.3) we obtain the overshoot estimates

‖xi(t)‖ ≤ max{σi(‖xi(0)‖), γi(σj(‖xj(0)‖))}.

Proof: One can verify that, defining µ̃2(r, t) := γ1(µ2(γ−1
1 (r), s)), t), T =

∑k
j=1 tj and

S =
∑k

j=1 sj one has

δ1(r, t) ≤ min{µ1(r, T ), µ̃2(r, S)} ≤ max{µ1(r, t/2), µ̃2(r, t/2)},

and analogous for δ2. The last term on the right hand side is a class KL function with
max{µ1(r, 0), µ̃2(r, 0)}= r, thus the δi are bounded from above by class KL functions and
satisfy δ(r, 0) = r.

Hence we only have to show (4.3), since then global asymptotic stability and the over-
shoot estimates follow immediately. It is sufficient to show (4.3) for the family of coupled
systems

ẋ1 = f1(x1, η x2), ẋ2 = f2(x2, η x1) (4.4)

with η ∈ (0, 1), since for the trajectories x
η
i (t) of (4.4) we obtain ‖xηi (t)‖ → ‖xi(t)‖ as

η → 1, hence if (4.3) holds for ‖xηi (t)‖ for each η ∈ (0, 1), then these estimates also hold
for ‖xi(t)‖. Thus, we fix η ∈ (0, 1) and, to keep the notation simple, again denote the
trajectories of (4.4) by xi(t).

Inserting the ISDS estimates for the second system into the ISDS estimate for the first
and using the definition of δ1 we obtain

‖x1(t)‖ ≤ max{δ1(σ1(‖x1(0)‖), t), δ1(γ1(σ2(‖x2(0)‖)), t)

max
τ∈[0,t]

µ1(γ1(η max
s∈[0,τ ]

µ2(γ2(η ‖x1(s)‖), τ − s)), t− τ)}
(4.5)

We investigate the third term of (4.5). For r ≥ 0 and t ≥ s ≥ 0 we abbreviate α(t, s, r) :=
maxτ∈[s,t] µ1(γ1(η µ2(γ2(η r), τ − s)), t − τ)}. Since γ2(r) ≤ γ−1

1 (r) and η < 1 we obtain
α(t, s, r) ≤ δ1(r, t− s). Furthermore, α is continuous in all three arguments and satisfies

max
s∈[0,t]

α(t, s, ‖x1(s)‖) = max
τ∈[s,t]

µ1(γ1(η max
s∈[0,τ ]

µ2(γ2(η ‖x1(s)‖), τ − s)), t− τ)}. (4.6)

Now fix some t > 0 and consider the inequalities

0 < ‖x1(t)‖ ≤ max
s∈[0,t]

α(t, s, ‖x1(s)‖) (4.7)
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If (4.7) is violated then ‖x1(t)‖ must be smaller than one of the first two terms in (4.5)
which implies (4.3). Hence assume (4.7).

We define a sequence tk, k ≥ 0, inductively by choosing t0 = t and tk+1 ∈ [0, tk] such
that maxs∈[0,tk] α(tk, s, ‖x1(s)‖) = α(tk, tk+1, ‖x1(tk+1)‖). Then for all k ≥ 0 we have either

‖x1(tk)‖ > max
s∈[0,tk]

α(tk, s, ‖x1(s)‖) (4.8)

or

‖x1(tk)‖ ≤ max
s∈[0,tk]

α(tk, s, ‖x1(s)‖) ≤ α(tk, tk+1, ‖x1(tk+1)‖) ≤ δ1(‖x1(tk+1)‖, tk − tk+1).

(4.9)
Note that (4.9) holds for k = 0. We claim that there exists k ≥ 1 such that (4.8) holds.
Choosing k0 ≥ 1 minimal with this property we obtain

‖x1(t)‖ ≤ δ1(‖x1(tk)‖, t− tk) for all k = 0, . . . , k0. (4.10)

In order to show the existence of this k0, observe that the sequence tk is monotone de-
creasing and bounded from below by 0, hence it converges to some t∗ ≥ 0. If ‖x1(t∗)‖ = 0
then either k0 exists (and we are done) or from (4.10) we can conclude ‖x1(t)‖ ≤ ‖x1(tk)‖
for all k ≥ 0, thus ‖x1(t)‖ = 0 which contradicts (4.7). Hence ‖x1(t∗)‖ > 0 and from
α(t, t, r) ≤ γ1(γ2(η r)) ≤ η r < r for r > 0 we obtain ‖x1(t∗)‖ > α(t∗, t∗, x1(t∗)), thus for
k > 0 sufficiently large we can conclude

‖x1(tk)‖ > α(tk, tk+1, ‖x1(tk+1)‖) = max
s∈[0,tk]

α(tk, s, ‖x1(s)‖)

implying the existence of k0.
Since (4.8) holds for k = k0, (4.6) and (4.5) imply

‖x1(tk0)‖ ≤ max{δ1(σ1(‖x1(0)‖), tk0), δ1(γ1(σ2(‖x2(0)‖)), tk0)}. (4.11)

Combining (4.10) for k = k0 and (4.11) yields

‖x1(t)‖ ≤ δ1

(
max{δ1(σ1(‖x1(0)‖), tk0), δ1(γ1(σ2(‖x2(0)‖)), tk0)}, t− tk0

)
= δ1

(
max{σ1(‖x1(0)‖), γ1(σ2(‖x2(0)‖))}, t

)
,

i.e., the desired estimate (4.3) for i = 1. Since the estimate for i = 2 follows by symmetry,
this shows the claim.

Remark 4.3 A different characterization of the decay rates δi in Theorem 4.2 can be
obtained if we assume that the gains γi and the class KLD functions µi satisfy Assumption
2.3 for functions gi. In this case, derivating the expressions in the definition of δi(r, t),
i = 1, 2, with respect to t, one sees that the δi are bounded from above by the solutions
of the one–dimensional differential equations ṙi = max{−gi(ri), −γ ′i(γ

−1
i (ri))gj(γ

−1
i (ri))},

ri(r, 0) = r, where γ ′i denotes the derivative of γi and j = 3− i.

In the following example we illustrate the quantitative information one can obtain from
Theorem 4.2 and Remark 4.3.
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Example 4.4 Consider the two systems from Examples 3.4 and 3.5 with robustness gains
γ1(r) = 2r3/3 and γ2(r) = 3

√
4r/3. Then the coupled system reads ẋ1(t) = −x1(t) +

x2(t)3/2, ẋ2(t) = −x2(t)3 + x1(t). One verifies that the gain condition of Theorem 4.2 is
satisfied, hence we can conclude asymptotic stability with overshoot estimates

‖x1(t)‖ ≤ max{‖x1(0)‖, 2‖x2(0)‖3/3}, ‖x2(t)‖ ≤ max{‖x2(0)‖, 3
√

4‖x1(0)‖/3}.

Using the formula from Remark 4.3 we obtain

ṙ1 = max{−c1r1, −c2r
5
3
1 }, ṙ2 = max{−c3r

3
2, −c4r2}

for suitable constants c1, . . . , c4 > 0. This shows that far away from the equilibrium expo-
nential convergence can be expected, while in a neighborhood of 0 the rates of convergence
in both components will slow down.

5 Proofs

The following Lemma will be crucial for all our proofs.

Lemma 5.1 Consider a (possibly discontinuous) function V : Rn → R+
0 . Then the follow-

ing two statements are equivalent

(i) V (ϕ(t, x, u))≤ max{µ(V (x), t), ν(u, τ)} for all t ≥ 0 and all u ∈ U .

(ii) V (ϕ(t, x, u)) ≤ µ(a, t) for all times t ≥ 0, all values a ∈ R with a ≥ V (x) and all
u ∈ U satisfying γ(‖u(τ))‖)≤ µ(a, τ) for almost all τ ∈ [0, t].

Proof: “(i) ⇒ (ii)”: The definition of ν immediately implies ν(u, t) ≤ µ(a, t) for t, a and
u satisfying the assumptions from (ii), hence (i) implies (ii).
“(ii)⇒ (i)”: Consider an arbitrary u ∈ U and t > 0. We set a = max{V (x), µ(ν(u, t),−t)}
which implies γ(‖u(τ))‖) ≤ µ(a, τ) for almost all τ ∈ [0, t]. Now either a = V (x) or
µ(a, t) = ν(u, t) holds. In the first case we obtain V (ϕ(t, x, u)) ≤ µ(a, t) = µ(V (x), t)
while in the second case we have V (ϕ(t, x, u)) ≤ µ(a, t) = ν(u, t). Thus we can conclude
(i).

Now we can turn to the Proof of Theorem 3.1:
“(i) ⇒ (ii)” We construct a function for which Lemma 5.1(ii) can be verified. We define

V (x) := inf {b ≥ 0 | ‖ϕ(t, x, u)‖ ≤ max{µ(b, t), ν(u, t)} for all u ∈ U and all t ≥ 0} .

Clearly, the ISDS assumption implies ‖x‖ ≤ V (x) ≤ σ(‖x‖). It remains to show Lemma
5.1(ii). To this end, fix x ∈ Rn, a ≥ V (x), t > 0 and u ∈ U with γ(‖u(τ))‖) ≤ µ(a, τ) for
almost all τ ∈ [0, t]. This implies ν(u, t + s) ≤ max{µ(µ(a, t), s), ν(u(t + ·), s)} for each
s > 0, thus by the definition of V for any b > a we obtain

‖ϕ(t+ s, x, u)‖ ≤ max{µ(b, t+ s), ν(u, t+ s)} ≤ max{µ(µ(b, t), s), ν(u(t+ ·), s)}

which implies V (ϕ(t, x, u))≤ µ(a, t) and thus Lemma 5.1(ii).
“(ii)⇒ (i)” This implication follows immediately using the assumed bounds on V .

Throughout the rest of this section we assume Assumption 2.3. For the proof of Theo-
rem 3.2 we need four preliminary lemmata.
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Lemma 5.2 Let µ be a class KLD function, let γ be a class K∞ function and let x ∈ Rn.
If a continuous function V : Rn → R+

0 , which is differentiable in x, satisfies the inequality

V (ϕ(t, x, u))≤ max{µ(V (x), t), ν(u, t)}

for all t ≥ 0, all u ∈ U and ν from (2.2), then for all u ∈ U it satisfies

γ(‖u‖) < V (x) ⇒ DV (x) · f(x, u) ≤ −g(V (x)). (5.1)

Proof: Fix u0 ∈ U with γ(‖u0‖) < V (x) and consider the constant function u(t) ≡ u0. By
continuity, for all τ > 0 small enough we obtain V (ϕ(τ, x, u))≤ µ(V (x), τ), which implies

DV (x) · f(x, u0) ≤ lim sup
τ→0

V (ϕ(τ, x, u))− V (x)

τ
≤ lim sup

τ→0

µ(V (x), τ)− V (x)

τ
= −g(V (x)),

and thus the claim.
We cannot in general conclude the result for γ(‖u‖) = V (x) using continuity in u be-

cause U is an arbitrary set which might in particular be discrete. The following Lemma
shows that we can nevertheless obtain (5.1) for γ(‖u‖) = V (x) if V is continuously differ-
entiable. Furthermore, if V is smooth, then also the converse implication holds.

Lemma 5.3 Let µ be a class KLD function satisfying Assumption 2.3 and let γ be a class
K∞ function. Then a continuous function V : Rn → R+

0 which is smooth on Rn \ {0}
satisfies the inequality

V (ϕ(t, x, u))≤ max{µ(V (x), t), ν(u, t)} (5.2)

for all x ∈ Rn, t ≥ 0 and all u ∈ U , where ν is given by (2.2), if and only if it satisfies

γ(‖u‖)≤ V (x) ⇒ DV (x) · f(x, u) ≤ −g(V (x)) (5.3)

for all x ∈ Rn \ {0} and all u ∈ U .

Proof: “(5.2) ⇒ (5.3)”: From (5.1) we already know the desired inequality for γ(‖u‖) <
V (x). Hence fix u ∈ U and x ∈ Rn \ {0} with γ(‖u‖) = V (x). Since by (5.1) we know
DV (x) 6= 0 the point x cannot be a local maximum. Hence there exists a sequence of points
xi → x with V (xi) > V (x) = γ(‖u‖). From (5.1) we obtain DV (xi) · f(xi, u) ≤ −g(V (xi))
for all i ∈ N, which implies (5.3) by continuity.

“(5.3)⇒ (5.2)”: Fix x ∈ Rn and t > 0. Integrating (5.3) we obtain

V (ϕ(t, x, u))≤ µ(V (x), t) for all u ∈ U with γ(‖u(τ)‖)≤ µ(V (x), t) f.a.a. τ ∈ [0, t], (5.4)

where µ solves µ̇ = −g(µ), µ(r, 0) = r. We claim that (5.4) implies Lemma 5.1(ii).
In order to prove the assertion fix x ∈ Rn, a ≥ V (x) and t > 0, let u ∈ U satisfy

γ(‖u(τ))‖) ≤ µ(a, τ) for almost all τ ∈ [0, t] and assume V (ϕ(t, x, u)) > µ(a, t). Then
there exists δ > 0 such that V (ϕ(t, x, u)) > µ(a, t) + δ. Now pick an arbitrary ε < δ and
choose t∗ > 0 such that V (ϕ(t∗, x, u)) = µ(a, t∗) + ε and V (ϕ(τ, x, u))> µ(a, τ) + ε for all
τ ∈ [t∗, t]. From the assumption on u we obtain γ(‖u(τ)‖) ≤ V (ϕ(τ, x, u))− ε for almost
all τ ∈ [t∗, t]. Using the continuity of V (ϕ(τ, x, u)) in τ and the Lipschitz property of g
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we can now conclude the existence of times ti, i = 0, . . . , k such that t0 = t∗, tk = t and
µ(V (ϕ(ti, x, u), ti+1 − ti) ≥ V (ϕ(ti, x, u))− ε, which implies ‖u(τ)‖ ≤ µ(V (ϕ(ti, x, u)) for
almost all τ ∈ [ti, ti+1]. Using (5.4) inductively and applying Gronwall’s Lemma we obtain

V (ϕ(t, x, u))≤ µ(V (ϕ(t∗, x, u)), t− t∗) ≤ µ(µ(a, t∗) + ε, t− t∗) ≤ µ(a, t) + Cε

for some suitable C > 0 which contradicts V (ϕ(t, x, u)) > µ(a, t) + δ as ε → 0 and hence
shows Lemma 5.1(ii) and thus the assertion.

The next lemma shows the existence of a Lipschitz ISDS Lyapunov function.

Lemma 5.4 If a system (2.1) is ISDS with rate µ of class KLD satisfying Assumption
2.3 and gains σ and γ of class K∞ then for each ε > 0 there exists a continuous function
V : Rn → R+

0 , which is Lipschitz on Rn \ {0} and satisfies

‖x‖/(1 + ε) ≤ V (x) ≤ σ(‖x‖) (5.5)

for all x ∈ Rn and

γ(‖u‖)< V (x) ⇒ DV (x) · f(x, u) ≤ −(1− ε)g(V (x)) (5.6)

for almost all x ∈ Rn and all u ∈ U .

Proof: Fix some ε > 0 and set ρε(r) := ε(1− e−r) + 1. Then ρε is strictly increasing for
r > 0, ρε(0) = 1 and ρε(r)↗ 1 + ε as r→∞. Using this function we define

V (x) := inf

{
b ≥ 0

∣∣∣∣ ‖ϕ(t, x, u)‖ ≤ ρε(µ(b, t)) max{µ(b, (1− ε)t), ν(u, t)}
for all u ∈ U and all t ≥ 0

}
. (5.7)

Similar to the proof of Theorem 3.1 one verifies (5.5) and (5.6).
We now show the Lipschitz property of V . In order to do this pick a compact set

N ⊂ Rn not containing the origin. From the bounds on V we can conclude that there
exists a compact interval I = [c1, c2] ⊂ R+ such that for x ∈ N the infimum over b ≥ 0
in (5.7) can be replaced by the infimum over b ∈ I . Now the ISDS property implies the
existence of a constant R > 0 such that ‖ϕ(t, x, u)‖ ≤ max{µ(R, t), ν(u, t)} holds for all
x ∈ N , all u ∈ U and all t ≥ 0, which implies that we can restrict ourselves to those u ∈ U
with ‖u‖∞ ≤ R. Furthermore, there exists T > 0 such that µ(R, t) < µ(c1, (1− ε)t) holds
for all t ≥ T , which implies that we only have to check the inequality for ‖ϕ(t, x, u)‖ in
(5.7) for t ∈ [0, T ]. Thus the definition of V eventually reduces to

V (x) := inf

{
b ∈ I

∣∣∣∣ ‖ϕ(t, x, u)‖ ≤ ρε(µ(b, t)) max{µ(b, (1− ε)t), ν(u, t)}
for all u ∈ U with ‖u‖∞ ≤ R and all t ∈ [0, T ]

}
. (5.8)

Now we find constants L1 > 0 and C1 > 0 such that the inequalities ‖ϕ(t, x1, u) −
ϕ(t, x2, u)‖ ≤ L1‖x1 − x2‖ and |ρε(µ(a1, t))− ρε(µ(a2, t))| ≥ C1|a1 − a2| hold for all u ∈ U
with ‖u‖∞ ≤ R, all t ∈ [0, T ], all a1, a2 ∈ I and all x1, x2 ∈ N .

We set LN = L1/(C1µ(c1, T )), pick x1, x2 ∈ N and fix δ > 0. From (5.8) we can
conclude the existence of b∗ ∈ I , t∗ ∈ [0, T ] and u∗ ∈ U with ‖u‖∞ ≤ R such that
b∗ ≥ V (x1) − δ and ‖ϕ(t∗, x1, u

∗)‖ > ρε(µ(b∗, t∗)) max{µ(b∗, (1 − ε)t∗), ν(u∗, t∗)}. Then
‖ϕ(t∗, x2, u

∗)‖ ≥ ρε(µ(b∗∗, t∗)) max{µ(b∗∗, (1− ε)t∗), ν(u∗, t∗)} holds for all b∗∗ < b∗ with
|b∗∗−b∗| ≥ LN‖x1−x2‖, implying V (x2) ≥ b∗∗ and thus V (x1)−V (x2) ≤ LN‖x1−x2‖+δ.
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Since δ > 0 was arbitrary and this estimate is symmetric in x1 and x2 we obtain the desired
Lipschitz estimate with constant LN .

Finally, since by Rademacher’s Theorem (see, e.g., [2, page 216]) a Lipschitz function
is differentiable almost everywhere, inequality (5.6) follows from Lemma 5.2.

The following lemma gives a smoothing result for Lipschitz Lyapunov functions.

Lemma 5.5 Consider a continuous function V : Rn → R+
0 , which is Lipschitz on Rn \ {0}

and satisfies

γ(‖u‖)< V (x) ⇒ DV (x) · f(x, u) ≤ −g(V (x))

for almost all x ∈ Rn. Then for each two continuous functions α1, α2 : Rn \ {0} → R+

there exists a continuous function Ṽ : Rn → R+
0 , which is smooth on Rn \ {0} and satisfies

‖V (x)− Ṽ (x)‖ ≤ α1(x) and γ(‖u‖) ≤ V (x) ⇒ DṼ (x) · f(x, u) ≤ −g(Ṽ (x)) + α2(x)

for all x ∈ Rn \ {0}.

Proof: This follows from Theorem B.1 in [9], observing that the proof in [9] (which
requires compact U) remains valid if for any compact subset K ⊂ Rn we can restrict
ourselves to a compact subset of U , which is the case here since we only need to consider
‖u‖ ≤ γ−1(maxx∈K V (x)).

Finally, we can turn to the Proof of Theorem 3.2:
Assume ISDS, fix ε > 0 and let ε1 > 0 be such that 1/(1+ε1)2 ≥ (1−ε), (1+ε1)2 ≤ (1+ε)
and (1− ε1)2 ≥ (1− ε). Applying Lemma 5.4 with ε = ε1 we can conclude the existence of
a locally Lipschitz (away from 0) Lyapunov function V satisfying ‖x‖/(1 + ε1) ≤ V (x) ≤
σ(‖x‖) for all x ∈ Rn and γ(‖u‖)< V (x)⇒ DV (x) ·f(x, u)≤ −(1−ε1)g(V (x)) for almost
all x ∈ Rn. Applying Lemma 5.5 with α1(x) = min{γ((1 + ε)γ−1(V (x)))− V (x), ε1V (x)}
and α2(x) = ε1g(V (x)) we obtain a smooth (away from 0) Lyapunov function Ṽ satisfying
the desired bounds and, since the choice of α1 implies γ((1 + ε)‖u‖) ≤ Ṽ (x) ⇒ γ(‖u‖) ≤
V (x) we obtain

γ((1 + ε)‖u‖) ≤ Ṽ (x) ⇒ DṼ (x) · f(x, u) ≤ −(1− ε1)2g(Ṽ (x)) ≤ −(1− ε)g(Ṽ (x))

for all x ∈ Rn \ {0}. Hence Ṽ is the desired Lyapunov function.
Conversely, assume the existence of V for any ε > 0 and fix t > 0. By Lemma

5.3 we obtain (1− ε)‖ϕ(t, x, u)‖ ≤ {µ((1 + ε)σ(‖x‖), (1− ε)t), νε(u, t)} where νε(u, t) :=
ess supτ∈[0,t]µ(γ(‖(1 + ε)u(τ)‖), (1− ε)(t− τ)). Since all these expressions are continuous
in ε we obtain the desired inequality.
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