
On equivalence of exponential and asymptotic stability underchanges of variablesLars Gr�uneFachbereich MathematikJ.W. Goethe-Universit�atPostfach 11 19 3260054 Frankfurt a.M., Germanygruene@math.uni-frankfurt.de Eduardo D. SontagDepartment of MathematicsRutgers UniversityNew Brunswick, NJ 08903, USA,sontag@control.rutgers.eduFabian WirthZentrum f�ur TechnomathematikUniversit�at Bremen28334 Bremen, Germanyfabian@math.uni-bremen.deAbstract: We show that uniformly global asymptotic stability for a family of ordinary di�erentialequations is equivalent to uniformly global exponential stability under a suitable nonlinear change ofvariables.1 IntroductionLyapunov's notion of (global) asymptotic stability of an equilibrium is a key concept in thequalitative theory of di�erential equations and nonlinear control. In general, a far strongerproperty is that of exponential stability, which requires decay estimates of the type \kx(t)k �ce��tkx(0)k." In this paper, we show that, for di�erential equations evolving in �nite-dimensio-nal Euclidean spaces Rn (at least in spaces of dimensions 6= 4; 5) the two notions are one andthe same under coordinate changes.Of course, one must de�ne \coordinate change" with care, since under di�eomorphisms thecharacter of the linearization at the equilibrium is invariant. However, if we relax the require-ment that the change of variables be smooth at the origin, then all obstructions disappear. Thebasic ingredient of the construction we are about to present relies on the existence of smoothLyapunov functions V . The coordinate transformations are constructed via \projecting" alongthe gradient 
ow of V onto a level set V �1(c). The result now relies on the fact that thislevel set is di�eomorphic to the standard sphere, which is true except for those cases wherethe Poincar�e conjecture is still open. This explains why we have to exclude n = 4; 5 from ourstatements.Closely related to our work is the fact that all asymptotically stable linear systems are equiv-alent (in the sense just discussed) to _x = �x; see e.g. [1].2 Problem StatementThroughout the paper, k � k denotes the usual Euclidean norm, and \smooth" means C1. Fora di�erentiable function V : Rn! R the expression LfdV (x) denotes the directional derivative1



2 LARS GR�UNE, EDUARDO D. SONTAG, FABIAN WIRTHDV (x)f(x; d). We consider the family of di�erential equations_x(t) = f(x(t); d(t)) (2.1)where f : Rn �D ! Rn is continuous and for x 6= 0 locally Lipschitz continuous in x, wherethe local Lipschitz constants can be chosen uniformly in d 2 D � Rm. We assume that D iscompact and that f(0; d) = 0 for all d 2 D and let D denote the set of measurable functionsfrom R to D. Then we say that the zero state is uniformly globally asymptotically stable(UGAS) if there exists a class KL function1 � such that, for each d(�) 2 D, every maximalsolution is de�ned for all t � 0 andk�(t; x; d(�))k � �(kxk; t) ; 8t � 0 : (2.2)Note that while our general assumptions on f do not guarantee uniqueness of solutions throughzero, assumption (2.2) implies that �(t; 0; d) � 0 is the unique solution with initial conditionx = 0, for all d 2 D and thus the same is true for every initial condition.An apparently stronger formulation of (2.2) is the following. We call the zero position of (2.1)uniformly globally exponentially stable (UGES), if there exist constants c � 1; � > 0 such thatfor all d(�) 2 D k�(t; x; d(�))k � ce��tkxk ; 8t � 0 : (2.3)If the origin is no common �xed point for all values d 2 D then (2.2) is impossible. In this case,however, still a useful notion of stability is possible which is known as input-to-state stability.For this stability concept similar results to those discussed in this paper can be obtained, [3].Extending the concepts in [1, p. 207] to our nonlinear setting, we will call a homeomorphismT : Rn ! Rn a change of variables if T (0) = 0, T is C1 on Rn, and T is di�eomorphism onRn n f0g (i.e., the restrictions of T and of T�1 to Rn n f0g are both smooth). Given a changeof variables T and a system (2.1), we may consider the transformed system_y(t) = ~f(y(t); d(t)) ; (2.4)where, by de�nition, ~f (y; d) = DT (T�1(y))f(T�1(y); d) : In other words, system (2.4) is ob-tained from the original system by means of the change of variables y = T (x). Observe thatthe new system again satis�es the general requirements.It is our aim to show that for dimensions n 6= 4; 5 the following assertions are true. Given asystem of the form (2.1) satisfying (2.2) there exists a transformed system that satis�es (2.3).In this sense, global asymptotic stability is equivalent to global exponential stability undernonlinear changes of coordinates. Furthermore, one may obtain transformed systems wherethe constants de�ning the exponential stability property can be chosen to be the special valuesc = � = 1.3 Statement of ResultsThe main tool for our construction of T is the use of an appropriate Lyapunov function V .In fact, we can obtain T for a whole class of functions as stated in the following proposition.Recall that a function V : Rn ! R is called positive de�nite if V (0) = 0 and V (x) > 0 for allx 6= 0, and proper if the set fx jV (x) � �g is bounded for each � � 0.1As usual, we call a function � : [0;1) ! [0;1) of class K, if it satis�es �(0) = 0 and is continuous andstrictly increasing (and class K1 if it is unbounded), and we call a continuous function � : [0;1)2 ! [0;1) ofclass KL, if it is decreasing to zero in the second and of class K in the �rst argument.



EQUIVALENCE OF EXPONENTIAL AND ASYMPTOTIC STABILITY 3Proposition 3.1 Let n 6= 4; 5 and let V : Rn ! R be a proper, positive de�nite C1 function.Assume furthermore that V is smooth on Rn n f0g with nonvanishing gradient. Then thereexists a class K1 function 
 which is smooth on (0;1) and satis�es 
(s)=
 0(s) � s and achange of variables T : Rn! Rn with T (0) = 0 such that~V (y) := V (T�1(y)) = 
(kyk) : (3.5)Outline of proof: Let  denote the smooth 
ow determined by_x = rV (x)0krV (x)k2 ;Fix c > 0 and de�ne the smooth map � : Rn n f0g ! V �1(c) by �(x) =  (c� V (x); x). Nowobserve that the properties of V imply that V �1(c) is a homotopy sphere (cf. also [6, Discussionafter Theorem 1.1]), so that V �1(c) is di�eomorphic to Sn�1 for n 6= 4; 5 ( see [2] for n = 1; 2; 3,[5, S9, Proposition A] for n � 6). Now T is given byT (0) = 0 ; and T (x) = 
�1(V (x))S(�(x)) ; x 6= 0 :It is straightforward to see that T satis�es (3.5). For the remaining statements see [3].Theorem 3.2 Let n 6= 4; 5 and consider any system (2.1) on Rn which is UGAS (2.2). Then,(2.1) can be transformed into a system (2.4) that is UGES (2.3). In particular, the constantsin (2.3) can be chosen to be c = 1; � = 1.Outline of proof: Under our assumptions, by [4, Theorem 2.9, Remark 4.1] there exists asmooth function V : Rn! R for (2.1) such thatLfdV (x) � ��1(kxk) and �2(kxk) � V (x) � �3(kxk) : (3.6)for some class K1 functions �1; �2; �3. >From this it is possible to construct a C1 class K1function � on [0;1) which is smooth on (0;1) with �0(0) = 0 and for which W (x) := �(V (x))satisfes LfdW (x) � �W (x):Applying Proposition 3.1 to W , we obtain for each d 2 D and y 6= 0h ~f(y; d); yi= kyk
 0(kyk)L ~fd ~W (y) � � kyk
 0(kyk) ~W (y) = � kyk
 0(kyk)
(kyk)� �kyk2 :This immediately yields the desired exponential estimate.References[1] V.I. Arnol'd. Ordinary Di�erential Equations , Springer-Verlag, Berlin, 1992.[2] B.A. Dubrovin, A.T. Fomenko, and S.P. Novikov. Modern Geometry - Methods and Ap-plications, Part III: Introduction to Homology Theory , Springer-Verlag, New York, 1990.[3] L. Gr�une, E.D. Sontag and F.R. Wirth. Asymptotic stability equals exponential stability,and ISS equals �nite energy gain|if you twist your eyes. Syst. Contr. Lett. (1999) toappear.[4] Y. Lin, E.D. Sontag, and Y. Wang. A smooth converse Lyapunov theorem for robuststability. SIAM J. Control Optim. 34(1996): 124{160.[5] J. Milnor. Lectures on the h-Cobordism Theorem, Princeton Mathematical Notes, Prince-ton Univ. Press, Princeton, NJ. 1965.[6] F.W. Wilson. The structure of the level surfaces of a Lyapunov function. J. Di�er. Equa-tions 3 (1967): 323{329.


