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Abstract: We give Lyapunov function characterizations

for variants of the input–to–state stability property, which

do not only imply the qualitative properties but also repre-

sent the robustness gains and attraction rates.

1 Introduction

Lyapunov functions are an important tool for stability
analysis and stabilization of nonlinear systems. They
are useful in many ways, e.g., for the design of (ro-
bustly) stabilizing feedback laws, for the analysis of the
system’s behavior and, last but not least, as a techni-
cal tool for many proofs involving stability properties
of nonlinear systems.

Most stability concepts for nonlinear systems can be
characterized by suitable Lyapunov functions, where
characterized means, that a system has a certain sta-
bility property if and only if an associated Lyapunov
functions exists. For ordinary differential equations the
basic concept was introduced more than a century ago
by Lyapunov [12] as a sufficient condition, while the
“if and only if” results date back to the middle of the
last century, with the works of Kurzweil [10], Massera
[13], Yoshisawa [20] and Zubov [21]. For controlled and
perturbed systems these results were generalized subse-
quently see, e.g., Sontag [15], Rifford [14] or Kellet and
Teel [9] for asymptotic controllability and Lin, Sontag
and Wang [11] for robust stability, or, more specifi-
cally, the generalization of Zubov’s construction to con-
trolled and perturbed systems by Camilli, Wirth and
the author [3, 7]. For perturbed systems where asymp-
totic stability cannot be guaranteed, suitable general-
izations of these concepts like, e.g., input–to–state sta-
bility (ISS) and integral input–to–state stability (iISS)
may still hold, and again complete characterizations of
these properties by suitable Lyapunov functions is pos-
sible, see Sontag and Wang [18] and Angeli, Sontag and
Wang [1].

These results deal with qualitative characterizations of
stability or controllability properties, in the sense that
the corresponding statements are of the type “the sys-
tem is asymptotically stable if and only if a Lyapunov
function exists”. In many applications, however, also
quantitative information is important, like, e.g., in the

analysis of coupled systems, where the stability prop-
erty of a coupled system does not only depend on the
qualitative behavior of the single subsystems but also
on the actual size of the robustness gains, cf. [8, The-
orem 2.1] for a result using ISS techniques. Another
application is the use of robustness properties for the
analysis of the long time behavior of numerical approx-
imation, see, e.g., [4] and [5]. Yet another example is
H∞ control, where the purpose of the controller is to
minimize the H∞ gain, which is a quantitative problem
by its very nature. It is the aim of the present paper
to give Lyapunov function characterizations for several
types of asymptotic stability and controllability, which
do not only provide a qualitative description but also
an exact representation of the related gains.

Note that not all of the results mentioned above pro-
vide smooth Lyapunov functions. In fact, for asymp-
totic controllability a characterization by a smooth con-
trol Lyapunov function cannot be expected in general,
since it is known that the existence of a smooth con-
trol Lyapunov function is a strictly stronger property
than asymptotic controllability, see, e.g., [16]. How-
ever, even in the case of robust stability there might be
situations where nonsmooth Lyapunov functions pro-
vide more information, though in this case the differ-
ences are typically considerably smaller and do only
concern the quantitative aspects, like, e.g., in the case
of H∞ control, see [17].

Of course, if a Lyapunov function V is not smooth,
one has to give a meaning to the partial differential in-
equality DV (x)f(x) ≤ C(x), which in one way or the
other appears in any Lyapunov type characterization
(here DV stands for the derivative of V with respect
to x). One way is to replace this inequality by a suitable
inequality for V along the solution trajectories. This
approach provides a large flexibility, in the sense that it
allows to choose V from a very large class of functions,
in particular it could be even discontinuous. The dis-
advantage with this approach is, that inequalities along
solutions are typically very difficult to check for a given
function, since the solution trajectories of the system
under consideration are not known in general. Hence it
is desirable to find techniques which allow to maintain
the original partial differential inequality as far as pos-
sible, and this is where methods of nonsmooth analysis



prove to be elegant and powerful tools in order to tackle
this problem.

In the present paper we will use both inequalities along
solutions and partial differential inequality, where we
use the notion of viscosity (super–)solutions in order
to overcome the lack of smoothness of our Lyapunov
functions. After fixing the setup in Section 2, we first
consider asymptotic stability in Section 3 and then as-
ymptotic controllability in Section 4. Finally, in Sec-
tion 5 we give an outline of the proofs providing suitable
references for details.

2 Setup and preliminaries

We consider systems of the type

ẋ(t) = f(x(t), u(t), w(t)), (2.1)

where f : Rn×Rm×Rl is supposed to be continuous in
all variables and Lipschitz in x, uniformly in (u, w) ∈ K
for each compact subset K ⊂ Rm × Rl. The functions
u and w are supposed to lie in the spaces U and W
given by

U := {u : R→ U, measurable and loc. ess. bd.}

W := {w : R→W, measurable and loc. ess. bd.}

where U ⊂ Rm is a compact set with 0 ∈ U andW ⊂ Rl
is an arbitrary set with 0 ∈ W . Here u can be in-
terpreted either as perturbation or as control while w
will always be considered as perturbation. If u is con-
sidered to be a control function, then the compactness
assumption on U can be weakened, see Remark 2.3, be-
low. The solution trajectories of (2.1) for initial value
x0 at initial time t0 = 0 are denoted by ϕ(t, x0, u, w).
We assume that ϕ(t, x0, u, w) exists for all times t ≥ 0.

Our goal in this paper is to provide gain preserving
Lyapunov function characterizations for input–to–state
stability (ISS) like stability and controllability prop-
erties of (2.1). For the formulation of these stability
concepts we need the following comparison functions.

A continuous function α : R+
0 → R+

0 is called of class K
if it is strictly increasing with α(0) = 0, and is called of
class K∞ if, in addition, it is unbounded. A continuous
function β : R+

0 ×R
+
0 → R+

0 is called of class KL if it is
of class K∞ in the first and strictly decreasing to 0 in
the second argument. We define a continuous function
µ : R+

0 × R → R+
0 to be of class KLD if its restriction

to R+
0 × R

+
0 is of class KL and, in addition, it is a one

dimensional dynamical system, i.e., it satisfies

µ(r, t+ s) = µ(µ(r, t), s) for all t, s ∈ R.

Observe that this condition implies µ(r, 0) = r.

A system (2.1) is said to be ISS if there exists β ∈ KL
and γ ∈ K∞ such that the inequality

‖ϕ(t, x0, u, w)‖ ≤ max{β(‖x0‖, t), γ(‖w‖∞)}

holds for all x0 ∈ Rn, t ≥ 0, u ∈ U and w ∈ W.

For a gain preserving Lyapunov function characteriza-
tion it will be convenient to modify the ISS property
as follows.

Definition 2.1 A system (2.1) is called input-to-state
dynamically stable (ISDS), if there exists µ ∈ KLD and
σ, γ ∈ K∞ such that the inequality

‖ϕ(t, x, u, w)‖ ≤ max{µ(σ(‖x‖), t), ν(w, t)}.

holds for all t ≥ 0, x ∈ Rn, u ∈ U and all w ∈ W,
where ν is defined by

ν(w, t) := ess supτ∈[0,t] µ(γ(‖w(τ)‖), t − τ) (2.2)

Here we call the function µ the decay rate, the function
σ the overshoot gain and the function γ the robustness
gain.

The ISDS property is equivalent to ISS, in the sense
that ISDS implies ISS with β(r, t) = µ(σ(r), t) and
same γ and that ISS with β and γ̃ implies ISDS for
σ(r) = β(r, 0) and any γ > γ̃, see [5, Proposition 3.4.4].

If u is interpreted as a control function, then we can also
consider the following controlled version of the ISDS
property. Here P is the space of nonanticipating strate-
gies, i.e., the space of mappings p : U → W which for all
t > 0 satisfy the implication u1(s) = u2(s) for all s ≤
t ⇒ p(u1, t) = p(u2, t) for all s ≤ t (see [2, Chapter
VIII] for details). Here we only require the respective
inequality to hold for discrete times t ≥ 0, since this
allows a Lyapunov function characterization without
assuming continuity properties with respect to u or us-
ing relaxed controls, cf. also Remark 4.3, below.

Definition 2.2 A system (2.1) is called controlled
input-to-state dynamically stable (cISDS), if there ex-
ists a function µ ∈ KLD and σ, γ ∈ K∞ such that for
all p ∈ P, all x ∈ Rn and all sequences 0 ≤ t1 < t2 < . . .
there exists u ∈ U such that

‖ϕ(t, x, u, p[u])‖ ≤ max{µ(σ(‖x‖), t), ν̃(p, t)}

holds for all t = t1, t2, . . ., where

ν̃(p, t) := sup
u∈U

ν(p[u], t) (2.3)

for ν from (2.2).

Note that for W = {0} Definition 2.1 includes the as-
ymptotic stability property for perturbed systems and
Definition 2.2 includes asymptotic controllability.



Remark 2.3 For the cISDS property the condition
that U is compact can be weakened, if desired. For in-
stance, for U = Rm one could modify the cISDS prop-
erty by requiring that the control functions u satisfy
‖u(t)‖ ≤ η(‖ϕ(t, x, u, p[u])‖) for some continuous func-
tion η : R+

0 → R+
0 , similar to what is often assumed

for asymptotic controllability, see, e.g., [16]. Then the
modified system given by f̃(x, ũ, w) = f(x, η(‖x‖)ũ, w)

with ũ ∈ Ũ = {ũ ∈ Rm | ‖ũ‖ ≤ 1} fits into our class of
systems and has the cISDS property.

In the remainder of this paper we will sometimes need
the following Assumption.

Assumption 2.4 The function µ in Definition 2.1 and
2.2 is C∞ on R+×R and solves the ordinary differential
equation

d

dt
µ(r, t) = −g(µ(r, t))

for some Lipschitz continuous function g : R+ → R+,
all r > 0 and all t ∈ R.

It was shown in [5, Appendix B] that for given non-
smooth rates and gains from Definition 2.1 or 2.2 one
can find rates and gains arbitrarily close to the original
ones, such that Assumption 2.4 holds and Definition 2.1
or 2.2, respectively, remain valid. Hence Assumption
2.4 is only a mild regularity condition.

It should be noted that ISDS and cISDS are easily gen-
eralized to arbitrary compact sets (instead of the ori-
gin) and to local settings, where the ISDS inequality
only holds for x0 from a given neighborhood of the ori-
gin (or the respective set), see [5, Section 3 and 4] for
details.

For completeness, we give the definition of viscosity su-
persolutions, a concept from nonsmooth analysis which
will be important in what follows. For details we refer
to [2].

Definition 2.5 Consider an open set O ⊂ Rn and a
continuous functionH : Rn×R×Rn → R. Then a lower
semicontinuous function V : O → R is called a viscos-
ity supersolution of the partial differential inequality
H(x, V,DV ) ≥ 0 if for all x ∈ O and all p ∈ D−V (x),
where D−V (x) :={
p ∈ Rn

∣∣∣∣ V (y) ≥ V (x) + p(y − x)− o(‖x− y‖)
for all y in a neighborhood of x

}
we have

H(x, V (x), p) ≥ 0.

3 Lyapunov functions for ISDS

In this section we give two characterizations of the
ISDS property by means of Lyapunov functions. The
first theorem states that we can exactly represent the
gains and rate of the ISDS estimate using a possibly
discontinuous Lyapunov function.

Theorem 3.1 A system (2.1) is ISDS with rate µ ∈
KLD and gains σ, γ ∈ K∞ if and only if there exists a
(possibly discontinuous) function V : Rn → R+

0 satis-
fying

‖x‖ ≤ V (x) ≤ σ(‖x‖)

and

V (ϕ(t, x, u)) ≤ max{µ(V (x), t), ν(u, t)}

for all x ∈ Rn, t ≥ 0 and all u ∈ U , where ν is given by
(2.2).

For many applications it might be desirable to have
ISDS Lyapunov functions with some more regularity,
such that we can in particular avoid the use of the so-
lution trajectories ϕ in the formulation. The next the-
orem shows that if we slightly relax the sharp represen-
tation of the gains, then we can always find Lipschitz
Lyapunov functions, at least away from the origin.

Theorem 3.2 A system (2.1) is ISDS with rate µ ∈
KLD satisfying Assumption 2.4 and gains σ, γ ∈ K∞
if and only if for each ε > 0 there exists a continuous
function V : Rn → R+

0 which is Lipschitz on Rn \ {0},
satisfies

‖x‖/(1 + ε) ≤ V (x) ≤ σ(‖x‖)

and is a viscosity supersolution of

inf
u∈U

γ(‖w‖)<V (x)

{−DV (x)f(x, u, w)− (1− ε)g(V (x))} ≥ 0

for all x ∈ Rn.

Here one could even go one step further and apply the
smoothing technique [11, Theorem B.1] in order to ob-
tain a characterization by smooth Lyapunov functions,
see [6] for details. This causes a slight enlargement
of the gain γ, however, in the limit (i.e., for ε → 0)
the same gains can be characterized, hence we obtain a
similar behavior as for H∞ control problems, see [17].

On the other hand, a great advantage of the concept
of viscosity solutions is that if V is smooth then the
viscosity supersolution condition in this theorem “au-
tomatically” reduces to the classical partial differential
inequality

sup
u∈U,γ(‖w‖)<V (x)

{DV (x)f(x, u, w)} ≤ −(1− ε)g(V (x)),



hence no separate statement for smooth V is necessary.

In this context it should be noted that Theorem 3.2
gives rise to a constructive procedure for estimating
ISDS robustness gains γ from “ordinary” Lyapunov
functions. We illustrate this procedure by two exam-
ples.

Example 3.3 Consider a linear system ẋ = f(x, w) =
Ax + Bw. If we assume ISDS then the matrix A
needs to be Hurwitz and we can find a quadratic Lya-
punov function W (x) = xTPx for some positive defi-
nite matrix P satisfying c1‖x‖2 ≤W (x) ≤ c2‖x‖2 and
DW (x)Ax ≤ −c3‖x‖2. Setting V (x) =

√
W (x)/c1 we

obtain ‖x‖ ≤ V (x) ≤ c4‖x‖, DV (x)Ax ≤ −c5V (x)
and ‖DV (x)‖ ≤ c4 for c4 =

√
c2/c1 and c5 = c3/(2c2).

Fixing some λ ∈ (0, 1) we set γ(r) = c4‖B‖r/(λc5).
Then for α = 1− λ we obtain

inf
γ(‖w‖)≤V (x)

{−DV (x)f(x, w)} ≥ αc5V (x) = g(V (x)).

Hence V is an ISDS Lyapunov function in the sense
of Theorem 3.2 (for each ε > 0) and we obtain ISDS
with µ(r, t) = e−(1−λ)c5tr, σ(r) = c4r and γ(r) =
c4‖B‖r/(λc5), i.e., exponential convergence and linear
overshoot and robustness gains.

This example also illustrates the (typical) tradeoff be-
tween the attraction rate µ and the robustness gain γ,
which is represented here by the choice of λ. In the
next example, showing an ISDS estimate for a simple
nonlinear system, we set λ = 3/4.

Example 3.4 Consider the system ẋ = f(x, w) =
−x + w3/2 with x ∈ R, w ∈ R. Using the Lya-
punov function V (x) = |x| one obtainsDV (x)f(x, 0) =
−|x| = −V (x). We choose γ such that γ(|w|) ≤ V (x) =
|x| implies |w3/2| ≤ 3|x|/4, i.e., γ(r) = 2r3/3. Then
we obtain

sup
γ(‖w‖)≤V (x)

{−DV (x)f(x, w)} ≥
1

4
V (x) = g(V (x)),

and consequently ISDS with µ(r, t) = e−t/4r, σ(r) = r
and γ(r) = 2r3/3.

4 Lyapunov functions for cISDS

We will now present similar theorems as in the previous
section for the cISDS property. Compared to the ISDS
case, two major difficulties arise here. One originates
from the fact that our system’s trajectories will not in
general depend continuously on u. Even if the struc-
ture of the system allows such a continuous dependence
(e.g., for control affine systems) the strategies p ∈ P

will in general destroy this continuity property. This
difficulty results in additional approximation parame-
ters ε in the following theorem, cf. also Remark 4.3,
below.

Theorem 4.1 Consider the system (2.1) and func-
tions γ, σ ∈ K∞ and µ ∈ KLD. Define µε(r, t) =
µ(r, (1−ε) t), γε = (1+ε)γ and ν̃ε by (2.3) with γ = γε
and µ = µε. Then the following properties are equiva-
lent:

(i) For each ε > 0 system (2.1) is wISDS with robust-
ness gain γε, overshoot gain σ and attraction rate µε.

(ii) For each ε > 0 there exists a (possibly discontinu-
ous) function Vε : Rn → R+

0 which satisfies

‖x‖ ≤ Vε(x) ≤ σ(‖x‖)

and

inf
u∈U

Vε(ϕ(t, x, u, p[u]))≤ max{µε(Vε(x), t), ν̃ε(p, t)}

for all x ∈ Rn, all p ∈ P and all t ≥ 0.

The second difficulty arising in the cISDS case concerns
the controlled analogue of Theorem 3.2, because here
the construction of the continuous Lyapunov function
from the ISDS case does not carry over to the cISDS
case, cf. Remark 5.3, below. Hence we only obtain a
sufficient condition for the cISDS property.

Theorem 4.2 Consider system (2.1) and assume
there exists a continuous function V : Rn → R+

0 which
satisfies

‖x‖ ≤ V (x) ≤ σ(‖x‖)

and is a viscosity supersolution of the equation

sup
u∈U

inf
γ(‖w‖)≤V (x)

{−DV (x)f(x, u, w)− g(V (x))} ≥ 0.

Then for each ε > 0 the system (2.1) is cISDS with
gains σ and γ and rate µε(r, t) = µ(r, (1− ε)t) with µ
from Assumption 2.4.

It is an open question at the moment whether the
existence of a continuous Lyapunov function meeting
the assumptions of Theorem 4.2 is indeed a strictly
stronger property than cISDS. Nevertheless, Theorem
4.2 is useful as a verification theorem for cISDS robust-
ness gains in the same way as Theorem 3.2 is for ISDS,
cf. the Examples 3.3 and 3.4.

Remark 4.3 If we assume that for all p ∈ P, all x ∈
Rn and all sequences un ∈ U there exists a subsequence
nk →∞ such that ϕ(t, x, unk, p[unk])→ ϕ(t, x, u, p[u])
for each t ≥ 0, then both Theorem 4.1 and Theorem
4.2 also hold for ε = 0, see [5, Section 4].



Note however, that for this condition to hold we will in
general have to restrict our class of perturbation strate-
gies P.

5 Outline of the proofs

In this section we present the main ideas needed for
the proofs of the results in this paper. Detailed proofs
can be found in [5, Sections 3 and 4]. The proofs in [5],
however, use an indirect construction of the function
V via its level sets. Here we outline a direct approach
following ideas from [6], which in turn extend a con-
struction from [20] to perturbed systems.

The main technical step in the ISDS case is the observa-
tion formulated in the following Lemma. The proof is
straightforward, see [6, Lemma 5.1] and also the proof
of Lemma 5.2, below.

Lemma 5.1 Consider a (possibly discontinuous) func-
tion V : Rn → R+

0 . Then the following two statements
are equivalent

(i) V (ϕ(t, x, u, w)) ≤ max{µ(V (x), t), ν(w, t)} for
all t ≥ 0, all u ∈ U and all w ∈ W.

(ii) V (ϕ(t, x, u, w)) ≤ µ(a, t) for all times t ≥ 0, all
values a ∈ R with a ≥ V (x), all u ∈ U and all
w ∈ W satisfying γ(‖w(τ))‖) ≤ µ(a, τ) for almost
all τ ∈ [0, t].

Proof of Theorem 3.1: The existence of V immedi-
ately implies the ISDS property using the bounds on
V . Conversely, if a system has the ISDS property, then
we define

V (x) :=

inf

{
b ≥ 0

∣∣∣∣ ‖ϕ(t, x, u, w)‖ ≤ max{µ(b, t), ν(w, t)}
for all u ∈ U , w ∈ W and all t ≥ 0

}
For this function one can verify the stated bounds as
well as Lemma 5.1(ii), which completes the proof.

Proof of Theorem 3.2: Let ε > 0 and assume that
V is given. The results in [19, Section 4] imply that
then V satisfies

V (ϕ(t, x, u, w)) ≤ µ(V (x), t)

for all u ∈ U and w ∈ W with γ(‖w(τ)‖) ≤ µ(V (x), t)
for almost all τ ∈ [0, t]. where µ solves µ̇ = −(1 −
ε)g(µ), µ(r, 0) = r.

Applying this inequality inductively for small t > 0
one proves Lemma 5.1(ii) for µ(r, (1− ε)t). Using the
bounds on V we obtain

‖ϕ(t, x, u, w)‖ ≤
max{µ(σ(‖x‖), (1− ε)t), νε(w, t)}

1− ε

with νε given by (2.2) using µ(r, (1−ε)t). By continuity,
this implies the desired ISDS estimate for ε→ 0.

Conversely, assume ISDS. Then for ε > 0 we define
ρε(r) := ε(1− e−r) + 1 and

V (x) :=

inf

b ≥ 0

∣∣∣∣∣∣
‖ϕ(t, x, u, w)‖ ≤ ρε(µ(b, t))

max{µ(b, (1− ε)t), ν(w, t)}
for all u ∈ U , w ∈ W and all t ≥ 0


For this function one verifies Lemma (5.1)(ii), which
immediately implies the desired viscosity supersolution
property by Definition 2.5, provided V is continuous.

In order to see continuity, one first uses compactness
arguments to obtain that for any compact set K ⊂ Rn
with 0 6= K there exist constants R > 0 and a compact
interval I ⊂ R+ such that in the definition of V for
x ∈ K we can restrict ourselves to b ∈ I and ‖w‖ ≤ R.
Then the fact that the the attraction rate is slowed
down by (1−ε) implies that there exists T > 0 such that
the inequality in the definition of V is always satisfied
for all t ≥ T . Hence the inequality needs to be satisfied
on the compact interval [0, T ] only, which eventually
implies continuity. The stated Lipschitz property then
follows by a careful estimation of all the functions in-
volved in the definition of V .

For the cISDS case the analogue to Lemma 5.1 is as
follows.

Lemma 5.2 Consider a (possibly discontinuous) func-
tion V : Rn → R+

0 and a point x ∈ Rn. Then the
following two statements are equivalent

(i) For all t > 0 and all p ∈ P there ex-
ists u ∈ U such that V (ϕ(t, x, u, p[u])) ≤
max{µ(V (x), t), ν̃(p, t)}.

(ii) For all t > 0, all a ∈ R with a ≥ V (x) and all
p ∈ P satisfying γ(‖p[u](τ)‖) ≤ µ(a, τ) for almost
all τ ∈ [0, t] and all u ∈ U , there exists u ∈ U with
V (ϕ(t, x, u, w))≤ µ(a, t).

Proof: “(i)⇒(ii)”: Consider a perturbation strategy p
meeting the assumptions of (ii). Then one immediately
obtains ν̃(p, t) ≤ µ(a, t) and consequently the control
function u from (i) also satisfies (ii).

“(ii)⇒(i)”: Consider an arbitrary p ∈ P and
set a = max{V (x), µ(ν̃(p, t),−t)}, which implies
γ(‖p[u](τ)‖) ≤ µ(a, τ) for almost all τ ∈ [0, t] and
all u ∈ U . Then either a = V (x) or µ(a, t) =
ν̃(p, t) holds. From (ii) we find u ∈ U with
V (ϕ(t, x, u, p[u])) ≤ µ(a, t), which in the first case im-
plies V (ϕ(t, x, u, p[u])) = µ(V (x), t) and in the second



case yields V (ϕ(t, x, u, p[u])) = ν̃(p, t). This shows the
assertion.

Proof of Theorem 4.1: The existence of Vε implies
the existence of u such that

V (ϕ(t, x, u, p[u]))≤ max{µ2ε(V (x), u), ν̃2ε(p, t)}

From this for any sequence 0 ≤ t1 < t2 < . . . by induc-
tion we obtain the stated cISDS estimate for 2ε, and
since ε > 0 was arbitrary for all ε > 0.

Conversely, if a system has the stated cISDS property,
then for ε > 0 we define

Vε(x) :=

inf

b ≥ 0

∣∣∣∣∣∣∣∣
for all sequences 0 ≤ t1 < t2 < . . .
and all p ∈ P there exists u ∈ U with
‖ϕ(t, x, u, w)‖ ≤ max{µε(b, t), νε(w, t)}
for t = t1, t2, . . .


For this function one verifies the desired bounds as well
as Lemma 5.2(ii) for µ = µ2ε and ν̃ = ν̃2ε.

Proof of Theorem 4.2: Analogous to the first part of
the proof of Theorem 3.2, again using the results from
[19, Section 4].

Remark 5.3 The construction of a continuous V us-
ing the trick from the second part of the proof of Theo-
rem 3.2 does not work here, because in the cISDS case
it cannot be guaranteed that the inequality in the de-
finition of V is satisfied for all t > 0 sufficiently large.
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