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1 Summary 

In this thesis, hectorite, a layered silicate, was investigated in different solvent mixtures and 

was, then, used for the preparation of nanocomposites with different application possibilities.  

Osmotic swelling of hectorite in water offers an easy way to gain single 1 nm thick layers with 

a huge aspect ratio. For many applications like gas barrier, composites with such layers are 

desired. As many polymers are insoluble in water, organic solvents or solvent mixtures that 

enable osmotic swelling are needed. In the first part of this thesis, the swelling of sodium 

hectorite (NaHec) in different ternary mixtures consisting of methanol, acetonitrile, ethylene 

glycol, glycerol carbonate or water was investigated. It was found that in ternary mixtures, less 

water was necessary to trigger osmotic swelling than in corresponding binary mixtures. In this 

way, the water content could be reduced to 10 vol.-% using a mixture of methanol (70 vol.-%), 

water and acetonitrile (20 vol.-%). In a system with glycerol carbonate, a solvent that can also 

be polymerized, and methanol, only negligible amounts of water were necessary for osmotic 

swelling. Thus, hydrophilic NaHec could be osmotically swollen almost without water which 

extends its application possibilities. Furthermore, it was found that in binary mixtures of water 

with one organic solvent, the dipole moment of the latter determines the swelling behavior. The 

smaller the dipole moment, the more water was necessary to allow for osmotic swelling. 

However, for ternary systems, this simple correlation does not exist. A quantitative study of the 

osmotic swelling of NaHec in a ternary solvent mixture revealed a similar behavior like the 

osmotic swelling in water. The layer separation increased with increasing amount of solvent 

indicating complete osmotic swelling. 

 

Whereas completely miscible solvents were used for the swelling studies, the other two parts 

of this thesis are dealing with emulsions of immiscible solvents. 

In the second part, high internal phase emulsions (HIPEs) in which the external phase consisted 

of polymerizable molecules were used as templates for polymer foam composites. Hectorite 

was modified with a custom-made organo-cation (HecPEHMA) to disperse it in the external 

phase of a HIPE. Upon polymerization of this phase, open-cell composite foams with relative 

densities of 4 – 7 % could be synthesized. The mechanics of the foams were studied by 

compression tests depending on the filler content and the relative density of the foams. With 

only 2 % HecPEHMA, the Young’s modulus could be increased up to a factor of four. To 

investigate the mechanism of the strengthening, HecPEHMA was also incorporated in bulk 

polymer plates and their tensile properties were tested. However, the filler led to a weakening 

of the polymer concluding that the strengthening of the foams was not due to a reinforcement 
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of the material. Instead, the foam mechanics were determined by the foam morphology. The 

foams with 2 % HecPEHMA had larger cells, thicker struts and a more consistent structure. 

Most probably, HecPEHMA acted as a Pickering emulsifier stabilizing the emulsion in addition 

to the molecular surfactant. This then led to an improved foam structure which simultaneously 

improved the mechanics. Contrary, a commercial organophilized montmorillonite (O-MMT) 

filler could not enhance the foam mechanics, most likely as its surface modification could not 

provide a Pickering effect. 

 

In the third part, hectorite was used to encapsulate a fragrance mixture in aqueous emulsions. 

In many applications, not a single fragrance is used but a mixture of different volatile 

substances. These fragrances usually differ in their vapor pressures and therefore, the 

composition of the mixture changes upon evaporation. Thus, unselective barriers are needed to 

maintain the original scent impression. As nanocomposite films with hectorite provide excellent 

gas barriers, it seems promising to use hectorite for barrier capsules as well. However, pristine 

hectorite is too hydrophilic to stabilize emulsion droplets. Therefore, hectorite was in-situ 

modified with polycationic poly(ethylene imine) (PEI) during the emulsification. The 

evaporation of a model fragrance mixture (eucalyptol, limonene, α-pinene and ethyl-2-

methylbutyrate) from such emulsions was investigated. By applying hectorite layers at the 

water-oil-interface, the release could be significantly retarded in comparison with an emulsion 

that was solely stabilized with PEI. The release rates were no longer determined by their vapor 

pressures. All fragrances are hydrophobic but differ in their water solubility. As the capsule 

wall which consisted of hectorite and PEI was most probably swollen with water, the relative 

solubility of the fragrances in the capsule wall might be similar to the water solubility. 

Fragrances which have a higher water solubility diffuse faster through the capsule wall and 

were thus, released faster. By comparing emulsions made with different ratios between PEI and 

hectorite, it could be shown that the release was further retarded by lowering the amount of PEI. 

This is due to an increased tortuosity in the capsule wall. An additional chemical cross-linking 

of PEI could further improve the retardation of the fragrances.  

 

This work is a cumulative thesis. A detailed description of the results can be found in the 

attached publications.  
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2 Zusammenfassung 

In dieser Arbeit wurde Hectorit, ein Schichtsilikat, in verschiedenen Lösemittelgemischen 

untersucht und dann für die Herstellung von Nanokompositen mit unterschiedlichen 

Anwendungsmöglichkeiten verwendet. 

Die osmotische Quellung von Hectorit in Wasser bietet eine einfache Möglichkeit, einzelne, 

1 nm dicke Schichten mit einem sehr großen Aspektverhältnis herzustellen. Für viele 

Anwendungen wie beispielsweise als Gasbarriere, sind Komposite mit solchen Schichten 

wünschenswert. Da viele Polymere nicht wasserlöslich sind, werden organische Lösemittel 

oder Lösemittelmischungen, die eine osmotische Quellung erlauben, benötigt. Im ersten Teil 

dieser Arbeit wurde das Quellungsverhalten von Natriumhectorit (NaHec) in verschiedenen 

ternären Lösemittelmischungen, bestehend aus Methanol, Acetonitril, Ethylenglykol, 

Glycerincarbonat oder Wasser, untersucht. Es wurde festgestellt, dass in ternären Gemischen 

weniger Wasser notwendig war, um eine osmotische Quellung einzuleiten als in 

entsprechenden binären Mischungen. So konnte der Wassergehalt auf 10 vol.-% reduziert 

werden indem ein Gemisch aus Methanol (70 vol.-%), Wasser und Acetonitril (20 vol.-%) 

verwendet wurde. In einem System mit Glycerincarbonat, einem Lösemittel, das gleichzeitig 

polymerisiert werden kann, und Methanol waren nur vernachlässigbar kleine Mengen Wasser 

für eine osmotische Quellung notwendig. Hydrophiler NaHec konnte also nahezu ohne Wasser 

osmotisch gequollen werden, was seine Anwendungsmöglichkeiten erweitert. Weiterhin wurde 

festgestellt, dass das Quellungsverhalten in binären Mischungen (Wasser und ein organisches 

Lösemittel) vom Dipolmoment des organischen Lösemittels bestimmt wird. Je kleiner das 

Dipolmoment ist, desto mehr Wasser ist notwendig, um eine osmotische Quellung zu 

realisieren. Diese einfache Korrelation ist allerdings nicht auf ternäre Mischungen übertragbar. 

Eine quantitative Untersuchung der osmotischen Quellung von NaHec in einem ternären 

Gemisch ergab ein ähnliches Verhalten wie bei der osmotischen Quellung in Wasser. Der 

Schichtabstand nahm mit zunehmender Lösungsmittelmenge zu, was eine vollständige 

osmotische Quellung anzeigt. 

 

Während für die Quellungsstudien komplett mischbare Lösemittel verwendet wurden, befassen 

sich die beiden anderen Teile dieser Arbeit mit Emulsionen von nicht mischbaren Lösemitteln. 

Im zweiten Teil wurden Emulsionen mit einem großen Anteil an interner Phase (high internal 

phase emulsion, HIPE), bei denen die externe Phase polymerisiert werden konnte, als Template 

für Polymerschäume verwendet. Hectorit wurde mit einem maßgeschneiderten Organokation 

modifiziert (HecPEHMA), um ihn in der externen Phase einer HIPE zu dispergieren. Durch die 
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Polymerisation dieser Phase konnten offenzellige Schäume mit relativen Dichten von 4 – 7 % 

hergestellt werden. Die mechanischen Eigenschaften dieser Schäume wurden in Abhängigkeit 

von Dichte und Füllstoffgehalt mittels Druckversuchen untersucht. Mit nur 2 % HecPEHMA 

konnte der Young’sche Modul im Vergleich zu einem Schaum ohne Füllstoff um bis zu einem 

Faktor von vier gesteigert werden. Um den Mechanismus der Verstärkung zu untersuchen, 

wurde HecPEHMA auch in Polymerplatten eingebracht und deren Zugeigenschaften getestet. 

Allerdings bewirkte der Füllstoff eine Schwächung des Polymers, was zu der Schlussfolgerung 

führte, dass die Steigerung des Young’schen Moduls der Schäume nicht von einer Verstärkung 

des Materials kommt. Stattdessen wurden die mechanischen Eigenschaften von der 

Schaummorphologie bestimmt. Die Schäume mit 2 % HecPEHMA hatten größere Zellen, 

dickere Stege und eine konsistentere Struktur. Höchstwahrscheinlich fungierte HecPEHMA als 

Pickering-Emulgator, der in Kombination mit den molekularen Tensiden die Emulsion 

stabilisierte. Dies führte zu einer verbesserten Schaummorphologie, was wiederum die 

mechanischen Eigenschaften verbesserte. Im Gegensatz dazu konnte ein kommerzieller 

organophilierter Montmorillonit (O-MMT) als Füllstoff die Schaummechanik nicht verbessern, 

da seine Oberflächenmodifikation vermutlich keinen Pickering-Effekt erzielen konnte.  

 

Im dritten Teil dieser Arbeit wurde Hectorit dazu verwendet, Duftstoffe in wässrigen 

Emulsionen einzukapseln. In vielen Anwendungen werden keine einzelnen Duftstoffe 

eingesetzt, sondern eine Mischung aus verschiedenen flüchtigen Substanzen. Diese Duftstoffe 

unterscheiden sich üblicherweise durch ihre Dampfdrücke und daher ändert sich beim 

Verdunsten die Zusammensetzung der Mischung. Somit werden nicht-selektive Barrieren 

benötigt, um den ursprünglichen Geruchseindruck zu erhalten. Da Nanokomposit-Filme mit 

Hectorit exzellente Barrieren darstellen, scheint es vielversprechend, Hectorit auch für 

Barrierekapseln zu verwenden. Allerdings ist reiner Hectorit zu hydrophil, um Emulsionen zu 

stabilisieren. Daher wurde der Hectorit in-situ, also während der Emulgierung, mit dem 

Polykation Polyethylenimin (PEI) modifiziert. Das Verdunsten einer beispielhaften 

Duftstoffmischung (Eucalyptol, Limonen, α-Pinen und Ethyl-2-methylbutyrat) aus solchen 

Emulsionen wurde untersucht. Durch den Einsatz von Hectoritplättchen an der Öl-Wasser-

Grenzfläche konnte die Freisetzung im Vergleich zu einer Emulsion, die nur von PEI stabilisiert 

wurde, signifikant verlangsamt werden. Dabei wurde die Freisetzungsrate nicht länger durch 

die Dampfdrücke bestimmt. Alle Duftstoffe sind hydrophob, unterscheiden sich aber durch ihre 

Wasserlöslichkeit. Da die Kapselwand aus Hectorit und PEI besteht und damit 

höchstwahrscheinlich mit Wasser gequollen ist, könnte die relative Löslichkeit der Duftstoffe 



2 Zusammenfassung 

  5 

in der Kapselwand ähnlich zu der in Wasser sein. Duftstoffe, die eine höhere Wasserlöslichkeit 

besitzen, diffundierten schneller durch die Kapselwand und wurden demzufolge schneller 

freigesetzt. Ein Vergleich von Kapseln, die mit unterschiedlichen Verhältnissen zwischen 

Hectorit und PEI hergestellt wurden, zeigte, dass die Freisetzung weiter verzögert werden 

konnte indem die Menge an PEI reduziert wurde. Dies ist auf eine Verlängerung der mittleren 

Wegstrecke (erhöhte Tortuosität) in der Kapselwand zurückzuführen. Ein zusätzliches 

chemisches Quervernetzen von PEI konnte die Freisetzung der Duftstoffe weiter verzögern.  

 

Diese Arbeit ist eine kumulative Dissertation. Eine detaillierte Beschreibung der Ergebnisse 

befindet sich in den angehängten Publikationen. 
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3 Introduction 

The first handed down description of a polymer is the recipe of a resin made of casein in 1530.[1] 

Already in this description, the various application possibilities, for example as tabletop or cups, 

were mentioned. However, polymers, or more commonly plastics, had their great breakthrough 

in the 20th century. Since then, polymers can be found nearly everywhere in daily life. Due to 

their light weight, easy processability and various utilization possibilities, polymers are often 

the material of choice.[2] Application areas are for example packaging, insulation, technical 

devices like computers or mobile phones and medical technology.[1-2]  

However, for some applications, neat polymers do not fulfill the required specifications like 

mechanical properties, flame retardancy or resistance against heat, oxidation or UV 

irradiation.[1] One way to improve polymer properties is the use of additives. Molecular 

additives can be used to improve the resistance against UV radiation, to change the crystallinity 

or for plasticizing effects.[1] However, some of them are repeatedly criticized due to their 

toxicity.[3-4] Other important additives are solid fillers which are used to produce composites. 

In general, composites are solids consisting of two or more components where at least one 

component is dispersed in another.[2] Two of the most common fillers are carbon and glass 

fibers.[5] Such polymer composites are used in aircrafts or sport equipment for instance. While 

preserving the light weight of the polymer, fiber reinforced composites exhibit enhanced 

mechanical strength. 

If the dispersed phase in composites has at least one dimension in the nanometer-scale, a 

nanocomposite is obtained.[6] Spherical nanoparticles have all three dimensions in this scale. 

Various metal and metal oxide nanoparticles can be used to improve electrical, optical and 

mechanical properties.[7] Fibers or tubes have two dimensions in the nanometer-scale. For 

example, carbon nanotube composites can be used as cathodes.[8] If only one dimension is in 

the nanometer-scale, platelets are obtained (also referred to as two-dimensional particles). One 

representative of this material class are clays. They have been used for a long time in several 

applications. Already in Mayan paintings, clay mixed with dye molecules was found to yield a 

color which is resistant against acids and biocorrosion.[9] Furthermore, clay is used in many 

ceramics like porcelain, in papers and in cosmetics.[10] In polymers, clay is used as filler to 

improve gas barrier,[11-12] flame retardancy[13-14] and mechanical strength.[15-16] Prominent 

examples of clays are montmorillonite, kaolinite and hectorite.[10]  
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3.1 Hectorite 

3.1.1 Structural properties 

Hectorite belongs to the class of layered silicates (phyllosilicates). In general, layered silicates 

are composed of tetrahedral and octahedral sheets. Tetrahedral sheets (TS) are built from SiO4 

tetrahedra which are connected via three basal oxygen atoms (Figure 1). In this way, an infinite 

hexagonal sheet is formed. This sheet is condensed with an octahedral sheet (OS) via its apical 

oxygen atoms. Depending on the kind of phyllosilicate, the corners of the octahedra are 

occupied by oxygen, hydroxide or fluoride. Various cations like Mg2+, Li+, Al3+, Fe2+ or Fe3+ 

can be allocated in the centers of the octahedra.[10] There are several properties that are used to 

classify layered silicates. One way is the classification by the connection of tetrahedral and 

octahedral sheets to form clay layers. In a 1:1 layered silicate, one tetrahedral sheet is condensed 

with one octahedral sheet, whereas in a 2:1 layered silicate, one octahedral sheet is sandwiched 

between two tetrahedral sheets (Figure 1).[10, 17] 

Figure 1: Structure of individual tetrahedral (green) and octahedral (blue) sheets and their combination to 2:1 
layered silicates. 

Furthermore, layered silicates can be divided into dioctahedral and trioctahedral depending on 

the occupation of the cations in the octahedral sheet.[18] In trioctahedral layered silicates, all 

octahedral sites are occupied whereas in dioctahedral layered silicates only 2/3 are occupied. 

One example of a trioctahedral 2:1 layered silicate is talc with the chemical formula 

Mg3Si4O10(OH)2.[19] Talc is a non-charged layered silicate. From this structure, charged layered 

silicates can be derived. By partial isomorphic substitution of divalent Mg2+ by monovalent Li+ 

in the octahedral sheet, a negative charge is generated within the layer. This negative charge is 

compensated by hydrated or non-hydrated cations between the layers. These interlayer cations 

can easily be exchanged against other inorganic or organic cations which offers tunable 
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properties of the clay material (see chapter 3.2.1).[20-21] Depending on the type and hydration of 

the interlayer cation, layered silicates exhibit certain layer separations d (Figure 1). 

Further classification of layered silicates is done by their layer charge. A net layer charge per 

formula unit (pfu) of 0.2 – 0.6 refers to the class of smectites, which includes hectorite and 

montmorillonite.[18] The latter is a natural clay with a dioctahedral character and one of the most 

used clays in industrial applications.[10, 22]  

In this work, a synthetic sodium fluorohectorite (NaHec, [Na0.5][Mg2.5Li0.5][Si4]O10F2) was 

used.[23-24] It belongs to the trioctahedral 2:1 layered silicates and has a layer charge of 0.5 pfu. 

It is synthesized in a closed molybdenum crucible at 1750 °C followed by tempering for six 

weeks at 1045 °C.[24] Whereas natural layered silicates suffer from inhomogeneous charge 

distributions, this synthesis ensures a statistical distribution of the cations in the octahedral sheet 

resulting in a phase pure material with homogenous charge distribution. This causes a 

homogenous intracrystalline reactivity and concomitantly a homogenous swelling behavior.[24] 

 

3.1.2 Swelling in water 

As mentioned before, sodium cations in the interlayer space can be hydrated, which is also 

known as crystalline swelling.[25] Depending on the relative humidity (r.h.), discrete hydration 

steps occur.[26] Starting with a fully dried NaHec and increasing the relative humidity above 

22 %, a transition to the 1 water layer (WL) hydrate takes place. A 2 WL hydrate is obtained 

when exceeding 64 % r.h. These hydration steps correspond to a d-spacing of 0.96 nm (0 WL), 

1.24 nm (1 WL) and 1.55 nm (2 WL), respectively. For the 1 WL hydrate of a sodium hectorite 

with a layer charge of 0.7 pfu, it was shown, that sodium cations are located close to one 

tetrahedral sheet and are coordinated by three basal oxygen atoms. On the opposite side, sodium 

cations are coordinated by three water molecules. In the 2 WL hydrate, sodium cations are 

coordinated by six water molecules and are located in the middle of the interlayer space.[27]  

Whereas crystalline swelling occurs at different values of relative humidity, osmotic swelling 

sets in, when NaHec is dispersed in liquid water. Due to repulsive forces between negatively 

charged layers, they are pushed apart from each other. This results in delaminated 1 nm thick 

layers while preserving the original width.[24] Due to their huge aspect ratio α 

(diameter/height ≈ 20000), the individual nanoplatelets cannot freely rotate even in dilute 

suspensions.[26] Thus, they align – depending on the volume fraction – more or less parallel to 

each other to form nematic phases.[28] These nematic phases can easily be visualized between 

two crossed polarizers (Figure 2A). Furthermore, they can be evidenced by small angle X-ray 

scattering (SAXS) and thereof, the average distance between the platelets can be determined.[26]  
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Osmotic swelling of NaHec in water exhibits two regimes depending on its volume fraction ϕ 

(Figure 2B). At high volume fractions of NaHec (ϕ > 0.025), the distance between adjacent 

layers d is determined by eq. (1), with the layer thickness t = 0.96 nm. 

 d = t · ϕ-1 (1) 

At a volume fraction of ϕ = 0.025, a kink is observed. Below this value, the distance between 

the layers scales with eq. (2).[26]  

 d ~ ϕ-0.66 (2) 

This kind of crossover was also observed for other clay materials like nontronites and 

montmorillonites but its reason is not clear.[28]  

 

Figure 2: A: Aqueous suspension of 0.1 vol-% NaHec between two crossed polarizers showing birefringence 
because of the formation of a nematic phase. B: Osmotic swelling of NaHec exhibiting two regimes depending on 
the volume fraction (Reprinted with permission from reference[26]. Copyright (2016) American Chemical Society.). 

Whether osmotic swelling sets in or not strongly depends on the charge density of the layered 

silicate and the interlayer cation.[29] Osmotic swelling requires interlayer cations with a certain 

steric demand and upon hydration a critical d-spacing has to be surpassed.[30] Whereas sodium 

smectites delaminate in water up to a layer charge of 0.55 pfu, higher charged layered silicates 

need larger interlayer cations like N-methyl-D-glucamine to fulfill these criterions.[31] 

Furthermore, osmotic swelling can be suppressed by an increasing ionic background or by 

adding organic solvents.[32] 
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3.1.3 Swelling in organic solvents 

Even though osmotic swelling of clay minerals in organic solvents is hampered, crystalline 

swelling of different clay materials in organic solvents or solvent mixtures could be 

observed.[33-35] Intercalation of neutral solvents in layered silicates is influenced by interactions 

between solvent molecules and interlayer cations. Possible interactions include hydrogen 

bonds, ion-dipole interactions, coordination bonds and van-der-Waals interactions.[21] 

Intercalation complexes of sodium or calcium can be formed with a large variety of solvents 

like alcohols,[33-34] acetone,[33] dimethyl sulfoxide (DMSO),[35] aromatic heterocycles,[36] 

different formamides[35] and different acetamides.[35] The stability of interlayer complexes is 

strongly dependent on the polarizing power of the interlayer cation. For acrylonitrile 

montmorillonite complexes, Yamanaka et al. found that the stronger the polarizing power is, 

the stronger the attraction between the cation and acrylonitrile is.[37]  

The most prominent examples of interlayer complexes are made with ethylene glycol and 

glycerol. These complexing agents are used for identification and quantification of different 

clay minerals. Ethylene glycol can be intercalated as mono- or bilayer resulting in a specific 

d-spacing depending on charge density and interlayer cation.[21, 38] 

Exchanging the inorganic interlayer cations against organo-cations like quaternary 

alkylammonium compounds renders the clay surface hydrophobic.[39] Such clay materials can 

intercalate neutral organic molecules like alcohols or hydrocarbons.[40-41] However, complete 

delamination is hard to achieve as there are strong van-der-Waals interactions between the 

alkylammonium chains.[21]  

Different attempts regarding different decisive parameters were made to explain the swelling 

behavior of clays with organic solvents. If the interlayer cation and the solvent molecule exhibit 

strong interactions, a complete solvation occurs pushing the cation to the center of the interlayer 

space. If the interaction is less, solvation is incomplete and the cation is still coordinated by 

basal oxygen atoms.[42] One parameter that describes the strength of a Lewis base is the 

Gutmann donor number.[43] Thus, it describes the ability of a solvent to coordinate to a cation. 

For the swelling of sodium montmorillonite with a variety of organic solvents, a Gutmann donor 

number of at least 14 was found to be necessary to remove sodium cations from the hexagonal 

cavities to allow a complete solvation.[44] A correlation between the degree of swelling and the 

donor number of the solvent was also found for formamide-montmorillonite complexes.[45] A 

different approach was done by Graber and Mingelgrin. They applied regular solution theory, 

which is normally used for polymer solutions, to explain swelling maxima of different clays 

with a variety of solvents.[46]  
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In solvent mixtures, different regimes of swelling can be observed. For example, Brindley 

studied the swelling of different montmorillonites in binary mixtures of DMSO and water.[47] 

Depending on the interlayer cation (Li+, Na+ and K+), osmotic swelling was observed up to a 

DMSO content of 45, 30 and 10 mol.-%, respectively. Beyond that, only crystalline swelling 

was obtained. More recently, the swelling of NaHec in mixtures of acetonitrile and water was 

studied.[48] Here, osmotic swelling occurred up to 65 vol.-% acetonitrile. When more 

acetonitrile was added, crystalline swelling with a step-like decrease in d-spacing was observed.  
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3.2 Polymer clay nanocomposites 

3.2.1 Preparation of polymer clay nanocomposites 

Since the first experiments of Toyota, clay-polymer nanocomposites are of large interest in 

research and industry. In this pioneering work, a mixture of ε-caprolactam and montmorillonite, 

which was organophilized by the intercalation of a ω-amino acid, was polymerized in-situ 

resulting in exfoliated clay layers within Nylon 6.[49] Contrary, melt compounding of Nylon 6 

with montmorillonite resulted in clay aggregates.[50] This work shows the importance of the 

preparation method of nanocomposites and of the organophilization of clay.  

The most important preparation methods for polymer clay nanocomposites are the following 

three: the already mentioned in-situ polymerization, melt compounding and solution 

blending.[51] For in-situ polymerization, clay is dispersed in a monomer which swells the 

interlayer (usually in the crystalline swelling regime). Then, polymerization is initiated and 

takes place inside and outside the clay layers. During polymerization, individual clay layers are 

pushed apart resulting in larger layer separations up to single clay layers.[52] Depending on the 

monomer, this method can be done with or without organic modification of the clay.[52] Mixing 

clay with liquid pre-polymers which are cross-linked afterwards is in close relation to this 

method.[53-54] 

Melt compounding involves dispersion of clay in a polymer melt. This is only possible for 

polymers that have a melt or glass temperature below the decomposition temperature. 

Furthermore, if the clay was modified previously, this organic modifier has to be stable at high 

temperatures. The polymer melt can be extruded in several forms (e.g. by injection molding) 

enabling various applications which makes this method interesting for industry.[52, 55] However, 

one disadvantage of this method is that clay is applied in a dry state and thus, remains in band-

like aggregates which cannot be disaggregated by shear forces during melt compounding.[56] 

This problem is overcome in solution blending. Here, a clay dispersion is mixed with a polymer 

solution in the same solvent.[57] Afterwards, the solvent is removed resulting in a 

nanocomposite. In this method, clay is introduced in dispersion which reduces the amount of 

band-like aggregates and thus, gives a better dispersion in the polymer matrix later.[56]  

In general, the interfacial tension between filler and matrix has to be similar to get a good 

dispersion. If a polymer is water soluble, pristine hydrophilic clay can be used. For example, 

hectorite polyvinylpyrrolidone (PVP) nanocomposites could be produced by spray coating of a 

suspension of delaminated NaHec and PVP in water.[58] The resulting films consisted of highly 

ordered Bragg stacks made from the two alternating components. Other examples of 



3 Introduction 

14 

nanocomposites with hydrophilic pristine clays were made with poly (vinyl alcohol),[59] glycol 

chitosan,[11] or poly (ethylene glycol).[60]  

However, a lot of polymers are not water soluble and therefore, clays need to be organophilized 

to render the surface hydrophobic and to ensure a good compatibility with the matrix. Therefore, 

inorganic interlayer cations are exchanged against organic cations.[61] In commercial 

organophilic clays, this is often done by quaternary alkyl ammonium compounds containing 

(hydrogenated) tallow groups.[62-63] Furthermore, custom-made modifiers are used in research 

to improve the compatibility between filler and matrix.[64] Modifiers that are chemically similar 

to the matrix can provide an excellent dispersion of the filler in the matrix resulting in almost 

no clay stacks.[65] If nanocomposites are prepared by in-situ polymerization, a strong interaction 

between clay and polymer can be achieved if clay is modified with an organo-cation which can 

be polymerized. For example, ammonium compounds with acrylate groups were used for 

modification.[66-68] Moreover, in-situ polymerization can be initiated from the clay surface. 

Therefore, azo-compounds[69-70] or peroxides[71-72] with one or two cationic ammonium groups 

were used as modifier. With this method, even controlled polymerizations like atom transfer 

radical polymerization[15, 73] or reversible addition-fragmentation chain transfer 

polymerization[74] are possible.  

 

3.2.2 Properties and application of polymer clay nanocomposites 

Mechanical reinforcement 

For the reinforcement of polymers by the incorporation of fillers, the mechanics of the filler is 

of crucial importance. Due to the anisotropic shape of the clay layers, the mechanical properties 

are anisotropic as well. The in-plane modulus of single NaHec layers was determined by a 

wrinkling method.[75] Therefore, single clay layers were deposited on a stretched substrate. 

Upon relaxation of the substrate, NaHec formed wrinkles which allowed for the calculation of 

the in-plane modulus (142 GPa). If NaHec is not present as a single layer but as double layer, 

the in-plane modulus is increased to 171 GPa.[76] Similar values were reported for the in-plane 

moduli of micas (2:1 layered silicates with non-hydrated cations).[77-78] The cross-plane 

modulus of NaHec is significantly smaller as determined by Brillouin light spectroscopy 

(25 GPa).[58] 

Polymers generally exhibit several important mechanical parameters including Young’s 

modulus, tensile strength, elongation at break and toughness. Often, mechanical parameters are 

determined by a tensile test where a test specimen is stretched applying a constant strain rate. 



3 Introduction 

  15 

The Young’s modulus E is then determined by the quotient of the change in tensile stress Δσ 

and the change in strain Δε in the linear regime at the beginning of the test:[79]  

 
E=

Δσ

Δε
 (3) 

Especially the Young’s modulus can be improved if clay is used as filler. In polymer clay 

nanocomposites, the applied stress can be transferred to the filler which has a higher modulus 

than the matrix. One model to predict the increase in modulus is the Halpin-Tsai-theory 

(eq. (4)).[80-81] Thereby, the modulus of the composite Ec is dependent on the moduli of filler Ef 

and matrix Em, the volume fraction of the filler ϕ, its aspect ratio α and a factor η which is 

defined in eq. (5). 

 Ec

Em
=

 1 + 2 ∙0.66 · α · η · ϕ
1 - η · ϕ  (4) 

 

η=

Ef

Em
 - 1

Ef

Em
 + 2 ∙ 0.66 · α

 (5) 

From eq. (4), it is clear that the aspect ratio is a crucial factor determining the reinforcement of 

nanocomposites (Figure 3A). For example, at a filler content of 0.05, increasing the aspect ratio 

from 100 to 20000 increases the modulus of about 20%. Thus, maximizing the aspect ratio by 

delaminating clay into single layers by repulsive osmotic swelling can achieve the best 

reinforcement. Furthermore, the relative reinforcement that is possible at a given volume 

fraction and aspect ratio strongly depends on the modulus of the matrix (Figure 3B). Softer 

polymers like polyethylene (0.1 – 0.7 GPa[82]) can be greater reinforced than stiffer polymers 

like poly(methyl methacrylate) (PMMA, 2.5 – 3.3 GPa[82]). 

 

Figure 3: Reinforcement effect of clay in nanocomposites depending on the aspect ratio (A) and the matrix 
modulus (B) according to Halpin-Tsai (Ef = 142 GPa; A: Em = 3.5 GPa; B: α = 20000). 
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In the early works of Toyota, tensile strength and modulus of Nylon 6 could by significantly 

enhanced with only 5 wt.-% montmorillonite.[50] However, these composites suffered from 

reduced elongation at break. For brittle polymer matrices like PMMA, the incorporation of 

nanofillers usually results in an increased modulus, but in decreased values for strength, strain 

and toughness.[83-84] However, the incorporation of a synthetic mica-like clay with a tailored 

surface modification led to PMMA nanocomposites with increased modulus and toughness 

while preserving the tensile strength which was not possible with a commercial organoclay.[85] 

Thus, it is obvious that the surface modification and consequently the dispersion quality is 

crucial for successfully improving the mechanical properties of polymer clay nanocomposites.  

 

Barrier properties 

Another important benefit of polymer clay nanocomposites is an improved gas barrier. The key 

parameter that describes the barrier properties of a material is the permeability P. In general, 

the permeability can be expressed by the product of diffusivity D and solubility S:[86] 

 P = D · S (6) 

Thus, the higher the solubility of the permeate in the matrix is, the worse the barrier is. The 

diffusivity can be reduced by the incorporation of clay. Inorganic clay platelets are assumed to 

be impermeable.[87] Nielsen described that the diffusion path for permeate molecules is 

significantly prolonged by increasing tortuosity (Figure 4A and B).[88] One modification of his 

approach which provides realistic values was made by Cussler (eq. (7)).[87, 89] 

 
Prel = 

Pc

P0
 = �1 + μ α 2 ϕ2

1 - ϕ �
-1

 (7) 

Here, Prel is the relative permeability, Pc and P0 are the permeability of the composite and the 

neat matrix polymer, respectively, µ is a geometrical factor (4/9 for hexagonal platelets), α is 

the aspect ratio and ϕ the volume fraction of the filler. The permeability is mainly dependent 

on the aspect ratio of the clay platelets and the filler content. Increasing the aspect ratio 

improves the barrier properties significantly (Figure 4C). Thus, a good dispersion in ideally, 

single clay sheets in the polymer matrix is crucial.  
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Figure 4: A, B: Diffusion pathways of a permeate through a polymer and a polymer clay nanocomposite, 
respectively. C: Relative permeability according to Cussler’s model in dependency on the aspect ratio and the 
volume fraction of the platy filler. 

Various examples of polymer clay nanocomposite films with superior barrier against water 

vapor,[90-91] oxygen[12, 92] or helium[93-94] were reported. One important application for barrier 

films is food packaging.[62] A nanocomposite coating of glycol chitosan and NaHec on 

polylactic acid provided excellent barrier against oxygen and is at the same time 

biodegradable.[11] Another important application is the protection of (opto)electronic devices 

with films that show high barrier properties against water vapor and oxygen.[53]  

Not only barrier properties of flat films are important but also of microcapsules. Usually, 

microcapsules are used to encapsulate active materials like drugs, fragrances, flavors or reactive 

substances.[95-96] This is often done with the purpose of protecting the active material from 

chemical reactions or to control their release. Similar to flat films, the barrier properties of 

microcapsules can be enhanced by the incorporation of clay.[97-99] For example, poly(urea 

formaldehyde) microcapsules showed sustained release of dimethyl phthalate with 

montmorillonite as filler.[98] This observation is attributed to the fact that clay can block pores 

in the capsule wall but also to the increased tortuosity.  
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3.2.3 Polymer nanocomposite foams 

In general, foams are materials in which a gas is dispersed in a solid or liquid matrix.[100] This 

chapter focuses on solid polymer foams which means that the gas is dispersed in a polymer 

matrix. Polymer foams find applications in many areas like lightweight constructions, 

insulation or cushioning.[1] However, they often suffer from bad flame retardancy or bad 

mechanical properties. Solid foams are generally divided into two groups: closed-cell foams 

and open-cell foams (sometimes also called sponges or porous solids).[101] In closed-cell 

polymer foams, the cells are separated from each other by polymer walls. This makes these 

foams useful for thermal insulation.[1] In contrast to that, cells in open-cell foams are 

interconnected with each other. Therefore, these foams find applications in sound insulation. 

Furthermore, they can absorb liquids as their pores are accessible.[102]  

 

For many applications, for instance cushioning, the compression properties of foams are 

decisive. These are often measured by compressing a test specimen by a constant strain rate. 

Analogous to the Young’s (tensile) modulus, the compression modulus is determined by the 

quotient of the change in compression stress Δσ and the change in strain Δε in the linear regime 

at the beginning of the test (eq. (3), Figure 5). Another key parameter is the yield stress or elastic 

collapse σYS where the struts begin to buckle which results in a plateau of the stress-strain curve 

(Figure 5). The curve rises again when the foam is densified.[101] 

 

Figure 5: Exemplary stress strain curve of an elastomeric foam upon compression.  

One of the most important parameters determining the foam mechanics is the relative density 

ρrel which can be calculated by dividing the apparent foam density ρ by the density of the 

corresponding solid bulk polymer ρs:[101] 
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ρs

 (8) 
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Several attempts have been made to find a relationship between the relative density and the 

foam mechanics. One of the simplest models to calculate the compression modulus and the 

elastic collapse of elastomeric foams (eq. (9) and (10)) was made by Gibson and Ashby.[101] 

Here, E and Es are the moduli of the foam and the solid bulk polymer, respectively. 

 E

Es
= ρrel

2  (9) 

 σYS

Es
=0.05 · ρrel

2  (10) 

In these equations, it is assumed that the foam mechanics are solely determined by the foam 

density and the polymer material. Concomitantly, the foam morphology is uniform and has no 

influence on the mechanics. However, simulations showed that a foam is weaker if irregularities 

are observed.[103-104]  

 

Polymer foams can be made in several ways. One of the most important class of polymer foams 

are polyurethanes. They are made by polyaddition of diisocyanates and diols. If water is added, 

it reacts with isocyanates producing carbon dioxide which foams the polymer.[102] Incorporation 

of clay in such foams has two opposing effects. On the one hand, clay acts as nucleation agent 

which promotes smaller cells and on the other hand, adsorbed water acts as (additional) blowing 

agent which leads to larger cells.[105] While for small clay amounts the nucleation effect 

prevails, the effect of adsorbed water dominates for larger amounts.[106] Moreover, clay could 

improve the compressive properties of the foams.[105-107] 

Furthermore, polymer foams can be made by addition of a blowing agent like pentane or carbon 

dioxide to a polymer melt.[102] In this way, a large variety of polymers can be foamed. Again, 

clay in such foams can reduce the cell size.[108-109] Furthermore, the mechanical properties and 

flame retardancy could be improved.[110] 

Another attractive way to produce polymer foams is the use of high internal phase emulsions 

(HIPE) as templates.[111] In general, emulsions consist of immiscible liquids (usually water and 

oil) and (at least) one liquid is dispersed as droplets in a second continuous liquid (for 

stabilization of emulsions see chapter 3.3.1). By definition, in a HIPE, the internal phase 

exceeds 74 vol.-%. This is the volume fraction of close packing spheres. Thus, in a HIPE, the 

internal phase is present as polydisperse or polyhedral droplets.[112] To use HIPEs as templates 

for foams, the external phase needs to be polymerizable. For the foam preparation, firstly, the 

internal phase is added to the stirred external phase. To ensure emulsification, the external phase 

usually contains surfactants. Then, the external phase is polymerized resulting in a wet foam 

which then, can be washed and dried (Figure 6).[112] Polymerization can be initiated from the 
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internal or the external phase and this is often done by a thermal radical initiator. During 

polymerization, volume shrinkage of the external phase occurs. This shrinkage is not 

macroscopic, but internal which leads to ruptures of the thin monomer films between 

droplets.[113] Thus, most foams made via HIPEs are open-cell foams. However, to achieve this, 

two parameters are important: volume fraction of the internal phase and surfactant 

concentration, whereas the latter is more significant.[114] High surfactant concentrations are 

necessary to get open-cell foams which is related to thinner monomer films between the 

droplets.[112] Another important factor determining the morphology is the salt concentration in 

the internal aqueous phase. Higher salt concentrations produce smaller cells.[115] Moreover, 

higher stirring speeds also reduce the cell size.[116-117] Foams based on HIPEs can be made from 

oil-in-water or water-in-oil emulsions. For water-in-oil emulsions, the oil phase often consists 

of styrene as monomer and divinylbenzene as cross-linker.[112] However, (meth)acrylates and 

other monomers can also be used.[118-120]  

 

Figure 6: Scheme of the preparation of foams based on HIPEs: To the stirred oil phase, the aqueous phase is added 
resulting in a HIPE, then the oil phase is polymerized and the resulting foam is washed and dried.  

The properties of foams based on HIPEs can be adjusted in several ways which makes them 

useful for many applications like filtration media, catalyst supports or absorbent materials.[121-

124] One way is the application of monomers with functional groups followed by post-

modification of the foam. For instance, monomers with amino groups can be used to graft poly 

peptides to the foam. These foams have a pH-sensitive hydrophilicity and can be used for 

bioconjugations.[125] Another way to adjust foam properties is the incorporation of fillers. Silica 

nanoparticles can significantly enhance the compression modulus and the crush strength of 

foams.[126] 

Nanoparticles cannot only be used for reinforcement but also as Pickering emulsifiers 

(chapter 3.3.1) for the HIPE.[123, 127] However, open-cell foams are difficult to realize when 

nanoparticles are the only emulsifier.[128] Nanoparticles at the water-oil-interface act like a 

barrier preventing the thin monomer films to rupture. This can be avoided by using an additional 

molecular surfactant.[129]  
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As clay is able to reinforce bulk polymers, it is also applied in foams based on HIPEs to improve 

the mechanical properties. Therefore, clay can be dispersed in the internal or in the external 

(monomer) phase. For the latter case, the polymerization of the HIPE can be considered as in-

situ polymerization (chapter 3.2.1).  

Applying a commercial organophilized montmorillonite in foams made from styrene, 

divinylbenzene and acrylonitrile resulted in smaller cell sizes indicating that clay can act as co-

surfactant.[130] However, for most composite foams, the Young’s modulus was decreased 

compared to the unfilled foam. A decreasing cell size was not only found for organophilized 

montmorillonite, but also for sodium montmorillonite added in the aqueous phase of water-in-

oil HIPEs.[120, 131] 

As mentioned in chapter 3.2.1, a stronger binding between clay and matrix can be achieved by 

modifying the clay surface with a reactive compound. These clay materials are able to improve 

foam mechanics and can lead to smaller cell sizes.[132-133] Lépine et al. modified 

montmorillonite with an ammonium compound bearing a vinylbenzyl group.[134] This clay 

material was able to significantly increase the Young’s modulus of polystyrene foams. In 

contrast, sodium montmorillonite applied through the aqueous phase had no impact on the foam 

properties. 

In summary, applying clay in nanocomposite foams based on HIPEs to improve its mechanics 

has some crucial factors. To ensure a good dispersion of clay in the monomer and later in the 

polymer matrix, appropriate modification is of great importance. Furthermore, there a two ways 

in which clay can affect the foam mechanics. On the one hand, clay can reinforce the polymer 

similar to a Halpin-Tsai mechanism. On the other hand, a co-surfactant effect of clay cannot be 

ruled out. This can change the foam morphology which itself has a large impact on the 

mechanical properties.[103, 135]  
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3.3 Pickering emulsions 

3.3.1 General aspects of Pickering emulsions 

Emulsions are dispersions of at least two immiscible liquids (usually water and oil) and find 

many applications in daily life as detergents, cosmetics or in the textile industry.[136] In an 

emulsion, the internal phase is dispersed as droplets in the external continuous phase. To 

stabilize these droplets, often molecular surfactants are used. Such molecules exhibit a 

hydrophilic and a hydrophobic part which allows them to mediate between water and oil phase. 

However, the surfactants are not fixed at the water-oil-interface but they are moving between 

different droplets.[100] 

For more than 100 years, it is known, that not only molecular surfactants are able to adsorb at 

a water-oil-interface, but also solid particles.[137] Particle stabilized emulsions are named after 

Spencer U. Pickering who published the first paper on this topic.[138] To obtain stable Pickering 

emulsions, parameters like the size and shape of the particles and their wettability are important. 

The latter can be expressed by the contact angle θ. (Figure 7A).[100] 

Driving force for particles to adsorb at an interface is the reduction of interfacial tension. 

Concomitantly, moving a particle with radius R from the interface (Figure 7A) completely into 

one phase (e.g. water, Figure 7B) costs energy. This process generates new interfaces between 

water and particle (AWP) and between oil and water (AOW). Simultaneously, the interface 

between oil and particle (AOP) is displaced (Figure 7A).  

 AWP = 2πR2( 1 - cosθ ) (11) 

 AOW = πR2(1 - cos2 θ ) (12) 

 AOP = 2πR2( 1 - cosθ ) (13) 

Neglecting gravitational forces, the energy difference can be calculated as follows.[100]  

 ΔG = AOWγOW + AWPγWP - AOPγOP 

= R2πγOW �1 - cosθ�2 (14) 

Here, γ is the interfacial tension between two phases (oil, water or particle). Analogous, the 

energy that is necessary to detach a particle from the interface into the oil phase is determined 

by eq. (15). 

 ΔG= R2πγOW �1 + cosθ�2 (15) 

From eq. (14) and (15) it is clear, that the wettability of the particles is essential for stabilizing 

an interface. If the particles are very hydrophilic (θ ≪ 90°) or very hydrophobic (θ ≫ 90°), they 

can easily be removed from the interface and will be immersed in the water or in the oil phase, 

respectively (Figure 7C). Thus, an intermediate wettability with a contact angle around 90° is 



3 Introduction 

  23 

desired for stabilizing Pickering emulsions. Then, the energy that is required to remove particles 

from the interface is usually orders of magnitude larger than the thermal energy.[139] 

Consequently, particles located at a water-oil-interface can be assumed to be irreversible 

trapped and coalescence is prevented much better than in emulsions stabilized by molecular 

surfactants.[140] 

Figure 7: A: Particle at the water-oil-interface. B: Particle completely immersed in the water phase. C: Energy 
which is necessary to remove a particle from the interface in dependency on the contact angle θ. 

The wettability of the particles not only determines their stability at the interface but also which 

kind of emulsion is formed.[139] If particles are slightly hydrophilic (θ < 90°), water is the 

continuous phase (Figure 8A). Contrary, if particles are better wetted by the oil phase (θ > 90°), 

a water-in-oil emulsion is formed (Figure 8B). 

Figure 8: Slightly hydrophilic particles stabilizing an oil-in-water emulsion (A) and slightly hydrophobic particles 
stabilizing a water-in-oil emulsion (B). 
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3.3.2 Clay Pickering emulsions 

Besides spherical particles, two-dimensional particles can also be used to stabilize Pickering 

emulsions. The most prominent examples for such particles are layered silicates and graphene 

oxides.[141] Contrary to isotropic, spherical particles (Figure 9A), two-dimensional, anisotropic 

particles can theoretically have different orientations at the interface. However, due to their 

large aspect ratio, the energetically favored orientation is parallel to the interface 

(Figure 9B).[142] Neglecting the edges, the energy required to detach a platelet (with the surface 

area A) from the interface is given by eq. (16).[143] 

 ΔG =AγOW (1 ± cosθ) (16) 

Analogous to spherical particles, the stability of platelets at an interface is strongly dependent 

on the wettability. Again, a contact angle close to 90° is desired. Due to their parallel alignment 

to the interface, platelets (or discs like in Figure 9B) desorb less likely from the interface than 

spheres with the same diameter (Figure 9C).[141, 144] 

Figure 9: Sphere (A) and disc (B) with the same diameter located at the interface and the corresponding energy 
(C) that is necessary to detach them from the surface. 

Pure layered silicates are very hydrophilic and are not able to stabilize emulsions. However, if 

high salt concentrations are added, the repulsive forces between the layers are screened, the zeta 

potential is lowered and the clay layers aggregate. Ashby and Binks found that concentrations 

of 0.1 M NaCl and 1.5 – 3.5 wt.-% Laponite (a synthetic smectite with a diameter of about 

30 nm) were necessary to produce stable toluene-in-water emulsions.[145] At these 

concentrations, Laponite effectively covered the interface and prevents coalescence. However, 

a further increase of the NaCl concentration (0.5 M) resulted in larger clay aggregates which 

were less efficient in adsorbing at the interface and the emulsions underwent coalescence.[146] 

The oil droplet size was independent of the clay concentration but highly dependent on the oil 

volume fraction.[145] Whereas these emulsions were made with aggregated clay, stable 
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emulsions could also be produced from clay in a gel-like state. In this state, clay particles form 

interconnected networks in water. Then, the oil droplets are not only stabilized by clay at the 

interface but also by the incorporation in the network.[147] 

 

Accumulation of clay at a water-oil-interface cannot only be achieved by increasing salt 

concentration but also by adding nonionic co-surfactants like glycerol monostearate or deca 

(ethylene glycol) hexadecyl ether.[148] Another option to produce clay Pickering emulsions 

involves modified clay platelets. The wettability of the anionic clay surface can be adjusted by 

an organic cation. The choice and the amount of modifier plays a significant role on the type of 

emulsion. This can be seen particularly when modifying montmorillonite with 

cetyltrimethylammonium bromide (CTAB).[149] Adsorption of small amounts of CTAB renders 

the montmorillonite surface slightly hydrophobic which allows the stabilization of oil-in-water 

emulsions. Increasing the amount of CTAB increases the surface hydrophobicity which results 

in a phase inversion to water-in-oil emulsions. When so much CTAB is added that it forms 

bilayers on the clay surface, the particles become hydrophilic and the emulsion is again oil-in-

water type.  

Compared with CTAB, more stable oil-in-water emulsions could be made with a more 

hydrophilic quaternary ammonium compound.[150] However, a salt concentration of at least 

0.01 M NaCl was necessary to avoid phase separation. Similar to the Laponite stabilized 

emulsions, salt is necessary to screen repulsive forces and triggers clay aggregation at the 

interface. Furthermore, in these emulsions it was shown that clay stacks of four layers lie 

parallel to the interface whereas a significant amount of clay is still dispersed in the continuous 

water phase. That the dispersion of modified clay and its network formation in the continuous 

phase can have a benefit on the emulsion stability was also shown when montmorillonite was 

modified with short chain amines.[151]  
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3.3.3 Encapsulation in Pickering emulsions 

One possible application of Pickering emulsions is encapsulation. For instance, encapsulation 

of volatile substances requires sustained release. It was shown that volatile oils (present as 

droplet phase) evaporated slower from Pickering emulsions than from conventional 

emulsions.[152] The particles at the interface created a barrier for the oil. This barrier could be 

further improved if the particles at the interface were compressed to a dense film.  

Furthermore, two-dimensional graphene oxide as Pickering emulsifier showed better barrier 

properties compared to spherical particles.[144] Multiple layers of graphene oxide generate 

tortuosity comparable to nanocomposite films (chapter 3.2.2). 

Moreover, Pickering emulsions can be used to prepare colloidosomes by connecting the 

particles at the interface resulting in a capsule.[153] This can be done for example by chemical 

cross-linking, thermal annealing or physical complexation.[153-154] Colloidosomes can be used 

to encapsulate for instance dyes, drugs or enzymes.[155-157] Montmorillonite and Laponite are 

both able to stabilize oil-in-water emulsions when they were modified with poly(ethylene 

imine) (PEI). Subsequent crosslinking of PEI with a diglycidyl ether provided the formation of 

colloidosomes.[158-159] However, dye release studies showed that the resulting shell was 

disordered and thus, highly permeable.[159]  
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3.4 Scope of the thesis 

Applying two-dimensional fillers in polymers offers beneficial properties like improvement in 

barrier or mechanics. Synthetic NaHec obsesses superior charge homogeneity which allows for 

osmotic swelling in water resulting in single 1 nm thick layers. Thus, it has a high aspect ratio 

which makes NaHec an ideal filler in composites for various applications. Osmotic swelling of 

NaHec is only known in water or aqueous solutions of organic solvents with high water content 

(> 35 vol.-%). However, many polymers are not soluble in such mixtures. To enable the 

fabrication of polymer clay nanocomposites without modifying the clay surface, polymer and 

clay need to be dispersed in the same solvent system. Consequently, there is a demand for 

solvent systems that contain as less water as possible but still offer osmotic swelling. Such 

systems were investigated in chapter 6.1. Here, three solvents which are completely miscible 

were combined.  

Moreover, the combination of immiscible solvents also provides interesting applications. For 

example, HIPEs with a polymerizable continuous phase can be used as templates for polymer 

foams. The mechanical properties of polymer foams with a certain density mainly depend on 

two aspects: the mechanics of the foam material and the foam morphology. Thus, the dispersion 

of clay in the continuous phase of a HIPE can in principle have different impacts on the resulting 

foam. On the one hand, clay can enhance the mechanical properties of the strut material. On the 

other hand, clay is a surface active material and can influence the emulsion stability which in 

turn can affect the foam morphology. In chapter 6.2, the influence of two clay fillers on the 

mechanics and the morphology of foams was investigated. Therefore, a synthetic hectorite 

which was modified with a custom-made organo-cation was compared with a commercial 

organophilized montmorillonite.  

Another important application of emulsions are fragrance-in-water emulsions. Thereby, 

unselective release of different fragrances is desirable to maintain the fragrance composition. 

Since clays are surface active materials, they can be used to stabilize emulsions by a Pickering 

effect. Furthermore, clay significantly improves the barrier properties of polymer films which 

makes them suitable candidates for encapsulation of volatile substances. Thus, clay was fixed 

with polycationic PEI at the interface to produce hybrid capsules. The release of a fragrance 

mixture thereof was explored in chapter 6.3.  
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4 Synopsis 

This thesis contains three publications dealing with hectorite in different liquid mixtures which 

can be used for the fabrication of nanocomposites (Figure 10). 

For many applications, delaminated layers with a maximized aspect ratio are important. For an 

easy fabrication of nanocomposites, delamination of NaHec in a solvent that also dissolves the 

desired (hydrophobic) polymer is preferable. One step in this direction is described in 

chapter 6.1. Here, the swelling of NaHec in different ternary mixtures was investigated looking 

for compositions with a low water content that allow for osmotic swelling.  

In the other two publications, emulsions are used to fabricate nanocomposites. In chapter 6.2, 

a high internal water-in-oil emulsion was used as template to synthesize polymer foams. 

Modified hectorite was applied as filler to enhance the mechanical properties. Furthermore, its 

influence on the foam morphology was investigated.  

In chapter 6.3, the Pickering effect of hectorite layers was used to stabilize fragrance-in-water 

emulsions. NaHec and PEI were combined at the interface to form hybrid capsules. The release 

of volatile substances from these capsules was investigated.  

Figure 10: Schematic representation of the three topics of this thesis.  
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4.1 Swelling of sodium hectorite in ternary solvent mixtures 

For many applications of polymer clay nanocomposites, clay with a high aspect ratio is of great 

importance. NaHec spontaneously delaminates in water by osmotic swelling resulting in 

nanoplatelets with an aspect ratio of about 20000. This allows for an easy synthesis of 

nanocomposites consisting of water soluble polymers with perfectly delaminated hectorite 

platelets. However, many polymers are not water soluble which demands for delamination by 

osmotic swelling in organic media or their aqueous mixtures.  

Swelling of NaHec in three different ternary mixtures was investigated. Therefore, NaHec was 

swollen in defined mixtures of three solvents for five days to reach equilibrium. Gel-like 

samples were further analyzed by SAXS to prove delamination. Samples with sediments were 

analyzed by X-ray diffraction to prove for crystalline swelling. 

The first ternary mixture consisted of methanol, water and acetonitrile. In previous studies, it 

was shown that NaHec swells osmotically in aqueous acetonitrile up to 65 vol.-% acetonitrile 

(chapter 3.1.3). For higher acetonitrile contents, only crystalline swelling could be observed. In 

aqueous methanol, only 15 vol.-% methanol was allowed to achieve osmotic swelling. In 

ternary mixtures, less water was necessary for osmotic swelling of NaHec (Figure 11A). The 

lowest water content of 10 vol.-% was found at 70 vol.-% methanol and 20 vol.-% acetonitrile. 

Unexpectedly, this composition contains more methanol than acetonitrile although methanol 

needs more water in binary aqueous mixtures than acetonitrile to set in osmotic swelling.  

In the next mixture, ethylene glycol was used instead of methanol as it is well-known for its 

intercalation in smectites (chapter 3.1.3). In aqueous ethylene glycol less water was necessary 

for osmotic swelling compared with aqueous methanol. Again, in a ternary mixture with 

acetonitrile, less water was necessary for osmotic swelling compared to the corresponding 

binary aqueous mixtures (Figure 11B). However, applying ethylene glycol-water-acetonitrile, 

the lowest water content was higher (17 vol.-%) than in the mixture of methanol-water-

acetonitrile.  

In a third mixture, glycerol carbonate was used in combination with water and methanol. 

Glycerol carbonate is not only a solvent but also a potential monomer which can be 

polymerized. This ternary mixture exhibited the largest area of osmotic swelling in the phase 

diagram (Figure 11C). Two mixtures were found that allowed for osmotic swelling without any 

water added. Only the interlayer water applied through the 1 WL hydrate was present. 
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Figure 11: Phase diagrams of NaHec swollen in different ternary solvent mixtures (A: methanol-water-acetonitrile, 
B: ethylene glycol-water-acetonitrile, C: methanol-water-glycerol carbonate). Black: crystalline swollen, purple: 
crystalline and osmotically swollen NaHec coexist, blue: osmotically swollen. (Reprinted with permission from 
reference[160]. Copyright (2020) American Chemical Society.) 

In literature, several attempts were made to explain swelling of clays with organic molecules 

(chapter 3.1.3). However, parameters like Hildebrand solubility parameter, relative 

permittivity, or Gutmann donor number showed no correlation with the minimum water content 

that was necessary for osmotic swelling in binary mixtures of water with acetonitrile, methanol, 

ethylene glycol or glycerol carbonate. Indeed, a correlation with the dipole moment was found: 

less water was necessary if the dipole moment of the organic solvent was larger. However, this 

correlation could not be transferred to ternary systems. 

Furthermore, a quantitative study of the swelling in one exemplary solvent mixture (44 vol.-% 

methanol, 12 vol.-% water, 44 vol.-% acetonitrile) was done. NaHec was osmotically swollen 

in this mixture at different volume ratios. The swelling behavior in this mixture was similar to 

the swelling in pure water (chapter 3.1.2) showing two regimes. At high NaHec contents 

(ϕ > 0.05), the distance between adjacent platelets scaled with ϕ-1 indicating quantitative 

osmotic swelling. For ϕ < 0.05, the distance scaled with ϕ-0.5.  

The results showed that osmotic swelling of NaHec is possible with only small water contents 

applying ternary solvent mixtures. Although the swelling behavior in ternary mixtures could 

not be explained, the reduction of water amount that is necessary for osmotic swelling may ease 

the synthesis of nanocomposites with polymers that are not soluble in water.  
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4.2 Polymer clay nanocomposite foams made via high internal phase emulsions 

Layered silicates are often used as fillers in polymer clay nanocomposites to enhance the 

mechanical properties. One interesting material class are polymer foams made from high 

internal phase emulsions (HIPE). Therefore, the continuous phase of the emulsion consists of 

polymerizable molecules and accounts for less than 26 vol.-%. In this work, water-in-oil 

emulsions were made where the oil phase contained 2-ethylhexyl acrylate and ethylene glycol 

dimethacrylate. Polymerization of the emulsion yielded open-cell foams with relative densities 

between 4 and 7 %. Compression tests showed that the moduli of these foams strongly 

depended on the foam density (E ~ ρrel
3.2). For the preparation of nanocomposites, hectorite 

platelets with a diameter of 0.2 µm were modified with a custom-made oligomeric organo-

cation (poly (2-ethyl hexyl methacrylate), PEHMA) which was similar to one of the monomers. 

The modified hectorite (HecPEHMA) was transferred from tetrahydrofuran to the oil phase 

without drying to avoid aggregation of the platelets. HecPEHMA was applied at 0.5 – 2 wt.-% 

and in all cases, open-cell foams could be achieved. With 0.5 % HecPEHMA, foam mechanics 

did not change compared to the unfilled foams. However, with only 1 and 2 % HecPEHMA, 

the compression moduli could be significantly enhanced (Figure 12). Like in the unfilled foams, 

the mechanics of these foams strongly depended on their relative densities. However, the 

dependency changed to E ~ ρrel
1.4-1.6. This resulted in a more pronounced strengthening at lower 

relative densities. The compression moduli of foams with a relative density of about 4 % could 

be doubled with only 1 % HecPEHMA and increased up to four times with 2 % HecPEHMA. 

This increase is significantly larger than what would be expected applying Halpin-Tsai theory 

which indicates that it is not or not only due to a reinforcement of the struts.  

 

Figure 12: Compression moduli depending on the relative density (black: no filler; grey: 0.5 % HecPEHMA, blue: 
1 % HecPEHMA, red: 2 % HecPEHMA; numbers next to the triangles represent slopes in double-log plot). 
(Reprinted with permission from reference[161]. Copyright (2020) John Wiley and Sons.) 
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In addition to HecPEHMA, a commercial organophilized montmorillonite (O-MMT) with a 

similar size was used as filler for comparison. However, applying 1 % O-MMT did not change 

the mechanics and 2 % O-MMT led to a significant weakening of the foams. The difference 

between the two fillers may be due to their different surface modification (custom-made 

oligomeric organo-cation vs. alkyl ammonium).  

To investigate the strengthening mechanism of HecPEHMA in the foams, the influence of 

HecPEHMA on bulk polymer plates of the same composition was investigated. Furthermore, a 

detailed analysis of the foam structures was made.  

The mechanics of polymer plates without filler and with 2 % HecPEHMA were compared. In 

tensile tests, the nanocomposite showed lower values of tensile strength, strain at break and 

Young’s modulus compared to the unfilled polymer. This indicates that HecPEHMA is not able 

to reinforce the polymer struts in the foams and foam strengthening has to have another reason. 

In general, the foam structure can crucially influence the mechanics. Therefore, scanning 

electron microscopy (SEM) images of an unfilled foam and a foam with 2 % HecPEHMA were 

compared. It was shown that the composite foam had larger cells, larger windows (between the 

cells) and thicker struts. Furthermore, the unfilled foam had a more inconsistent structure. This 

means that there were different regions with locally different densities (Figure 13A). In contrast 

to that, the foam with 2 % HecPEHMA had a more consistent structure (Figure 13B). 

Figure 13: SEM images of an unfilled foam (A) and a foam with 2 % HecPEHMA (B). (Reprinted with permission 
from reference[161]. Copyright (2020) John Wiley and Sons.) 

From these results, it was concluded that the increase in foam mechanics was due to an 

improvement in foam structure. This is most likely caused by a Pickering effect of HecPEHMA. 

Clay platelets can lie at the oil-water-interface enhancing the emulsion stability. The custom-

made modifier is chemically similar to the monomers and thus may provide better Pickering 

efficiency than O-MMT.  
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4.3 Sustained release of fragrances from clay Pickering emulsions 

Emulsions of volatile fragrances are important for applications like cosmetics or detergents. For 

this, the emulsions should encapsulate the fragrances and provide sustained release. As polymer 

clay nanocomposite films offer excellent barriers against gas molecules (chapter 3.2.2), it looks 

encouraging to use clay for the encapsulation of fragrances. Pure hectorite (Hec) is too 

hydrophilic to stabilize emulsions. Therefore, it was modified with poly(ethylene imine) (PEI). 

As the polycationic PEI would instantly lead to uncontrolled flocculation of Hec, the 

modification was done quasi in-situ. Therefore, Hec was dispersed in water and mixed with the 

oil phase. During mixing, a PEI solution was added to fix Hec as multilayer stacks at the 

interface. Whereas the ratio between Hec and oil phase was constant, the mass ratio between 

PEI and Hec was varied between 0.5 and 1.25. For comparison, an emulsion only with PEI was 

made. All Hec/PEI Pickering emulsions showed good stability as no creaming or phase 

separation was observed. Furthermore, the droplet size did not change within two weeks. The 

emulsions with PEI:Hec = 0.75 – 1.25 all had similar droplet diameters of 18 – 23 µm whereas 

PEI:Hec = 0.5 resulted in lager droplets with a mean diameter of 58 µm. Contrary to the 

Pickering emulsions, the emulsion stabilized only with PEI creamed and a significant amount 

of larger droplets was observed after two weeks.  

To investigate the barrier properties of the Hec/PEI hybrid capsules, a mixture of five fragrances 

was applied as oil phase. Citronellol has a relatively low vapor pressure and its amount is 

therefore assumed to be constant. It is used as a reference for the other fragrances (eucalyptol, 

limonene, α-pinene and ethyl-2-methylbutyrate). While shaking in an open vial, the 

composition of the emulsions was determined by 1H nuclear magnetic resonance spectroscopy 

every two days. The fragrances differ in their vapor pressures and in their water solubility. In 

the emulsion solely stabilized by PEI, all volatile fragrances were released after ten days. 

Thereby, the release order was determined by the vapor pressure of the individual fragrances. 

Ethyl-2-methylbutyrate which has the highest vapor pressure was released fastest whereas 

eucalyptol which has the lowest vapor pressure was released slowest.  

In the Pickering emulsions, the vapor pressure was no longer rate determining. Here, the rate 

determining step was the diffusion of the fragrances through the capsule wall. Hec will provide 

tortuosity which unselectively retards fragrance diffusion. Thus, the release rate was determined 

by the solubility of the fragrances in the capsule wall. While PEI rendered the Hec surface 

slightly more hydrophobic, it was still hydrophilic and could swell with water. Limonene and 

α-pinene, which were released slowest from Pickering emulsions, are the least water soluble 
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fragrances suggesting that they are also the least soluble in the capsule wall. Contrary, the 

fragrance with the highest water solubility, ethyl-2-methlybutyrate, was released fastest.  

The capsule wall consisted of Hec layers with PEI in between. Thus, the lower the amount of 

PEI, the smaller would be the distance between two adjacent Hec layers. This increased the 

tortuosity and consequently enhanced the barrier properties. Indeed, the emulsion with the 

lowest PEI:Hec ratio (0.50) showed the best barrier for all fragrances (Figure 14).  

 

Figure 14: Fragrance release from emulsions with varying ratio of PEI:Hec. (Reprinted with permission from 
reference[162]. Copyright (2020) American Chemical Society.) 

In a subsequent step, PEI was cross-linked by polypropylene diglycidyl ether dissolved in the 

oil phase. The cross-linked emulsion showed good stability and similar droplet sizes as the 

corresponding non-cross-linked emulsion. Again, the release rates of the fragrances were 

determined by their solubility in the capsule wall. Furthermore, cross-linking could make an 

additional contribution to the barrier.  

It was shown that the quasi in-situ fixing of Hec with PEI at the water-oil-interface resulted in 

stable fragrance-in-water emulsions. Moreover, the hybrid capsules provided good barrier 

properties by tortuosity in the wall.  
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