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2 Homogeneous SyStemS
Abstract

We consider the class of systems
We show that any asymptotically controllable homogeneous
control system admits a homogeneous control Lyapunov i(t) = f(z(t), u(?)) 1)
function. As a consequence, we obtain that any such system
admits a stabilizing discontinuous sampled feedback, wher&n R"™ whereu(-) € U, andi{ denotes the space of mea-
the sampling rate is bounded from below depending on thesurable and locally essentially bounded functions fio
degree of the homogeneity. Furthermore, we show that ast/’ C R™. We assume that the vector figjds continuous,
ymptotic controllability of a homogeneous system implies /(- ) is locally Lipschitz onR™ \ {0} for eachu € U, and
local asymptotic controllability of an approximated system. Satisfies the following property.

Definition 2.1 We call f homogeneous there existr; > 0,
1 Introduction i=1,...,n,8; >0,5=1,...,mandr € (—min; r;,c0)
such that
In this paper we present an existence result for homoge-
neous control Lyapunov functions for homogeneous con- f(Aaz, Aqu) = a"Aq f(z,u) for all u € U, a >0, (2)
trol systems, and derive some consequences from this result. ) .
Whereas the existence of homogeneous Lyapunov function@nd we callf homogeneous-in-the-stafe
for asymptotically stable homogeneous ordinary differential
equations has been proved some time ago [13], the corre-
sponding result for controlled systems to be presented (un-
der the analogous assumption of asymptotic null controllabil-Here
ity) is more recent [8] and allows immediate applications to
asymptotic controllability of homogeneously approximated 0

f(Aaz,u) = a" Ay f(z,u) for all ue U, a > 0. (3)

systems and to feedback stabilization. Ao = S
Stability and stabilization of homogeneous systems, as '

: . . 0 0 o™
well as related Lyapunov functions have been investigated
for a long time, see e.g. [10, 11, 12, 14, 15] to mention just aand
few references. Lyapunov functions are a standard tool when a* 0 -~ 0
dealing with stability and stabilization of nonlinear systems, 0
and homogeneous systems appear naturally as local approx- Ay =
imations to nonlinear systems, cf. e.g. [9]. In order to make R (|
use of this approximation property in the context of stabil- 0O ... 0 a’m

ity one needs a compatibility between the structure of the

approximation and the structure of the Lyapunov function, &€ calleddilation matrices Withk = min;r; we denote
the minimal power(of the state dilation) and the value e

*Research supported by the TMR Program “Nonlinear Control Network” (—k, 0o) is called thedegreeof the system.




The use of dilation matrices instead of the usual dilationand¥(0) = 0, ¥~1(0) = 0, which is continuous o™ and
functions allows a more compact notation in what follows. C' onR™ \ {0}. This definition implies
Observe that iff is Lipschitz in the origin themr > 0 and if
f is globally Lipschitz them = 0, furthermore the definition U(Aaz) = a"VU(z), T'(ary) = AT (y)
implies £(0,0) = 0 for homogeneous systems afi@, u) =
0 for all w € U for homogeneous-in-the-state systems.
Corresponding to the dilation matrix, we define a func- DU(Agz) = a"AZ1DU ().
tion N : R™ — [0, co) which can be interpreted as a “dilated «
norm” w.r.t. A,. Denotingd = 2], r; we defineN(z) Thus defining
by

and by differentiation of¢ (A, x) anda*¥(x) one sees

w0\ Fly,u) = DY () F(T (), u)
(Zx”) 4)

we obtain (withz = U~ (y))
implying N (0) = 0, N(z) > 01if 2 # 0, andN(Aaz) = flaty,u) = DU(Aaz)f(Aaz,u)

aN(z). ka1 .
We denote the trajectories of (1) by, z, u(-)) for each -« A;: ~D\I/(x)o‘ Aaf(z,u)
zo € R™ and eachu(-) € U, wherez(0, zo, u(-)) = zo. = a’a" f(y,u)

Note that the trajectories of (1) may tend to infinity in finite ,
time if 7 > 0 and that uniqueness of the trajectory may not MP1Ying . .
hold if 7 < 0, however it holds away from the origin. In the flay,u) = " f(y,w),
case of non-uniqueness of trajectories we implicitely assumevith v = 7/k, i.e. f is homogeneous-in-the-state with re-
the definitions below to be valid f@il possible trajectories.  spect to the standard dilatioh, = old, with mimimal

Observe that the homogeneity can also be expressed ipowerk = 1, and with degree = .
terms of the trajectories: For homogeneous systems we ob- Furthermore setting (y, u) = f(y,u)|y| = (which de-
tain fines a time transformation fof) we obtain a system with

Ny . degreer = 0.
2(t, Moo, Aaufa™)) = Aaz(aTt, 2o, u(*)) ©®) Note that the solutions andz corresponding to the vector

and similarly for homogeneous-in-the-state systems we get fields f and f, respectively, are related via

z(t, Aazo, u(a™)) = Aaz(at, zo, u(-)) i(t, w0, u()) = 2(E(t), zo, u(E(-))), 7)

forall zg € R"™. . ~ L
The connection between homogeneous and homogeneou\év—heret( ) denotes the inverse oft) which is given by

in-the-state systems is easily seen: Given some homoge-
neous system (1) satisfying / (7, w0, u(-)))|"dr.
fAqz, Agu) = a™ A, f(z,u)
a simple calculation shows that 3 Main Result
g(x,u) := f(z, AN@)u) (6) Recall that a contiuous functior” : R™ — [0, o) is called

positive definitef V(z) = 0 if and only if z = 0 andproper
V(x) — oo as||z|| — oco. Furthermore system (1) is called
%@ymptotlcally controllable (to the originif for eachzy €

is homogeneous-in-the-state.
Homogeneous and homogeneous-in-the-state systems ¢

pe conS|derany_S|mpI|f|ed gpplylng swtable. coordinate and, ,, there existauy, (-) € U such that|z(t, zo, ua, ()] — 0
time transformations. We will make use of this procedure forast NN

homogeneous-in-the-state systems: Using the dilated norm A continuous, positive definite and proper function is

N from (4) the function called acontrol Lyapunov functionf there exists a posi-

P(zx):= AE(@ tive definite and proper functio” : R — R{ such that
for eachboundedG C R™ there exists a bounded subset

defines a projection fro®™ \ {0} onto N~1(1) satisfying Us C U with

P(Ayx) = P(x) for all « > 0. We denote ther — 1 di-

mensional embedded unit sphere € R™ | ||z| = 1} by inf  DV(x;v) < -W(z)forallz e G, (8)

S™=1. Then, sinceN (tz) is strictly increasing it > 0 the veeof(=Uc)

functionS : N=1(1) — S"71, S(z) = z/||z| is a diffeo-  \where

morphism between these two manifolds, thus we can define

a coordinate transformation= ¥ (x) by DV (z;v) := liminf

k —
U(z) = N(2)*S(P(x)), ¥~} (y) = é/uy s <|y|> is called thdower directional derivative



Alternatively, one can define this property by assumingand space transformations. The explicit estimate farthe

thatV is aviscosity supersolutioof last inequality in the theorem is easily deduced from straight-
forward estimates on the time transformation (7). a
sup {-DV(z)f(z,u) - W(z)} =0 Recall that the existence of the control pgamov function
uela V implies asymptotic controllability, hence we do in fact ob-
cf. [1]. tain equivalence between asymptotic controllability and the

It is known (see e.g. [16]) that the existence of a control€Xistence oV/.
Lyapunov function is equivalent to asymptotic controllabil-
ity and _also to_ stgbilization. via sampled discontinuous feed-4 Applications
back with vanishing sampling rate. (Note, however, that for
general nonlinear systems the definition of asymptotic con4.1  Homogeneous Approximations
trollability is slightly more complicated than the one above, ) ) o
as one also has to assume certain bounds on the trajectol) this section we indicate how Theorem 3.1 can be used for
and the controls which are not needed in the homogeneou@nalyzing homogeneous approximations. We do this in the
setting.) framework of homogeneous sy§tem; the similar statement
Using these concepts we can state our main result. can be made for homogeneous-in-the-state systems.
Assume we have a nonlinear system given by
Theorem 3.1 (a) Consider systerfl) satisfying(2) with di- i
lation matricesA, and A,, minimal powerk > 0, and 9 =9(yu)
degreer € (—k, o0), and assume asymptotic controllabil-
ity. Then there exists > 0, » > 0, and a positive definite 5 homogeneous system, i.e. there exists a homogeneous vec-
and proper control Lyapunov functidr being Lipschitz on  fielq 7 with degreer such that for eacls > 0 we find
R™\ {0}, satisfying 5> 0 with

with solutiony(t, =, u), which can locally approximated by

V(Aa(2)) = **V (2) N(f(z,u) — g(z,u)) < eN(z)

and there exist§ > 0 such that foreaclr € R™\{0} thereis  forall z ¢ R™ and allu € U with ||z|| < é and ||u| < 4,
some control value,, € U, which depends homogeneously whereN denotes the dilated norm from (4). (This is satisfied,
onx and satisfies for instance, iff — ¢ is homogeneous with the same dilation
as f but higher degree.)

Then by Gronwall's Lemma (taking into account the de-
gree of f, which gives estimates for its Lipschitz constant
depending on:) we find constant§’ > 0,6 > 0 andé; > 0
such that

V(z(t,z,ug)) — V(z) < =2utN7(2)V(z)

forall ¢ € [0, N(z)~74], the functionV from(4) andU, =
AN (z)Uo for some suitable compact subggt C U.
(b) If U is compact the analogous result holds for system

(1) satisfying(3) withU,, = U for all x € R™. N(z(t, z,u) — y(t, z,u)) < CteN(z)™+! (9)

Sketch of proof (See [8] for a detailled proof). First note for all ||z|| < 4, all w € U with |ju| < ¢ and all times
that the inequality from the theorem immediately implies the+ ¢ [0, N (2)~74,].
control Lyapunov function property (8). Then the following corollary holds.
Now, observing that the transformation (6) does not de-
stroy the property of asymptotic controllability Part (a) easily Corollary 4.1 Consider the functiong and g from above.
follows from Part (b). Assume the system given pis asymptotically controllable
In order to prove Part (b) we use the coordinate transfort0 the origin. Then the functiol from Theorem 3.1 is a
mations in space and time described at the end of SectiolPcal control Lyapunov function fog in a neighborhood of
2. Observe that also these transformations do not affect théhe origin. In particular, the system given lyyis locally
asymptotic controllability. Using the homogeneity of degree asymptotically controllable to the origin.
7 = 0 of the system defined by, we can conclude that it is ) .
asymptoticall))//controllable if glnd only if it is exponentially Proof: Take the control Lyapunov functioi from Theo-
controllable. Hence we obtain a characterization of asymp-rern 31 . . .
totic controllability in terms of the maximum (with respect Using the homogenelty (5) of the trajectories of the homo-
geneous system and estimate (9) (makirandé; smaller,

to z) of the minimal (with respect ta(-)) Lyapunov expo- . ;
nents, cp. [3], which in turn can be approximated by an in-gun:hcfﬁjfry) we obtain the existence of a consfant(0, 1)

finite horizon discounted optimal value function on the unit
sphere, see [5]. Lifting this value function ®* (similar to N(AV 2t z,u) € [1—v,1+1]
[6]) and approximating it by a suitable inf-convolution then N()

gives the desired functiow (for the transformed problem), and

which can be retranslated by applying the inverses of the time N( X&x)y(t, z,u)) € [1—~,14+4]



forallt € [0, N(z)~7é1], all z € R™ with ||z|| < ¢ and all We now define a feedbadk : R™\ {0} — U by choosing

we U and|ul| < 9. for eachz the control value:, from Theorem 3.1 and set
Now let L denote the Lipschitz constant Bfon the com-
pact set{z € R"| N(z) € [1 —v,1+ 4]}. SinceV is ho- F(z) = uq. (10)

mogeneous and satisfiesV(z) < K||z|| for some suitable

Recall thatu,, depends homogeoeously ahhenceF' is a
K > 0 we can conclude

homogeneous map, i.E(Aqz) = A F(x)forallz € R™\
0} and alla > 0. Note that when we sdt(0) = 0 we even
V(@(t 2, u)) = V( ¢z, )l éb{ain continuity ofF' in the origin )

2k ’
N(z)™ V(A N(z) z(t, z,u)) = V(A N(z)y(t T, u))| Using thisF' we obtain the following result from Theorem
N(‘I)QkLHAN(x) o(t, z,u) — Ay 1 oY y(t, z,u)|| 3.1 by a standard Lyapunov function argument.
N(z)

T 2’“LKN(ANLC) x(t, x,u) — AN(x)y(t,:v,u)) Corollary 4.2 Assume asymptotic controllability of system
(1) satisfying(2). Then there exists > 0 such that the sam-

IN

IN

_ 2k _
- LKN(J;)%]_VI( )" N(a(t z,u) = y(t, v, u)) pled closed loop system usidgfrom (10) is asymptotically
= LKN(2)™ N(z(t,z,u) — y(t, z,u)). stable if the intersampling times satisfy; < hN 7 (z;).
Together with estimate (9) this implies By the same arguments as used in Section 4.1 this feed-
back will also locally stabilize the nonlinear system given by
Jof V(y(t,z,u)) g, providedg admits an asymptotically controllable homoge-
_ neous approximation.
2k—1 T+1
< ulenfm V(a(t,z,u)) + LEN(2)™ " CteN(z) Note that in contrast to the analogous result for general
< V(z) — 2%uNT (2)V LKCteN (z)7+2F nonlinear systems in [2], here we can give a positive upper
< Vi) K . @)V () + eN(@) bound on the sampling rate depending on the degreé
< V() —tpN"(z)V(z) the system. In particular, if > 0 we obtain semi-global

asymptotic stability with fixed positive sampling rate, and if
7 = 0 we even obtain global asymptotic stability with fixed
0 positive sampling rate, cf. also the more detailed discussions
in [8] and [7].
Similar to what was done for semilinear systems in [4],
4.2 Sampled Feedbacks also here we can obtain a numerical approximatiorFof
some numerical examples can be found in [8].

for all =z with ||z|| sufficiently small, and all times &
[0, N(z)"701].
This estimate immediately implies the assertion.

The Lyapunov function from Theorem 3.1 allows the con-
struction of a sampled feedback stabilizing the system. Here

we only give the plain definition of a sampled feedback, 5 Conclusion

for details and a discussion of this concept see e.g. [7, 16].

Again, we formulate the result for homogeneous systems; th&Ve have shown the existence of homogeneous control Lya-
analogous result is true for homogeneous-in-the-state sypunov functions for asymptotically controllable homoge-

tems. neous control systems.
A (discontinuousjeedbacks any mapF' : R” — U. F'is This existence result implies local asymptotic controlla-
called homogeneous K (A,z) = AL F(z). bility for nonlinear systems which can be approximated by
An infinite sequence = (¢;);cy, Of times satisfying asymptotically controllable homogeneous systems.
Furthermore, an additional property of the control Lya-
O=thg<t1 <ty <... and t; — ocoasi — oo punov functions allows the construction of a stabilizing ho-
mogeneous discontinuous sampled feedback. Depending on
is called asampling schedul€eThe values the degree of the system, we can give positive upper bounds
on the sampling rate which ensure asymptotic stability of the
At =t —t; and d(m) = Sup At; sampled closed loop system.
0
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