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Abstract

We present a scheme for the determination of control
Lyapunov functions which can be used as a basis for
numerical computations. Under the assumption of lo-
cal asymptotic nullcontrollability we define the domain
of asymptotic nullcontrollability. On this set a con-
trol Lyapunov function is defined via an optimal con-
trol problem. It is then shown that this function can be
characterized as the unique viscosity solution of a par-
tial differential equation which can be interpreted as a
generalization of Zubov’s equation.

1 Introduction

Control Lyapunov functions have been shown to be
an interesting tool in the analysis of nonlinear con-
trol systems. The existence of such a function can
according to its regularity guarantee several interest-
ing properties. The existence of a continuous control
Lyapunov functions is equivalent to asymptotic null-
controllability [7, 10]. The existence of a continuously
differentiable one, is equivalent to the existence of (pos-
sibly discontinuous) controllers robust with respect to
measurement noise, [6]. Several design procedures are
available that construct controllers given the knowledge
of a control Lyapunov function. We refer to [9] for a
good introduction to the area.
The use of control Lyapunov functions as a design tool
is by now discussed in many textbooks, references can
be found in [9]. Here, usually, design procedures are
discussed that use a certain structure of the system in
order to find control Lyapunov functions. A general
procedure for their determination is not available. It is
therefore of interest to turn to numerical methods for
the approximation of control Lyapunov functions. In
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this paper we present an approach to this end that is
based on a generalization of a result by Zubov.
One of the celebrated results in the theory of ordinary
differential equations is Zubov’s method [12] which as-
serts that the domain of attraction of an asymptotically
stable fixed point x∗ of

ẋ = f(x) , x ∈ Rn

may be characterized by solutions v of the partial dif-
ferential equation

Dv(x) · f(x) = −h(x)(1 − v(x))
√

1 + ‖f(x)‖2 . (1)

Namely, under suitable assumptions on h the domain
of attraction is the set v−1([0, 1)). The v constructed
via this equation is automatically a Lyapunov function
and smooth. This result has recently be extended to
perturbed systems in [2]. Numerical treatment of this
equation is discussed in [3].
As we already know that it is unreasonable to expect
continuously differentiable control Lyapunov functions,
we will look for solutions of a generalization of (1) in
the viscosity sense. We refer to [4] for an introduction
to the theory and its close link to problems in optimal
control. Given this connection it should come as no sur-
prise that our approach is also heavily based on optimal
control methods. In fact our procedure can be viewed
as an extension to [7] where the equivalence of asymp-
totic nullcontrollability and the existence of a control
Lyapunov function has been proved using basically the
same idea. Here we take this approach a step further
and obtain a characterization of control Lyapunov func-
tions as unique viscosity solutions of a suitable PDE.
In the following Section 2 we introduce the problem, de-
fine the domain of asymptotic controllability and show
some first properties of it. The ensuing Section 3 is
devoted to the proof that a certain class of control Lya-
punov functions is characterized as a viscosity solution
of a partial differential equation. We discuss some open
problems in the concluding Section 4.



2 The domain of asymptotic null-controllability

We consider a control system of the form{
ẋ(t) = f(x(t), u(t)) , t ∈ [0,∞) ,
x(0) = x0,

(2)

where u(·) ∈ U = L∞([0,+∞), U) and U is a compact
subset of Rm, f is continuous and bounded in Rn × U
and Lipschitz in x with Lipschitz constant indepen-
dent of u ∈ U . Solutions of this system are denoted
by x(t, x0, u). We will assume that 0 ∈ U and that
x = 0 is a fixed point under the control u = 0, that is,
f(0, 0) = 0.
We assume that the point 0 is uniformly locally asymp-
totically nullcontrollable (ULAM) for the system (2), i.e.
there exist a constant r > 0 and a function β of class
KL1 such that for any x0 ∈ B(0, r) there exists a u ∈ U
such that ‖x(t, x0, u)‖ ≤ β(‖x0‖, t). It is known [8] that
for any β ∈ KL there exist two functions α1, α2 ∈ K∞

such that β(r, t) ≤ α2(α1(r)e−t). For ease of presen-
tation we will work with these two functions from now
on.
The following definition specifies the set of initial con-
ditions that may be asymptotically steered to zero.

Definition 2.1 Assume that (2) is ULAM. The do-
main of asymptotic nullcontrollability is defined by

D= {x0 ∈ Rn|∃u ∈ U : x(t, x0, u)→ 0 as t→ +∞ } .

Let D ⊂ Rn be the domain of asymptotic nullcontrol-
lability of (2). A function V : Rn → R satisfying
V (0) = 0, V (x) > 0, x 6= 0 is called a control Lya-
punov function on D, if it is proper on D and there
exists a positive definite function W : Rn → R≥0 with

max
ξ∈∂PV (x)

min
u∈U

ξ · f(x, u) ≤ −W (x) , ∀x ∈ D

where ∂PV (x) denotes the proximal subgradient of V
in x, that is, the set of vectors ξ ∈ Rn such that there
exists ε, σ > 0 with

V (y) ≥ V (x) + ξ · (y − x)− σ2‖y − x‖2 , ∀‖x− y‖ < ε .

In order to obtain a different characterization of D we
introduce the following “first hitting time” defined by
t(x, u) := inf{T > 0 : x(t, x, u) ∈ B(0, r) for all t ≥
T}, where we set inf ∅ =∞.

Lemma 2.2 Assume that (2) is ULAM, then

D =

{
x ∈ Rn : inf

u∈U
t(x, u) < +∞

}
.

Proof: This is immediate from Definition 2.1.

1As usual we call a function α of class K∞ if it is a homeomor-
phism of [0,∞), a continuous function β in two real nonnegative
arguments is called of class KL if it is of class K∞ in the first
and decreasing to zero in the second argument.

In the following proposition we present some relevant
properties of the set D. It will frequently be convenient
to consider the reachable set at time T from an initial
condition x0 ∈ Rn defined by

R(x0, T ) := {x ∈ Rn|∃u ∈ U so that x = x(T, x0, u)} .

Recall that a set M is called weakly forward invariant
for system (2) if for all x ∈M there exists a u ∈ U such
that x(t, x, u) ∈M for all t ≥ 0.

Proposition 2.3 Assume that (2) is ULAM, then

(i) clB(0, r) ⊂ D.

(ii) D is an open, connected, weakly forward in-
variant set.

(iii) infu∈U{t(x, u)} → +∞ for x → x0 ∈ ∂D or
‖x‖ → ∞.

(iv) If for all x ∈ Rn the set f(x, U) is convex then
clD is weakly forward invariant.

Proof: (i) Assume that for some x ∈ ∂B(0, r) we
have x /∈ D. Let {xn} ⊂ B(0, r) be a sequence with
limn→∞ xn = x. By assumption to each xn there
exists a control un ∈ U such that ‖x(t, xn, un)‖ ≤
α2(α1(r)e−t). Choosing a subsequence we may assume
that x(·, xn, un)→ y(·) uniformly on compact intervals.
By [1, Theorem 2.2.1] it follows that y is a solution of

ẏ ∈ conv f(y, U) .

By construction ‖y(t)‖ ≤ α2(α1(r)e−t), so that y(t) ∈
B(0, r/2) for some t large enough. Now by [1, Theo-
rem 2.4.2] there is a sequence x(·, x, vn) for some con-
trols vn ∈ U converging uniformly to y. It follows
that x(t, x, vn) ∈ B(0, r) for some n large enough which
shows that x is asymptotically null controllable.

(ii) Let x0 ∈ D. Then there exist T ∈ R and u ∈ U such
that x(T, x0, u) ∈ B(0, r). By continuous dependence
on the initial value a neighborhood of x0 is mapped into
B(0, r) under the map y 7→ x(T, y, u) and it follows that
D is open.

Furthermore, by definition from each x ∈ D (x ∈ D)
there exists a trajectory x(·, x, u) entering B(0, r). This
shows connectedness. Weak invariance is obvious from
the definition.

(iii) Let xn → x0 ∈ ∂D and set Tn = infu∈U{t(xn, u)}.
If we assume that {Tn} is bounded, we can find T
such that, for any n there is a control un such that
x(T, xn, un) ∈ B(0, r). Now we can argue as in (i) to
construct a solution from x0 into B(0, r) which contra-
dicts the assumption that x0 /∈ D. The assertion is
clear for ‖xn‖ → ∞, as our assumptions exclude solu-
tions exploding in backward time.



(iv) It is sufficient to show that for every x ∈ clD and
all t > 0 there exists a u ∈ U such that x(t, x, u) ∈ clD.
Then the claim follows by concatenation. Assume this
is not the case for x0 ∈ clD, then R(x0, T ) ∩ clD = ∅.
As R(x0, T ) is compact by [1, Theorem 2.2.1] it follows
that there is a neighborhood V of R(x0, T ) such that
V ∩ clD = ∅. Now by continuous dependence on initial
conditions a neighborhood of x0 is mapped into V by
the map x 7→ x(T, ·, u) for any u ∈ U . This contradicts
weak invariance of D.

3 Zubov’s method for domains of asymptotic
null controllability

It is our aim to show that some control Lyapunov func-
tions may be characterized as viscosity solutions and
that the set D may be characterized with the help of
these functions. Before turning to this problem we in-
troduce two optimal value functions and show certain
properties of these functions. This will enable us to
use standard techniques from the theory of Hamilton-
Jacobi-Bellman equations in the proofs.

Consider the following nonnegative, extended value
function V : Rn → R ∪ {+∞} given by the optimal
control problem

J(x, u) :=

∫ +∞

0

g(x(t), u(t))dt , V (x) = inf
u∈U

J(x, u) .

(3)

We will also consider its transformation via the Kruzkov
transform

v(x) = 1− e−V (x). (4)

The function g : Rn × U → R≥0 is assumed to be con-
tinuous and satisfies furthermore

(A i) If x ∈ B(0, r) then ‖g(x, u)‖ ≤ Cα−1
2 (‖x‖),

g(x, u) = 0, iff x = 0

(A ii) There exists a constant g0 > 0 such that
infx 6∈B(0,r), u∈U g(x, u) ≥ g0.

(A iii) For every R > 0 there exists a constant LR such
that ‖g(x, u)− g(y, u)‖ ≤ LR‖x− y‖ for all ‖x‖,
‖y‖ ≤ R, and all u ∈ U .

Since g is nonnegative it is immediate that V (x) ≥ 0
and v(x) ∈ [0, 1] for all x ∈ Rn. Furthermore, standard
techniques from optimal control (see e.g. [4, Chapter
III]) imply that V and v satisfy the dynamic program-
ming principle, i.e. for each t > 0 we have

V (x) = inf
u∈U

{∫ t

0

g(x(τ, x, u), u(τ))dτ + V (x(t, x, u))

}
(5)

and

v(x) = inf
u∈U
{(1 −G(x, t, u)) +G(x, t, u)v(x(t, x, u))}

(6)

with

G(x, t, u) := exp

(
−

∫ t

0

g(x(τ, x, u), u(τ))dτ

)
. (7)

In the next proposition we investigate the relation be-
tween D and V (and thus also v), and the continuity of
V and v.

Proposition 3.1 Assume that (2) is ULAM and that
g satisfies (A i) – (A iii). Then

(i) V (x) < +∞ if and only if v(x) < 1 if and only if
x ∈ D.

(ii) V (0) = 0 if and only if v(0) = 0 if and only if
x = 0.

(iii) V is continuous on D, v is continuous on Rn.

(iv) V (x) → +∞ and v(x) → 1 for x→ x0 ∈ ∂D and
for ‖x‖ → ∞.

Proof: (i) To show that V (x0) < +∞ for x0 ∈ D,
observe that by Lemma 2.2 for each x0 ∈ D there exist
T0 > 0, u ∈ U such that x(t, x0, u) ∈ B(0, r) for all
t ≥ T0. Thus J(x0, u) is bounded by∫ T0

0

g(x(t), u(t))dt+C

∫ +∞

T0

α1(‖x(T0)‖)eT0−tdt

=

∫ T0

0

g(x(t), u(t))dt+Cα1(‖x(T0)‖) <∞.

and therefore V (x0) < +∞.

Now let x0 6∈ D. Then for any u ∈ U we have
g(x(t, x0, u), u(t)) ≥ g0, where g0 > 0 is defined as
in (A ii). It follows that J(x, u) = ∞ and hence
V (x) = +∞. Now the assertion for v is immediate.

(ii) This follows immediately from (3), (A i), and
f(0, 0) = 0.

(iii) Fix x0 ∈ B(0, α−1
1 (α−1

2 (r))). Then local asymp-
totic nullcontrollability and (A i) imply that for some
u0 ∈ U we have

V (x0) ≤

∫ +∞

0

g(x(t, x0, u0), u0(t))dt

≤ C

∫ +∞

0

α−1
2 (‖x(t, x0, u0)‖)dt

≤ C

∫ +∞

0

e−tα1(‖x0‖)dt ≤ Cα1(‖x0‖).



Now fix ε > 0 and r∗ < α−1
1 (α−1

2 (r)) ≤ r such that
Cα1(r∗) < ε. Let x ∈ D be arbitrary. By assumption
there are u ∈ U and T > 0 such that ‖x(T, x, u)‖ ≤ r∗/2
and V (x) + ε > J(x, u). By continuous dependence
on the initial value there is a neighborhood W ⊂ D
of x such that ‖x(T, y, u)‖ ≤ r∗ for all y ∈ W . We
may assume that clW ⊂ D is compact, whence also
R := cl ∪x∈W,t∈[0,T∗] R(x, t) is compact. This implies
in particular, that V (y) ≤ T max{g(x, u) | x ∈ R, u ∈
U} + ε for all y ∈ W . From the boundedness of V
on W and the fact that g is bounded away from zero
on Rn \ B(0, r∗/2) it follows that there is a T ∗ such
that whenever y ∈ W and V (y) + ε > J(y, u) we have
x(t, y, u) ∈ B(0, r∗/2) for all t > T ∗. We may now
choose Lipschitz constants Lf , Lg for f and g on R,
respectively. Let y, z ∈W and u be such that V (y)+ε >
J(y, u). Then we obtain

V (z)− V (y) < V (z) −

∫ +∞

0

g(x(t, y, u), u(t))dt+ ε

≤

∫ T∗

0

|g(x(t, z, u), u(t))− g(x(t, y, u), u(t))| dt+

V (x(T ∗, z, u)) + Cα1(r∗) + ε

≤ Lg

∫ T∗

0

eLf t‖z − y‖ dt + V (x(T ∗, z, u)) + 2ε

If ‖z − y‖ is small enough then x(T ∗, z, u) ∈ B(0, r∗)
so that V (x(T ∗, z, u)) < Cα1(r∗) and also the integral
can be bounded by ε, so that the whole expression is
bounded by 4ε. As this condition is symmetric in y, z
this shows continuity of V . The function v is then con-
tinuous by definition.

(iv) The statement follows immediately from Proposi-
tion 2.3 (iii) since D is open and g(x, u) ≥ g0 > 0 for x
outside of clB(0, r) as assumed in (A ii).

We now turn to the formulation of suitable partial dif-
ferential equations for which V and v form solutions.
Since in general these functions will not be differen-
tiable we have to work with a more general solution
concept, namely viscosity solutions.

Let us recall the definition of viscosity solutions (for
more details about this theory we refer to [4]).

Definition 3.2 Given an open subset O of Rn and a
continuous function H : O×R×Rn→ R, we say that a
lower semicontinuous (l.s.c.) function u : O → R (resp.
an upper semicontinuous (u.s.c.) function v : O → R)
is a viscosity supersolution (resp. subsolution) of the
equation

H(x, u,Du) = 0 x ∈ O (8)

if for all φ ∈ C1(O) and x ∈ argminO(u − φ) (resp.,
x ∈ argmaxO(v − φ)) we have

H(x, u(x), Dφ(x)) ≥ 0
(
resp., H(x, v(x), Dφ(x)) ≤ 0

)
.

A continuous function u : O → R is said to be a
viscosity solution of (8) if u is a viscosity supersolution
and a viscosity subsolution of (8).

Recalling that V is locally bounded in D, and v is lo-
cally bounded on Rn the following proposition follows
from an easy application of the dynamic programming
principles (5) and (6), cp. [4, Chapter III].

Proposition 3.3 V is a viscosity solution of

sup
u∈U
{−DV (x)f(x, u)− g(x, u)} = 0 , x ∈ D (9)

and v is a viscosity solution of

sup
u∈U
{−Dv(x)f(x, u) − (1− v(x))g(x, u)} = 0 , x ∈ Rn.

(10)

Observe that (10) is the straightforward generaliza-
tion of the classical Zubov equation (1) introduced
in [12]. Also our “auxiliary function” V can be
characterized as the solution of a suitable PDE. It
might be considered to be more natural to write
infu∈U {Dv(x)f(x, u) + (1− v(x))g(x, u)} = 0. How-
ever, this would be in disaccord with the standard way
of defining sub- and supersolutions. We note the fol-
lowing immediate consequence.

Corollary 3.4 The functions V, v are control Lya-
punov functions on D.

Proof: The equations (9) and (10) incorporate al-
ready the definition of the function W that is required
in the definition of control Lyapunov functions. Proper-
ness on D follows from Proposition 2.3 (iv). The con-
dition on the proximal subgradients follows from the
properties of supersolutions.

In order to prove uniqueness of the solutions we need
the following optimality principles. The statement is an
immediate consequence of [11, Theorem 3.2 (i) & (iii)].

Proposition 3.5
(i) Let w be a u.s.c. subsolution of (10) in Rn, then for
any x ∈ Rn

w(x) = inf
u∈U

inf
t≥0
{1 +G(x, t, u)(w(x(t))− 1)} . (11)

(ii) Let W be a u.s.c. subsolution of (10) in D, then for
any x ∈ D

W (x) = inf
u∈U

inf
t≥0

{∫ t

0

g(x(s), u(s))ds+W (x(t))

}
.

(12)



(iii) Let w be a l.s.c. supersolution of (10) in Rn, then
for any x ∈ Rn

w(x) ≥ inf
u∈U

sup
t≥0
{1 +G(x, t, u)(w(x(t))− 1)} . (13)

We can now apply these principles to the generalized
version of Zubov’s equation (10).

Proposition 3.6 Let w be a bounded l.s.c. supersolu-
tion of (10) on Rn with w(0) ≥ 0. Then w ≥ v for v as
defined in (4).

Proof: Let M > 0 be a bound on |w|. If for some
control u and some η > 0 it holds that ‖x(t, x0, u)‖ ≥ η
for all t ≥ 0 then it follows from assumption (H1) that
G(x0, t, u) ≤ exp(−tgη) for a suitable constant gη. This
implies

sup
t≥0
{1 +G(x0, t, u)(w(x(t))− 1)} ≥

sup
t≥0
{(1− exp(−tgη))− exp(−tgη)M} = 1 .

Hence, if for some x0 ∈ Rn the infimum in (13) is ap-
proximated via trajectories that are bounded away from
the origin, then w(x0) ≥ 1. In particular, this is the
case if x0 /∈ D by the forward invariance of Dc. Hence
using Proposition 3.1 (i), we have w(x0) ≥ 1 = v(x0)
for x0 ∈ Dc. If x0 ∈ D and w(x0) ≥ 1, then again
Proposition 3.1 (i) implies the assertion, so that it re-
mains to show the claim under the conditions x0 ∈ D
and w(x0) < 1. Fix (1− w(x0))/2 > ε > 0 and choose
uε such that

sup
t≥0
{1 +G(x0, t, uε)(w(x(t)) − 1)} − ε <

inf
u∈U

sup
t≥0
{1 +G(x0, t, u)(w(x(t))− 1)} .

This implies in particular, that x(t, x0, uε) is not
bounded away from the origin. Now observe that the
lower semicontinuity of w and the assumption w(0) ≥ 0
imply that there exists a δ > 0 such that

w(x) ≥ −ε for all ‖x‖ ≤ δ. (14)

Hence there exists a sequence tn →∞ such that for all
n ∈ N we have w(x(tn, x0, uε)) ≥ −ε and

|G(x0, tn, uε)−G(x0,∞, uε)| ≤ ε .

Thus from (14) and (13), and using the definition of v
we can conclude

w(x0) ≥ lim sup
n→∞

{1 +G(x0, tn, uε)(w(x(tn))− 1)} − ε

≥ v(x0)− ε(G(x0,∞, uε) + ε+ 1) ≥ v(x0) − ε(2 + ε) ,

which shows the claim, as ε > 0 is arbitrary.

Proposition 3.7 Let w be a bounded u.s.c. subsolu-
tion of (10) on Rn with w(0) ≤ 0. Then w ≤ v for v
defined in (4).

Proof: By the upper semicontinuity of w and w(0) ≤
0 we obtain that for every ε > 0 there exists a δ > 0
with w(x) ≤ ε for all x ∈ Rn with ‖x‖ ≤ δ. Now we
distinguish two cases:
(i) x0 ∈ D: We choose u∗ ∈ U such that v(x0)+ε > 1−
G(x0,∞, u∗). In particular, this implies x(t, x0, u

∗) →
0 as t→∞. Thus it follows from the lower optimality
principle (11) and the definition of v that

w(x0) ≤ lim sup
t→∞

1 +G(x0, t, u
∗)(w(x(t, x0, u

∗))− 1)

≤ 1 +G(x0,∞, u
∗)(ε− 1) ≤ v(x0) + 2ε .

which shows the claim as ε > 0 was arbitrary.

(ii) x0 6∈ D: In this case by Proposition 3.1 (i) it is
sufficient to show that w(x0) ≤ 1. Let M be a bound
on |w|. Since x(t, x0, u) 6∈ D for all u ∈ U we have
G(x0, t, u) ≤ exp(−g0tn) for all t ≥ 0, u ∈ U . Hence

1 +G(x0, t, u)(w(x(t, x0, u))− 1)

≤ 1 + exp(−g0t)(M + 1)

and the result follows by (11) as the right hand side
tends to 1 for t→∞.

Using these propositions we can now formulate an exis-
tence and uniqueness theorem for the generalized ver-
sion of Zubov’s equation (10).

Theorem 3.8 Consider the system (2) and a function
g : Rn × U → R such that (H1) and (H2) are satis-
fied. Then (10) has a unique bounded and continuous
viscosity solution v on Rn satisfying v(0) = 0.

This function coincides with v from (4). In particular
the characterization D = {x ∈ Rn | v(x) < 1} holds.

Proof: This is immediate from Propositions 3.6 and
3.7.

For the sake of completeness we state the analogous
result for equation (9) which is proved with the same
techniques, using the obvious modifications of (11) and
(13). Observe that this result corresponds to the one
in [5].

Theorem 3.9 Consider the system (2) and a function
g : Rn×U → R. Assume (H1) and (H2). LetO ⊂ Rn be
an open set containing the origin, and let P : O → R be



a positive and continuous function which is a viscosity
solution of (9) on O and satisfies P (0) = 0 and P (x)→
∞ for x→ ∂O and for |x| → ∞.

Then P coincides with V from (3) and O = D. In par-
ticular, the function V from (3) is the unique positive
continuous viscosity solution of equation (9) on D with
V (0) = 0.

As in [2] it can be shown that we can restrict ourselves
to a proper open subset O of the state space and still
obtain our solution v, provided D ⊆ O. We omit the
discussion of this aspect, for reasons of space.

Finally, we return to the point that the function v is a
control Lyapunov function for the system (2). In partic-
ular each sublevel set of v is weakly forward invariant.
The following bound may be obtained for the amount
of decrease that can be obtained in terms of v.

Theorem 3.10 For all x0 ∈ D \ {0} there exists a u ∈
U such that

v(x(t, x0, u))− v(x0) ≤

[
1− exp

(
−

∫ t

0

g(x(τ), u(τ))dτ

)]
(v(x(t, x0, u))− 1) .

Proof: By (6) for each x 6= 0 there exists a u ∈ U
such that v(x) is bounded from below by

1− exp

(∫ t

0

g(x(τ, x, a), a(τ))dτ

)
+

exp

(∫ τ

0

g(x(τ, x, a), a(τ))dτ

)
v(x(t, x, u)) .

This immediately yields the assertion.

4 Conclusions

This paper contains some first results on the relation
of control Lyapunov functions and viscosity solutions,
but the story seems to be far from complete. The ex-
perienced reader will have noticed that we avoided any
problems with the boundedness of control functions by
assuming that U is compact. The standard definition
allows for non-compact U and requires in addition that
on each compact subset of the state space it is suf-
ficient to choose control values from a compact set in
order to drive the system to zero. In terms of the Zubov
equation this means that large values of u should to be
penalized. The construction then becomes a little more
involved. That we also required f to be bounded on

the other hand is no big drawback, as one might always
replace f by f/(1 + ‖f‖) without changing the systems
trajectories. Though of course other points of interest
in design are lost.
A further question is what subset of control Lyapunov
functions may be realized as solutions to a Zubov equa-
tion by appropriate choice of g. This is the subject of
ongoing research.
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